Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28320
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUzlu, Ergun-
dc.contributor.authorKankal, Murat-
dc.contributor.authorDede, Tayfun-
dc.date.accessioned2022-08-23T07:36:02Z-
dc.date.available2022-08-23T07:36:02Z-
dc.date.issued2014-10-01-
dc.identifier.citationUzlu, E. vd .(2014). "Estimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithm". Energy, 75, Special Issue, 295-303.en_US
dc.identifier.issn0360-5442-
dc.identifier.issn1873-6785-
dc.identifier.urihttps://doi.org/10.1016/j.energy.2014.07.078-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0360544214009116-
dc.identifier.urihttp://hdl.handle.net/11452/28320-
dc.description.abstractThe main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching-learning-based optimization) algorithm to estimate energy consumption in Turkey. Gross domestic product, population, import, and export data were selected as independent variables in the model. Performances of the ANN-TLBO model and the classical back propagation-trained ANN model (ANN-BP (teaching learning-based optimization) model) were compared by using various error criteria to evaluate the model accuracy. Errors of the training and testing datasets showed that the ANN-TLBO model better predicted the energy consumption compared to the ANN-BP model. After determining the best configuration for the ANN-TLBO model, the energy consumption values for Turkey were predicted under three scenarios. The forecasted results were compared between scenarios and with projections by the MENR (Ministry of Energy and Natural Resources). Compared to the MENR projections, all of the analyzed scenarios gave lower estimates of energy consumption and predicted that Turkey's energy consumption would vary between 142.7 and 158.0 Mtoe (million tons of oil equivalent) in 2020.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTeaching-learning-based optimization algorithmen_US
dc.subjectEnergy consumption/demanden_US
dc.subjectNeural networksen_US
dc.subjectTurkeyen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectParameter optimizationen_US
dc.subjectMultiobjective optimizationen_US
dc.subjectDemand estimationen_US
dc.subjectColony algorithmen_US
dc.subjectEconomic-growthen_US
dc.subjectDesignen_US
dc.subjectIntelligenceen_US
dc.subjectHydropoweren_US
dc.subjectPredictionen_US
dc.subjectThermodynamicsen_US
dc.subjectEnergy & fuelsen_US
dc.subjectTurkeyen_US
dc.subjectEnergy utilizationen_US
dc.subjectLearning algorithmsen_US
dc.subjectNeural networksen_US
dc.subjectOptimizationen_US
dc.subjectPopulation statisticsen_US
dc.subjectANN (artificial neural network)en_US
dc.subjectClassical back-propagationen_US
dc.subjectGross domestic productsen_US
dc.subjectIndependent variablesen_US
dc.subjectModel accuracyen_US
dc.subjectTeaching-learning-based optimizationsen_US
dc.subjectTraining and testingen_US
dc.subjectAlgorithmen_US
dc.subjectData seten_US
dc.subjectEnergy useen_US
dc.subjectError analysisen_US
dc.subjectEstimation methoden_US
dc.subjectNumerical modelen_US
dc.subjectBackpropagationen_US
dc.titleEstimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithmen_US
dc.typeArticleen_US
dc.identifier.wos000343339900031tr_TR
dc.identifier.scopus2-s2.0-84908069278tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-9042-6851tr_TR
dc.identifier.startpage295tr_TR
dc.identifier.endpage303tr_TR
dc.identifier.volume75tr_TR
dc.identifier.issueSpecial Issueen_US
dc.relation.journalEnergyen_US
dc.contributor.buuauthorAkpınar, Adem-
dc.contributor.researcheridAAC-6763-2019tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosThermodynamicsen_US
dc.subject.wosEnergy & fuelsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid23026855400tr_TR
dc.subject.scopusArtificial Neural Network; Electricity Demand; Autoregressive Integrated Moving Averageen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.