Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25292
Title: A neural network-based tool for magnetic performance prediction of toroidal cores
Authors: Miti, G.K.
Moses, Anthony John
Fox, David
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.
Derebaşı, Naim
11540936300
Keywords: Materials science
Physics
Artificial intelligence
Magnetic losses
Neural networks
Soft magnetic materials
Strip-wound cores
Magnetic leakage
Magnetic permeability
Toroidal cores
Magnetic cores
Issue Date: Jan-2003
Publisher: Elsevier
Citation: Miti, G. K. vd. (2003). “A neural network-based tool for magnetic performance prediction of toroidal cores”. Journal of Magnetism and Magnetic Materials, 254(Special Issue), 262-264.
Abstract: Geometrical and building parameters have a strong influence on magnetic performance of wound toroidal cores made from electrical steel or similar strip products. This paper presents a neural network-based approach to predict losses and permeability in such cores of varying geometries over an induction range of 0.2-1.8T (50Hz). The approach is shown to be successful.
Description: Bu çalışma, 05-07 Eylül 2001 tarihleri arasında Bilbao[İspanya]’da düzenlenen 15. International Symposium on Soft Magnetic Materials’da bildiri olarak sunulmuştur.
URI: https://doi.org/10.1016/S0304-8853(02)00788-6
http://hdl.handle.net/11452/25292
ISSN: 0304-8853
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.