Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/30563
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-01-19T10:43:55Z | - |
dc.date.available | 2023-01-19T10:43:55Z | - |
dc.date.issued | 2017-08-13 | - |
dc.identifier.citation | Yıldırım, Y. ve Yaşar, E. (2017). ''An extended Korteweg-de Vries equation: Multi-soliton solutions and conservation laws''. Nonlinear Dynamics, 90(3), 1571-1579. | en_US |
dc.identifier.issn | 0924-090X | - |
dc.identifier.uri | https://doi.org/10.1007/s11071-017-3749-x | - |
dc.identifier.uri | https://link.springer.com/article/10.1007/s11071-017-3749-x | - |
dc.identifier.uri | 1573-269X | - |
dc.identifier.uri | http://hdl.handle.net/11452/30563 | - |
dc.description.abstract | In this paper, we consider an extended KdV equation, which arises in the analysis of several problems in soliton theory. First, we converted the underlying equation into the Hirota bilinear form. Then, using the novel test function method, abundant multi-soliton solutions were obtained. Second, we have performed some distinct methods to extended KdV equation for getting some exact wave solutions. In this regard, Kudryashov’s simplest equation methods were examined. Third, the local conservation laws are deduced by multiplier/homotopy methods. Finally, the graphical simulations of the exact solutions are depicted. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Engineering | en_US |
dc.subject | Mechanics | en_US |
dc.subject | Conservation laws | en_US |
dc.subject | Exact solutions | en_US |
dc.subject | Extended kdv equation | en_US |
dc.subject | Nonlinear evolution | en_US |
dc.subject | Simplest equation | en_US |
dc.subject | Wave solutions | en_US |
dc.subject | Tanh method | en_US |
dc.subject | Computation | en_US |
dc.subject | Computational mechanics | en_US |
dc.subject | Korteweg-de vries equation | en_US |
dc.subject | Physical properties | en_US |
dc.subject | Conservation law | en_US |
dc.subject | Exact solution | en_US |
dc.subject | Exact wave solutions | en_US |
dc.subject | Graphical simulation | en_US |
dc.subject | Hirota bilinear forms | en_US |
dc.subject | Kdv equations | en_US |
dc.subject | Multi-soliton solutions | en_US |
dc.subject | Simplest equation method | en_US |
dc.subject | Solitons | en_US |
dc.title | An extended Korteweg-de Vries equation: Multi-soliton solutions and conservation laws | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000413286700006 | tr_TR |
dc.identifier.scopus | 2-s2.0-85027869940 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0003-4732-5753 | tr_TR |
dc.identifier.startpage | 1571 | tr_TR |
dc.identifier.endpage | 1579 | tr_TR |
dc.identifier.volume | 90 | tr_TR |
dc.identifier.issue | 3 | tr_TR |
dc.relation.journal | Nonlinear Dynamics | en_US |
dc.contributor.buuauthor | Yıldırım, Yakup | - |
dc.contributor.buuauthor | Yaşar, Emrullah | - |
dc.contributor.researcherid | AAG-9947-2021 | tr_TR |
dc.subject.wos | Engineering, mechanical | en_US |
dc.subject.wos | Mechanics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 56988856400 | tr_TR |
dc.contributor.scopusid | 23471031300 | tr_TR |
dc.subject.scopus | Exact Solution; Optical Solitons; (G′/G)-expansion Method | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.