Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/28985
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Simos, T. E. | - |
dc.date.accessioned | 2022-10-06T06:26:02Z | - |
dc.date.available | 2022-10-06T06:26:02Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | Karasu, A. vd. (2011). "Integer solutions of a special Diophantine equation". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 371-374. | en_US |
dc.identifier.issn | 0094-243X | - |
dc.identifier.uri | https://doi.org/10.1063/1.3637759 | - |
dc.identifier.uri | https://aip.scitation.org/doi/abs/10.1063/1.3637759?journalCode=apc | - |
dc.identifier.uri | http://hdl.handle.net/11452/28985 | - |
dc.description | Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur. | tr_TR |
dc.description.abstract | Let t not equal 1 be an integer. In this work, we determine the integer solutions of Diophantine equation D : x(2) + (2-t(2))y(2)+(-2t(2) - 2t + 2)x+(2t(5) - 6t(3) + 4t)y - t(8) + 4t(6) - 4t(4) + 2t(3) + t(2) - 2t - 0 over Z and also over finite fields F-p for primes p >= 2. Also we derive some recurrence relations on the integer solutions (x(n), y(n)) of D and formulate the the n-th solution (x(n), y(n)) by using the simple continued fraction expansion of x(n)/y(n). | en_US |
dc.description.sponsorship | European Soc Computat Methods Sci & Engn (ESCMSE) | en_US |
dc.description.sponsorship | R M Santilli Fdn | en_US |
dc.description.sponsorship | ACC I S | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Pyhsics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Diophantine equation | en_US |
dc.subject | Pell equation | en_US |
dc.subject | Continued fraction | en_US |
dc.subject | Recurrence relations | en_US |
dc.title | Integer solutions of a special Diophantine equation | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.wos | 000302239800091 | tr_TR |
dc.identifier.scopus | 2-s2.0-81855203288 | tr_TR |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. | tr_TR |
dc.identifier.startpage | 371 | tr_TR |
dc.identifier.endpage | 374 | tr_TR |
dc.identifier.volume | 1389 | tr_TR |
dc.relation.journal | AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics | en_US |
dc.contributor.buuauthor | Özkoç, Arzu | - |
dc.contributor.buuauthor | Tekcan, Ahmet | - |
dc.contributor.researcherid | AAH-8518-2021 | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.indexed.wos | CPCIS | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 24485340700 | tr_TR |
dc.contributor.scopusid | 55883777900 | tr_TR |
dc.subject.scopus | Real Quadratic Fields; Pell's Equation; Number Field | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.