Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29812
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKanna, M. R. R.-
dc.contributor.authorKumar, R. P.-
dc.contributor.authorNandappa, S.-
dc.date.accessioned2022-12-12T09:13:56Z-
dc.date.available2022-12-12T09:13:56Z-
dc.date.issued2019-04-17-
dc.identifier.citationKanna, M. R. R. vd. (2020). "On solutions of fractional order telegraph partial differential equation by Crank-Nicholson Finite Difference method". Applied Mathematics and Nonlinear Sciences, 5(2), 85-98.en_US
dc.identifier.issn24448656-
dc.identifier.urihttps://doi.org/10.2478/AMNS.2020.2.00017-
dc.identifier.urihttps://sciendo.com/article/10.2478/amns.2020.2.00017-
dc.identifier.urihttp://hdl.handle.net/11452/29812-
dc.description.abstractThree main tools to study graphs mathematically are to make use of the vertex degrees, distances and matrices. The classical graph energy was defined by means of the adjacency matrix in 1978 by Gutman and has a large number of applications in chemistry, physics and related areas. As a result of its importance and numerous applications, several modifications of the notion of energy have been introduced since then. Most of them are defined by means of graph matrices constructed by vertex degrees. In this paper we define another type of energy called q-distance energy by means of distances and matrices. We study some fundamental properties and also establish some upper and lower bounds for this new energy type.en_US
dc.language.isoenen_US
dc.publisherWalter de Gruyteren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectQ-distance matrixen_US
dc.subjectQ-distance eigenvaluesen_US
dc.subjectQ-distance energyen_US
dc.subjectJoin of graphsen_US
dc.subjectUnion of graphsen_US
dc.subjectDistance energyen_US
dc.subjectBoundsen_US
dc.subjectMatrixen_US
dc.subjectMathematicsen_US
dc.subjectFinite difference methoden_US
dc.subjectAdjacency matricesen_US
dc.subjectFractional orderen_US
dc.subjectFundamental propertiesen_US
dc.subjectGraph energyen_US
dc.subjectNew energiesen_US
dc.subjectNicholsonen_US
dc.subjectUpper and lower boundsen_US
dc.subjectVertex degreeen_US
dc.subjectGraph theoryen_US
dc.titleOn solutions of fractional order telegraph partial differential equation by Crank-Nicholson Finite Difference methoden_US
dc.typeArticleen_US
dc.identifier.wos000664173100006tr_TR
dc.identifier.scopus2-s2.0-85091581420tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.identifier.startpage85tr_TR
dc.identifier.endpage98tr_TR
dc.identifier.volume5tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalApplied Mathematics and Nonlinear Sciencesen_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridDVV-1851-2022tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematics, applieden_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusEnergy of Graph; Energy; Signless Laplacianen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2020.pdf854.88 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons