Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25935
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-04-21T07:17:19Z-
dc.date.available2022-04-21T07:17:19Z-
dc.date.issued2011-05-
dc.identifier.citationÖzmutlu, S. vd. (2011). "Neural network applications for automatic new topic identification of FAST and Excite search engine transaction logs". Expert Systems, 28(2), 101-122.en_US
dc.identifier.issn0266-4720-
dc.identifier.issn1468-0394-
dc.identifier.urihttps://doi.org/10.1111/j.1468-0394.2010.00531.x-
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1111/j.1468-0394.2010.00531.x-
dc.identifier.urihttp://hdl.handle.net/11452/25935-
dc.description.abstractContent analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms for more efficient search engines. Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. This study proposes an artificial neural network application in the area of search engine research to automatically identify topic changes in a user session by using statistical characteristics of queries, such as time intervals and query reformulation patterns. Sample data logs from the FAST and Excite search engines are selected to train the neural network and then the neural network is used to identify topic changes in the data log. As a result, almost all the performance measures yielded favourable results.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectSearch engineen_US
dc.subjectTopic identificationen_US
dc.subjectSession identificationen_US
dc.subjectNeural networksen_US
dc.subjectQuery clusteringen_US
dc.subjectCluster analysisen_US
dc.subjectFire fighting equipmenten_US
dc.subjectInformation retrievalen_US
dc.subjectNeural networksen_US
dc.subjectArtificial Neural Networken_US
dc.subjectContent analysisen_US
dc.subjectData logen_US
dc.subjectEngine researchen_US
dc.subjectKey issuesen_US
dc.subjectNeural network applicationen_US
dc.subjectPerformance measureen_US
dc.subjectQuery clusteringen_US
dc.subjectQuery reformulationen_US
dc.subjectSample dataen_US
dc.subjectSearch sessionsen_US
dc.subjectSession identificationen_US
dc.subjectStatistical characteristicsen_US
dc.subjectTime intervalen_US
dc.subjectTopic identificationen_US
dc.subjectTransaction logen_US
dc.subjectUser queryen_US
dc.subjectUser sessionsen_US
dc.subjectSearch enginesen_US
dc.subjectInformation-seekingen_US
dc.subjectWeben_US
dc.subjectSessionen_US
dc.subjectRetrievalen_US
dc.subjectContexten_US
dc.subjectUsersen_US
dc.subjectLifeen_US
dc.titleNeural network applications for automatic new topic identification of FAST and Excite search engine transaction logsen_US
dc.typeArticleen_US
dc.identifier.wos000289684100002tr_TR
dc.identifier.scopus2-s2.0-79955052022tr_TR
dc.relation.tubitak105M320tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.identifier.startpage101tr_TR
dc.identifier.endpage122tr_TR
dc.identifier.volume28tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalExpert Systemsen_US
dc.contributor.buuauthorÖzmutlu, Seda-
dc.contributor.buuauthorÖzmutlu, Hüseyin Cenk-
dc.contributor.buuauthorCoşar, Gencer Coşkun-
dc.contributor.researcheridABH-5209-2020tr_TR
dc.contributor.researcheridAAH-4480-2021tr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosComputer science, theory & methodsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid6603660605tr_TR
dc.contributor.scopusid6603061328tr_TR
dc.contributor.scopusid25027011500tr_TR
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Librariesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.