Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/25935
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-04-21T07:17:19Z | - |
dc.date.available | 2022-04-21T07:17:19Z | - |
dc.date.issued | 2011-05 | - |
dc.identifier.citation | Özmutlu, S. vd. (2011). "Neural network applications for automatic new topic identification of FAST and Excite search engine transaction logs". Expert Systems, 28(2), 101-122. | en_US |
dc.identifier.issn | 0266-4720 | - |
dc.identifier.issn | 1468-0394 | - |
dc.identifier.uri | https://doi.org/10.1111/j.1468-0394.2010.00531.x | - |
dc.identifier.uri | https://onlinelibrary.wiley.com/doi/10.1111/j.1468-0394.2010.00531.x | - |
dc.identifier.uri | http://hdl.handle.net/11452/25935 | - |
dc.description.abstract | Content analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms for more efficient search engines. Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. This study proposes an artificial neural network application in the area of search engine research to automatically identify topic changes in a user session by using statistical characteristics of queries, such as time intervals and query reformulation patterns. Sample data logs from the FAST and Excite search engines are selected to train the neural network and then the neural network is used to identify topic changes in the data log. As a result, almost all the performance measures yielded favourable results. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computer science | en_US |
dc.subject | Search engine | en_US |
dc.subject | Topic identification | en_US |
dc.subject | Session identification | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Query clustering | en_US |
dc.subject | Cluster analysis | en_US |
dc.subject | Fire fighting equipment | en_US |
dc.subject | Information retrieval | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | Content analysis | en_US |
dc.subject | Data log | en_US |
dc.subject | Engine research | en_US |
dc.subject | Key issues | en_US |
dc.subject | Neural network application | en_US |
dc.subject | Performance measure | en_US |
dc.subject | Query clustering | en_US |
dc.subject | Query reformulation | en_US |
dc.subject | Sample data | en_US |
dc.subject | Search sessions | en_US |
dc.subject | Session identification | en_US |
dc.subject | Statistical characteristics | en_US |
dc.subject | Time interval | en_US |
dc.subject | Topic identification | en_US |
dc.subject | Transaction log | en_US |
dc.subject | User query | en_US |
dc.subject | User sessions | en_US |
dc.subject | Search engines | en_US |
dc.subject | Information-seeking | en_US |
dc.subject | Web | en_US |
dc.subject | Session | en_US |
dc.subject | Retrieval | en_US |
dc.subject | Context | en_US |
dc.subject | Users | en_US |
dc.subject | Life | en_US |
dc.title | Neural network applications for automatic new topic identification of FAST and Excite search engine transaction logs | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000289684100002 | tr_TR |
dc.identifier.scopus | 2-s2.0-79955052022 | tr_TR |
dc.relation.tubitak | 105M320 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü. | tr_TR |
dc.identifier.startpage | 101 | tr_TR |
dc.identifier.endpage | 122 | tr_TR |
dc.identifier.volume | 28 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.relation.journal | Expert Systems | en_US |
dc.contributor.buuauthor | Özmutlu, Seda | - |
dc.contributor.buuauthor | Özmutlu, Hüseyin Cenk | - |
dc.contributor.buuauthor | Coşar, Gencer Coşkun | - |
dc.contributor.researcherid | ABH-5209-2020 | tr_TR |
dc.contributor.researcherid | AAH-4480-2021 | tr_TR |
dc.subject.wos | Computer science, artificial intelligence | en_US |
dc.subject.wos | Computer science, theory & methods | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 6603660605 | tr_TR |
dc.contributor.scopusid | 6603061328 | tr_TR |
dc.contributor.scopusid | 25027011500 | tr_TR |
dc.subject.scopus | Query Reformulation; Image Indexing; Digital Libraries | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.