Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/31158
Tüm üstveri kaydı
Dublin Core Alanı | Değer | Dil |
---|---|---|
dc.date.accessioned | 2023-02-23T07:30:38Z | - |
dc.date.available | 2023-02-23T07:30:38Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Altınkaya, Ş. ve Yalçın, S. (2020). "Lucas polynomials and applications to an unified calss of bi-univalent functions equipped with (P,Q)-derivative operators". TWMS Journal of Pure and Applied Mathematics, 11(1), 100-108. | en_US |
dc.identifier.issn | 2076-2585 | - |
dc.identifier.issn | 2219-1259 | - |
dc.identifier.uri | http://static.bsu.az/w24/Contents%20V11N12020%20/100-108.pdf | - |
dc.identifier.uri | http://hdl.handle.net/11452/31158 | - |
dc.description.abstract | We want to remark explicitly that, by using the L-n (x) functions (essentially linked to Lucas polynomials of the second kind), our methodology builds a bridge, to our knowledge not previously well known, between the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, also making use of the differential operator I-p,q(k), we introduce a new class of analytic bi-univalent functions. Coefficient estimates, Fekete-Szego inequalities and several special consequences of the results are obtained. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Applied Mathematics of Baku State University | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Lucas polynomials | en_US |
dc.subject | Coefficient bounds | en_US |
dc.subject | Bi-univalent functions | en_US |
dc.subject | Q-calculus | en_US |
dc.subject | (p, q)-Derivative operator | en_US |
dc.subject | Coefficient | en_US |
dc.subject | Fibonacci | en_US |
dc.subject | Subclass | en_US |
dc.subject | Mathematics | en_US |
dc.title | Lucas polynomials and applications to an unified calss of bi-univalent functions equipped with (P,Q)-derivative operators | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000530129600007 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-7950-8450 | tr_TR |
dc.contributor.orcid | 0000-0002-0243-8263 | tr_TR |
dc.identifier.startpage | 100 | tr_TR |
dc.identifier.endpage | 108 | tr_TR |
dc.identifier.volume | 11 | tr_TR |
dc.identifier.issue | 1 | tr_TR |
dc.relation.journal | TWMS Journal of Pure and Applied Mathematics | en_US |
dc.contributor.buuauthor | Altınkaya, Şahsene | - |
dc.contributor.buuauthor | Yalçın, Sibel | - |
dc.contributor.researcherid | AAA-8330-2021 | tr_TR |
dc.contributor.researcherid | AAG-5646-2021 | tr_TR |
dc.contributor.researcherid | AAE-9745-2020 | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.wos.quartile | Q1 | en_US |
dc.wos.quartile | Q2 (Mathematics, applied) | en_US |
Koleksiyonlarda Görünür: | Web of Science |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
Altınkaya_Yalçın_2020.pdf | 105.02 kB | Adobe PDF | ![]() Göster/Aç |
Bu öğe kapsamında lisanslı Creative Commons License