Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/30460
Title: Some new generalizaitons of hadamard-type midpoint inequalities involving fractional integrals
Authors: Bursa Uludağ Üniversitesi/Eğitim Fakültesi.
0000-0001-7594-8291
Bayraktar, Bahtiyar
55320522100
Keywords: Mathematics
Convexity
Hadamard inequality
Holder's inequality
Power-mean inequality
Riemann-Liouville fractional integrals
Issue Date: 23-Jun-2020
Publisher: Petrozavodsk State University
Citation: Bayraktar, B. (2020)."Some new generalizaitons of hadamard-type midpoint inequalities involving fractional integrals". Problemy Analiza, 9(3), 66-82.
Abstract: In this study, we formulate the identity and obtain some generalized inequalities of the Hermite-Hadamard type by using fractional Riemann-Liouville integrals for functions whose absolute values of the second derivatives are convex. The results are obtained by uniformly dividing a segment [a,b] into n equal sub-intervals. Using this approach, the absolute error of a Midpoint inequality is shown to decrease approximately n(2) times. A dependency between accuracy of the absolute error (epsilon) of the upper limit of the Hadamard inequality and the number (n) of lower intervals is obtained.
URI: https://doi.org/10.15393/j3.art.2020.8270
https://issuesofanalysis.petrsu.ru/article/genpdf.php?id=8270
http://hdl.handle.net/11452/30460
ISSN: 2306-3424
2306-3432
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Bayraktar_2020.pdf506.61 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons