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ABSTRACT In this paper, a new Multi-Objective Arithmetic Optimization Algorithm (MOAOA) is proposed
for solving Real-World constrained Multi-objective Optimization Problems (RWMOPs). Such problems
can be found in different fields, including mechanical engineering, chemical engineering, process and
synthesis, and power electronics systems. MOAOA is inspired by the distribution behavior of the main
arithmetic operators in mathematics. The proposed multi-objective version is formulated and developed
from the recently introduced single-objective Arithmetic Optimization Algorithm (AOA) through an eli-
tist non-dominance sorting and crowding distance-based mechanism. For the performance evaluation of
MOAOA, a set of 35 constrained RWMOPs and five ZDT unconstrained problems are considered. For
the fitness and efficiency evaluation of the proposed MOAOA, the results obtained from the MOAOA
are compared with four other state-of-the-art multi-objective algorithms. In addition, five performance
indicators, such as Hyper-Volume (HV), Spread (SD), Inverted Generational Distance (IGD), Runtime (RT),
and Generational Distance (GD), are calculated for the rigorous evaluation of the performance and feasibility
study of the MOAOA. The findings demonstrate the superiority of the MOAOA over other algorithms
with high accuracy and coverage across all objectives. This paper also considers the Wilcoxon signed-rank
test (WSRT) for the statistical investigation of the experimental study. The coverage, diversity, computational
cost, and convergence behavior achieved by MOAOA show its high efficiency in solving ZDT and RWMOPs
problems.

INDEX TERMS Arithmetic optimization algorithm (AOA), CEC-2021 real-world problems, constrained
optimization, multi-objective arithmetic optimization algorithm (MOAOA).

I. INTRODUCTION
Recently, computer technology advancements have increased
the quality of addressing complex problems and decreased the
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time and cost of producing the optimal solution. However,
human input is yet needed to determine the best of different
solutions. Significant efforts can be seen in the literature to
produce a system that optimally solves the given problem
without any human effort [1]. One of the most reliable meth-
ods to accomplish this depends on optimization techniques.
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In many instances, most engineering problems, such as city
programming, program management, investment decision,
control system design, engineering design, and university
timetable, the objectives conflict by nature. Thus, one objec-
tive cannot be developed without the depravity of another
objective. This kind of problem is called multi-objective
optimization problems (MOPs), producing various opti-
mal solutions identified as Pareto optimal solutions [2].
Hence, the multi-objective problem also varies from the
single-objective.

In multi-objective problems, different tasks are considered
to solve the problem: a searching task whose aim is to obtain
Pareto optimal solutions and the decision-making task, most
of the selected solutions are taken from Pareto optimal solu-
tions. In other words, the two main tasks in multi-objective
optimization are to get a set of non-dominated solutions as
similarly as possible to the true Pareto optimal Front (PF)
and keep a set of well-categorized solutions along with the
Pareto optimal front [3]. Therefore, multi-objective methods
intend to discover a set of reasonable trade-off solutions,
and a decision-maker is required to choose one of them.
There are several targets for multi-objective optimization
problems, often in dispute, since they are difficult problems
to solve because of their complex structure [4]. A selection
of candidate solutions used progressively by the optimization
technique to solve the given problem is the standard key
to such optimization issues. It is called optimum solutions
from Pareto. Due to MOPs, arithmetic operators do not apply
to multiple optimized solutions [5], [6]. The optimal domi-
nance theory of Pareto helps to compare two solutions in a
multi-objective space. The Pareto optimal solutions demon-
strate the best state of equilibrium relating to the given objec-
tives [7]. With generality in mind, the MOPs can be expressed
as a minimization concept and expressed as follows.

Minimize : F (X) = [fi ®) .2 X),.... i &), .... [ D]

Subjectedto: h; (X) =0, i=1,2,...,p
g =0, i=1,2,....m
LB <x;<UB;, i=12,...,n

ey

where g denotes a total number of objectives, m and p denote
the number of inequality and equality constraints, respec-
tively, LB; is the lower bound of the i variable, and UB; is
the upper bound of the i variable.

Recently, optimization algorithms have been successfully
applied to solve MOPs [8], [9]. Thanks to their ability to
determine a Pareto optimal solution in a specific run, these
optimization algorithms tend to be more beneficial than the
traditional algorithms. Although optimization algorithms use
a set of candidate solutions, they can be expanded to retain
varied solutions in a given run. Many optimization algo-
rithms solve MOPs using non-dominated ranking and Pareto
strategy to provide different Pareto optimal solutions [10].
This paper explores the non-dominated approach to rank
the solutions and crowding distance mechanism to maintain
diversified Pareto optimal solutions.
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The literature indicates that many multi-objective evolu-
tionary algorithms (MOEAs), such as the Non-dominated
Sorting Genetic Algorithm (NSGA-II) [9], Decomposition-
based Multi-Objective Evolutionary Algorithm
(MOEA/D) [11], multi-objective swarm algorithms, such
as Multi-Objective Ant Lion Optimization (MOALO) [12],
Multi-Objective Grey Wolf Optimizer MOGWO) [13], and
Multi-Objective Particle Swarm Optimization (MOPSO) [14]
have been proposed that can successfully approximate the
true Pareto-optimal solutions for many MOPs. Neverthe-
less, the baseline optimization techniques for such MOPs,
such as the particle swarm optimization (PSO) for MOPSO,
the genetic algorithm (GA) for NSGA-II, grey wolf opti-
mizer (GWO) for MOGWO, and ant lion optimizer (ALO)
for MOALO, are not considered to be sufficiently advanced
and efficient.

There are a variety of metaheuristics suggested in recent
decades. Examples of the very newly enacted approaches of
nature-inspired techniques include new techniques focused
on grey wolf optimizer (GWO) [15], tunicate swarm
optimizer [16], heap optimizer [17], gradient-based opti-
mizer [18], jellyfish optimizer [19], Jaya algorithm [20], and
red deer algorithm [21], among others. The readers should
go through scientific studies for more details on many other
optimization methods [22]. In general, such algorithms’ regu-
lating parameters are found to operate with the initial constant
value. Such algorithms are indeed not versatile enough to
turn their attention to either exploration or exploitation as
required.

The No-Free Lunch theorem [23] for the development
of optimization allows researchers to improve or refine
new optimization algorithms because it logically proves that
no single algorithm can solve all optimization problems.
This theory provides guidelines for researchers to imple-
ment new algorithms or improve existing algorithms to
achieve enhanced efficiency. These are indeed the reasons
behind the new research described in this paper, in which a
Multi-objective Arithmetic Optimization (MOAOA) focused
on the newly published Arithmetic Optimization Algo-
rithm (AOA) proposed by Abualigah ef al. [24] in 2021
that employs the distribution of leading arithmetic operator’s
behavior in mathematics.

When working with MOAOA, one of the most important
questions is why this algorithm needs to be applied for a con-
straint optimization problem. The NFL theorem can answer
this question, which indicates that no metaheuristic exists
to solve all types of practical applications. Due to many
optimizers’ insufficient accuracy in providing solutions for
constraint optimization problems, MOAOA is achieved the
best solutions in this work. This motivates us to propose a
new metaheuristic multi-objective algorithm to handle the
constrained multi-objective problems released by the CEC
community. In this paper, MOAOA is proposed to solve
various challenging Real-World constrained Multi-Objective
Problems (RWMOPs). The proposed MOAOA is formulated
as similar to single-objective AOA, and it has been converted
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as a multi-objective algorithm by utilizing the elitist non-
dominance-sorting mechanism. Comprehensive experiments
have been conducted on 35 CEC-2021 real-world constrained
optimization problems. The results reported that the pro-
posed MOAOA provides a promising performance compared
with other multi-objective algorithms reported in the litera-
ture. Moreover, MOAOA results in an equilibrium between
the exploration and exploitation search approach efficiently.
Consequently, the contributions of this paper are as follows.

o A new MOAOA is formulated by employing an elitist
non-dominance sorting mechanism to maintain Pareto
optimal dominance and a crowding distance mechanism
to improve convergence and solution diversity.

o A thorough and informative examination is provided
on the performance of the MOAOA on various uncon-
strained ZDT benchmark test problems, and the per-
formance of the MOAOA is compared with the other
algorithms in terms of the Generational Distance (GD),
Spread (SD), Hyper-Volume (HV), Runtime (RT), and
Inverted Generational Distance (IGD).

e The proposed MOAOA is provided with an updated
epsilon constraint-handling mechanism and experi-
mented with CEC-2021 35 challenging real-world con-
strained MOPs, and the results are compared with other
state-of-the-art algorithms.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related works. Section 3 briefly explains the basic
arithmetic optimization algorithm and explains the procedure
to convert AOA into MOAOA. Section 4 provides the exper-
imental results on all five ZDT test suites and 35 RWMOPs.
Also, the performance comparison with other state-of-the-art
algorithms is discussed in Section 4. Section 5 concludes
the paper.

Il. LITERATURE REVIEW
This section first introduces the preliminary definitions of
multiple-objective optimization, such as Pareto optimal front,
Pareto optimal set, Pareto optimal dominance, and Pareto
optimality. The definitions are as follows.

Def. 1: Pareto optimal front (POF) [25]:

A set that includes the value of objective functions for the
Pareto solutions set.

Pr:={F (X)|X € P} (@)
Def. 2: Pareto optimal set (POS) [25]:

The set all Pareto-optimal solutions are called Pareto set
as follows:

Py :={x,y € X|3F () = F(X)} 3)

Def. 3: Pareto Optimality [25]:
A solution X € X is called Pareto-optimum if and only if:

BV eX|IF () < F ) 4
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Def. 4: Pareto Dominance [25]:
Assume two vectors such as: X = (x1,x2,...,xt) and
y = (y1,¥2,...,Yk). Vector x is said to dominate vector y
(denote as X < ) if and only if:
Vie{l,2,...,k}:fX)<fid) ATie{l,2, ... k}:
fi® <fiG) )

Objective space

Parametric space

ol 3 X

Scecece="”

>

X1 Ji

FIGURE 1. Objective space and parameter space in multi-objective
optimization.

As shown in Fig. 1, the objective space represents a set of
non-dominated solutions called Pareto optimum solutions for
maximization or a minimization problem, and the parametric
space represents a set of dominated solutions. A relation
between parametric spaces to the objective space is called
optimum Pareto front (PF).

The techniques for solving MOPs are primarily divided
into a priori and posteriori methods [26]. Priori techniques
usually focus on solving MOPs by transforming them to a sin-
gle objective. Linear programming and weighted-sum meth-
ods, introduced in the 1950s, are in this category [3]. Surveys
have shown that the priori method is faced with various prob-
lems, such as local optimization, large processing time, etc.,
when handling the MOPs [27]. Posteriori techniques have
been developed to establish multiple strategies, and it has
significant benefits, such as low computational complexity
and generating good results independently of the problem
structure. While solving MOPs with multi-objective meta-
heuristic optimizers (MOMOs), each solution has a quality
score dependent on its similarity to PF and spread (diversity).
These metrics are used in the identification of parents and in
the evaluation of solutions that survives. There are three main
steps used to rank the solution [9].

(i) Pareto-based approach
(i) Indicator-based approach
(iii) Decomposition-based approach

A. PARETO-BASED APPROACH

Goldberg [28] initially realized in 1989 that the Pareto-
dominance principle could be used to evaluate the opti-
mal solution. Oriented by this theory, many MOMOs have
proposed a variety of frameworks that use the Pareto-
dominance rule to calculate the similarity of the optimal
solution to PF. For instance, Deb ef al. rank the optimum
solutions using the non-dominated-ranking approach in the
NSGA-II [9], and Zitzler et al. rank the optimum solutions

84265



IEEE Access

M. Premkumar et al.: New AOA for Solving Real-World Multiobjective CEC-2021 Constrained Optimization Problems

START

FE=0;
Identify the best solution (Xbest) of the population.
for g = 1 to gmax do
MOP=1- (g"((1/a)))/(gmax"((1/c0)))
MOA=0.2+g * (0.8/gmax)
fori=1tondo
forj=11t0omdo
rl=rand(0,1)
r2=rand(0,1)
r3=rand(0,1)
if r1I>MOA

else

end if
else

else

end if
end if
end for
FE=FE+ |
if F(Xi)<F(Xbest) then
Xbest=Xi
end if
if FE > FEmax then
break optimization loop
end if
end for
end for
STOP

Define objective function F(X), population size (n), set number of design variables (m), limits on design variables
(LB,UB), and set termination criterion (‘FEmax’, or ‘gmax’); where, F(X) is the objective function and ‘X’is the
design vector. The set of population size (i=1,2,,n), 0=3, u=0.4999.

Initialize the random generated population within its (LB, UB) bounds and evaluate it.

if 72>0.5 (Exploration Phase)
Xi,j'=Xbest+ (MOP+¢€) xX((UBj-LBj )xu + LBj ) /* Divide operator (D,”+") /*

Xi,j'=Xbest x(MOP) x((UBj-LBj )xu + LBj )
if 73>0.5 (Exploitation Phase)
Xi,j'=Xbest-(MOP) x((UBj-LBj )xu + LBj ) /* Subtraction operator (S,”-") /*

Xi,j'=Xbest+(MOP) x((UB/j-LBj )Xyt + LB} )

/* Initialization /*
/* Initialize population /*

/* Initialize the optimization loop /*

/* MOP is AOA parameter /*

/* MOA is AOA parameter /*

/% Update the population /*

/* Update design variable /*

/*rl, r2, and r3 are random numbers /*

/* Multiply operator (M,”x”)/*

/* Addition operator (A,”+7) /*

/* Count Function evaluation /*
/* Update the best solution /* /* Greedy selection /*

/* Termination criterion /*

/* Population loop ends /*
/* Optimization loop ends /*

FIGURE 2. Pseudocode of the AOA.

in Strength Pareto Evolutionary Algorithm (SPEA2) [29].
In general, multiple methods, such as fitness-sharing, clus-
tering [29], and crowding-distance [9], are used to calcu-
late the Spread of optimal solution in PF. Most of the
Pareto-based MOMOs are: MOPSO [14], Multi-Objective
Multi-Verse Optimizer (MOMVO) [30], Multi-Objective
Heat Transfer Search (MOHTS) [31], Non-dominated Sort-
ing MFO (NSMFO) [32], Non-dominated Sorting GWO
(NSGWO) [33], Multi-Objective Slime Mould Optimizer
(MOSMA) [34], MOALO [12], Non-dominated Sorting
WOA (NSWOA) [35], and Multi-Objective Passing Vehicle
Search (MOPVS) [31].

B. INDICATOR-BASED APPROACH

Many performance indicators have been suggested in the
literature to quantify the level to which the PF obtained
by the MOMOs for a problem displays the complete PF in

84266

terms of diversity, coverage, and spread. The limited indi-
cators only assess the convergence output (Epsilon [36],
GD [37], etc.) or diversity (Spread [36], Spacing [38], etc.)
of the PF collected, whereas others assess both diversity
and convergence (HV [39], IGD [40], RT [41], etc.). Nowa-
days, researchers have been using these metrics as indicators
to direct the discovery process in solving MOPs. Zitzler
and Kiinzli suggested an indicator-based evolutionary algo-
rithm (IBEA) that measures optimal solution output with
quantitative performance indicators [42]. Performance met-
rics are used in indicator-based algorithms’ environmental
selection process. There are many metrics for checking the
effectiveness of algorithms, which measure diversity and con-
vergence, or both simultaneously. In specific, using the HV
indicator [39] or performance metrics based on reference sets
such as R2 [43], IGD [40], or Aj [44], a reasonably good
PF depiction of a MOP can be accomplished. As previously

VOLUME 9, 2021



M. Premkumar et al.: New AOA for Solving Real-World Multiobjective CEC-2021 Constrained Optimization Problems IEEEACC@SS

(START}—» Define population size (n), termination criterion, L, U, FEux, Smax, 05, u=0.4999 T
I Initialize the random generated populations and evaluate them.i=1. FE=0.g=1 Id
<
| Store the elite solution le

!

l Identify the best population (\best) I

v

MOP=1- (g"((l/a) ))/(gmax™((1/a)) )
MOA=0.2+g % (0.8/gmax)

I

I Random numbers r1, 12, r3=rand(0,1) I

!
Yes

Exploration Phase 71>MOA

No
72>0.5

Exploitation Phase

—lei’=XbesL+(MOP+() X((UB-LB)*u +LB) /* Divide operator (D,”") /* ]

Xi'=Xbestx(MOP) x((UB-LB )>u + LB) [* Multiply operator (M,”x”)/* |

|X i'=Xbest-(MOP) x((UB-LB )*u + LB) [* Subtraction operator (S,”-") /* |<

|X i'=Xbest+(MOP) x((UB-LB )*u + LB) [* Addition operator (A,”+”) /* |4—

Is new solution
fitter than existing

FE =FE+1

Continue the existing solution I

\ ]
No
>
Yes

\ 4

Replace the worst solution with the elite solution

Is termination
crileria satisficd ?

Display final solution

FIGURE 3. Flowchart of the basic version of AOA.

stated, IBEAs based on reference sets rely on the reference
set, which is often hard to determine before starting the
quest. Nevertheless, numerous studies have discovered new
strategies for constructing the reference set, as evidenced by
the studies published for IGD/IGD™ [45], R2 [43], and the
Ap indicator [44]. HV-based IBEAs, on the other hand, only
need a single reference vector to calculate the hypervolume
indicator. Nevertheless, such methods are restricted by the
HV indicator’s high computational cost, which rises as the
number of objectives rises.

VOLUME 9, 2021

C. DECOMPOSITION-BASED APPROACH

The POS can be the ideal choice of the scalar function
achieved by integrating all the fitness functions of the
MOPs. The POF can therefore be decomposed into a variety
of scalar optimization problems [46]. Decomposition-based
strategies use this core principle to optimize the decompo-
sition of the cost function produced by a certain weight
vector. A variety of decomposition-based methods have
been discussed and recommendations by researchers. Zhang
and Li first introduce the MOEA/D algorithm in [11].
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FIGURE 4. Schematic representation of NDS.
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FIGURE 5. Schematic representation of CD mechanism.

Some of these optimizers are MOEA/D with Uniform Design
(MOEA/D-UD) [47], MOEA based on Hierarchical Decom-
position (MOEA/HD) [48], MOEA/D with Adaptive Weight
Vector Adjustment (MOEA/D-AWA [49], MOGWO/D [50],
and MOPSO/D [51].

Works such as [9] and [11] on multi-objective optimiza-
tion algorithms are suggested for further reading by inter-
ested readers. As per the No-Free-Lunch theory, it may
now be likely to create a new algorithm that can solve
an unsolved problem described in the literature or solve
an existing solved problem with improved results. Further-
more, the basic AOA version is claimed to be an easy
and straightforward algorithm based on the mathematics
operator with very fewer tuning parameters. The AOA was
shown to perform very well on constrained and uncon-
strained benchmark test suites and real-world problems.
The convergence and diversity of the solutions are bal-
anced efficiently in AOA. Consequently, compared to sev-
eral other traditional algorithms, it is very likely that the
multi-objective variant of the basic AOA has the maximum
performance.
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lIl. MULTI-OBJECTIVE ARITHMETIC OPTIMIZATION
ALGORITHM (MOAOA)

In this section, the single-objective version of AOA is first
presented. Then, the multi-objective version is proposed.
The computational complexity of MOAOA is discussed in
the end.

A. BASIC VERSION OF ARITHMETIC OPTIMIZATION
ALGORITHM (AOA)

The principle of the basic model of the AOA is briefly dis-
cussed in this section. This algorithm was proposed in [24],
which is motivated by the use of arithmetic operators to solve
mathematical problems. The arithmetic operators, such as
multiplication, division, subtraction, and addition, are utilized
in scientific optimization to find the best solution subjected
to specific criteria from some set of candidate solutions. The
performance of the above-said operators and their impact
on the algorithm are discussed in this section. The initial-
ization of the AOA begins with ‘n’ quantities of initial ran-
dom solutions where the solution has ‘m’ control variables.
The solution group is then upgraded in each generation ‘g’
(g=1,2,3,..., &max; &max 18 the maximum number of gen-
erations) to support the four-phase arithmetic operator search
process. The better functional value of the modified solution
was found to result in greedy selection within the AOA. The
best solutions replace the worst solution in the population,
and the duplicate solution is replaced by randomly generated
solutions following a greedy selection process. For further
information on four-phase arithmetic operators, please refer
to [24]. The pseudocode of the AOA can be detailed in
Fig. 1, and the flowchart of AOA is illustrated in Fig. 2.
Fig. 1 and Fig. 2 explain the complete procedure of the AOA
in detail.

B. MULTI-OBJECTIVE ARITHMETIC OPTIMIZATION
ALGORITHM (MOAOA)

The proposed MOAOA utilizes an elitist non-dominated sort-
ing (NDS) approach and diversity maintenance by the crowd-
ing distance (CD) framework [9]. The NDS comprises the
subsequent phases.

« First, determining the non-dominated solution

« Second, the application of the NDS approach

o For all non-dominated solutions, non-dominated rank-
ing (NDR) is calculated

The ranking procedure occurs between two fronts. The
first front solutions assign a ‘0’ index because the solutions
are not dominated; simultaneously, the second front solu-
tions are dominated by a minimum of one solution in the
first front. The NDR process is illustrated in Fig. 4. Such a
non-dominated ranking of the solutions is equal to the solu-
tions that dominate others. The crowding-distance framework
is illustrated in Fig. 5, and it is utilized to maintain diversity
between the generated solutions.
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I Initialize the population of 1 :_ 1 : Rank 2 : Rank 2
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i | of previous best =g 1 : | : I I
. | | 1 1
fm==——-=L-————- | ! solutions | | ; | ; U Ranks !
I Combine previous and 1 e o e __ Jl | 1 | 1 1 amis S )
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=3
o
=

I' Update the
: solutions

FIGURE 6. Graphical illustration of NDS based algorithm.

The crowding-distance framework is well-defined as
follows.
i1 i—1
CD; = f—abj.’ fObe - (6)
fobjj’.”“" - fob]j’.”’"
where fobj""™* and fobj]’.”m are the maximum and minimum
values of j™ objective function. The diagrammatic illustration
of an NDS-based approach is illustrated in Fig. 6.

The pseudocode of the MOAOA is illustrated in
Algorithm 1. The initial phase of the algorithm is to define
the required parameters, such as the maximum number of
iteration (IT},,c)/maximum number of generations, popula-
tion size (Np), and termination criteria. Then, parent pop-
ulation P, is randomly generated in the region of feasible
search space, and each fitness function in the objective
vector space F' for P, is assessed. Apply the CD and NDS
based on the elitist framework to P,. The new popula-
tion of P; is generated and combined with P, to obtain
population P;. Then, P; is arranged based on the elitist
non-dominated sorting approach and obtained the values of
CD and NDR. The best N, solutions are reviewed to make
an updated parent population. Lastly, this procedure is repet-
itive till the termination criteria. Fig. 7 shows the flowchart
of MOAOA.
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C. COMPUTATION COMPLEXITY OF MOAOA

The computational complexity of the MOAOA algorithm is
represented in terms of time and space complexity. As per
the previous discussion, the suggested MOAOA utilizes the
NSGA-II operators [9]. Subsequently, the concept of CD
and NDS mechanisms is taken from NSGA-II. Therefore,
the computational space complexity of MOAOA is similar to
MOMVO, NSGWO, MOALO, and MOSMA optimizers are
O(MNP)Z, where Np, is the population size, and M is the total
number of objective functions.

IV. SIMULATION RESULTS AND DISCUSSIONS

In order to assess whether the suggested MOAOA is efficient
in solving multi-objective optimization problems, several
experiments are conducted on the unconstrained ZDT1-4,
ZDT6 multi-objective problems with two objectives [52], and
the CEC-2021 test problems with two, three, and five objec-
tives [53] with different performance metrics. The proposed
MOAOA results are compared with four state-of-the-art opti-
mizers, namely NSGWO [33], MOMVO [30], MOALO [12],
and MOSMA [34]. In the following subsection, the test prob-
lems and performance metrics adopted are briefly introduced.
Afterward, the parameter settings of all algorithms, constraint
handling approach, and best-compromised solutions (BCS)
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Start

\ 4
nitialize the AOA paramete
i.e. no. of agents, no. of
variable, lower bound. upper
bound, maximum iterations

A 4

Generate random initial
population & store them into
matrices

.| Calculate the fitness of all the
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AOA optimizer Is iteration criteria ’
satisfied?
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Determine the non-dominated population & save them in solution
solutions in the initial Pareto archive & eliminate any
population & save themin [ dominated solutions in the
Pareto archive Pareto archive End

FIGURE 7. Flowchart of the proposed MOAOA.

Algorithm 1 MOAOA-Pseudocode

Step 1: Primarily generate random population

(Py) in solution space (S)

(F) for the generated P,
sort the solutions and calculate the NDR and

Step 2: Assess objective vector space
Step 3: Based on elitist NDS method,
fronts
Step 4: Calculate CD for each front
Step 5: Update solutions (P;) using Fig. 2
Step 6: Merge P, and P; to create Pi=P, U P,
Step 7: For P, perform Step 2
Step 8: Based on NDR and CD sort P;
Step 9: Replace P, with P; for N, first members of P;

approach are introduced. Finally, the experimental results,
together with the analysis and the comparative results, are
discussed comprehensively.

A. MULTI-OBJECTIVE TEST SUITES

Firstly, in experimentation, the suggested MOAOA is com-
pared with ZDT1-4, ZDT6 from the ZDT test suite, and sec-
ondly, challenging Real-world constrained multi-objective
problems from the CEC-2021 test suite are selected as the
test instances for empirical comparisons in this study for
testing the efficiency of the proposed MOAOA on MOPs. The
number of objectives M C {2, 3, 5}. These test suites are com-
posed of optimization problems with linear, mixed, partially
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separable, concave, and disconnected Pareto optimal fronts
characteristics of ZDT and CEC-2021 problems, as shown
in Fig. 5.

B. PERFORMANCE METRICS

The generational distance (GD), Spread (SD), hypervol-
ume (HV), runtime (RT), and inverted generational distance
(IGD) [54] metrics are selected to evaluate the performance
of the proposed MOAOA. HV and IGD deliver joint statis-
tics of the diversity of the obtained set of solutions and
convergence. Simultaneously, SD and GD metrics are the
diversity and convergence measure, and RT metric provides
average CPU time called computational complexity of each
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TABLE 1. GD/Spread/IGD/HV/RT-Metrics (Mean and STD values) of all algorithms on the ZDT benchmark test suite.

Problem NSGWO MOMVO MOALO MOSMA MOAOA
GD
ZDTI 1.116dc-1 (2.176-2) - 6.5495¢-3 (8.860-4) - 5274603 (2.07c-3) - 1.7064e-4 (1.32e-5) = 1.839%4c-4 (2.00¢-5)
ZDT2 1235¢+0 (3.04e-1) - 8.9903¢-3 (1.93¢-3) - 4.8162¢-3 (1.52e-3) - 1.9038¢-4 (2.49¢-5)=  1.5869¢-4 (6.08¢-5)
ZDT3 1.1900e-1 (3.69¢-2) - 6.4039¢-3 (2.45¢-3) - 1.0794e-2 (3.36e-3) - 1.3712¢-4 (3.15¢-5)=  1.1025¢-4 (1.88¢-5)
ZDT4 8.564¢+0 (7.56e+0) - 6.0155¢-3 (1.69¢-3) - 2.5584e-1 (2.41e-1)-  7.1331e-4 (1.17e-4) =  4.4424e-4 (8.40¢-5)
ZDT6 12526e-1 (1.96e-1) - 6.9421e-3 (2.00e-3) - 9.4918¢-2 (2.03¢-2) -  2.4914e-4 (9.49e-5)=  4.4362¢-4 (3.90¢-4)
WSRT (+/-/=) 0/5/0 0/5/0 0/5/0 0/0/5
SPREAD
ZDTI 8741601 (2.750-2) - 14169¢-1 (8.326:3)=  4.9308c-1 (6.2402) - 6.3166e-1 (1.14c-1)- _ 1.2752¢-1 (1.38¢-2)
ZDT2 4.0675¢-1 (7.78¢2) - 1.3692e-1 (9.73¢-3)=  5.0675¢-1 (9.78¢-2)-  6.4653¢-1 (1.16e-1)-  1.3684e-1 (1.54¢-2)
ZDT3 8.8486¢-1 (2.94¢-2) - 1.6715¢-1 (3.81e-2)=  4.9998e-1 (1.08¢-1)-  8.6684e-1 (1.16e-1)-  1.6115¢-1 (5.48¢-3)
ZDT4 0.828¢-1 (2.19¢-2)=  1.464e-1 (1.99¢-2)=  7.9300e-1 (1.73¢-1)-  1.0673¢+0 (3.60e-2) - 1.6418¢-1 (2.41¢-2)
ZDT6 1.164¢+0 (2.63e-1) - 1.4807e-1 (5.20e-2)=  4.3637¢-1 (4.90e-2) - 5.6692¢-1 (6.20¢2)-  1.4390e-1 (2.08¢-2)
o= 0/3/1 0/0/5 0/5/0 0/5/0
IGD
ZDTI 1.154c+0 (1.560-1) - 4.3795¢-3 (447e-3) = 5.3472¢-2 (2.150-2) - 7313602 (1.280-4) - 4.1437¢-3 (8.17¢-5)
ZDT2 1317¢+0 (2.88¢-1) - 4.4717e3 (1.19e-2) = 5.7696¢-2 (1.49¢-2) - 1.7108¢-2 (1.68¢-4)-  4.6360¢-3 (2.68¢-4)
ZDT3 7.7030¢-1 3.15¢-1)-  52142e-3 (1.31e-2)=  1.0487c-1 (3.42¢2)-  5.1988¢-2 (2.37c-4)-  5.0147¢-3 (1.89¢-4)
ZDT4 2.796e+1 (2.58¢+0) - 8.8661e-3 (1.71e-1)=  2.5180¢-1 (5.22¢-1)-  8.0786¢-1 (1.46¢-3)-  6.2557¢-3 (7.17e-4)
ZDT6 5.854e-3 (221e-2)=  5.2947¢-3 (7.67e-3)= 344162 (5.50e-4) -  4.7419¢-3 (5.87c-4)-  3.2705¢-3 (2.90¢-3)
o= 0/4/1 0/0/5 0/5/0 0/5/0
HY
ZDTI 6332003 (12762) - 6.6097c-1 (6.48¢3) - 6.5377c-1 (2.6162) - 7.1875e-1 (2.52e-4) = 7.1863c-1 (1.850-4)
ZDT2 0.000e+0 (0(c-0)) - 3.7337e-1 (1.63¢2) -  3.8052¢-1 (2.07¢-2)-  4.4288¢-1 (4.31e-4)=  4.4331e-1 (7.25¢-4)
ZDT3 49129¢-2 (5.57¢2) - 5.5975¢-1 (8.04e-3) - 53850c-1(2.70e2)-  5.9858¢-1 (2.91e-4)=  5.9870e-1 (2.63¢-4)
ZDT4 0.000e+0 (0(c-0))-  5.9421c-1 (1.10e-1)-  1.3824e-1 (1.67e-1)-  7.1127¢-1 (2.24e-3)=  7.1489%-1 (1.30¢-3)
ZDT6 2.886¢-1 (192e-1)=  33594c-1 (9.51e-3)-  3.8688¢-1 (6.09¢-4)=  3.8610c-1 (1.12¢-3)=  3.8396e-1 (4.80¢-3)
o= 0/4/1 0/5/0 0/4/1 0/0/5
RUNTIME
ZDTI 4.73E+00 1.0SE+00 5.70E+00 9.30E+00 1.09E+00
ZDT2 4.07E+00 9.88E-01 5.69E+00 7.70E+00 8.18E-01
ZDT3 439E+00 1.02E+00 5.48E+00 8.01E+00 1L.OOE+00
ZDT4 3.09E+00 8 81E-01 6.06E+00 6.23E+00 8.30E-01
ZDT6 3.28E+00 9.94E-01 5.78E+00 6.51E+00 8.47E-01
Time 3.91E+00 9.93E-01 5.74E+00 7.55E+00 9.18E-01
Complexity

algorithm, respectively. The usage and formulas to calculate
all performance metrics are presented in Fig. 9.

C. PARAMETER SETTINGS

For statistical comparisons, all selected algorithms are run 30
times independently on each test instance with the maximum
number of function evaluations (MAXFrgs), for each problem
is established [50] as follows.

MAX pgs
2 x 10, ifD<10, M =2
8 x 10%, elseif D> 10, M =2
= {26250 x 10*, elseif D <10, M =3 (7
1.05 x 10*,  elseif D> 10, M =3
5.3 % 104, else

7 is applicable for all selected algorithms, such as
MOAOA, NSGWO, MOMVO, MOALO, and MOSMA.
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Other specific parameter settings of each algorithm are the
same as suggested in the references.

D. CONSTRAINT HANDLING APPROACH

An updated epsilon constraint-handling [55] to handle the
constraints is applied to the proposed MOAOA. The formula
to handle the constraint is given as follows.

A-—1tek—1), ifrfi <a
e (k) = KNP 3
8(0)(1—?> , frfi >a

c

where 7 € [0, 1], T denotes control parameter to reduce
the constraints relaxation in the case of rfy < «, rfi is the
ratio of feasible to infeasible solutions in the k™ generation,
a € [0, 1], o controls the searching priority between the
infeasible and the feasible regions, cp control parameter to
reduce the constraints relaxation in the case of rfy > «,
and e(k) is updated till the generation k achieves the control
generation 7.
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Problems | Name M| D | ng| nh
Mechanical Design Problems

RWMOPO1 | Pressure Vessel Design

RWMOPO02 | Vibrating Platform Design
RWMOPO03 | Two Bar Truss Design

RWMOP04 | Welded Beam Design

RWMOPOS | Disc Brake Design

RWMOPO06 | Speed Reducer Design

RWMOPO7 | Gear Train Design

RWMOPO08 | Car Side Impact Design

RWMOPO9 | Four Bar Plane Truss

RWMOPI10 | Two Bar Plane Truss

RWMOPI11 | Water Resources Management
RWMOPI12 | Simply Supported I-beam Design
RWMOPI13 | Gear Box Design

RWMOP14 | Multiple Disk Clutch Brake Design
RWMOPIS5 | Spring Design

RWMOPI6 | Cantilever Beam Design

RWMOP17 | Bulk Carrier Design

RWMOPI8 | Front Rail Design

RWMOPI19 | Multi-product Batch Plant

RWMOP20 | Hydro-static Thrust Bearing Design
RWMOP21 | Crash Energy Management for High-speed Train
Chemical Engineering Problems
RWMOP22 | Haverly’s Pooling Problem
RWMOP23 | Reactor Network Design

RWMOP24 | Heat Exchanger Network Design
Process, Design and Synthesis Problems
RWMOP25 | Process Synthesis Problem
RWMOP26 | Process Synthesis and Design Problem
RWMOP27 | Process Flow Sheeting Problem
RWMOP28 | Two Reactor Problem

RWMOP29 | Process Synthesis Problem
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Power Electronics Problems

RWMOP30 | Synchronous Optimal Pulse-width Modulation of 3-level Inverters 2 (25124 0
RWMOP31 | Synchronous Optimal Pulse-width Modulation of 5-level Inverters 2 (25124 0
RWMOP32 | Synchronous Optimal Pulse-width Modulation of 7-level Inverters 2 (25124 0
RWMOP33 | Synchronous Optimal Pulse-width Modulation of 9-level Inverters 2 [30]29] 0
RWMOP34 | Synchronous Optimal Pulse-width Modulation of 11-level Inverters 2 [30]29] 0
RWMOP35 | Synchronous Optimal Pulse-width Modulation of 13-level Inverters 2 [30]29] 0
FIGURE 8. Characteristics of CEC-2021 Real-world constrained multi-objective problems [57].
( Performance metrics )
[
v v v v
Convergence Diversity Convergence & Diversity Complexity
A= YR d(ELP)+ Tyepld (@, P)—d)| | P HV = Volumc(ui=1 9) Z"e I
= = Len
Ly dEP) +(PI-md | ——y =
A
Y « d,P
. Lyep A, P7) 16D(P, py = 2> 4@ P}
GD(P*,P) = 22~ B S 1P7]

Where : d(v, P*)is the minimal Euclidean distance between v and all points in P*, (E, ..., E,,) are m extreme solutions in the true PF P*,
obtained PF P, no of problems 7, and 9; volume enclosed around reference point

FIGURE 9. Performance metrics of MOPs.
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FIGURE 10. Curves of the mean IGD values versus FEs on the ZDT1-4, ZDT6 test benchmarks.

E. BEST COMPROMISE SOLUTION (BCS) BASED ON
FUZZY DECISION

After obtaining the Pareto-optimal package, a fuzzy mem-
bership strategy [56] is introduced in this paper to achieve
a suitable and BCS over the compromise curve.

i frjnax _f'/ j j j
fmax _fmin . .
0, f] 2 fivax

The normalized membership function can be constructed
at each non-dominated solution as follows.

S wi
j=1 Mij

M Nobj
Dim1 j=1 Hij

where M is the number of non-dominated solutions, Noyp; is

Wi = (10)

the number of the objective functions, and f2,x and félin are
the maximum and minimum values of the respective objective
function. The BCS is the one with a high value of ;.

F. RESULTS ON ZDT TEST PROBLEMS

Before discussing the performance of the various optimiz-
ers for CEC-2021 Real-World constrained optimization, it is
interesting to compare them using the standard test suites,
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which are constrained multi-objective optimization problems,
including ZDT1-4 and ZDT6 benchmark problems [52]. The
comprehensive experiments are conducted to measure the
performance when handling general-purpose multi-objective
optimization. The MOAOA, MOMVO, MOALO, MOSMA,
and the NSGWO algorithms are chosen to solve the test
problems for 30 runs where the comparative results are based
on GD, Spread, IGD, HV, and RT indicators are presented
in Table 1.

In this table, each cell on the table presents the mean
(standard deviation) and the results of the Wilcoxon rank-sum
test (WSRT) values obtained from various optimizers. The
bold font represents the best performance of all algorithms
on the respective problem. From the results, the best GD,
SD, IGD, HV, and RT mean values for MOAOA, i.e., 3/5,
4/5, 4/5, 3/5, and 4/5, NSGWO, i.e., 0/5, 0/5, 0/5, 0/5, and
0/5, MOMVO, i.e., 0/5, 1/5, 1/5, 0/5, and 1/5, MOALO,
i.e.,0/5,0/5,0/5,1/5,and 0/5, and MOSMA, i.e., 2/5, 0/5, 0/5,
1/5, and 0/5 best results for ZDT1-4, ZDT6 problems. Over-
all, it was noticed that the proposed MOAOA could expose
the best convergence, coverage, diversity, and computational
complexity as compared to MOMVO, MOALO, MOSMA,
and NSGWO algorithms for the standard multi-objective
optimization problem. In the WSRT test, each cell in the
last row with +/ — / = of Table 1 presents the numbers
of test instances for which the compared algorithms perform
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TABLE 2. GD metric results of various optimizers on mechanical design problems.

Problem  FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOPL 20000  5.9671c+6 (1.26e+6)  3.5345¢+6 (5.28e+4)  4.6138c+6 (2.67c+S)  3.4959¢+6 (2.20c+4)  3.4094e+6 (5.18¢+4)
RWMOP2 20000  1.0535e+1 (8.16e-2)  2.6332e+1 (32letl)  2.9037¢+2 (4.23¢+2)  6.4018e+0 (6.98e+0)  9.1620e+0 (1.57¢+0)
RWMOP3 20000  9.6759¢+3 (5.27e+1)  1.0913e+4 (5.48¢+3)  8.3295¢+3 (1.25¢+2)  7.7001e+3 (1.38e+2)  5.7943e+3 (8.79¢+1)
RWMOP4 20000  24710e+0 (8.65e-1)  2.6080e+0 (4.82e-2)  2.8529¢+0 (5.98¢-2)  2.6073¢+0 (8.41e-2)  2.0188¢+0 (4.44e-2)
RWMOP5 20000  32927e-1 (4.79¢-3)  3.1728e-1 (4.25¢-4)  2.9704e-1 (1.69¢-2) 3.1200e-1 (3.53¢-3)  2.9310e-1 (1.62¢-3)
RWMOP6 20000 2.9101e+2 (2.77e+0)  2.4293e+2 (1.52e+0)  2.9408¢+2 (1.10e+0)  2.5373e+2 (1.67e+1)  2.4138e+2 (5.22¢+1)
RWMOP7 20000  19792e+0 (1.12e-2)  1.9617e+0 (9.54e-4)  1.9584e+0 (1.07¢-2)  1.9569%¢+0 (1.57e-2)  1.9695¢+0 (1.32¢-2)
RWMOPS 26250  42462e+0 (220e-1)  4.1297e+0 (7.43e-2)  4.7562¢+0 (7.09¢-2)  4.1225¢+0 (1.6le-1)  3.6860e+0 (7.12¢-2)
RWMOP9 20000  1310le+2 (5.43e+0)  1.0805e+2 (2.86e+0)  1.2820e+2 (2.66e+0)  1.1021e+2 (7.29¢-1)  9.4923e+1 (3.23e-1)

RWMOPIO 20000 14653+l (1.49e-1)  12743e+1 (1.94e-1)  1.4562e+1 (1.21e-1) 12790e+1 (3.99¢2)  9.1378e+0 (6.52¢-2)

RWMOPII 53000  53046e+5 (9.23e+3)  4.7339¢+5 (8.66e+3)  5.4132e+5 (8.10e+3)  4.8700e+5 (1.22e+4)  4.2443e+5 (2.51e+3)

RWMOPI2 20000 2.777let1 (1.60e+0)  2.4589e+1 (2.88e-1)  2.3257e+1 (1.64e+0)  2.4145e+1 (6.09¢-1)  2.1495e+1 (2.19%¢-1)

RWMOPI3 26250  2.7968e+2 (8.05e-1)  2.5387e+2 (4.35¢+0)  2.6692¢+2 (4.60e+0)  2.5099e+2 (7.44e+0)  2.0187e+2 (3.35¢+0)

RWMOPI4 20000  1.0775e-1 (3.45¢-3)  8.5385e-2 (1.10e-3)  9.4933¢-2 (4.39¢-3) 8.4988¢-2 (1.11e-3)  6.5349¢-2 (9.46¢-4)

RWMOPIS 20000  1.4954et+4 (8.39¢+3)  8.9207e+3 (1.91e+2)  3.5864e+4 (1.44e+4)  9.0699¢+3 (1.52e+2)  8.4701e+3 (3.34e+2)

RWMOPI6 20000  2.1899¢-1 (3.03e-3)  1.9667e-1 (2.44e-3)  2.0713e-1 (4.99¢-3) 1.9647¢e-1 (147¢-3)  1.5060e-1 (1.83e-3)

RWMOPI7 26250  7.5967e+7 (1.52¢+8)  1.7744e+7 3.31e+7)  7.6574e+8 (8.65¢+8)  3.6860e+7 (3.73e+7)  1.0370e+8 (1.82e+8)

RWMOPI8 20000  1.3804e-2 (2.47e-4)  1.4640e-2 (1.05¢-4) 1.4293¢-2 (3.00e-4) 1.4711e-2 (1.79¢-4) 1.4175e-2 (1.17e-4)

RWMOPI9 26250  1.6336et+4 (5.83e+2)  1.5250e+4 (5.57e+2)  2.7503¢+4 (1.43e+4)  1.4003e+4 (8.33e+2)  1.3903e+4 (7.37e+2)

RWMOP20 20000 3.3715e+3 (1.83e+3)  1.3829e+3 (7.93e+2)  4.2546e+2 (1.30e+2)  3.9614e+2 (8.53e+1)  7.0704e+2 (2.53¢+2)

RWMOP21 20000  4.695%-1 (3.12¢-2)  4.1156e-1 (5.20e-3)  4.5520e-1 (2.32¢-2) 4.0392¢-1 (4.45¢-3)  3.9555e-1 (6.27¢-3)

significantly better than, significantly worse than, and statisti-
cally similar to the proposed MOAOA, respectively. It can be
seen in Table 1 that the MOAOA significantly outperforms
the other four algorithms in terms of the GD, IGD, Spread,
RT, and HV metrics. Additionally, in Fig. 10 for ZDT prob-
lems, evaluating the IGD values versus function evolutions
(FEs). Fig. 10 shows that the MOAOA has shown successful
convergence ability on ZDT problems. Nevertheless, as stated
in the No-Free-Lunch theory, it cannot be guaranteed that a
meta-heuristic with good performance when solving a partic-
ular problem will be efficient for another one. Thus, the study
of applied metaheuristics is always a challenging issue. For
the studied CEC-2021 RWMOP, the GD, spread, IGD, HV,
and RT comparison outcomes for all considered design prob-
lems are discussed in subsequent sections.

G. RESULTS ON CEC-2021 REAL-WORLD CONSTRAINED
OPTIMIZATION PROBLEMS

Recently, 35 CEC-2021 real-world constrained optimiza-
tion problems are released by the optimization community
to make a challenging test suite for evaluating the effi-
ciency of various algorithms [57]. CEC-2021 RWMOPs are
combinations of mechanical design (RWMOP1-RWMOP21)
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problems, chemical engineering (RWMOP22-RWMOP24)
problems, process, synthesis, and design (RWMOP25-
RWMOP29) problems, and power electronics (RWMOP30-
RWMOP35) problems [57]. Basic descriptions of these
problems, such as the number of objective functions (M),
number of decision variables (D), number of equality con-
straints (7;), and inequality constraints (ng), are reported
inFig. 8. Asillustrated in Fig. 8, M varies from 2 to 5, D varies
from 2 to 34, n, varies from 0 to 29, and ny, vary from O to 26.
Here, two algorithms, such as self-adaptive spherical search
optimizer [58] and modified covariance matrix adaptation
evolution strategy [59], are used to calculate the ideal and
nadir points of all objectives of all problems of the test
suite as these algorithms are the top-ranked algorithms of
special session & competition on real-world constrained opti-
mization organized at WCCI 2020 and GECCO 2020. The
proposed MOAOA successfully solved a variety of ZDT1-4
and ZDT®6 test suites. Therefore, it is appropriate to apply
and evaluate its performance over challenging real-world
CEC-2021 problems. In all the selected problems, constraints
are handled using the penalty function approach [55] and the
Fuzzy-based [56] approach to locate the best compromise
solution (BCS) in obtained PF for each problem. To further
verify the effectiveness of the MOAOA in solving CEC-2021,
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TABLE 3. Spread metric results of various optimizers on mechanical design problems.

MOALO

MOSMA

MOAOA

Problem FEs NSGWO MOMVO
RWMOPL 20000  1.4050e+0 (1.67e-1) 4.5544¢-1 (2.88e-2)
RWMOP2 20000  1.1394e+0 (2.39e-1) 1.0081e+0 (4.54¢-2)
RWMOP3 20000  1.0131e+0 (6.72¢-3) 1.2547¢+0 (4.17¢-1)
RWMOP4 20000  1.4885e+0 (4.43e-2) 7.9373e-1 (6.07¢-2)
RWMOP5 20000  8.4225e¢-1 (2.31e-2) 7.2508e-1 (1.28¢-2)
RWMOP6 20000  9.9605e-1 (1.86e-2) 8.5329¢-1 (2.24e-2)
RWMOP7 20000  9.7524e-1 (1.74e-2) 9.7571e-1 (1.93¢-1)
RWMOP8 26250  6.965%-1 (1.11e-1) 5.7904e-1 (7.56e-2)
RWMOP9 20000  1.5744e+0 (9.35¢-2) 4.6587¢e-1 (4.21e-2)
RWMOPI0 20000  1.4063e+0 (1.01e-1) 1.0080e+0 (5.56e-2)
RWMOPI1 53000  8.7015e-1 (2.19¢-2) 7.9871e-1 (2.56¢-2)
RWMOPI2 20000  1.4503e+0 (1.63e-1) 7.9167¢-1 (5.82¢-2)
RWMOPI3 26250  6.7770e-1 (5.77¢-2) 6.5998¢-1 (5.15¢-2)
RWMOPI4 20000  1.4393e+0 (5.05¢-2) 7.0247¢-1 (2.87¢-2)
RWMOPILS5 20000  1.4445e+0 (1.02e-1) 1.4893¢+0 (4.40e-2)
RWMOPI6 20000  1.0439¢+0 (4.88¢-2) 7.3713e-1 (2.10e-2)
RWMOP17 26250  2.0118e+0 (1.10e+0) 1.7889e+0 (9.77e-2)
RWMOPI8 20000  8.7733e-1 (1.73e-2) 7.0204¢-1 (2.92¢-2)
RWMOPI19 26250  1.0040e+0 (4.41e-2) 8.5099¢-1 (4.07¢-2)
RWMOP20 20000  1.0000e+0 (0.00e+0) 9.6547e-1 (1.95e-2)
RWMOP21 20000  1.2220e+0 (1.00e-1) 4.5795e-1 (3.35¢-2)

1.0728¢+0 (1.25¢-1)
1.0000e+0 (0.00e-+0)
1.0058¢+0 (6.36e-2)
1.0183e+0 (6.61e-2)
8.1396e-1 (1.65¢-1)
9.5188e-1 (1.81¢-2)
8.5924e-1 (2.94¢-3)
7.0583e-1 (6.93¢-2)
9.5320e-1 (6.62¢-2)
1.3234e+0 (4.63e-2)
9.6252¢-1 (2.49¢-2)
1.0718e+0 (2.56e-1)
5.5558¢-1 (4.07¢-2)
8.7243e-1 (7.31¢-2)
1.1874e+0 (1.22e-1)
8.7365e-1 (6.53¢-2)
1.8403¢+0 (1.19¢-1)
6.9067e-1 (2.69¢-2)
9.9970e-1 (2.20e-3)
1.0960e+0 (2.06e-2)
7.3304e-1 (5.02¢-2)

6.1673¢-1 (5.36¢-2)
9.4519¢-1 (1.33e-1)
9.1474e-1 (9.30e-2)
8.2419¢-1 (7.69¢-2)
7.9450e-1 (2.97¢-2)
8.8208e-1 (2.08¢-2)
8.9327¢-1 (2.02¢-2)
6.2351e-1 (1.31e-2)
5.3827¢-1 (3.22¢-2)
1.0791e+0 (1.92¢-2)
8.7837¢-1 (3.31e-2)
8.0639%-1 (5.84¢-2)
7.6261e-1 (7.24¢-2)
7.2321e-1 (5.32¢-2)
1.6492¢+0 (1.44e-1)
8.0796e-1 (2.60e-2)
1.9356e+0 (4.42¢-2)
7.6030e-1 (3.72¢-2)
9.3677e-1 (1.12¢-2)
1.0452e+0 (2.72¢-2)
4.8847e-1 (5.14e-2)

1.8554¢-1 (6.78¢-3)
9.5340e-1 (4.04¢-2)
1.5472¢-1 (2.65¢-2)
2.0859¢-1 (9.26e-3)
5.3673¢-1 (5.42¢-3)
6.5303¢-1 (2.67e-1)
8.1136e-1 (9.12¢-3)
2.0734e-1 (5.29¢-3)
1.4493¢-1 (1.25¢-2)
1.4324e-1 (6.67¢-3)
5.9075¢-1 (1.32¢-2)
1.4488e-1 (1.40e-2)
1.5536¢-1 (2.44¢-2)
1.7371e-1 (2.86e-2)
1.5550e+0 (8.96¢-2)
1.3410e-1 (1.51e-2)
1.9189¢+0 (3.97¢-2)
5.5159¢-1 (7.58¢-3)
9.5118e-1 (2.34¢-2)
1.0421e+0 (3.11e-2)
2.1057¢-1 (6.04e-2)

the above cases are optimized using NSGWO, MOMVO,
MOALO, and MOSMA, and the comparisons of the opti-
mized results are discussed. In each case, all the five algo-
rithms are run independently 30 times, and the obtained
results are shown and discussed in this section.

1) RESULTS ON CEC-2021 MECHANICAL DESIGN
PROBLEMS (RWMOP1-RWMOP21)
The qualitative and quantitative results obtained by MOAOA,
NSGWO, MOMVO, MOALO, and MOSMA while solv-
ing mechanical design problems are collectively described
in Table 2-6. Fig. 11 shows the best PF and BCS of all the
problems for visualizing the performance of the MOAOA.
CEC-20221 mechanical design problems are discrete
and continuous problems, and it is more complicated than
the ZDT benchmark suite. Test problems from RWMOPS,
RWMOP13, RWMOP19, and RWMOP20 are multimodal
in design and offer difficulty for convergence to true PF.
However, the MOAOA has provided greater convergence and
divergence of the solutions than other optimizers. RWMOP1-
RWMOP7, RWMOPI13-RWMOP18 have degenerate PF,
making it simpler to converge than SD, the NDS, along
with the whole PE. NSGWO and MOSMA could not search
the lower part of the true PF on RWMOP15, RWMOP17,
and RWMOP20 problems. However, MOAOA has covered
the entire PF along with the end solutions. In other words,

VOLUME 9, 2021

MOAOA is successful in achieving convergence and diver-
sity on RWMOP9, RWMOP10, and RWMOP 21. The
test problem, RWMOP20, has disconnected PF, which is
a combination of the convex and concave types of PFs.
It also has a disconnected search space. For this prob-
lem, NSGWO, MOSMA, and MOMVO performed poorly;
however, MOAOA performed exceedingly better by solving
RWMOPI11 with five objective functions. Therefore, it is
claimed that the complexity level of these cases is consider-
ably low, as other optimizers, except NSGWO, quickly access
the feasible solutions of the constrained PF of mechanical
design problems.

2) RESULTS ON CEC-2021 CHEMICAL ENGINEERING
PROBLEMS (RWMOP22-RWMOP24)

The qualitative and quantitative results obtained by MOAOA,
NSGWO, MOMVO, MOALO, and MOSMA optimizers
while solving chemical engineering problems are described
in Table 7, Table 8, Table 9, Table 10, and Table 11, collec-
tively. Fig. 12 shows the best PF and BCS of all the chemical
engineering problems for visualizing the performance of the
proposed MOAOA.

Multimodality of CEC-2021 chemical engineering bench-
mark functions is a concern for the convergence of solutions.
RWMOP22 has provided a convergence difficulty as it
includes a variety of local optima. Even so, the MOAOA
method is not trapped at the local PF for any problems with
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TABLE 4. 1GD metric results of various optimizers on mechanical design problems.

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOPI 20000 3.6042¢+5 (1.07¢+3)  3.6191e+5 (2.11e+3)  3.6259¢+5 (5.48¢+3)  3.5996e+5 (7.50e+2)  3.9525¢+5 (4.39¢+4)
RWMOP2 20000 83127e+1 (1.54e+1)  9.7874e+1 (2.00e+1)  2.9956e+2 (4.18e+2)  3.2343e+1 2.50e+1)  6.5762e+1 (4.31e+1)
RWMOP3 20000 5.7138¢+2 (4.54¢+2)  4.0598¢+3 (4.85¢+3)  2.1311e+3 (1.69¢+3)  1.1680e+2 (1.59e+2)  6.4856¢+4 (3.09¢+4)
RWMOP4 20000  13117e+0 (4.12¢-2)  13393¢+0 (3.12e-2)  2.6754e-1 (1.71e-1)  1.2656e+0 (9.05¢-2)  1.1704¢+0 (1.10e+0)
RWMOP5 20000  1.8881e+0 (1.59¢-4)  1.8873¢+0 (1.43e-3)  1.8884e+0 (4.77e-4)  1.8884e+0 (2.02¢-4)  1.8830e+0 (5.26e-3)
RWMOP6 20000 1.4156e+3 (9.47¢+2)  6.0545e+2 (1.77e-1)  2.6232¢+3 (2.83e+2)  8.6452¢+2 (5.156+2)  1.9221e+3 (7.10e+2)
RWMOP7 20000  14717e+1(7.68¢-1)  1.2137e+1 (5.81e+0)  1.4068e+1 (6.02e-1)  1.3857e+1 (2.94e+0)  1.5326e+1 (2.81e-1)
RWMOPS 26250  2.1298e+0 (9.20e-5)  2.1299e+0 (0(e-0)) 1.9357e+0 (3.66e-1)  2.1288¢+0 (1.98¢-3)  2.1142e+0 (3.12¢-2)
RWMOP9 20000  3.7239¢-2 (0(e-0)) 3.7239¢-2 (0(e-0)) 23151e+2 (5.16e+1)  3.7239¢-2 (1.91e-10)  1.7305e+1 (2.64e+1)
RWMOPIO 20000  4.0912¢-3 (4.80e-3)  2.2411e-2 (2.70e-2)  1.1286e+1 (6.57e+0)  1.2710e+1 (3.25¢+0)  3.9048e-3 (3.14e-3)
RWMOPIL 53000 2.3913e+6 (5.84e+d)  2.3982¢+6 (3.09¢+4)  2.4934e+6 (2.32¢+4)  2.4669¢+6 (1.90e+4)  2.5334c+6 (3.77c+4)
RWMOPI2 20000  2.0780e+0 (2.29¢+0)  1.6201e+0 (1.17e+0)  2.1023e+1 (3.33e+1)  1.9430e+0 (2.54e+0)  1.3371e+1 (3.84¢+0)
RWMOPI3 26250  3.4776e+2 (8.41e+0)  4.7863e+2 (6.75e+1)  62192e+2 (3.33e+2)  4.2371e+2 (1.16e+2)  6.4315e+2 (1.42e+1)
RWMOPI4 20000  1.2137e-2 (0(e-0)) 1.2137¢-2 (0(e-0)) 2.6082e-1 (2.92¢-1)  1.2137e2(6.91e-9)  1.2710e-1 (1.69¢-1)
RWMOPI5 20000  3.0086e+3 (3.98¢+3)  5.7037e+2 (3.53e+2)  2.1326e+4 (1.91e+d)  2.7765¢+3 (4.04e+3)  1.8136e+4 (8.79¢+3)
RWMOPI6 20000  1.9989¢-3 (0(c-0)) 1.9989¢-3 (0(c-0)) 1.9989¢-3 (0(e-0)) 1.9989¢-3 (0(c-0)) 1.9989¢-3 (0(e-0))
RWMOPL7 26250  4.9943¢+3 (7.64c+2)  6.2638¢+3 (3.24e+3)  1.1592¢+4 (8.90e+3)  4.8889e+3 (3.42e+2)  1.5132¢+4 (2.38c+4)
RWMOPI8 20000  9.4534e-2 (4.53¢-5)  9.4473e-2 (7.32¢-5) 9.4196e-2 (1.73e-4)  9.4312e2 (1.54e-4)  9.4426e-2 (2.49¢-4)
RWMOPI9 26250  1.1433¢+5 (1.15¢+4)  6.7975¢+4 (2.47c+4)  1.4073¢+5 (2.10e+4)  8.1388c+4 (2.23c+4)  5.5351e+4 (2.42¢+4)
RWMOP20 20000  3.1697¢+3 (1.24e+3)  2.6368¢+3 (1.04e+3)  2.4816e+3 (1.07e+2)  2.0068e+3 (2.64e+2)  4.2110e+3 (1.26e+3)
RWMOP21 20000  1.8529-1 (2.57e-1) 1.6050e-2 (0(e-0)) 7.1704e-1 (3.59e-1)  1.6050e-2 (6.78¢-7) 1.6050e-2 (0(e-0))

the CEC-2021 chemical engineering problems. This perfor-
mance is due to its explorative potential. Equally, RWMOP23
and RWMOP24 provided the convergence task and the dis-
tribution of solutions for NSGWO, MOMVO, and MOALO.
RWMOP24 has found it hard to maintain final solutions for
all optimizers except the MOAOA. RWMOP23 is structured
to have a solution distribution challenge. MOSMA has not
been capable of achieving a whole distribution of solutions
across the entire PF. In addition, the search for accurate end
solutions on RWMOP22 proved to be difficult for compet-
itive optimizers. It can be stated that the level of complex-
ity of such issues is significantly higher compared to ZDT
and CEC-2021 mechanical design problems, as the state-of-
the-art optimizers cannot find a single, realistic solution to
two out of three cases. In RWMOP23, MOSMA optimizers
identify feasible solutions in several runs, but these possible
solutions are not restricted to PF.

3) RESULTS ON CEC-2021 PROCESS, SYNTHESIS, AND
DESIGN PROBLEMS (RWMOP25-RWMOP29)

The qualitative and quantitative results obtained by MOAOA,
NSGWO, MOMVO, MOALO, and MOSMA optimizers
while solving process, synthesis, and design problems are
described in Table 12, Table 13, Table 14, Table 15, and
Table 16, collectively. Fig. 13 shows the best PF and BCS of
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all the process, synthesis, and design problems for visualizing
the performance of the proposed MOAOA.

The challenges presented by the process, design, and
synthesis test suites in terms of different features, such as
non-separability, multimodality, bias, deceptiveness, many-
to-one mappings, a combination of PF shapes, specific
search domains, etc. makes the optimization process com-
plex. RWMOP28-RWMOP29 gives a greater stiffness to
the convergence of solutions on the true PF. All com-
petitive optimizers were trapped at the local PF except
MOAOA. RWMOP27 is relatively simple, and the MOAOA
has obtained well-distributed solutions and final solutions
compared to most optimizers. For RWMOP26, all optimizers
(except MOAOA) could not obtain well-converged solutions
until the stopping criterion was met. Even so, it is clear from
Table 12 — Table 16 that the MOAOA has obtained greater
convergence and diversity compared to other approaches.

4) RESULTS ON CEC-2021 POWER ELECTRONICS
PROBLEMS (RWMOP30-RWMOP35)

The qualitative and quantitative results obtained by MOAOA,
NSGWO, MOMVO, MOALO, and MOSMA optimizers
while solving power electronics problems are described
in Table 17, Table 18, Table 19, Table 20, and Table 21,
collectively. Fig. 14 shows the best PF and BCS of all the
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TABLE 5. HV metric results of various optimizers on mechanical design problems.

Problem

FEs

NSGWO

MOMVO

MOALO

MOSMA

MOAOA

RWMOP1

RWMOP2

RWMOP3

RWMOP4

RWMOPS

RWMOP6

RWMOP7

RWMOPS

RWMOP9
RWMOP10
RWMOPI11
RWMOP12
RWMOP13
RWMOP14
RWMOP15
RWMOP16
RWMOP17
RWMOP18
RWMOP19
RWMOP20
RWMOP21

20000
20000
20000
20000
20000
20000
20000
26250
20000
20000
53000
20000
26250
20000
20000
20000
26250
20000
26250
20000
20000

6.0546¢-1 (9.45¢-4)
2.9329¢-1 (1.96¢-1)
8.9868e-1 (6.09¢-4)
8.5550e-1 (3.43¢-3)
4.3378¢-1 (4.67¢-4)
2.7594e-1 (1.65¢-3)
4.8433¢-1 (6.68¢-5)
2.5946¢-2 (6.91¢-5)
4.0937¢-1 (2.36¢-4)
8.4151e-1 (1.46e-3)
9.4649¢-2 (9.37¢-4)
5.5357e-1 (5.69¢-3)
8.8826e-2 (2.32¢-4)
6.1465¢-1 (2.85¢-3)
5.3807e-1 (2.17¢-3)
7.6242e-1 (2.95¢-4)
3.2139¢-1 (6.20e-2)
4.0515¢-2 (2.62¢-6)
3.1132e-1 (1.40e-2)
00(e-0) (0(e-0))
3.1742¢-2 (2.25¢-5)

4.6638¢-1 (5.87¢-2)
3.9056e-1 (1.53¢-3)
8.2941e-1 (1.46e-2)
8.1688e-1 (5.99¢-2)
4.3313¢-1 (2.98¢-4)
2.7647¢-1 (3.38¢-4)
4.8337¢-1 (1.26e-4)
2.3449¢-2 (4.86¢-4)
3.9108e-1 (5.50e-3)
8.4696e-1 (4.57¢-5)
9.7566e-2 (4.33¢-4)
5.3356¢-1 (1.20e-2)
8.9488e-2 (9.01e-5)
5.7878¢-1 (1.94e-2)
5.0063¢-1 (5.91e-2)
7.6134e-1 (1.12¢-3)
2.4320e-1 (4.33¢-2)
4.0468¢-2 (2.16¢-5)
3.1610e-1 (1.54¢-2)
00(e-0) (0(e-0))
3.1639¢-2 (3.03¢-5)

5.5263¢-1 (1.66¢-2)
2.6234e-2 (5.25¢-2)
9.0146e-1 (9.63¢-5)
8.5623e-1 (1.30e-3)
4.2431e-1 (7.17e-3)
2.7668e-1 (2.30e-4)
4.8354e-1 (1.74e-4)
2.5837¢-2 (1.40e-4)
3.8809¢-1 (1.03¢-3)
8.4709¢-1 (1.85¢-4)
9.7961¢-2 (6.05¢-4)
5.4476e-1 (1.12¢-2)
9.0187¢-2 (1.08¢-4)
6.1188¢-1 (3.88¢-3)
3.9907e-1 (6.87¢-2)
7.5290e-1 (7.44¢-3)
2.5307e-1 (5.03¢-2)
4.0481e-2 (2.45¢-5)
2.6711e-1 (3.67e-2)
0(e-0) (0(e-0))
3.1594e-2 (5.20e-5)

6.0516e-1 (4.14¢-4)
2.2138e-1 (9.08¢-2)
9.0200e-1 (1.69¢-4)
8.5929¢-1 (3.45¢-3)
4.3304e-1 (1.09¢-3)
2.7716e-1 (2.89¢-5)
4.8396e-1 (6.66¢-5)
2.5862¢-2 (1.20e-4)
4.0909¢-1 (7.43¢-5)
8.4721e-1 (2.83¢-4)
9.4178¢-2 (1.45¢-3)
5.5980e-1 (1.80e-4)
8.9462¢-2 (2.01e-4)
6.1782e-1 (1.23¢-3)
5.4222¢-1 (2.17e-4)
7.6380e-1 (1.03e-4)
2.5987e-1 (1.26€-2)
4.0490e-2 (6.77¢-6)
3.3280e-1 (4.48¢-3)
0(e-0) (0(e-0))
3.1753¢-2 (1.63e-6)

6.0787¢-1 (4.61e-4)
2.9469¢-1 (1.96¢-1)
6.3605¢-1 (3.02¢-1)
8.6183e-1 (4.32¢-4)
4.3447¢-1 (1.93¢-4)
2.7677¢e-1 (1.16¢-4)
4.8436e-1 (1.04e-4)
2.5704¢-2 (1.06¢-4)
4.0942¢-1 (4.47¢-5)
8.4741e-1 (3.94¢-5)
8.7709¢-2 (3.21e-4)
5.6046e-1 (5.98¢-5)
8.9300e-2 (2.79¢-4)
6.1763¢-1 (1.81e-4)
5.4310e-1 (5.94¢-5)
7.6381e-1 (6.18¢-5)
2.2196¢-1 (8.71e-2)
4.0493¢-2 (6.36¢-6)
3.5393¢-1 (7.74¢-3)
0(e-0) (0(e-0))
3.1756¢-2 (6.43¢-7)

TABLE 6. RT metric results of various optimizers on mechanical design (RWMOP1-RWMOP21) problems.

