Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/31347
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2023-03-06T06:18:22Z-
dc.date.available2023-03-06T06:18:22Z-
dc.date.issued2017-
dc.identifier.citationYıldırım, K. vd. (2017). ''Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions''. Journal of Engineered Fibers and Fabrics, 12(3), 7-16.en_US
dc.identifier.issn1558-9250-
dc.identifier.urihttps://doi.org/10.1177/15589250170120-
dc.identifier.urihttps://journals.sagepub.com/doi/10.1177/155892501701200302-
dc.identifier.urihttp://hdl.handle.net/11452/31347-
dc.description.abstractIn the manufacture of yarn, predicting the effect of changing production conditions is vital to reducing defects in the end product. This study compares, for the first time, non-linear regression and artificial neural network (ANN) models in predicting 10 yarn properties shaped by the influence of winding speed, quenching air temperature and/or quenching air speed during production. A multilayer perceptron ANN model was created by training 81 patterns using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The hyperbolic tangent, or TanH, activation function and logistic activation functions were used for the hidden and output layers respectively. Results showed that the ANN approach exhibited a greater prediction capability over the non-linear regression method. ANN simultaneously predicted all of the 10 final properties of a yarn; tensile strength, tensile strain, draw force, crystallinity ratio, dye uptake based on the colour strengths (K/S), brightness, boiling shrinkage and yarn evenness, more accurately than the non-linear regression model (R-2 = 0.97 vs. R-2 = 0.92). These results lend support to the idea that the ANN analysis combined with optimization can be used successfully to prevent production defects by fine tuning the production environment.en_US
dc.description.sponsorshipTextile Company - KORTEKSen_US
dc.language.isoenen_US
dc.publisherSage Puplicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMaterials scienceen_US
dc.subjectParametersen_US
dc.subjectAlgorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectNeural networksen_US
dc.subjectOptimizationen_US
dc.subjectYarnen_US
dc.subjectDefectsen_US
dc.subjectForecastsen_US
dc.subjectManufactureen_US
dc.subjectQuenchingen_US
dc.subjectChemical activationen_US
dc.subjectDefectsen_US
dc.subjectForecastingen_US
dc.subjectHyperbolic functionsen_US
dc.subjectLinear regressionen_US
dc.subjectManufactureen_US
dc.subjectNeural networksen_US
dc.subjectNonlinear programmingen_US
dc.subjectTensile strainen_US
dc.subjectWoolen_US
dc.subjectArtificial neural network modelsen_US
dc.subjectNon-linear regressionen_US
dc.subjectNon-linear regression methoden_US
dc.subjectNonlinear regression modelsen_US
dc.subjectPrediction capabilityen_US
dc.subjectProduction environmentsen_US
dc.subjectRegression analysisen_US
dc.titleComparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditionsen_US
dc.typeArticleen_US
dc.identifier.wos000417360400002tr_TR
dc.identifier.scopus2-s2.0-85028661191tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Mimarlık Fakültesi/Tekstil Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-1640-6035tr_TR
dc.identifier.startpage7tr_TR
dc.identifier.endpage16tr_TR
dc.identifier.volume12tr_TR
dc.identifier.issue3tr_TR
dc.relation.journalJournal of Engineered Fibers and Fabricsen_US
dc.contributor.buuauthorYıldırım, Kenan-
dc.contributor.buuauthorÖğüt, Hamdi-
dc.contributor.buuauthorUlucay, Yusuf-
dc.contributor.researcheridHKM-7750-2023tr_TR
dc.subject.wosMaterials science, textilesen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid30767899000tr_TR
dc.contributor.scopusid55883276800tr_TR
dc.contributor.scopusid6601918936tr_TR
dc.subject.scopusYarns; Cotton Fibers; Weften_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.