Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22179
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-10-01T10:46:54Z-
dc.date.available2021-10-01T10:46:54Z-
dc.date.issued2006-
dc.identifier.citationKüçük, İ. (2006). ''Prediction of hysteresis loop in magnetic cores using neural network and genetic algorithm''. Journal of Magnetism and Magnetic Materials, 305(2), 423-427.en_US
dc.identifier.issn0304-8853-
dc.identifier.urihttps://doi.org/10.1016/j.jmmm.2006.01.137-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0304885306001636-
dc.identifier.urihttp://hdl.handle.net/11452/22179-
dc.description.abstractThe dynamic hysteresis loops of a range of soft magnetic toroidal wound cores made from 3% SiFe 0.27 mm thick M4, 0.1 and 0.08 mm thin gauge strip have been measured over a wide frequency range (50-1000 Hz). A dynamic hysteresis loop prediction model using neural network and genetic algorithm from measurements has been developed. Input parameters include the geometrical dimensions of wound cores, peak magnetic induction, strip thickness and magnetizing frequency. The developed neural network for the estimation of hysteresis loops has been also compared with the dynamic Preisach model and Energetic model. The results show that the neural network model trained by genetic algorithm has an acceptable prediction capability for hysteresis loops of toroidal cores.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMaterials scienceen_US
dc.subjectPhysicsen_US
dc.subjectGenetic algorithmen_US
dc.subjectNeural networken_US
dc.subjectToroidal thin gauge coresen_US
dc.subjectDynamic hysteresis modelen_US
dc.subjectModelen_US
dc.subjectToroidal coresen_US
dc.subjectParameter estimationen_US
dc.subjectNeural networksen_US
dc.subjectMagnetic coresen_US
dc.subjectGeometryen_US
dc.subjectGenetic algorithmsen_US
dc.subjectDynamic hysteresis modelen_US
dc.subjectHysteresisen_US
dc.titlePrediction of hysteresis loop in magnetic cores using neural network and genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.wos000240831600026tr_TR
dc.identifier.scopus2-s2.0-33747799619tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen Edebiyat Fakültesi/Fizik Bölümü.tr_TR
dc.identifier.startpage423tr_TR
dc.identifier.endpage427tr_TR
dc.identifier.volume305tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalJournal of Magnetism and Magnetic Materialsen_US
dc.contributor.buuauthorKüçük, İlker-
dc.subject.wosMaterials science, multidisciplinaryen_US
dc.subject.wosPhysics, condensed matteren_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2 (Materials science, multidisciplinary)en_US
dc.wos.quartileQ3 (Physics, condensed matter)en_US
dc.contributor.scopusid6602910810en_US
dc.subject.scopusPreisach Model; Magnetic Hysteresis; Hysteresis Loopsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.