Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11452/33139
Başlık: Some array polynomials over special monoid presentations
Yazarlar: Çevik, Ahmet Sinan
Das, Kinkar Chandra
Şimşek, Yılmaz
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0002-0700-5774
0000-0002-0700-5774
Cangül, İsmail Naci
J-3505-2017
ABA-6206-2020
57189022403
Anahtar kelimeler: Minimality
Characteristic polynomials
Array polynomials
P-cockcroft property
Semidirect products
Extensions
Bernoulli
Theorem
Euler
Mathematics
Yayın Tarihi: Şub-2013
Yayıncı: Springer
Atıf: Çevik, A. S. vd. (2013). “Some array polynomials over special monoid presentations”. Fixed Point Theory and Applications, 2013.
Özet: In a recent joint paper (Cevik et al. in Hacet. J. Math. Stat., acceptted), the authors have investigated the p-Cockcroft property (or, equivalently, efficiency) for a presentation, say , of the semi-direct product of a free abelian monoid rank two by a finite cyclic monoid. Moreover, they have presented sufficient conditions on a special case for to be minimal whilst it is inefficient. In this paper, by considering these results, we first show that the presentations of the form can actually be represented by characteristic polynomials. After that, some connections between representative characteristic polynomials and generating functions in terms of array polynomials over the presentation will be pointed out. Through indicated connections, the existence of an equivalence among each generating function in itself is claimed studied in this paper. MSC: 11B68, 11S40, 12D10, 20M05, 20M50, 26C05, 26C10.
URI: https://doi.org/10.1186/1687-1812-2013-44
http://hdl.handle.net/11452/33139
ISSN: 1687-1812
https://fixedpointtheoryandalgorithms.springeropen.com/articles/10.1186/1687-1812-2013-44
Koleksiyonlarda Görünür:Scopus
Web of Science

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
Cangül_vd_2013.pdf392.06 kBAdobe PDFKüçük resim
Göster/Aç


Bu öğe kapsamında lisanslı Creative Commons License Creative Commons