Problem M D FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP1 2 4 20000 6.28E+00 1.34E+01 1.62E+00 2.72E+01 1.62E+00
RWMOP2 2 5 20000 6.07E+00 1.07E+01 2.67E+00 2.77E+01 1.22E+00
RWMOP3 2 3 20000 5.71E+00 1.53E+01 4.55E+00 2.63E+01 1.19E+00
RWMOP4 2 4 20000 5.93E+00 1.47E+01 1.33E+00 2.51E+01 1.11E+00
RWMOPS5 2 4 20000 6.05E+00 1.36E+01 1.42E+00 2.56E+01 1.08E+00
RWMOP6 2 7 20000 6.01E+00 1.04E+01 1.68E+00 2.32E+01 1.15E+00
RWMOP7 2 4 20000 6.08E+00 1.05E+01 1.49E+00 3.12E+01 1.03E+00
RWMOPS 3 7 26250 8.25E+00 2.83E+01 1.94E+00 3.27E+01 1.47E+00
RWMOP9 2 4 20000 6.20E+00 1.35E+01 9.09E-01 3.21E+01 6.55E-01

RWMOP10 2 2 20000 6.06E+00 2.02E+01 8.50E-01 2.88E+01 6.49E-01
RWMOPI1 5 3 53000 1.64E+01 6.72E+01 3.95E+00 8.36E+01 3.03E+00
RWMOP12 2 4 20000 6.23E+00 2.13E+01 1.55E+00 2.19E+01 1.08E+00
RWMOP13 3 7 26250 8.16E+00 1.96E+01 2.47E+00 3.91E+01 1.62E+00
RWMOP14 2 5 20000 7.28E+00 1.40E+01 1.41E+00 2.57E+01 1.10E+00
RWMOP15 2 3 20000 6.76E+00 1.17E+01 1.56E+00 3.20E+01 1.12E+00
RWMOP16 2 2 20000 6.21E+00 2.68E+01 1.44E+00 2.68E+01 1.06E+00
RWMOP17 3 6 26250 7.88E+00 1.42E+01 3.40E+00 3.21E+01 1.65E+00
RWMOP18 2 3 20000 6.01E+00 2.10E+01 1.36E+00 2.93E+01 1.05E+00
RWMOP19 3 10 26250 8.39E+00 9.28E+00 1.56E+00 3.13E+01 1.06E+00
RWMOP20 2 20000 6.20E+00 5.77E+00 3.95E+00 2.30E+01 8.88E-01
RWMOP21 2 20000 6.24E+00 2.16E+01 1.31E+00 3.14E+01 1.05E+00
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FIGURE 11. PFs of all the algorithms on mechanical design (RWMOP1-RWMOP21) problems (the rest of the FIGUREs can be

found in the appendix).
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FIGURE 11. (Continued.) PFs of all the algorithms on mechanical design (RWMOP1-RWMOP21) problems (the rest of the

FIGUREs can be found in the appendix).
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FIGURE 11. (Continued.) PFs of all the algorithms on mechanical design (RWMOP1-RWMOP21) problems (the rest of the
FIGUREs can be found in the appendix).

TABLE 7. GD metric results of various optimizers on chemical engineering problems.

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA

RWMOP22 20000  0(c-0) (0(e-0))  0(c-0) (0(c-0))  0(c-0) (0(e-0))  0(e-0) (0(c-0))  1.1169e+3 (4.23e+2)
RWMOP23 20000  0(e-0) (0(e-0))  0(e-0) (0(e-0))  0(e-0) (0(e-0))  8.5366e-1 (0(e-0))  7.1196e-1 (3.79¢-1)
RWMOP24 26250  0(c-0) (0(e-0))  0(c-0) (0(c-0))  0(c-0) (0(e-0))  0(e-0) (0(c-0))  1.4959e+3 (2.01e+3)

TABLE 8. Spread metric results of various optimizers on chemical engineering problems.

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP22 20000 0(e-0) (0(e-0))  0(e-0) (0(e-0))  0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.0000e+0 (0.00e+0)
RWMOP23 20000 0(e-0) (0(e-0))  0(e-0) (0(e-0))  0(e-0) (0(e-0))  1(e+0) (0(e+0)) 9.9938¢-1 (1.75¢-3)
RWMOP24 26250  0(e-0) (0(e-0))  0(e-0) (0(e-0))  0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.5350e+0 (5.57e-1)
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TABLE 9. IGD metric results of various optimizers on chemical engineering problems.

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP22 20000  0(e-0) (0(c-0))  0(e-0) (0(e-0))  0(e-0) (0(c-0)) 0(e-0) (0(c-0)) 2.0028¢+3 (8.97¢-5)
RWMOP23 20000  0(e-0) (0(e-0))  0(e-0) (0(e-0))  O(e-0) (0(e-0))  2.2586e+0 (O(e-0))  3.6062e+0 (6.87¢-1)
RWMOP24 26250  0(e-0) (0(c-0))  0(e-0) (0(e-0))  0(e-0) (0(c-0)) 0(e-0) (0(e-0)) 3.3652e+0 (2.32e+0)

TABLE 10. HV metric results of various optimizers on chemical engineering problems.

Problem  FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP22 20000  0(c-0) (0(c-0))  0(c-0) (0(e-0))  0(c-0) (0(c-0))  0(c-0) (0(c-0)) 1.0000¢-+0 (0(e-0))
RWMOP23 20000  0(c-0) (0(c-0))  0(c-0) (0(c-0))  0(c-0) (0(c-0))  6.0228¢-1 (0(c-0))  9.9108e-1 (1.97e-1)

RWMOP24 26250  0(e-0) (0(e-0))  0(c-0) (0(e-0))  0(e-0) (0(e-0))  0(e-0) (0(e-0)) 5.9444e-1 (3.82¢-1)

TABLE 11. RT metric results of various optimizers on chemical engineering problems.

Problem M D FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP22 2 9 20000 5.70E+00 4.89E+00 4.32E+00 2.07E+01 2.28E+00
RWMOP23 2 6 20000 5.64E+00 7.07E+00 4.15E+00 2.64E+01 2.21E+00
RWMOP24 3 9 26250 7.73E+00 9.93E+00 5.69E+00 2.67E+01 3.14E+00

TABLE 12. GD metric results of various optimizers on process, design, and synthesis problems.

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP25 20000  9.5236e-2 (8.39e-4)  9.5953e-2 (8.99¢-5) 9.5490e-2 (7.23e-4) 9.5258e-2 (1.48e-3) 9.5086e-2 (5.09¢-4)
RWMOP26 20000 3.4427e-2 (4.57e-4)  2.9059e-2 (2.97e-3) 3.2134e-1 (6.49¢-2) 3.0594e-2 (3.77¢-3) 3.0752e-2 (2.74¢-3)
RWMOP27 20000 1.2013e-1(3.78e-4)  1.1951e-1 (6.72e-4) 1.1929¢-1 (3.68e-4) 1.1972e-1 (2.84¢-4) 1.1963e-1 (3.02¢-4)
RWMOP28 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.0243e+1 (3.33e+0)
RWMOP29 20000 3.0103e+0 (2.50e-1) 6.1811e+0 (8.09¢-1)  5.5464e+0 (3.43e+0)  5.3355e+0 (3.09¢+0) 5.2707e+0 (6.35¢-1)

TABLE 13. Spread metric results of various optimizers on the process, design, and synthesis problems.

Problem

FEs

NSGWO

MOMVO

MOALO

MOSMA

MOAOA

RWMOP25
RWMOP26
RWMOP27

RWMOP28
RWMOP29

20000
20000
20000

20000
20000

7.8731e-1 (2.48¢-2)
1.0646e+0 (3.64¢-2)
9.3033¢-1 (4.44¢-3)

1.000e+0 (0.00e-+0)
1.0491e+0 (5.93¢-2)

7.3797e-1 (3.16e-2)
1.0309e+0 (7.07e-2)
8.9523¢-1 (1.01e-2)

0.000e+0 (0.00e+0)
9.7285e-1 (1.96e-2)

7.1867¢e-1 (3.88¢-2)
1.000e+0 (0.00e+0)
9.0447¢-1 (1.55¢-2)

0.000e+0 (0.00e+0)
1.0874e+0 (5.83e-2)

8.3562e-1 (1.74e-2)
1.0007e+0 (1.71e-3)
9.4092¢-1 (1.20e-2)

0.000e+0 (0.00e+0)
1.0313¢+0 (6.04¢-2)

5.4511e-1 (7.48¢-3)
1.1013e+0 (5.36e-2)
8.1972¢-1 (2.89¢-3)

0.0000e+0 (0.00e+0)
1.0301e+0 (7.14¢-2)

TABLE 14. IGD metric results of various optimizers on process, design, and synthesis problems.

Problem  FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP25 20000 7.4391e-1(1.38¢-5)  7.4389¢-1(1.97¢-5)  7.4393e-1(5.56¢-5)  7.4387e-1 (1.11e5)  7.4392¢-1 (4.25¢-5)
RWMOP26 20000 2.8162e-1 (2.38¢-2)  2.5844e-1(2.05e-2)  3.6909¢-1(1.95¢-2)  2.7214e-1 (3.96e-2)  2.4813e-1 (1.55¢-3)
RWMOP27 20000  9.8999¢-1 (9.80e-6)  9.9001e-1 (8.00e-5)  9.9010e-1 (2.87e-4)  9.8999%¢-1 (1.01e-5)  9.8993e-1 (1.33e-4)
RWMOP28 20000 0(e-0) (0(c-0)) 0(e-0) (0(c-0)) 0(e-0) (0(c-0)) 0(e-0) (0(c-0)) 2.8807e+1 (4.66¢+0)
RWMOP29 20000  9.1974e+0 (6.28¢-2)  9.6236e+0 (9.3%-1)  8.6623e+0 (6.27e-1)  1.0519¢+1 (8.59%-1)  9.2363¢+0 (2.53¢-2)
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FIGURE 12. PFs of all the algorithms on chemical engineering (RWMOP22-RWMOP24) problems.
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FIGURE 13. PFs of all the algorithms on process, design, and synthesis (RWMOP25-RWMOP29) problems.
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FIGURE 13. (Continued.) PFs of all the algorithms on process, design, and synthesis (RWMOP25-RWMOP29) problems.

power electronics problems for visualizing the performance
of the proposed MOAOA.

CEC-2021 power electronics is one of the most challeng-
ing test suites on a global scale. RWMOP30-RWMOP35
problems are distinguished by a non-linear solution space
(multimodal). All problems are a challenge to the con-
vergence, distribution, and diversity of the NDS across
the entire PF. Popular optimizers NSGWO, MOMVO,
MOALO, MOSMA, etc., are explicitly developed to solve
large-scale problems. Even so, the solution could not be
identified within a small number of FEs, and the NDS could
not be obtained. Most of the algorithms show premature
convergence in these case studies. MOAOA has performed

84284

higher than other competitive algorithms on all efficiency
metrics.

5) CONVERGENCE TOWARDS PF ANALYSIS

Table 2, Table 7, Table 12, and Table 17 show the mean
(STD) of GD metric, which evaluates the similarity of the
solutions to the actual PF; the obtained PF using MOAOA
optimizer for different cases are discussed. These statisti-
cal results demonstrate that MOAOA shows a promising
efficiency in handling unconstrained and CEC-2021 prob-
lems, as it is best on 26 out of 40 cases on the GD metric.
By contrast, NSGWO, MOMVO, MOALO, and MOSMA are
respectively best on 2, 2, 3, and 7 cases for GD. All the tables
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TABLE 15. HV metric results of various optimizers on process, design, and synthesis problems.

Problem  FEs NSGWO MOMVO MOALO MOSMA MOAOA

RWMOP25 20000  2.4154e-1 (4.70e-6)  2.4121e-1(7.90e-5)  2.4129-1 (7.99¢-5)  2.4102e-1 (2.62¢-5) 2.4120e-1 (4.24e-5)
RWMOP26 20000  1.6145e-1 (3.33¢-2) 1.5338e-1 (2.60e2)  9.6129¢-2 (4.22¢-3) 1.5821e-1 (2.70e-2) 1.4316e-1 (1.33¢-3)
RWMOP27 20000  1.01e+10 (1.63¢+10)  5.8879e+7 (6.48¢+7)  3.1787¢+7 (3.80e+7)  9.47e+10 (9.08e+10)  2.5892¢+8 (5.07¢+8)
RWMOP28 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 7.1843e-3 (1.24e-2)
RWMOP29 20000  7.6489-1 (1.14¢2)  6.8829¢-1(9.19¢-2)  6.7184e-1 (1.28e-1)  7.5545¢-1 (6.68¢-3) 7.7859¢-1 (1.12¢-2)

TABLE 16. RT metric results of various optimizers on process, design, and synthesis problems.

Problem M D FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP25 2 2 20000 5.88E+00 2.22E+01 8.24E-01 2.89E+01 5.84E-01
RWMOP26 2 3 20000 5.74E+00 7.61E+00 4.13E+00 2.12E+01 7.02E-01
RWMOP27 2 3 20000 5.92E+00 1.96E+01 9.51E-01 2.87E+01 6.39E-01
RWMOP28 2 7 20000 5.93E+00 6.22E+00 4.30E+00 2.74E+01 1.55E+00
RWMOP29 2 7 20000 5.79E+00 3.92E+00 4.18E+00 2.22E+01 1.06E+00

TABLE 17. GD metric results of various optimizers on power electronics problems.

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP30 80000  1.8856e-2 (2.59¢-3) 0(e-0) (0(e-0)) 1.3111e-2 (0(e-0)) 1.9560e-2 (0(e-0)) 3.0041e-2 (0(e-0))
RWMOP31 80000  8.9802e-2 (7.68e-2) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 4.4475e-2 (2.91e-3)  7.4820e-2 (7.28e-2)
RWMOP32 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0))  3.4253e-2 (0(e-0))  1.3685e-1 (1.38e-1)  3.9861e-2 (3.28e-3)
RWMOP33 80000  3.5776e-1 (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.0379¢-1 (0(e-0)) 5.3870e-2 (1.80e-2)
RWMOP34 80000  3.4590e-1 (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.0385e-1 (0(e-0))
RWMOP35 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 6.5411e-1 (0(e-0)) 1.3837e+0 (0(e-0))

TABLE 18. Spread metric results of various optimizers on power electronics problems.

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP30 80000  9.9360e-1 (2.73¢-3) 0(e-0) (0(e-0))  7.3742e-1 (0.00e+0)  1.000e+0 (0.00e+0)  1.0208e+0 (0.0e+0)
RWMOP31 80000 1.1784e+0 (1.51e-1)  0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 6.9496e-1 (2.74e-1)  5.3819e-1 (3.38e-1)
RWMOP32 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0))  7.6002e-1 (0.00e+0) 1.0186e+0 (2.05e-1)  1.1962e+0 (2.96e-1)
RWMOP33 80000 1.0837e+0 (0.0e+0) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 7.1431e-1 (0.00e+0)  5.8132e-1 (2.08e-2)
RWMOP34 80000  1.0805e+0 (0.0e+0) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0.000e+0 (0.00e+0)  7.1473e-1 (0.00e+0)
RWMOP35 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0.000e+0 (0.00e+0)  9.3771e-1 (0.00e+0)

TABLE 19. IGD metric results of various optimizers on power electronics problems.

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP30 80000 1.0332¢-1 (0(e-0)) 0(e-0) (0(e-0)) 8.9486e-2 (0(e-0)) 1.9533¢-1 (0(e-0)) 1.0566¢-1 (2.40e-3)
RWMOP31 80000 1.3456e-1 (1.15e-1) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.3277e-1 (1.51e-1)  3.2832e-1 (4.08e-1)
RWMOP32 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.6855¢-1 (0(e-0)) 2.9756e-1 (1.36e-1)  1.4294e-1 (1.39¢-2)
RWMOP33 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0))  2.3364e-1 (9.95¢-2) 1.7185e+0 (0(e-0)) 1.9971e+0 (0(e-0))
RWMOP34 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.0121e+0 (0(e-0)) 2.0836¢e+0 (0(e-0))
RWMOP35 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 5.8240e+0 (0(e-0)) 5.6247e+0 (0(e-0))
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FIGURE 14. PFs of all the algorithms on power electronics (RWMOP30-RWMOP35) problems.
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TABLE 20. HV metric results of various optimizers on power electronics problems.

Problem FEs NSGWO MOMVO

MOALO MOSMA MOAOA

RWMOP30 80000  3.9123e-1 (0(e-0) _ 0(e-0) (0(e-0))
RWMOP31 80000  1.5577e-1(1.35e-1)  0(e-0) (0(e-0))
RWMOP32 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0))
RWMOP33 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0))
RWMOP34 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0))
RWMOP35 80000  5.4220e-1 (0(e-0))  0(e-0) (0(e-0))

4.8422¢-1 (0(e-0))

7.1079-1 (0(e-0))

6.2937¢-1 (0(e-0))

3.5104e-1 (4.96e-1)

3.2454¢-1 (4.59¢-1)
0(e-0) (0(e-0))
0(e-0) (0(e-0))
0(e-0) (0(e-0))

6.6027e-1 (1.37e-1)
1.6044e-1 (2.78e-1)
7.2921e-1 (7.84e-2)
0(e-0) (0(e-0))
0(e-0) (0(e-0))
5.8022e-1 (0(e-0))

0(c-0) (0(c-0))

0(e-0) (0(e-0))
0(e-0) (0(e-0))
0(e-0) (0(e-0))

TABLE 21. RT metric results of various optimizers on power electronics problems.

Problem M D FEs NSGWO MOMVO MOALO MOSMA MOAOA
RWMOP30 2 25 80000 3.45E+01 2.42E+01 2.83E+01 1.10E+02 1.65E+01
RWMOP31 2 25 80000 3.38E+01 2.61E+01 2.70E+01 1.08E+02 1.57E+01
RWMOP32 2 25 80000 3.34E+01 3.28E+01 2.75E+01 1.09E+02 1.82E+01
RWMOP33 2 30 80000 3.48E+01 3.18E+01 2.92E+01 1.08E+02 2.02E+01
RWMOP34 2 30 80000 3.51E+01 2.55E+01 2.94E+01 1.05E+02 1.80E+01
RWMOP35 2 30 80000 3.65E+01 2.61E+01 2.92E+01 1.04E+02 1.70E+01

mentioned above show that the MOAOA’s efficiency outper-
forms NSGWO, MOMVO, MOALO, and MOSMA; it leads
to better convergence toward PF than NSGWO, MOMVO,
MOALO, and MOSMA.

6) COVERAGE/DIVERSITY ANALYSIS

It is observed from Table 3, Table 8, Table 13, and Table 18
the mean (STD) of Spread metric, which evaluates the distri-
bution of solutions in the search space, the obtained PF using
MOAOA for different cases are discussed. These statistical
results present that MOAOA has a promising efficiency in
handling unconstrained and CEC-2021 problems, as it is best
on 16 out of 40 cases on the Spread metric. By contrast,
NSGWO, MOMVO, MOALO, and MOSMA are respectively
best on 4, 5, 6, and 9 cases for Spread. All the tables men-
tioned above show that the MOAOA’s efficiency outperforms
NSGWO, MOMVO, MOALO, and MOSMA; it leads to a
better ND solution distribution PF than NSGWO, MOMVO,
MOALO, and MOSMA.

7) BALANCE ANALYSIS BETWEEN CONVERGENCE AND
DIVERSITY

It is seen from Table 4, Table 5, Table 9, Table 10, Table 14,
Table 15, Table 19, and Table 20 the mean (STD) of IGD
and HV metrics, which evaluate the closer and diverse the
corresponding results approach the PF, the obtained PF using
MOAOA for different cases are discussed. These statistical
results present that MOAOA has a promising efficiency in
handling unconstrained and CEC-2021 problems, as it is best
on 16 out of 40 cases on IGD and best on 24 out of 40 cases
on HV metrics. By contrast, NSGWO, MOMVO, MOALO,
and MOSMA are respectively best on 4, 5, 6, and 9 cases for
IGD and best on 5, 2, 3, and 6 cases for HV metrics. All the
tables mentioned above show that the MOAOA’s efficiency
outperforms NSGWO, MOMVO, MOALO, and MOSMA,
leading to better convergence and diverse solutions toward
PF than NSGWO, MOMVO, MOALO, and MOSMA.
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8) RUNTIME ANALYSIS
Finally, it addresses five optimizers’ computation time mea-
sured by the average running time of 30 separate trials. The
CPU’s average time is summarized in Table 6, Table 11,
Table 16, and Table 21. These statistical results present
that MOAOA has a promising efficiency in handling uncon-
strained and CEC-2021 problems, as it is best on 38 out
of 40 cases on RT metric. These statistical results present
that MOAOA has a promising efficiency in handling uncon-
strained and CEC-2021 problems, as it is best on 38 out
of 40 cases on RT metric. By contrast, NSGWO, MOMVO,
MOALO, and MOSMA are respectively best on 0, 1, 1,
and O cases for RT. The above-mentioned tables show that
the MOAOA'’s efficiency outperforms NSGWO, MOMVO,
MOALOQO, and MOSMA; it leads to a better CPU time than
NSGWO, MOMVO, MOALO, and MOSMA algorithms.
Since our implemented optimizer could perform better than
all the selected optimizers with better CPU time, MOAOA
would help the decision-makers find better alternatives to
solve their problems.

Why does the proposed MOAOA perform best? Here’s
a brief analysis of the reasons. Based on the proposed
MOAOA, the models’ CD, NDS, adds the historical infor-
mation of individuals in previous iterations to the generation
of offspring. The individuals selected in this model are cho-
sen randomly or fixedly rather than the optimal individuals
in the population, which leads to the individuals selected
may be bad or good. To a certain level, it restricts the
optimizer’s convergence rate and prevents local optimization
due to rapid convergence. Besides, this way of randomly
choosing entities also increases the diversity of the opti-
mizer, resulting in smaller HV, IGD values. As classical
convergence-diversity metrics, HV, IGD is closely related
to the diversity and convergence of algorithms. The better
the diversity and convergence, the smaller the IGD, HV val-
ues. In this paper, the proposed MOAOA contributes to
improving the other state-of-art algorithms’ diversity and
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convergence. From the above experimental results, it can
be seen that the HV, IGD values of the MOAOA using
the NDS and CD are better than that of the other selected
algorithms.

V. CONCLUSION

The proposed MOAOA is formulated with AOA, non-
dominance sorting, and crowding distance-based mecha-
nisms. The MOAOA outperformed comparative optimizers,
such as NSGWO, MOMVO, MOALO, and MOSMA, in mul-
tiple benchmark test suites, including ZDT and CEC-2021
RWMOP test suites. Various performance indicators, such
as GD, SD, IGD, HV, and RT, are used for quantitative
performance evaluation. Even then, an exploratory analysis of
performance indicators showed a clear statistical association
between some metrics. The WSRT is a non-parametric test
for the rating of all optimizers for each metric. In other terms,
it clearly showed the variations in the performance of the opti-
mizers, which required more exploration and verification of
the differences. In this way, the efficiency of the MOAOA is
numerically examined and tested for coverage, convergence,
diversity, and computational cost metrics.

The effectiveness of the MOAOA in finding a significant
number of NDS in several FEs is due to the different con-
ceptual features implemented. They’re a CD and an NDS
process. These features enabled MOAOA to optimize accept-
able balance among exploration and exploitation so as to
address the crises and escape saturation. Such functions also
help to stabilize exploration and exploitation at the FEs stage
and navigate the search for a promising optimal solution.
The excellent results of the proposed MOAOA over the ZDT
and CEC-2021 constrained RWMOPs test suites led to its
application to the real-world MOPs problems of CEC-2021.
CEC-2021 Real-world constrained RWMOPS problems are
overcome using MOAOA. The PF achieved by the MOAOA
is much superior to the competitive NSGWO, MOMVO,
MOALO, and MOSMA optimizers. The development of the
CD criteria showed the reliability, efficiency, and effective-
ness of the MOAOA, while its deployment across different
test suites demonstrated its robustness in the achievement of
non-dominated solutions. In conclusion, MOAOA is one of
Pareto’s robust non-dominant optimizers to achieving better
convergence, coverage, diversity, and computational cost.

APPENDIX
See Figure 15.
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