Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/29757
Başlık: | Prediction of maximum annual flood discharges using artificial neural network approaches |
Yazarlar: | Anılan, Tuğçe Nacar, Sinan Yüksek, Ömer Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü. 0000-0003-0897-4742 Kankal, Murat AAZ-6851-2020 24471611900 |
Anahtar kelimeler: | Artificial neural networks Principal component analysis Maximum annual flows L-moments approach Frequency-analysis Index-flood Feedforward networks Streamflow Basin Classification Rainfall Quality Engineering |
Yayın Tarihi: | 10-Nis-2020 |
Yayıncı: | Croatian Society of Civil Engineers |
Atıf: | Anılan, T. vd. (2020). "Prediction of maximum annual flood discharges using artificial neural network approaches". Gradevinar, 72(3), 215-224. |
Özet: | The applicability of artificial neural network (ANN) approaches for estimation of maximum annual flows is investigated in the paper. The performance of three neural network models is compared: multi layer perceptron neural networks (MLP_NN), generalized feed forward neural networks (GFF_NN), and principal component analysis with neural networks (PCA_ NN). The proposed approaches were applied to 33 stream-gauging stations. It was found that the optimal 3-hidden layered PCA_NN method was more appropriate than the optimal MLP_NN and GFF_NN models for the estimation of maximum annual flows. |
URI: | https://doi.org/10.14256/JCE.2316.2018 http://www.casopis-gradjevinar.hr/archive/article/2316 http://hdl.handle.net/11452/29757 |
ISSN: | 0350-2465 |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
Kankal_vd_2020.pdf | 340.22 kB | Adobe PDF | Göster/Aç |
Bu öğe kapsamında lisanslı Creative Commons License