Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/34938
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPremkumar, Manoharan-
dc.contributor.authorJangir, Pradeep-
dc.contributor.authorKumar, Balan Santhosh-
dc.contributor.authorSowmya, Ravichandran-
dc.contributor.authorAlhelou, Hassan Haes-
dc.contributor.authorAbualigah, Laith-
dc.contributor.authorMirjalili, Seyedali-
dc.date.accessioned2023-11-17T11:58:32Z-
dc.date.available2023-11-17T11:58:32Z-
dc.date.issued2021-
dc.identifier.citationYıldız, A. R. (2021). "A New Arithmetic Optimization Algorithm for Solving Real-World Multiobjective CEC-2021 Constrained Optimization Problems: Diversity Analysis and Validations". IEEE Access, 9, 84263-84295.en_US
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2021.3085529-
dc.identifier.urihttps://ieeexplore.ieee.org/document/9445061-
dc.identifier.urihttp://hdl.handle.net/11452/34938-
dc.description.abstractIn this paper, a new Multi-Objective Arithmetic Optimization Algorithm (MOAOA) is proposed for solving Real-World constrained Multi-objective Optimization Problems (RWMOPs). Such problems can be found in different fields, including mechanical engineering, chemical engineering, process and synthesis, and power electronics systems. MOAOA is inspired by the distribution behavior of the main arithmetic operators in mathematics. The proposed multi-objective version is formulated and developed from the recently introduced single-objective Arithmetic Optimization Algorithm (AOA) through an elitist non-dominance sorting and crowding distance-based mechanism. For the performance evaluation of MOAOA, a set of 35 constrained RWMOPs and five ZDT unconstrained problems are considered. For the fitness and efficiency evaluation of the proposed MOAOA, the results obtained from the MOAOA are compared with four other state-of-the-art multi-objective algorithms. In addition, five performance indicators, such as Hyper-Volume (HV), Spread (SD), Inverted Generational Distance (IGD), Runtime (RT), and Generational Distance (GD), are calculated for the rigorous evaluation of the performance and feasibility study of the MOAOA. The findings demonstrate the superiority of the MOAOA over other algorithms with high accuracy and coverage across all objectives. This paper also considers the Wilcoxon signed-rank test (WSRT) for the statistical investigation of the experimental study. The coverage, diversity, computational cost, and convergence behavior achieved by MOAOA show its high efficiency in solving ZDT and RWMOPs problems.en_US
dc.language.isoentr_TR
dc.publisherIEEE - Inst Electrıcal Electronics Engineers Incen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOptimizationen_US
dc.subjectPareto optimizationen_US
dc.subjectTask analysisen_US
dc.subjectSortingen_US
dc.subjectLicensesen_US
dc.subjectGenetic algorithmsen_US
dc.subjectConvergenceen_US
dc.subjectArithmetic optimization algorithm (AOA)en_US
dc.subjectCEC-2021 real-world problemsen_US
dc.subjectConstrained optimizationen_US
dc.subjectCulti-objective arithmetic optimization algorithm (MOAOA)en_US
dc.subjectGrey wolf optimizeren_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectEmissionen_US
dc.subjectDesignen_US
dc.subjectMOEA/Den_US
dc.subjectEfficiencyen_US
dc.subjectInverse problemsen_US
dc.subjectMathematical operatorsen_US
dc.subjectConstrained multi-objective optimizationsen_US
dc.subjectConstrained optimi-zation problemsen_US
dc.subjectMulti objective algorithmen_US
dc.subjectOptimization algorithmsen_US
dc.subjectPerformance indicatorsen_US
dc.subjectPower electronics systemsen_US
dc.subjectUnconstrained problemsen_US
dc.subjectWilcoxon signed rank testen_US
dc.subjectMultiobjective optimizationen_US
dc.titleA new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: Diversity analysis and validationsen_US
dc.typeArticleen_US
dc.identifier.wos000673117200001tr_TR
dc.identifier.scopus2-s2.0-85107354041tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0003-1790-6987tr_TR
dc.identifier.startpage84263tr_TR
dc.identifier.endpage84295tr_TR
dc.identifier.volume9tr_TR
dc.relation.journalIEEE Accesstr_TR
dc.contributor.buuauthorYıldız, Ali Rıza-
dc.contributor.researcheridF-7426-2011tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationSanayitr_TR
dc.subject.wosComputer science, information systemsen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosTelecommunicationsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid7102365439tr_TR
dc.subject.scopusDecomposition; Evolutionary Multiobjective Optimization; Pareto Fronten_US
Appears in Collections:Web of Science

Files in This Item:
File Description SizeFormat 
Yıldız_2021.pdf8.67 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons