Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/24765
Tüm üstveri kaydı
Dublin Core Alanı | Değer | Dil |
---|---|---|
dc.date.accessioned | 2022-03-01T08:30:37Z | - |
dc.date.available | 2022-03-01T08:30:37Z | - |
dc.date.issued | 2010-05 | - |
dc.identifier.citation | Küçük, N. (2010). "Computation of gamma-ray exposure buildup factors up to 10 mfp using generalized feed-forward neural network". Expert Systems with Applications, 37(5), 3762-3767. | en_US |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2009.11.047 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0957417409009890 | - |
dc.identifier.uri | http://hdl.handle.net/11452/24765 | - |
dc.description.abstract | This paper presents an approach based on generalized feed-forward neural network (GFFNN) to compute exposure buildup factors (B(D)) for point isotropic sources in infinite homogeneous media at energies varying from 0.03 MeV to 15 MeV and up to depths of 10 mean free paths (mfp). The results obtained by using the proposed model have been compared with the ANSI standard data, the calculations by use of EGS4 Monte Carlo code and Invariant Embedding (IE) Method for water, iron, lead and concrete. The comparisons have shown that the GFFNN model improved B(D) estimation with respect to the other methods, particularly for lead and concrete. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Buildup factor | en_US |
dc.subject | Radiation shielding | en_US |
dc.subject | Gamma-ray | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Prediction | en_US |
dc.subject | Parameters | en_US |
dc.subject | Alghorithms | en_US |
dc.subject | Computer science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Operations research & management science | en_US |
dc.subject | Gamma rays | en_US |
dc.subject | Radiation shielding | en_US |
dc.subject | Stars | en_US |
dc.subject | ANSI standards | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Gamma-ray exposure | en_US |
dc.subject | Homogeneous media | en_US |
dc.subject | Isotropic sources | en_US |
dc.subject | Mean free path | en_US |
dc.subject | Monte Carlo codes | en_US |
dc.subject | Neural networks | en_US |
dc.title | Computation of gamma-ray exposure buildup factors up to 10 mfp using generalized feed-forward neural network | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000274594300028 | tr_TR |
dc.identifier.scopus | 2-s2.0-73249129245 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-9193-4591 | tr_TR |
dc.identifier.startpage | 3762 | tr_TR |
dc.identifier.endpage | 3767 | tr_TR |
dc.identifier.volume | 37 | tr_TR |
dc.identifier.issue | 5 | tr_TR |
dc.relation.journal | Expert Systems with Applications | en_US |
dc.contributor.buuauthor | Küçük, Nil | - |
dc.subject.wos | Computer science, artificial intelligence | en_US |
dc.subject.wos | Engineering, electrical & electronic | en_US |
dc.subject.wos | Operations research & management science | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.wos.quartile | Q2 (Computer science, artificial intelligence) | en_US |
dc.contributor.scopusid | 24436223800 | tr_TR |
dc.subject.scopus | Radiation Shield; Attenuation Coefficients; Shielding | en_US |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.