Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25547
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimos, T. E.-
dc.contributor.authorPsihoyios, G.-
dc.contributor.authorTsitouras, C.-
dc.contributor.authorAnastassi, Z.-
dc.date.accessioned2022-04-05T06:12:15Z-
dc.date.available2022-04-05T06:12:15Z-
dc.date.issued2012-
dc.identifier.citationÖzgür, B. vd. (2012). "Deterrmining the minimal polynomial of cos(2π/n) over Q with Maple". ed. T. E. Simos vd. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics (ICNAAM 2012), 1479(1), 368-370.en_US
dc.identifier.isbn978-0-7354-1091-6-
dc.identifier.issn0094-243X-
dc.identifier.urihttps://doi.org/10.1063/1.4756140-
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.4756140-
dc.identifier.urihttp://hdl.handle.net/11452/25547-
dc.descriptionBu çalışma, 19-25 Eylül 2012 tarihleri arasında Kos[Yunanistan]’da düzenlenen International Conference of Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractThe number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups, and in the study of regular polyhedra. There are many results about the minimal polynomial of this algebraic number and in some of these methods, the minimal polynomials of several algebraic numbers are used. Here we obtain the minimal polynomial of one of those numbers, cos(2 pi/n), over the field of rationals by means of the better known Chebycheff polynomials for odd q and give some of their properties. We calculated this minimal polynomial for n is an element of N by using the Maple language and classifying the numbers n is an element of N into different classes.en_US
dc.description.sponsorshipEuropean Soc Computat Methods Sci, Engn & Technol (ESCMSET)en_US
dc.description.sponsorshipR M Santilli Fdnen_US
dc.language.isoenen_US
dc.publisherAmer Inst Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectPhysicsen_US
dc.titleDeterrmining the minimal polynomial of cos(2π/n) over Q with Mapleen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000310698100088tr_TR
dc.identifier.scopus2-s2.0-84883097669tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.relation.bap2012/15tr_TR
dc.relation.bap2012/19tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage368tr_TR
dc.identifier.endpage370tr_TR
dc.identifier.volume1479tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalAIP Conference Proceedings, Numerical Analysis and Applied Mathematics (ICNAAM 2012)en_US
dc.contributor.buuauthorÖzgür, Birsen-
dc.contributor.buuauthorYurttaş, Aysun-
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridAAG-8470-2021tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridABI-4127-2020tr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosPhysics, applieden_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid54403501400tr_TR
dc.contributor.scopusid37090056000tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusHecke Groups; Modular Forms; Congruence Subgroupsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.