Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/21118
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2021-07-06T08:57:29Z | - |
dc.date.available | 2021-07-06T08:57:29Z | - |
dc.date.issued | 2002-07 | - |
dc.identifier.citation | Özmutlu, H. C. vd. (2002). "Analysis of large data logs: an application of Poisson sampling on excite web queries". Information Processing & Management, 38(4), 473-490. | tr_TR |
dc.identifier.issn | 0306-4573 | - |
dc.identifier.uri | https://doi.org/10.1016/S0306-4573(01)00043-7 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0306457301000437 | - |
dc.identifier.uri | http://hdl.handle.net/11452/21118 | - |
dc.description.abstract | Search engines are the gateway for users to retrieve information from the Web. There is a crucial need for tools that allow effective analysis of search engine queries to provide a greater understanding of Web users' information seeking behavior. The objective of the study is to develop an effective strategy for the selection of samples from large-scale data sets. Millions of queries are submitted to Web search engines daily and new sampling techniques are required to bring these databases to a manageable size, while preserving the statistically representative characteristics or the entire data set. This paper reports results from a study using data logs from the Excite Web search engine, We use Poisson sampling to develop a sampling strategy. and show how sample sets selected by Poisson sampling statistically effectively represent the characteristics of the entire dataset. In addition, this paper discusses the use of Poisson sampling in continuous monitoring of stochastic processes, such as Web site dynamics. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computer science | en_US |
dc.subject | Information science & library science | en_US |
dc.subject | Poisson sampling | en_US |
dc.subject | Users | en_US |
dc.subject | Large-scale in depth data analysis | en_US |
dc.subject | Web user modeling | en_US |
dc.subject | Search engine queries | en_US |
dc.subject | Data mining | en_US |
dc.title | Analysis of large data logs: an application of Poisson sampling on excite web queries | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000175479100002 | tr_TR |
dc.identifier.scopus | 2-s2.0-0036643012 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi. | tr_TR |
dc.identifier.startpage | 473 | tr_TR |
dc.identifier.endpage | 490 | tr_TR |
dc.identifier.volume | 38 | tr_TR |
dc.identifier.issue | 4 | tr_TR |
dc.relation.journal | Information Processing &Management | en_US |
dc.contributor.buuauthor | Özmutlu, H. Cenk | - |
dc.contributor.buuauthor | Spink, A. | - |
dc.contributor.buuauthor | Özmutlu, Seda | - |
dc.contributor.researcherid | AAH-4480-2021 | tr_TR |
dc.contributor.researcherid | ABH-5209-2020 | tr_TR |
dc.subject.wos | Computer science | en_US |
dc.subject.wos | Information systems | en_US |
dc.subject.wos | Information science & library science | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.wos | SSCI | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | tr_TRen_US |
Appears in Collections: | Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.