Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24054
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-01-13T06:10:41Z-
dc.date.available2022-01-13T06:10:41Z-
dc.date.issued2005-
dc.identifier.citationÖzalp, A. A. (2005). "A computational study to predict the combined effects of surface roughness and heat flux conditions on converging-nozzle flows". Transactions of the Canadian Society for Mechanical Engineering, 29(1), 67-80.en_US
dc.identifier.issn0315-8977-
dc.identifier.urihttps://doi.org/10.1139/tcsme-2005-0005-
dc.identifier.urihttps://cdnsciencepub.com/doi/10.1139/tcsme-2005-0005-
dc.identifier.urihttp://hdl.handle.net/11452/24054-
dc.description.abstractCritical design parameters on the performance prediction of converging nozzles are the geometric features and the operating conditions, which include the stagnant properties at the inlet, frictional and heat transfer behaviors on the nozzle wall; where the latter two are hard to handle together in compressible high-speed flows. This paper presents a recent computational model, that integrates the axisymmetric continuity, momentum and energy equations, to predict the combined effects of surface roughness and heat flux conditions on the flow and heat transfer characteristics of compressible flows through converging nozzles. To build a comprehensive overview, analyses are conducted at convergence half angles from 0 degrees to 9 degrees and inlet stagnation to back pressure ratios ranged from 1.01 to 2, covering both the un-choked and choked cases. Non-dimensional surface roughness and surface heat flux values are in the order of 0.0025-0.05 and 20-2000 kW/m(2) respectively. The influences of the model parameters on the nozzle performance are discussed through the streamwise variations of Mach number, shear stress, discharge coefficient and Nusselt number; to verify the validity of the model comparisons are made with the numerical and experimental data available in the literature.en_US
dc.language.isoenen_US
dc.publisherCanadian Science Publishingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEngineeringen_US
dc.subjectSonic nozzlesen_US
dc.subjectRocketen_US
dc.subjectCoefficientsen_US
dc.subjectWearen_US
dc.subjectBoundary conditionsen_US
dc.subjectCompressible flowen_US
dc.subjectCoolingen_US
dc.subjectFrictionen_US
dc.subjectHeat fluxen_US
dc.subjectHeat transferen_US
dc.subjectKinematicsen_US
dc.subjectNusselt numberen_US
dc.subjectShear stressen_US
dc.subjectSurface roughnessen_US
dc.subjectViscosityen_US
dc.subjectHigh-speed flowsen_US
dc.subjectMach numberen_US
dc.subjectNozzle flowen_US
dc.subjectNozzle geometryen_US
dc.subjectNozzlesen_US
dc.titleA computational study to predict the combined effects of surface roughness and heat flux conditions on converging-nozzle flowsen_US
dc.typeArticleen_US
dc.identifier.wos000230684500005tr_TR
dc.identifier.scopus2-s2.0-23444432700tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-4976-9027tr_TR
dc.identifier.startpage67tr_TR
dc.identifier.endpage80tr_TR
dc.identifier.volume29tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalTransactions of the Canadian Society for Mechanical Engineeringen_US
dc.contributor.buuauthorÖzalp, A. Alper-
dc.contributor.researcheridABI-6888-2020tr_TR
dc.subject.wosEngineering, mechanicalen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid6506131689tr_TR
dc.subject.scopusSonic Nozzles; Discharge Coefficient; Critical Flowen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.