Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/32849
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Das, Kinkar Chandra | - |
dc.contributor.author | Çevik, Ahmet Sinan | - |
dc.date.accessioned | 2023-05-29T08:45:29Z | - |
dc.date.available | 2023-05-29T08:45:29Z | - |
dc.date.issued | 2013-08 | - |
dc.identifier.citation | Das, K. C. vd. (2013). “The number of spanning trees of a graph”. Journal of Inequalities and Applications, 2013. | en_US |
dc.identifier.issn | 1029-242X | - |
dc.identifier.uri | https://doi.org/10.1186/1029-242X-2013-395 | - |
dc.identifier.uri | https://doi.org/10.1186/1029-242X-2013-395 | - |
dc.identifier.uri | http://hdl.handle.net/11452/32849 | - |
dc.description.abstract | Let G be a simple connected graph of order n, m edges, maximum degree Delta(1) and minimum degree delta. Li et al. (Appl. Math. Lett. 23: 286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Delta(1) and delta: t(G) <= delta (2m-Delta(1)-delta-1/n-3)(n-3). The equality holds if and only if G congruent to K-1,K-n-1, G congruent to K-n, G congruent to K-1 boolean OR (K-1 boolean OR Kn-2) or G congruent to K-n - e, where e is any edge of K-n. Unfortunately, this upper bound is erroneous. In particular, we show that this upper bound is not true for complete graph K-n. In this paper we obtain some upper bounds on the number of spanning trees of graph G in terms of its structural parameters such as the number of vertices (n), the number of edges (m), maximum degree (Delta(1)), second maximum degree (Delta(2)), minimum degree (delta), independence number (alpha), clique number (omega). Moreover, we give the Nordhaus-Gaddum-type result for number of spanning trees. | en_US |
dc.description.sponsorship | Faculty research Fund, Sungkyunkwan University | en_US |
dc.description.sponsorship | Korean Government (2013R1A1A2009341) | en_US |
dc.description.sponsorship | Selçuk Üniversitesi | en_US |
dc.description.sponsorship | Glaucoma Research Foundation | en_US |
dc.description.sponsorship | Hong Kong Baptist University | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematics | en_US |
dc.subject | Graph | en_US |
dc.subject | Spanning trees | en_US |
dc.subject | Independence number | en_US |
dc.subject | Clique number | en_US |
dc.subject | First Zagreb index | en_US |
dc.subject | Molecular-orbitals | en_US |
dc.subject | Zagreb indexes | en_US |
dc.title | The number of spanning trees of a graph | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000336908800001 | tr_TR |
dc.identifier.scopus | 2-s2.0-84894413510 | tr_TR |
dc.relation.tubitak | TUBİTAK | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. | tr_TR |
dc.relation.bap | Uludağ Üniversitesi | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.contributor.orcid | 0000-0003-2576-160X | tr_TR |
dc.identifier.volume | 2013 | tr_TR |
dc.relation.journal | Journal of Inequalities and Applications | en_US |
dc.contributor.buuauthor | Cangül, İsmail Naci | - |
dc.contributor.researcherid | J-3505-2017 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 | en_US |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.subject.scopus | Signless Laplacian; Eigenvalue; Signed Graph | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cangül_vd_2013.pdf | 325.18 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License