Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29515
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeadawy, Aly-
dc.date.accessioned2022-11-21T10:29:00Z-
dc.date.available2022-11-21T10:29:00Z-
dc.date.issued2020-03-17-
dc.identifier.citationSeadawy, A. vd. (2020). "A third-order nonlinear Schrödinger equation: The exact solutions, group-invariant solutions and conservation laws". Journal of Taibah University for Science, 14(1), 585-597.en_US
dc.identifier.issn0025-5300-
dc.identifier.urihttps://doi.org/10.1080/16583655.2020.1760513-
dc.identifier.urihttps://www.degruyter.com/document/doi/10.3139/120.111478/html-
dc.identifier.urihttp://hdl.handle.net/11452/29515-
dc.description.abstractIn this study, we consider the third order nonlinear Schrodinger equation (TONSE) that models the wave pulse transmission in a time period less than one-trillionth of a second. With the help of the extended modified method, we obtain numerous exact travelling wave solutions containing sets of generalized hyperbolic, trigonometric and rational solutions that are more general than classical ones. Secondly, we construct the transformation groups which left the equations invariant and vector fields with the Lie symmetry groups approach. With the help of these vector fields, we obtain the symmetry reductions and exact solutions of the equation. The obtained group-invariant solutions are Jacobi elliptic function and exponential type. We discuss the dynamic behaviour and structure of the exact solutions for distinct solutions of arbitrary constants. Lastly, we obtain conservation laws of the considered equation by construing the complex equation as a system of two real partial differential equations (PDEs).en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDispersive dielectrict fibersen_US
dc.subjectOptical solution-solutionsen_US
dc.subjectTransmissionen_US
dc.subjectBrighten_US
dc.subjectPulsesen_US
dc.subjectHarris hawks algorithmen_US
dc.subjectSimulated annealingen_US
dc.subjectCrash analysisen_US
dc.subjectHybrid optimization algorithmen_US
dc.subjectGuardrailsen_US
dc.subjectRoad safety barriersen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectOptimal machining parametersen_US
dc.subjectStructural designen_US
dc.subjectMultiobjective optimizationen_US
dc.subjectDifferential evolutionen_US
dc.subjectGenetic algorithmen_US
dc.subjectGravitational searchen_US
dc.subjectGlobal optimizationen_US
dc.subjectImmune algorithmen_US
dc.subjectOptimum designen_US
dc.titleA third-order nonlinear Schrodinger equation: The exact solutions, group-invariant solutions and conservation lawsen_US
dc.typeArticleen_US
dc.identifier.wos000530988700001tr_TR
dc.identifier.scopus2-s2.0-85086651051tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen Bilimleri Enstitüsü/Matematik.tr_TR
dc.contributor.orcid0000-0002-1364-5137tr_TR
dc.contributor.orcid0000-0003-4732-5753tr_TR
dc.identifier.startpage585tr_TR
dc.identifier.endpage597tr_TR
dc.identifier.volume14tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalJournal of Taibah University for Scienceen_US
dc.contributor.buuauthorÖzkan, Yeşim Sağlam-
dc.contributor.buuauthorYaşar, Emrullah-
dc.contributor.researcheridG-5333-2017tr_TR
dc.contributor.researcheridAAG-9947-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMultidisciplinary sciencesen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid57220153585tr_TR
dc.contributor.scopusid23471031300tr_TR
dc.subject.scopusHirota Method; Nonlinear Schrödinger Equation; Soliton Solutionen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Özkan_vd_2020.pdf2.31 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons