
Věra Kůrková · Yannis Manolopoulos
Barbara Hammer · Lazaros Iliadis
Ilias Maglogiannis (Eds.)

 123

LN
CS

 1
11

41

27th International Conference on Artificial Neural Networks
Rhodes, Greece, October 4–7, 2018
Proceedings, Part III

Artificial Neural Networks
and Machine Learning –
ICANN 2018

Lecture Notes in Computer Science 11141

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Věra Kůrková • Yannis Manolopoulos
Barbara Hammer • Lazaros Iliadis
Ilias Maglogiannis (Eds.)

Artificial Neural Networks
and Machine Learning –

ICANN 2018
27th International Conference on Artificial Neural Networks
Rhodes, Greece, October 4–7, 2018
Proceedings, Part III

123

Editors
Věra Kůrková
Czech Academy of Sciences
Prague 8
Czech Republic

Yannis Manolopoulos
Open University of Cyprus
Latsia
Cyprus

Barbara Hammer
CITEC Bielefeld University
Bielefeld
Germany

Lazaros Iliadis
Democritus University of Thrace
Xanthi
Greece

Ilias Maglogiannis
University of Piraeus
Piraeus
Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-01423-0 ISBN 978-3-030-01424-7 (eBook)
https://doi.org/10.1007/978-3-030-01424-7

Library of Congress Control Number: 2018955577

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Technological advances in artificial intelligence (AI) are leading the rapidly changing
world of the twenty-first century. We have already passed from machine learning to
deep learning with numerous applications. The contribution of AI so far to the
improvement of our quality of life is profound. Major challenges but also risks and
threats are here. Brain-inspired computing explores, simulates, and imitates the struc-
ture and the function of the human brain, achieving high-performance modeling plus
visualization capabilities.

The International Conference on Artificial Neural Networks (ICANN) is the annual
flagship conference of the European Neural Network Society (ENNS). It features the
main tracks “Brain-Inspired Computing” and “Machine Learning Research,” with
strong cross-disciplinary interactions and applications. All research fields dealing with
neural networks are present.

The 27th ICANN was held during October 4–7, 2018, at the Aldemar Amilia Mare
five-star resort and conference center in Rhodes, Greece. The previous ICANN events
were held in Helsinki, Finland (1991), Brighton, UK (1992), Amsterdam, The
Netherlands (1993), Sorrento, Italy (1994), Paris, France (1995), Bochum, Germany
(1996), Lausanne, Switzerland (1997), Skovde, Sweden (1998), Edinburgh, UK
(1999), Como, Italy (2000), Vienna, Austria (2001), Madrid, Spain (2002), Istanbul,
Turkey (2003), Budapest, Hungary (2004), Warsaw, Poland (2005), Athens, Greece
(2006), Porto, Portugal (2007), Prague, Czech Republic (2008), Limassol, Cyprus
(2009), Thessaloniki, Greece (2010), Espoo-Helsinki, Finland (2011), Lausanne,
Switzerland (2012), Sofia, Bulgaria (2013), Hamburg, Germany (2014), Barcelona,
Spain (2016), and Alghero, Italy (2017).

Following a long-standing tradition, these Springer volumes belong to the Lecture
Notes in Computer Science Springer series. They contain the papers that were accepted
to be presented orally or as posters during the 27th ICANN conference. The 27th
ICANN Program Committee was delighted by the overwhelming response to the call
for papers. All papers went through a peer-review process by at least two and many
times by three or four independent academic referees to resolve any conflicts. In total,
360 papers were submitted to the 27th ICANN. Of these, 139 (38.3%) were accepted as
full papers for oral presentation of 20 minutes with a maximum length of 10 pages,
whereas 28 of them were accepted as short contributions to be presented orally in 15
minutes and for inclusion in the proceedings with 8 pages. Also, 41 papers (11.4%)
were accepted as full papers for poster presentation (up to 10 pages long), whereas 11
were accepted as short papers for poster presentation (maximum length of 8 pages).

The accepted papers of the 27th ICANN conference are related to the following
thematic topics:

AI and Bioinformatics
Bayesian and Echo State Networks
Brain-Inspired Computing

Chaotic Complex Models
Clustering, Mining, Exploratory Analysis
Coding Architectures
Complex Firing Patterns
Convolutional Neural Networks
Deep Learning (DL)

– DL in Real Time Systems
– DL and Big Data Analytics
– DL and Big Data
– DL and Forensics
– DL and Cybersecurity
– DL and Social Networks

Evolving Systems – Optimization
Extreme Learning Machines
From Neurons to Neuromorphism
From Sensation to Perception
From Single Neurons to Networks
Fuzzy Modeling
Hierarchical ANN
Inference and Recognition
Information and Optimization
Interacting with the Brain
Machine Learning (ML)

– ML for Bio-Medical Systems
– ML and Video-Image Processing
– ML and Forensics
– ML and Cybersecurity
– ML and Social Media
– ML in Engineering

Movement and Motion Detection
Multilayer Perceptrons and Kernel Networks
Natural Language
Object and Face Recognition
Recurrent Neural Networks and Reservoir Computing
Reinforcement Learning
Reservoir Computing
Self-Organizing Maps
Spiking Dynamics/Spiking ANN
Support Vector Machines
Swarm Intelligence and Decision-Making
Text Mining
Theoretical Neural Computation
Time Series and Forecasting
Training and Learning

VI Preface

The authors of submitted papers came from 34 different countries from all over the
globe, namely: Belgium, Brazil, Bulgaria, Canada, China, Czech Republic, Cyprus,
Egypt, Finland, France, Germany, Greece, India, Iran, Ireland, Israel, Italy, Japan,
Luxembourg, The Netherlands, Norway, Oman, Pakistan, Poland, Portugal, Romania,
Russia, Slovakia, Spain, Switzerland, Tunisia, Turkey, UK, USA.

Four keynote speakers were invited, and they gave lectures on timely aspects of AI.
We hope that these proceedings will help researchers worldwide to understand and

to be aware of timely evolutions in AI and more specifically in artificial neural net-
works. We believe that they will be of major interest for scientists over the globe and
that they will stimulate further research.

October 2018 Věra Kůrková
Yannis Manolopoulos

Barbara Hammer
Lazaros Iliadis

Ilias Maglogiannis

Preface VII

Organization

General Chairs

Věra Kůrková Czech Academy of Sciences, Czech Republic
Yannis Manolopoulos Open University of Cyprus, Cyprus

Program Co-chairs

Barbara Hammer Bielefeld University, Germany
Lazaros Iliadis Democritus University of Thrace, Greece
Ilias Maglogiannis University of Piraeus, Greece

Steering Committee

Vera Kurkova
(President of ENNS)

Czech Academy of Sciences, Czech Republic

Cesare Alippi Università della Svizzera Italiana, Switzerland
Guillem Antó i Coma Pompeu Fabra University, Barcelona, Spain
Jeremie Cabessa Université Paris 2 Panthéon-Assas, France
Wlodzislaw Duch Nicolaus Copernicus University, Poland
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Bulgaria
Jaakko Peltonen University of Tampere, Finland
Yifat Prut The Hebrew University, Israel
Bernardete Ribeiro University of Coimbra, Portugal
Stefano Rovetta University of Genoa, Italy
Igor Tetko German Research Center for Environmental Health,

Munich, Germany
Alessandro Villa University of Lausanne, Switzerland
Paco Zamora-Martínez das-Nano, Spain

Publication Chair

Antonis Papaleonidas Democritus University of Thrace, Greece

Communication Chair

Paolo Masulli Technical University of Denmark, Denmark

Program Committee

Najem Abdennour Higher Institute of Computer Science and Multimedia
(ISIMG), Gabes, Tunisia

Tetiana Aksenova Atomic Energy Commission (CEA), Grenoble, France
Zakhriya Alhassan Durham University, UK
Tayfun Alpay University of Hamburg, Germany
Ioannis Anagnostopoulos University of Thessaly, Greece
Cesar Analide University of Minho, Portugal
Annushree Bablani National Institute of Technology Goa, India
Costin Badica University of Craiova, Romania
Pablo Barros University of Hamburg, Germany
Adam Barton University of Ostrava, Czech Republic
Lluís Belanche Polytechnic University of Catalonia, Spain
Bartlomiej Beliczynski Warsaw University of Technology, Poland
Kostas Berberidis University of Patras, Greece
Ege Beyazit University of Louisiana at Lafayette, USA
Francisco Elanio Bezerra University Ninth of July, Sao Paolo, Brazil
Varun Bhatt Indian Institute of Technology, Bombay, India
Marcin Blachnik Silesian University of Technology, Poland
Sander Bohte National Research Institute for Mathematics

and Computer Science (CWI), The Netherlands
Simone Bonechi University of Siena, Italy
Farah Bouakrif University of Jijel, Algeria
Meftah Boudjelal Mascara University, Algeria
Andreas Bougiouklis National Technical University of Athens, Greece
Martin Butz University of Tübingen, Germany
Jeremie Cabessa Université Paris 2, France
Paulo Vitor Campos Souza Federal Center for Technological Education of Minas

Gerais, Brazil
Angelo Cangelosi Plymouth University, UK
Yanan Cao Chinese Academy of Sciences, China
Francisco Carvalho Federal University of Pernambuco, Brazil
Giovanna Castellano University of Bari, Italy
Jheymesson Cavalcanti University of Pernambuco, Brazil
Amit Chaulwar Technical University Ingolstadt, Germany
Sylvain Chevallier University of Versailles St. Quentin, France
Stephane Cholet University of Antilles, Guadeloupe
Mark Collier Trinity College, Ireland
Jorg Conradt Technical University of Munich, Germany
Adriana Mihaela Coroiu Babes-Bolyai University, Romania
Paulo Cortez University of Minho, Portugal
David Coufal Czech Academy of Sciences, Czech Republic
Juarez Da Silva University of Vale do Rio dos Sinos, Brazil
Vilson Luiz Dalle Mole Federal University of Technology Parana, Brazil
Debasmit Das Purdue University, USA
Bodhisattva Dash International Institute of Information Technology,

Bhubaneswar, India
Eli David Bar-Ilan University, Israel
Konstantinos Demertzis Democritus University of Thrace, Greece

X Organization

Antreas Dionysiou University of Cyprus, Cyprus
Sergey Dolenko Lomonosov Moscow State University, Russia
Xiao Dong Chinese Academy of Sciences, China
Shirin Dora University of Amsterdam, The Netherlands
Jose Dorronsoro Autonomous University of Madrid, Spain
Ziad Doughan Beirut Arab University, Lebanon
Wlodzislaw Duch Nicolaus Copernicus University, Poland
Gerrit Ecke University of Tübingen, Germany
Alexander Efitorov Lomonosov Moscow State University, Russia
Manfred Eppe University of Hamburg, Germany
Deniz Erdogmus Northeastern University, USA
Rodrigo Exterkoetter LTrace Geophysical Solutions, Florianopolis, Brazil
Yingruo Fan The University of Hong Kong, SAR China
Maurizio Fiasché Polytechnic University of Milan, Italy
Lydia Fischer Honda Research Institute Europe, Germany
Andreas Fischer University of Fribourg, Germany
Qinbing Fu University of Lincoln, UK
Ninnart Fuengfusin Kyushu Institute of Technology, Japan
Madhukar Rao G. Indian Institute of Technology, Dhanbad, India
Mauro Gaggero National Research Council, Genoa, Italy
Claudio Gallicchio University of Pisa, Italy
Shuai Gao University of Science and Technology of China, China
Artur Garcez City University of London, UK
Michael Garcia Ortiz Aldebaran Robotics, France
Angelo Genovese University of Milan, Italy
Christos Georgiadis University of Macedonia, Thessaloniki, Greece
Alexander Gepperth HAW Fulda, Germany
Peter Gergeľ Comenius University in Bratislava, Slovakia
Daniel Gibert University of Lleida, Spain
Eleonora Giunchiglia University of Genoa, Italy
Jan Philip Goepfert Bielefeld University, Germany
George Gravanis Democritus University of Thrace, Greece
Ingrid Grenet University of Côte d’Azur, France
Jiri Grim Czech Academy of Sciences, Czech Republic
Xiaodong Gu Fudan University, China
Alberto Guillén University of Granada, Spain
Tatiana Valentine Guy Czech Academy of Sciences, Czech Republic
Myrianthi

Hadjicharalambous
KIOS Research and Innovation Centre of Excellence,

Cyprus
Petr Hajek University of Pardubice, Czech Republic
Xue Han China University of Geosciences, China
Liping Han Nanjing University of Information Science

and Technology, China
Wang Haotian National University of Defense Technology, China
Kazuyuki Hara Nihon University, Japan
Ioannis Hatzilygeroudis University of Patras, Greece

Organization XI

Stefan Heinrich University of Hamburg, Germany
Tim Heinz University of Siegen, Germany
Catalina Hernandez District University of Bogota, Colombia
Alex Hernández García University of Osnabrück, Germany
Adrian Horzyk AGH University of Science and Technology

in Krakow, Poland
Wenjun Hou China Agricultural University, China
Jian Hou Bohai University, China
Haigen Hu Zhejiang University of Technology, China
Amir Hussain University of Stirling, UK
Nantia Iakovidou King’s College London, UK
Yahaya Isah Shehu Coventry University, UK
Sylvain Jaume Saint Peter’s University, Jersey City, USA
Noman Javed Namal College Mianwali, Pakistan
Maciej Jedynak University of Grenoble Alpes, France
Qinglin Jia Peking University, China
Na Jiang Beihang University, China
Wenbin Jiang Huazhong University of Science and Technology,

China
Zongze Jin Chinese Academy of Sciences, China
Jacek Kabziński Lodz University of Technology, Poland
Antonios Kalampakas American University of the Middle East, Kuwait
Jan Kalina Czech Academy of Sciences, Czech Republic
Ryotaro Kamimura Tokai University, Japan
Andreas Kanavos University of Patras, Greece
Savvas Karatsiolis University of Cyprus, Cyprus
Kostas Karatzas Aristotle University of Thessaloniki, Greece
Ioannis Karydis Ionian University, Greece
Petros Kefalas University of Sheffield, International Faculty City

College, Thessaloniki, Greece
Nadia Masood Khan University of Engineering and Technology Peshawar,

Pakistan
Gul Muhammad Khan University of Engineering and Technology, Peshawar,

Pakistan
Sophie Klecker University of Luxembourg, Luxembourg
Taisuke Kobayashi Nara Institute of Science and Technology, Japan
Mario Koeppen Kyushu Institute of Technology, Japan
Mikko Kolehmainen University of Eastern Finland, Finland
Stefanos Kollias University of Lincoln, UK
Ekaterina Komendantskaya Heriot-Watt University, UK
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Bulgaria
Irena Koprinska University of Sydney, Australia
Dimitrios Kosmopoulos University of Patras, Greece
Costas Kotropoulos Aristotle University of Thessaloniki, Greece
Athanasios Koutras TEI of Western Greece, Greece
Konstantinos Koutroumbas National Observatory of Athens, Greece

XII Organization

Giancarlo La Camera Stony Brook University, USA
Jarkko Lagus University of Helsinki, Finland
Luis Lamb Federal University of Rio Grande, Brazil
Ángel Lareo Autonomous University of Madrid, Spain
René Larisch Chemnitz University of Technology, Germany
Nikos Laskaris Aristotle University of Thessaloniki, Greece
Ivano Lauriola University of Padua, Italy
David Lenz Justus Liebig University, Giessen, Germany
Florin Leon Technical University of Iasi, Romania
Guangli Li Chinese Academy of Sciences, China
Yang Li Peking University, China
Hongyu Li Zhongan Technology, Shanghai, China
Diego Ettore Liberati National Research Council, Rome, Italy
Aristidis Likas University of Ioannina, Greece
Annika Lindh Dublin Institute of Technology, Ireland
Junyu Liu Huiying Medical Technology, China
Ji Liu Beihang University, China
Doina Logofatu Frankfurt University of Applied Sciences, Germany
Vilson Luiz Dalle Mole Federal University of Technology – Paraná (UTFPR),

Campus Toledo, Spain
Sven Magg University of Hamburg, Germany
Ilias Maglogiannis University of Piraeus, Greece
George Magoulas Birkbeck College, London, UK
Christos Makris University of Patras, Greece
Kleanthis Malialis University of Cyprus, Cyprus
Kristína Malinovská Comenius University in Bratislava, Slovakia
Konstantinos Margaritis University of Macedonia, Thessaloniki, Greece
Thomas Martinetz University of Lübeck, Germany
Gonzalo Martínez-Muñoz Autonomous University of Madrid, Spain
Boudjelal Meftah University Mustapha Stambouli, Mascara, Algeria
Stefano Melacci University of Siena, Italy
Nikolaos Mitianoudis Democritus University of Thrace, Greece
Hebatallah Mohamed Roma Tre University, Italy
Francesco Carlo Morabito Mediterranean University of Reggio Calabria, Italy
Giorgio Morales National Telecommunications Research and Training

Institute (INICTEL), Peru
Antonio Moran University of Leon, Spain
Dimitrios Moschou Aristotle University of Thessaloniki, Greece
Cristhian Motoche National Polytechnic School, Ecuador
Phivos Mylonas Ionian University, Greece
Anton Nemchenko UCLA, USA
Roman Neruda Czech Academy of Sciences, Czech Republic
Amy Nesky University of Michigan, USA
Hoang Minh Nguyen Korea Advanced Institute of Science and Technology,

South Korea
Giannis Nikolentzos Ecole Polytechnique, Palaiseau, France

Organization XIII

Dimitri Nowicki National Academy of Sciences, Ukraine
Stavros Ntalampiras University of Milan, Italy
Luca Oneto University of Genoa, Italy
Mihaela Oprea University Petroleum-Gas of Ploiesti, Romania
Sebastian Otte University of Tubingen, Germany
Jun Ou Beijing University of Technology, China
Basil Papadopoulos Democritus University of Thrace, Greece
Harris Papadopoulos Frederick University, Cyprus
Antonios Papaleonidas Democritus University of Thrace, Greece
Krzysztof Patan University of Zielona Góra, Poland
Jaakko Peltonen University of Tampere, Finland
Isidoros Perikos University of Patras, Greece
Alfredo Petrosino University of Naples Parthenope, Italy
Duc-Hong Pham Vietnam National University, Vietnam
Elias Pimenidis University of the West of England, UK
Vincenzo Piuri University of Milan, Italy
Mirko Polato University of Padua, Italy
Yifat Prut The Hebrew University, Israel
Jielin Qiu Shanghai Jiao Tong University, China
Chhavi Rana Maharshi Dayanand University, India
Marina Resta University of Genoa, Italy
Bernardete Ribeiro University of Coimbra, Portugal
Riccardo Rizzo National Research Council, Rome, Italy
Manuel Roveri Polytechnic University of Milan, Italy
Stefano Rovetta University of Genoa, Italy
Araceli Sanchis de Miguel Charles III University of Madrid, Spain
Marcello Sanguineti University of Genoa, Italy
Kyrill Schmid University of Munich, Germany
Thomas Schmid University of Leipzig, Germany
Friedhelm Schwenker Ulm University, Germany
Neslihan Serap Sengor Istanbul Technical University, Turkey
Will Serrano Imperial College London, UK
Jivitesh Sharma University of Agder, Norway
Rafet Sifa Fraunhofer IAIS, Germany
Sotir Sotirov University Prof. Dr. Asen Zlatarov, Burgas, Bulgaria
Andreas Stafylopatis National Technical University of Athens, Greece
Antonino Staiano University of Naples Parthenope, Italy
Ioannis Stephanakis Hellenic Telecommunications Organisation, Greece
Michael Stiber University of Washington Bothell, USA
Catalin Stoean University of Craiova, Romania
Rudolf Szadkowski Czech Technical University, Czech Republic
Mandar Tabib SINTEF, Norway
Kazuhiko Takahashi Doshisha University, Japan
Igor Tetko Helmholtz Center Munich, Germany
Yancho Todorov Aalto University, Espoo, Finland

XIV Organization

César Torres-Huitzil National Polytechnic Institute, Victoria, Tamaulipas,
Mexico

Athanasios Tsadiras Aristotle University of Thessaloniki, Greece
Nicolas Tsapatsoulis Cyprus University of Technology, Cyprus
George Tsekouras University of the Aegean, Greece
Matus Tuna Comenius University in Bratislava, Slovakia
Theodoros Tzouramanis University of the Aegean, Greece
Juan Camilo Vasquez Tieck FZI, Karlsruhe, Germany
Nikolaos Vassilas ATEI of Athens, Greece
Petra Vidnerová Czech Academy of Sciences, Czech Republic
Alessandro Villa University of Lausanne, Switzerland
Panagiotis Vlamos Ionian University, Greece
Thanos Voulodimos National Technical University of Athens, Greece
Roseli Wedemann Rio de Janeiro State University, Brazil
Stefan Wermter University of Hamburg, Germany
Zhihao Ye Guangdong University of Technology, China
Hujun Yin University of Manchester, UK
Francisco Zamora-Martinez Veridas Digital Authentication Solutions, Spain
Yongxiang Zhang Sun Yat-Sen University, China
Liu Zhongji Chinese Academy of Sciences, China
Rabiaa Zitouni Tunis El Manar University, Tunisia
Sarah Zouinina Université Paris 13, France

Organization XV

Keynote Talks

Cognitive Phase Transitions in the Cerebral
Cortex – John Taylor Memorial Lecture

Robert Kozma

University of Massachusetts Amherst

Abstract. Everyday subjective experience of the stream of consciousness sug-
gests continuous cognitive processing in time and smooth underlying brain
dynamics. Brain monitoring techniques with markedly improved spatio-
temporal resolution, however, show that relatively smooth periods in brain
dynamics are frequently interrupted by sudden changes and intermittent dis-
continuities, evidencing singularities. There are frequent transitions between
periods of large-scale synchronization and intermittent desynchronization at
alpha-theta rates. These observations support the hypothesis about the cinematic
model of cognitive processing, according to which higher cognition can be
viewed as multiple movies superimposed in time and space. The metastable
spatial patterns of field potentials manifest the frames, and the rapid transitions
provide the shutter from each pattern to the next. Recent experimental evidence
indicates that the observed discontinuities are not merely important aspects of
cognition; they are key attributes of intelligent behavior representing the cog-
nitive “Aha” moment of sudden insight and deep understanding in humans and
animals. The discontinuities can be characterized as phase transitions in graphs
and networks. We introduce computational models to implement these insights
in a new generation of devices with robust artificial intelligence, including
oscillatory neuromorphic memories, and self-developing autonomous robots.

On the Deep Learning Revolution
in Computer Vision

Nathan Netanyahu

Bar-Ilan University, Israel

Abstract. Computer Vision (CV) is an interdisciplinary field of Artificial
Intelligence (AI), which is concerned with the embedding of human visual
capabilities in a computerized system. The main thrust, essentially, of CV is to
generate an “intelligent” high-level description of the world for a given scene,
such that when interfaced with other thought processes can elicit, ultimately,
appropriate action. In this talk we will review several central CV tasks and
traditional approaches taken for handling these tasks for over 50 years. Noting
the limited performance of standard methods applied, we briefly survey the
evolution of artificial neural networks (ANN) during this extended period, and
focus, specifically, on the ongoing revolutionary performance of deep learning
(DL) techniques for the above CV tasks during the past few years. In particular,
we provide also an overview of our DL activities, in the context of CV, at
Bar-Ilan University. Finally, we discuss future research and development
challenges in CV in light of further employment of prospective DL innovations.

From Machine Learning to Machine
Diagnostics

Marios Polycarpou

University of Cyprus

Abstract. During the last few years, there have has been remarkable progress in
utilizing machine learning methods in several applications that benefit from
deriving useful patterns among large volumes of data. These advances have
attracted significant attention from industry due to the prospective of reducing
the cost of predicting future events and making intelligent decisions based on
data from past experiences. In this context, a key area that can benefit greatly
from the use of machine learning is the task of detecting and diagnosing
abnormal behaviour in dynamical systems, especially in safety-critical,
large-scale applications. The goal of this presentation is to provide insight into
the problem of detecting, isolating and self-correcting abnormal or faulty
behaviour in large-scale dynamical systems, to present some design method-
ologies based on machine learning and to show some illustrative examples. The
ultimate goal is to develop the foundation of the concept of machine diagnostics,
which would empower smart software algorithms to continuously monitor the
health of dynamical systems during the lifetime of their operation.

Multimodal Deep Learning in Biomedical
Image Analysis

Sotirios Tsaftaris

University of Edinburgh, UK

Abstract. Nowadays images are typically accompanied by additional informa-
tion. At the same time, for example, magnetic resonance imaging exams typi-
cally contain more than one image modality: they show the same anatomy under
different acquisition strategies revealing various pathophysiological information.
The detection of disease, segmentation of anatomy and other classical analysis
tasks, can benefit from a multimodal view to analysis that leverages shared
information across the sources yet preserves unique information. It is without
surprise that radiologists analyze data in this fashion, reviewing the exam as a
whole. Yet, when aiming to automate analysis tasks, we still treat different
image modalities in isolation and tend to ignore additional information. In this
talk, I will present recent work in learning with deep neural networks, latent
embeddings suitable for multimodal processing, and highlight opportunities and
challenges in this area.

Contents – Part III

Recurrent ANN

Policy Learning Using SPSA . 3
R. Ramamurthy, C. Bauckhage, R. Sifa, and S. Wrobel

Simple Recurrent Neural Networks for Support Vector Machine Training . . . 13
Rafet Sifa, Daniel Paurat, Daniel Trabold, and Christian Bauckhage

RNN-SURV: A Deep Recurrent Model for Survival Analysis 23
Eleonora Giunchiglia, Anton Nemchenko, and Mihaela van der Schaar

Do Capsule Networks Solve the Problem of Rotation Invariance
for Traffic Sign Classification? . 33

Jan Kronenberger and Anselm Haselhoff

Balanced and Deterministic Weight-Sharing Helps Network Performance. . . . 41
Oscar Chang and Hod Lipson

Neural Networks with Block Diagonal Inner Product Layers 51
Amy Nesky and Quentin F. Stout

Training Neural Networks Using Predictor-Corrector Gradient Descent 62
Amy Nesky and Quentin F. Stout

Investigating the Role of Astrocyte Units in a Feedforward Neural Network . . . 73
Peter Gergel’ and Igor Farkaŝ

Interactive Area Topics Extraction with Policy Gradient. 84
Jingfei Han, Wenge Rong, Fang Zhang, Yutao Zhang, Jie Tang,
and Zhang Xiong

Implementing Neural Turing Machines . 94
Mark Collier and Joeran Beel

A RNN-Based Multi-factors Model for Repeat Consumption Prediction 105
Zengwei Zheng, Yanzhen Zhou, Lin Sun, and Jianping Cai

Practical Fractional-Order Neuron Dynamics for Reservoir Computing. 116
Taisuke Kobayashi

An Unsupervised Character-Aware Neural Approach to Word
and Context Representation Learning. 126

Giuseppe Marra, Andrea Zugarini, Stefano Melacci,
and Marco Maggini

Towards End-to-End Raw Audio Music Synthesis. 137
Manfred Eppe, Tayfun Alpay, and Stefan Wermter

Real-Time Hand Prosthesis Biomimetic Movement Based on
Electromyography Sensory Signals Treatment and Sensors Fusion. 147

João Olegário de Oliveira de Souza, José Vicente Canto dos Santos,
Rodrigo Marques de Figueiredo, and Gustavo Pessin

An Exploration of Dropout with RNNs for Natural Language Inference 157
Amit Gajbhiye, Sardar Jaf, Noura Al Moubayed, A. Stephen McGough,
and Steven Bradley

Neural Model for the Visual Recognition of Animacy
and Social Interaction . 168

Mohammad Hovaidi-Ardestani, Nitin Saini, Aleix M. Martinez,
and Martin A. Giese

Attention-Based RNN Model for Joint Extraction of Intent and Word
Slot Based on a Tagging Strategy . 178

Dongjie Zhang, Zheng Fang, Yanan Cao, Yanbing Liu, Xiaojun Chen,
and Jianlong Tan

Using Regular Languages to Explore the Representational Capacity
of Recurrent Neural Architectures . 189

Abhijit Mahalunkar and John D. Kelleher

Learning Trends on the Fly in Time Series Data Using Plastic CGP
Evolved Recurrent Neural Networks . 199

Gul Mummad Khan and Durr-e-Nayab

Noise Masking Recurrent Neural Network for Respiratory
Sound Classification . 208

Kirill Kochetov, Evgeny Putin, Maksim Balashov, Andrey Filchenkov,
and Anatoly Shalyto

Lightweight Neural Programming: The GRPU . 218
Felipe Carregosa, Aline Paes, and Gerson Zaverucha

Towards More Biologically Plausible Error-Driven Learning
for Artificial Neural Networks . 228

Kristína Malinovská, Ľudovít Malinovský, and Igor Farkaš

Online Carry Mode Detection for Mobile Devices with Compact RNNs 232
Philipp Kuhlmann, Paul Sanzenbacher, and Sebastian Otte

XXIV Contents – Part III

Deep Learning

Deep CNN-ELM Hybrid Models for Fire Detection in Images 245
Jivitesh Sharma, Ole-Christopher Granmo, and Morten Goodwin

Siamese Survival Analysis with Competing Risks . 260
Anton Nemchenko, Trent Kyono, and Mihaela Van Der Schaar

A Survey on Deep Transfer Learning . 270
Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang,
and Chunfang Liu

Cloud Detection in High-Resolution Multispectral Satellite Imagery
Using Deep Learning. 280

Giorgio Morales, Samuel G. Huamán, and Joel Telles

Metric Embedding Autoencoders for Unsupervised Cross-Dataset
Transfer Learning . 289

Alexey Potapov, Sergey Rodionov, Hugo Latapie, and Enzo Fenoglio

Classification of MRI Migraine Medical Data Using 3D Convolutional
Neural Network . 300

Hwei Geok Ng, Matthias Kerzel, Jan Mehnert, Arne May,
and Stefan Wermter

Deep 3D Pose Dictionary: 3D Human Pose Estimation from Single
RGB Image Using Deep Convolutional Neural Network 310

Reda Elbasiony, Walid Gomaa, and Tetsuya Ogata

FiLayer: A Novel Fine-Grained Layer-Wise Parallelism Strategy
for Deep Neural Networks . 321

Wenbin Jiang, Yangsong Zhang, Pai Liu, Geyan Ye, and Hai Jin

DeepVol: Deep Fruit Volume Estimation . 331
Hongyu Li and Tianqi Han

Graph Matching and Pseudo-Label Guided Deep Unsupervised
Domain Adaptation . 342

Debasmit Das and C. S. George Lee

fNIRS-Based Brain–Computer Interface Using Deep Neural Networks
for Classifying the Mental State of Drivers. 353

Gauvain Huve, Kazuhiko Takahashi, and Masafumi Hashimoto

Research on Fight the Landlords’ Single Card Guessing Based
on Deep Learning . 363

Saisai Li, Shuqin Li, Meng Ding, and Kun Meng

Contents – Part III XXV

Short-Term Precipitation Prediction with Skip-Connected PredNet. 373
Ryoma Sato, Hisashi Kashima, and Takehiro Yamamoto

An End-to-End Deep Learning Architecture for Classification of Malware’s
Binary Content . 383

Daniel Gibert, Carles Mateu, and Jordi Planes

Width of Minima Reached by Stochastic Gradient Descent is Influenced
by Learning Rate to Batch Size Ratio . 392

Stanislaw Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas,
Asja Fischer, Yoshua Bengio, and Amos Storkey

Data Correction by a Generative Model with an Encoder and its
Application to Structure Design . 403

Takaya Ueda, Masataka Seo, and Ikuko Nishikawa

PMGAN: Paralleled Mix-Generator Generative Adversarial Networks
with Balance Control . 414

Xia Xiao and Sanguthevar Rajasekaran

Modular Domain-to-Domain Translation Network . 425
Savvas Karatsiolis, Christos N. Schizas, and Nicolai Petkov

OrieNet: A Regression System for Latent Fingerprint Orientation
Field Extraction . 436

Zhenshen Qu, Junyu Liu, Yang Liu, Qiuyu Guan, Chunyu Yang,
and Yuxin Zhang

Avoiding Degradation in Deep Feed-Forward Networks by Phasing
Out Skip-Connections . 447

Ricardo Pio Monti, Sina Tootoonian, and Robin Cao

A Deep Predictive Coding Network for Inferring Hierarchical Causes
Underlying Sensory Inputs . 457

Shirin Dora, Cyriel Pennartz, and Sander Bohte

Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data
Using Deep Learning Models . 468

Zakhriya Alhassan, A. Stephen McGough, Riyad Alshammari,
Tahani Daghstani, David Budgen, and Noura Al Moubayed

A Deep Learning Approach for Sentence Classification
of Scientific Abstracts . 479

Sérgio Gonçalves, Paulo Cortez, and Sérgio Moro

Weighted Multi-view Deep Neural Networks for Weather Forecasting 489
Zahra Karevan, Lynn Houthuys, and Johan A. K. Suykens

XXVI Contents – Part III

Combining Articulatory Features with End-to-End Learning
in Speech Recognition . 500

Leyuan Qu, Cornelius Weber, Egor Lakomkin, Johannes Twiefel,
and Stefan Wermter

Estimation of Air Quality Index from Seasonal Trends Using Deep
Neural Network . 511

Arjun Sharma, Anirban Mitra, Sumit Sharma, and Sudip Roy

A Deep Learning Approach to Bacterial Colony Segmentation 522
Paolo Andreini, Simone Bonechi, Monica Bianchini,
Alessandro Mecocci, and Franco Scarselli

Sparsity and Complexity of Networks Computing
Highly-Varying Functions . 534

Věra Kůrková

Deep Learning Based Vehicle Make-Model Classification 544
Burak Satar and Ahmet Emir Dirik

Detection and Recognition of Badgers Using Deep Learning 554
Emmanuel Okafor, Gerard Berendsen, Lambert Schomaker,
and Marco Wiering

SPSA for Layer-Wise Training of Deep Networks. 564
Benjamin Wulff, Jannis Schuecker, and Christian Bauckhage

Dipolar Data Aggregation in the Context of Deep Learning 574
Leon Bobrowski and Magdalena Topczewska

Video Surveillance of Highway Traffic Events by Deep
Learning Architectures . 584

Matteo Tiezzi, Stefano Melacci, Marco Maggini, and Angelo Frosini

Augmenting Image Classifiers Using Data Augmentation
Generative Adversarial Networks . 594

Antreas Antoniou, Amos Storkey, and Harrison Edwards

DeepEthnic: Multi-label Ethnic Classification from Face Images 604
Katia Huri, Eli (Omid) David, and Nathan S. Netanyahu

Handwriting-Based Gender Classification Using End-to-End Deep
Neural Networks . 613

Evyatar Illouz, Eli (Omid) David, and Nathan S. Netanyahu

A Deep Learning Approach for Sentiment Analysis in Spanish Tweets 622
Gerson Vizcarra, Antoni Mauricio, and Leonidas Mauricio

Contents – Part III XXVII

Location Dependency in Video Prediction . 630
Niloofar Azizi, Hafez Farazi, and Sven Behnke

Brain Neurocomputing Modeling

State-Space Analysis of an Ising Model Reveals Contributions of Pairwise
Interactions to Sparseness, Fluctuation, and Stimulus Coding of Monkey
V1 Neurons . 641

Jimmy Gaudreault and Hideaki Shimazaki

Sparse Coding Predicts Optic Flow Specifities of Zebrafish
Pretectal Neurons . 652

Gerrit A. Ecke, Fabian A. Mikulasch, Sebastian A. Bruijns,
Thede Witschel, Aristides B. Arrenberg, and Hanspeter A. Mallot

Brain-Machine Interface for Mechanical Ventilation
Using Respiratory-Related Evoked Potential . 662

Sylvain Chevallier, Guillaume Bao, Mayssa Hammami,
Fabienne Marlats, Louis Mayaud, Djillali Annane, Frédéric Lofaso,
and Eric Azabou

Effectively Interpreting Electroencephalogram Classification Using
the Shapley Sampling Value to Prune a Feature Tree. 672

Kazuki Tachikawa, Yuji Kawai, Jihoon Park, and Minoru Asada

EEG-Based Person Identification Using Rhythmic Brain Activity
During Sleep . 682

Athanasios Koutras and George K. Kostopoulos

An STDP Rule for the Improvement and Stabilization of the Attractor
Dynamics of the Basal Ganglia-Thalamocortical Network 693

Jérémie Cabessa and Alessandro E. P. Villa

Neuronal Asymmetries and Fokker-Planck Dynamics 703
Vitor Tocci F. de Luca, Roseli S. Wedemann, and Angel R. Plastino

Robotics/Motion Detection

Learning-While Controlling RBF-NN for Robot Dynamics Approximation
in Neuro-Inspired Control of Switched Nonlinear Systems 717

Sophie Klecker, Bassem Hichri, and Peter Plapper

A Feedback Neural Network for Small Target Motion Detection
in Cluttered Backgrounds . 728

Hongxin Wang, Jigen Peng, and Shigang Yue

XXVIII Contents – Part III

De-noise-GAN: De-noising Images to Improve RoboCup Soccer
Ball Detection. 738

Daniel Speck, Pablo Barros, and Stefan Wermter

Integrative Collision Avoidance Within RNN-Driven Many-Joint
Robot Arms . 748

Sebastian Otte, Lea Hofmaier, and Martin V. Butz

An Improved Block-Matching Algorithm Based on Chaotic Sine-Cosine
Algorithm for Motion Estimation . 759

Bodhisattva Dash and Suvendu Rup

Terrain Classification with Crawling Robot Using Long Short-Term
Memory Network . 771

Rudolf J. Szadkowski, Jan Drchal, and Jan Faigl

Mass-Spring Damper Array as a Mechanical Medium for Computation 781
Yuki Yamanaka, Takaharu Yaguchi, Kohei Nakajima,
and Helmut Hauser

Kinematic Estimation with Neural Networks for Robotic Manipulators 795
Michail Theofanidis, Saif Iftekar Sayed, Joe Cloud, James Brady,
and Fillia Makedon

Social Media

Hierarchical Attention Networks for User Profile Inference in Social
Media Systems . 805

Zhezhou Kang, Xiaoxue Li, Yanan Cao, Yanmin Shang,
Yanbing Liu, and Li Guo

A Topological k-Anonymity Model Based on Collaborative
Multi-view Clustering . 817

Sarah Zouinina, Nistor Grozavu, Younès Bennani,
Abdelouahid Lyhyaoui, and Nicoleta Rogovschi

A Credibility-Based Analysis of Information Diffusion in Social Networks. . . . 828
Sabina-Adriana Floria, Florin Leon, and Doina Logofătu

Author Index . 839

Contents – Part III XXIX

Recurrent ANN

Policy Learning Using SPSA

R. Ramamurthy1,2(B), C. Bauckhage1,2, R. Sifa1,2, and S. Wrobel1,2

1 Department of Computer Science, University of Bonn, Bonn, Germany
ramamurt@iai.uni-bonn.de

2 Fraunhofer Center for Machine Learning, Sankt Augustin, Germany

Abstract. We analyze the use of simultaneous perturbation stochastic
approximation (SPSA), a stochastic optimization technique, for solving
reinforcement learning problems. In particular, we consider settings of
partial observability and leverage the short-term memory capabilities of
echo state networks (ESNs) to learn parameterized control policies. Using
SPSA, we propose three different variants to adapt the weight matrices of
an ESN to the task at hand. Experimental results on classic control prob-
lems with both discrete and continuous action spaces reveal that ESNs
trained using SPSA approaches outperform conventional ESNs trained
using temporal difference and policy gradient methods.

Keywords: Echo state networks · Recurrent neural networks
Reinforcement learning · Stochastic optimization

1 Introduction

Creating systems that learn to solve complex tasks from interactions with
their environment is one of the primary goals of artificial intelligence research.
Recently, much progress has been made in this regard, mainly achieved through
modern reinforcement learning (RL) techniques [1,21]. Examples of recent suc-
cesses include systems which exceed human level performance in playing console-
based Atari games [12] or can navigate 3D virtual environments [11], and
AlphaGo Zero [17] became the first program to beat world class GO players
by learning from self-play only. Function approximators such as deep neural net-
works, when used with off-policy and bootstrapping methods such as Q-learning,
which used to be unstable and were referred to as a “deadly-triad” [20], have
now been proven to be a competent approach using techniques such as experience
replay [8] which stabilize learning with the help of a large replay memory.

Spurred by these successes, another line of recent research has considered
alternative approaches to RL using black-box optimization methods which do
not require back propagation of gradient computations. Corresponding contribu-
tions include systems [10,14] that are trained using so called evolution strategies
which achieve competitive performance in playing Atari games. Similar perfor-
mance was obtained in [19] where genetic algorithms were found to scale better
than evolution strategies. This revived interest in black-box methods for solving
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-030-01424-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_1&domain=pdf

4 R. Ramamurthy et al.

RL problems as these can be parallelized when using modern distributed archi-
tectures. However, most real-world systems must deal with limited and noisy
state information resulting in partial observability as encountered in partially
observable Markov decision processes (POMDPs). To learn policies under such
circumstances, systems need to have internal memory. Therefore, recurrent RL
methods to cope with partial observability have recently been investigated but
were found to be difficult to train [4].

In this paper, we focus on these kind of problems and consider RL in par-
tially observable environments. Since echo state networks [5] are known for their
simple architecture and short-term memorization capabilities, we choose them
in order to train parameterized control policies. In particular, we propose to use
simultaneous perturbation stochastic optimization (SPSA), a gradient approxi-
mation technique, as a training algorithm, which at each iteration requires only
two evaluations of objective function regardless of dimension of the parameter.
Using SPSA, we devise three types of ESN training that differ in how the weight
matrices are chosen in each iteration. Finally, we use such ESNs to learn policies
and test them against baselines on classic control problems.

Previous work on black-box methods for training echo state networks seeks
to combine genetic algorithms to train internal weights of the reservoir and
stochastic gradient descent to train the output weights [3,15]. Similar work was
done in [6] where output weights and spectral radii of internal weight matrices
were evolved. Alternatively, more recent work [16] concerning different learning
strategy focused on using hebbian learning rules to adapt reservoir matrices. An
interesting hybrid of using hebbian learning and temporal difference learning was
later proposed in [7] to adapt actor-critic ESNs. In contrast to these previous
approaches, we use SPSA to optimize the entire network weights which has
several noteworthy properties: (i) it requires only two loss measurements at each
iteration, (ii) it does not require back propagation of gradients, (iii) it does not
require any maintenance of candidate solutions as in genetic algorithms, and
(iv) it can handle stochastic returns and hence does not require averaging over
multiple measurements to account for the noisy returns.

2 Simultaneous Perturbation Stochastic Approximation

In this short section, we briefly recall the main ideas behind simultaneous pertur-
bation stochastic approximation (SPSA) for derivative free optimization; readers
familiar with this technique may safely skip ahead.

Consider the general problem of maximizing a differentiable objective func-
tion f(θ) : Rd → R, that is, consider the problem of finding θ∗ = argmaxθf(θ).

For many complex systems, the gradient ∂f/∂θ cannot be computed directly
so that ∂f/∂θ = 0 can often not be solved. It is, however, typically possible
to evaluate f(θ) at various values of θ which, in turn, allows, for computing
stochastic approximations of the gradient. One method in this regard is SPSA
due to Spall [18] which iteratively updates estimates of the optimal θ as

θk+1 = θk + lk ĝk(θk) (1)

Policy Learning Using SPSA 5

where ĝk(θk) is an estimator of the gradient at θk and lk is the learning rate in
iteration k. To estimate the gradient, two perturbations are generated, namely
(θk +ck δk) and (θk −ck δk) where δk is a perturbation vector and ck is a scaling
parameter. Then, the possibly noisy objective function F (·) = f(·) + noise is
measured at F (θk +ck δk) and F (θk −ck δk) and the gradient is estimated using
a two-sided gradient approximation

ĝk(θk) =
F (θk + ck δk) − F (θk − ck δk)

2 ck δk
. (2)

The convergence of the SPSA algorithm critically depends on the choice of
its parameters lk, ck and δk. In particular, the learning rate lk must meet the
Robbins-Monro conditions [13], namely lk > 0 and

∑∞
k=1 lk = ∞, and a common

choice in practice therefore is lk = l
(L+k)α where l, α, L > 0. Similarly, the scaling

factor ck must satisfy
∑∞

k=1

(
lk
ck

)2
< ∞ so that a good choice amounts to ck = c

kγ

where c, γ > 0. And, essentially, each element of the perturbation vector δk is
sampled from a uniform distribution over the set {−1,+1}.

3 Learning Policies Using Echo State Networks

In this section, we first briefly review policy learning under partial observability
as well as echo state networks and then introduce our approach towards policy
learning using echo state networks trained via SPSA.

3.1 Partial Observability

Consider an agent interacting with an environment. At any time t, the agent
observes the state st of the environment and performs an action at by following
a policy π(at|st) which is a mapping of state st to the probability of choosing
action a at time t. In return, the environment responds with a reward rt and
finds itself in a new state st+1.

However, in environments that are only partially observable, the agent does
not receive all relevant state information because of limited sensory inputs. In
this case, the state st does not satisfy the Markov property because it does not
summarize what has happened in the past so that an informed decision cannot
be taken. For such non-Markovian states, it is necessary to make the policy
dependent on a history of states ht = {st, st−1, . . . } rather than on the current
state st only. Hence, the policy becomes π(at|ht).

This, however, becomes impractical to compute whenever different tasks
require arbitrary lengths of histories. In situations like these, an echo state net-
work can be used to integrate the required history in its reservoir states. In this
way, we are able to parameterize the policy with weights of an echo state net-
work θ as π(at|st,θ) which takes the current state st as the input and returns
probabilities of actions by compacting the history of input states in the reservoir
memory.

6 R. Ramamurthy et al.

3.2 Echo State Networks

We next briefly recall the notion of echo state networks. These belong to reservoir
computing paradigm in which a large reservoir of recurrently interconnected
neurons processes sequential input data. In our setup, given that the state of the
environment st ∈ R

ns is given as the input to the network, the hidden states and
output of our policy network are given by ht ∈ R

nh and πt ∈ R
na , respectively.

The temporal evolution of such a network is governed by the following, non-linear
dynamical system

ht = (1 − β)ht−1 + β fh

(
W hht−1 + W sst

)
(3)

πt = fπ

(
W aht

)
(4)

where β ∈ [0, 1] is called the leaking rate and W s, W h, and W a are the input,
reservoir, and output weight matrices, respectively. The function fh(·) is under-
stood to act component-wise on its argument and is typically a sigmoidal acti-
vation function. For the output layer, however, fπ(·) is usually just a linear or
softmax function depending on the application context.

3.3 Policy Learning Using Echo State Networks

At any time, the goal of the agent is to maximize the expected cumulative reward
or the return received over a period of time which is defined as RT =

∑T
t=1 rt.

Hence, the objective function that is to be maximized is f(θ) = Eπθ

[
RT

]
and

finding an optimal policy amounts to finding θ∗ = argmaxθf(θ) where we now
write θ to denote the set of weights of an echo state network used to approximate
the policy π(at|st,θ).

According to our discussion in Sect. 2, we can then iteratively learn an opti-
mal θ according to a stochastic gradient ascent rule that follows the gradient
∇θEπθ

[
RT

]
. In particular, we can resort to SPSA in order to approximate this

gradient as

∇θEπθ

[
RT

] ≈ F (θ + ε) − F (θ − ε)
2ε

(5)

where F (·) is the stochastic return from the environment by running an episode
where, in each step, the agent follows the policy π(at|st,θ) approximated by the
ESN and where ε is the perturbation generated by SPSA. A summary of this
learning method can be found in Algorithm1.

3.4 Deterministic and Stochastic Policies

An agent’s policy can either be deterministic or stochastic. In a discrete action
space, the agent may apply a deterministic, greedy, “winner-takes-all” strategy
to select an action, i.e. at = argmaxaπ(a|st,θ). However, in order to encourage
exploration, the agent can follow a stochastic softmax policy in which actions
are sampled based on action probabilities according to the policy π(at|st,θ),
i.e. at ∼ fπ where fπ is the softmax function. In a continuous action space, the
agent’s actions are sampled from a Gaussian policy parameterized by mean and
variance neurons, that is fπ is considered a Gaussian probability distribution.

Policy Learning Using SPSA 7

Algorithm 1. Learn policies using SPSA
Input: SPSA parameters l, c, L, α, γ and initial weight θ0

for k = 0 to k max do

lk =
l

(L + k)α

ck =
c

kγ

δk ∼ U(−1, 1)
θ+ = θk + ck δk

θ− = θk − ck δk

Compute returns F (θ+) and F (θ−) by running an episode with weights θ+

and θ− respectively

ĝk(θk) =
F (θ+) − F (θ−)

2 ck δk

θk+1 = θk + lk ĝk(θk)
end

3.5 Three Variants of Echo State Network Training

Typically, in echo state networks, only the output weight matrix W a is opti-
mized. However some tasks require tuning of the input- and reservoir weights
W s and W h in order to extract relevant information from observations or to
construct missing state information. Therefore, we consider three variants of our
SPSA algorithm using different choices of θ at each iteration

1. output spsa: at each iteration, we optimize only the output weight matrix,
that is we let θ = W a

2. all spsa: at each iteration, all of the weight matrices are updated at once,
that is we let θ = {W s,W h,W a}

3. alternating spsa: at each iteration, we update one of these matrices and
alternate in the subsequent iteration.

4 Experiments and Results

We evaluated the above SPSA variants on a benchmark of classic control prob-
lems available from OpenAI Gym [2] and compared them against temporal dif-
ference and policy gradient learning methods.

4.1 Acrobot and Mountain Car

We considered two classic problems, namely Mountain Car and Acrobot, and
considered discrete and continuous action selection. For both problems, we
restrict state observations to include only positional information excluding veloc-
ities so that the agent has to infer velocity information in order to retrieve the
full state information. An illustration of these OpenAI Gym problems and their
state-action spaces is given in Fig. 1.

8 R. Ramamurthy et al.

State and Action space

Acrobot
State: cosine and sine of two joint angles
Action: the action is either applying +1, 0
or -1 torque on the joint between two links

Mountain Car
State: 1-dimensional position of a car
Action: for the discrete version, the action is
either push left, no push and push right; for
the continuous version, the action is a scalar
force

(a)

(b)

(c)

Fig. 1. Test environments: (a) description of observation and action space for the
acrobot and mountain car tasks; (b), (c) task illustration from OpenAI Gym.

4.2 Implementation Details

We used the same architecture of echo state networks consisting of 40 reservoir
neurons with tanh activation functions for our SPSA variants and their RL
baselines. The number of input- and output neurons, and the output activation
function are chosen depending on the task and the type of policy being learned.
The weight matrices are initialized according to parameters such as sparsity,
scaling and spectral radius which are carefully set as per the guidelines in [9].
The input and reservoir matrices are chosen from a uniform distribution over
values [−0.5, 0.5]. However, the output scaling is chosen differently for each task.
The initial spectral radius of the reservoir matrix and the leaking rate are chosen
to be 1.0 and 0.3, respectively, for all tasks. The SPSA parameters such as
learning rate, scaling factor, decay rates and similarly, parameters concerning
reinforcement learning methods such as discount factor and learning rates are
tuned for each experiment. Table 1 lists all hyper parameters and their values.

4.3 Results

First, we tested our algorithms to train deterministic greedy policies for the
discrete versions of the acrobot and mountain car tasks and found that SPSA
variants are able to solve both these tasks. In a quantitative evaluation, we
computed mean learning curves with 10 different random seeds and compared
them to similar curves obtained using echo state networks trained with temporal
difference methods such as Q-learning and SARSA learning using stochastic
gradient descent. Figures 2(a) and (b) show the learning curves in terms of the
evolution of episodic total reward in the learning process (the higher the better).
As we can observe, all SPSA variants find better policies than Q-learning or
SARSA learning.

Policy Learning Using SPSA 9

Table 1. Hyperparameters and their values for different experiments.

Category Parameter Deterministic Stochastic

Acrobot (discrete) Mountain car

(discrete)

Acrobot

(discrete)

Mountain car

(continuous)

SPSA Learning rate (l) 1e−6 1e−3 5e−5 5e−3

Scaling factor (c) 1e−1 1e−1 1e−1 1e−1

L 10 100 10 100

α 0.102 0.602 0.102 0.602

γ 0.101 0.101 0.101 0.101

ESN Reservoir size 40 40 40 40

Input connectivity 0.7 0.3 0.3 0.7

Reservoir connectivity 0.7 0.3 0.7 0.7

Output scaling 0.1 0.1 1e−5 1e−2

Spectral radius 1.0 1.0 1.0 1.0

Leaking rate 0.3 0.3 0.3 0.3

RL Discount factor 0.99 1.0 0.99 0.99

Learning rate 1e−2 1e−2 1e−3 1e−3

Next, we tested our algorithms to learn stochastic policies for a discrete ver-
sion of the acrobot- and a continuous version of the mountain car task. We found
that the SPSA variants are able to solve these by finding a softmax policy and
a Gaussian policy for acrobot and mountain car, respectively. In a quantitative
evaluation, we again computed mean learning curves with 10 different random
seeds and compared them to data obtained using actor-critic methods. In the
actor-critic method, two echo state networks are used, one to learn the policy
(policy network) and one to learn the state value function (value network), both
act with limited state information as in our SPSA variants. Figures 2(c) and
(d) show the learning curves and it is seen that SPSA variants perform better
than actor-critic methods. Next, in order to visualize the learned Gaussian pol-
icy for the mountain car task, we plotted action probabilities for selected input
states. As we can see in Fig. 3(b), for the same input states, the resulting action
probability distribution is a mixture of Gaussians, meaning that the actions are
sampled from appropriate mixture components based on the hidden states of
the network which constructs the missing velocity information.

Our most important evaluation results are summarized in Fig. 3(a) which
shows average episodic total rewards in the last 100 iterations with 10 different
random seeds. Here we observe: (i) training only the output weight matrix using
SPSA yields better performance than its RL counterparts in all the experiments
which indicate that SPSA is a powerful alternative to common RL methods;
(ii) updating all the weight matrices at once gives the best performance in all
tasks; however, training in an alternating fashion also seems to be a promising
approach which warrants for further investigation; (iii) for the acrobot tasks,
it is evident that SPSA works better in learning a deterministic policy than
a stochastic policy. The reason could be that it is not necessary to also intro-
duce stochasticity into action space since the exploration happens already in

10 R. Ramamurthy et al.

(a) deterministic (b) stochastic

(c) deterministic (d) stochastic

Fig. 2. Learning curves: (a), (c) evolution of episodic total reward in learning deter-
ministic policies for discrete versions of acrobot and mountain car. (b), (d) evolution of
episodic total reward in learning of a softmax and Gaussian policy for discrete acrobot
and continuous mountain car problems tasks, respectively. It is evident that SPSA
variants perform better than RL methods

variants
deterministic stochastic

Acrobot Mountain Car Acrobot Mountain Car
(discrete) (discrete) (discrete) (continuous)

all spsa -105.56 -121.61 -121.83 85.34
alternating spsa -110.07 -124.70 -131.01 80.41

output spsa -109.16 -144.88 -141.25 80.24
output q -123.72 -150.69 - -

output sarsa -132.28 -163.94 - -
actor critic - - -193.95 72.64

(a) (b)

Fig. 3. Performance summary: (a) evaluation results containing average episodic total
reward in the last 100 iterations of policy learning on classic problems for different
variants and their baselines (the higher the value, the better the performance) (b)
visualization of a Gaussian policy learned for the mountain car task.

Policy Learning Using SPSA 11

parameter space in terms of perturbations. This concurs with the work done in
[14] whose authors also seek to learn a deterministic policy when using black-
box methods. Nevertheless, our approach demonstrates the general feasibility of
learning both deterministic- and stochastic policies.

5 Conclusion

In this paper, we considered the use of SPSA in training echo state networks
to solve action selection tasks under partial observability. We proposed three
variants that seek to perform gradient updates without using back-propagation.
Experiments on classic problems indicate that SPSA is a powerful alternative
to reinforcement learning methods commonly used for policy learning. In future
work, we intend to extend the ideas reported here using LSTM units to solve
more complex RL problems that require long-term dependencies. We also plan
to examine the alternating SPSA variant further to verify their applicability in
training deep recurrent neural networks.

References

1. Bertsekas, D.P.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)
2. Brockman, G., et al.: OpenAI Gym. arXiv:1606.01540 (2016)
3. Chatzidimitriou, K.C., Mitkas, P.A.: A NEAT way for evolving echo state networks.

In: Proceedings of European Conference on Artificial Intelligence (2010)
4. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep

reinforcement learning for continuous control. In: Proceedings of International Con-
ference on Machine Learning (2016)

5. Jäger, H.: The “echo state” approach to analysing and training recurrent neural
networks. Technical report 148, GMD (2001)

6. Jiang, F., Berry, H., Schoenauer, M.: Supervised and evolutionary learning of echo
state networks. In: Proceedings of International Conference on Parallel Problem
Solving from Nature (2008)

7. Koprinkova-Hristova, P.: Three approaches to train echo state network actors of
adaptive critic design. In: Proceeding of International Conference on Artificial Neu-
ral Networks (2016)

8. Lin, L.J.: Reinforcement learning for robots using neural networks. Technical
reports CMU-CS-93-103, Carnegie-Mellon University (1993)

9. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon,
G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS,
vol. 7700, pp. 659–686. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35289-8 36

10. Mania, H., Guy, A., Recht, B.: Simple random search provides a competitive app-
roach to reinforcement learning. arXiv:1803.07055 (2018)

11. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Pro-
ceedings of International Conference on Machine Learning (2016)

12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
http://arxiv.org/abs/1803.07055

12 R. Ramamurthy et al.

13. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat.
22(3), 400–407 (1951)

14. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable
alternative to reinforcement learning. arXiv:1703.03864 (2017)

15. Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent net-
works by Evolino. Neural Comput. 19(3), 757–779 (2007)

16. Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J., Stroobandt, D.:
Improving reservoirs using intrinsic plasticity. Neurocomputing 71(7–9), 1159–1171
(2008)

17. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550(7676), 354 (2017)

18. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturba-
tion gradient approximation. IEEE Trans. Autom. Control. 37(3), 332–341 (1992)

19. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv:1712.06567 (2017)

20. Sutton, R.: Introduction to reinforcement learning with function approximation.
In: Tutorial at the Conference on Neural Information Processing Systems (2015)

21. Sutton, R.S., Barto, A.G., et al.: Reinforcement Learning: An Introduction. MIT
Press, Cambridge (1998)

http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1712.06567

Simple Recurrent Neural Networks
for Support Vector Machine Training

Rafet Sifa1,2,3(B), Daniel Paurat1,2, Daniel Trabold1,2,
and Christian Bauckhage1,2,3

1 Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
2 Fraunhofer IAIS, Sankt Augustin, Germany

{rafet.sifa,daniel.paurat,daniel.trabold,
christian.bauckhage}@iais.fraunhofer.de
3 B-IT, University of Bonn, Bonn, Germany

Abstract. We show how to implement a simple procedure for support
vector machine training as a recurrent neural network. Invoking the fact
that support vector machines can be trained using Frank-Wolfe opti-
mization which in turn can be seen as a form of reservoir computing,
we obtain a model that is of simpler structure and can be implemented
more easily than those proposed in previous contributions.

1 Introduction

Support vector machines can be seen as neural networks with a single hidden
layer (see Fig. 1). Since this insight is not new but dates back to work by Cortes
and Vapnik [6], it seems odd that the literature on neurocomputing approaches
towards SVM training is rather scarce [1,7,11,13,16–18]. Moreover, while these
contributions show that SVMs can be trained using recurrent neural networks,
they are mainly concerned with continuous dynamical systems and, curiously,
how to implement those in electronic circuits.

In this paper, we propose to train support vector machines by means of
much simpler, time-discrete recurrent neural networks. We base our arguments
on recent work in [2] where it was shown that recurrent neural networks can
implement the Frank-Wolfe algorithm [8] for constrained convex optimization.
That is, we show how the Frank-Wolfe algorithm allows for SVM training and
how this approach can be interpreted in terms of neural reservoir computation.
For mathematical convenience, we focus on L2 support vector machines [12];
not because our approach would not work for classical SVMs, but because the
equations for the dual problem of L2 SVM training are particularly easy to work
with.

We begin our presentation with a brief review of L2 support vector machines
for binary classification; in particular, we point out differences between L2- and
classical L1 SVMs and clarify to what extent SVMs can be understood as neu-
ral networks. We then show how the Frank-Wolfe algorithm can train SVMs

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 13–22, 2018.
https://doi.org/10.1007/978-3-030-01424-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_2&domain=pdf

14 R. Sifa et al.

and how this process can be implemented by means of recurrent neural net-
works. We present and discuss didactic practical examples to illustrate this idea
and conclude with a discussion of implications and suggestions for practical
implementations.

2 L2 Support Vector Machines

Next, we briefly review the idea of L2 support vector machines for binary clas-
sification. The likely unfamiliar matrix-vector notation we introduce in passing
is intended to simplify our subsequent discussion.

Consider a set of labeled training data {(xi, yi)}n
i=1 where the data xi ∈ R

m

have been sampled from two distinct classes and the labels yi ∈ {−1,+1} indicate
class membership. Training a linear L2 support vector classifier

y(x) = sign
(
xᵀw − θ

)
(1)

is to determine suitable parameters w and θ. In its primal form, this problem
consists in solving

argmin
w , θ,ξ

wᵀw + θ2 − ρ + C
n∑

i=1

ξ2i

s.t. yi

(
wᵀxi − θ

) ≥ ρ − ξi

(2)

and we note that, contrary to classical L1 SVMs [6], the slack variables ξi enter
the objective in squared form. While this may improve generalization [12,15] our
interest in L2 SVMs mainly stems from the fact that their Lagrangian duals are
easy to work with.

Introducing a data matrix X = [x1, . . . ,xn], a label vector y = [y1, . . . , yn]ᵀ,
and three n × n matrices

Y = diag(y) (3)
Z = Y ᵀXᵀXY ⇔ Zij = yi xᵀ

i xj yj , (4)

M = Z + yyᵀ + 1
C I (5)

it is straightforward to see [3] that—when written as a minimization problem—
the dual problem to the one in (2) consists in solving

argmin
α

αᵀM α

s.t.
1ᵀα = 1

α ≥ 0

(6)

where α = [α1, . . . , αn]ᵀ is a vector of Lagrange multipliers. Once (6) has been
solved, those elements αs of α that exceed zero identify the support vectors in
X and thus allow for computing both parameters of the support vector machine

w =
∑

αs>0

αs ys xs = XY α (7)

Simple Recurrent Neural Networks for SVM Training 15

x1 x2 . . . xm

φ1 φ2 φ3 . . . φn

y

β1 β2 β3 βn

Fig. 1. Support vector machines are specific basis function networks. For an input
vector x ∈ R

m, they compute y(x) = sign
(∑n

i=1 βi φi(x)
)
using basis functions φi(x) =

k(x, xi)+1 where k(x, xi) is a linear or non-linear kernel function. In either case, the xi

denote training data and the weight vector β = Y α results from training the machine
on this data.

θ = −
∑

αs>0

αs ys = −1ᵀY α. (8)

Plugging these training results into (1) provides a classifier which, written in
the matrix-vector notation introduced above, reads

y(x) = sign
(
xᵀXY α + 1ᵀY α

)
= sign

((
xᵀX + 1ᵀ)

Y α
)
. (9)

Introducing the shorthand β = Y α, we can think of this classifier as a basis
function network [4]. In other words, writing (9) as

y(x) = sign

(
n∑

i=1

βi φi(x)

)

(10)

we recognize it as an instance of the neural architecture in Fig. 1 where the basis
functions in the hidden layer in our case are given by φi(x) = xᵀxi + 1.

We further observe that, during training and application of this machine,
i.e. in the expressions Z = Y ᵀXᵀXY and xᵀw = xᵀXY α, all (training) data
vectors occur in form of inner products. This of course allows for invoking the
kernel trick where inner products are replaced by kernel evaluations so that the
approach becomes applicable to non-linear settings.

In other words, given an appropriate Mercer kernel k : Rm × R
m → R, a

non-linear L2 support vector classifier can be trained by letting Z = Y ᵀKY

16 R. Sifa et al.

Algorithm 1. Frank-Wolfe algorithm for iteratively solving (6)
guess an initial, feasible point α0 ∈ Δn−1, for instance, α0 = 1

n
1

for t = 0, . . . , tmax do
determine

st = argmin
s∈Δn−1

sᵀ∇f(αt)

= argmin
s∈Δn−1

sᵀMαt

update the learning rate

ηt =
2

t+2

update the current estimate

αt+1 = αt + ηt (st − αt)

where Kij = k(xi,xj) and the trained classifier becomes

y(x) = sign

(
∑

αs>0

k(x,xs) ys αs − θ

)

= sign
(
kᵀ(x)Y α + 1ᵀY α

)
(11)

= sign
((

kᵀ(x) + 1ᵀ)
Y α

)
(12)

where ki(x) = k(x,xi). Using β = Y α and φi(x) = k(x,xi) + 1, this classifier,
too, can be expressed as in (10) and therefore is nothing but another instance
of the neural network shown in Fig. 1.

Finally, we note that a linear SVM is a kernel SVM where K = XᵀX and
k(x) = Xᵀx. Henceforth, we will thus drop this distinction and only discuss the
kernel case.

3 Frank-Wolfe Training of Support Vector Machines

One of the favorable properties of L2 support vector machines is that the dual
training problem in (6) is of comparatively simple nature.

Just as in the case of L1 SVMs, the minimization objective f(α) = αᵀM α is
a quadratic form. However, in contrast to L1 SVMs, the two constraints 1ᵀα = 1
and α ≥ 0 constitute a simplicial - rather than a box constraint. That is, the
feasible set of the L2 SVM training problem in (6) is the standard simplex

Δn−1 =
{
α ∈ R

n
∣
∣ 1ᵀα = 1 ∧ α ≥ 0

}
. (13)

In other words, we are dealing with a quadratic minimization problem over an
arguably simple compact convex set.

The Frank-Wolfe algorithm shown in Algorithm1 is an efficient iterative
solver for this kind of problems. Given an initial feasible guess αt=0 = 1

n1

Simple Recurrent Neural Networks for SVM Training 17

for the solution, the basic idea in our setting is to determine the st ∈ Δn−1

that minimizes sᵀ∇f(αt) and to apply conditional gradient updates αt+1 =
αt + ηt (st − αt) where the learning rate ηt ∈ [0, 1] decreases over time. This
guarantees that updates will not leave the feasible set and the efficiency of the
algorithm stems from the fact that it turns a quadratic optimization problem
into a series of simple linear optimization problems. Moreover, one can show that
after t iterations the current estimate αt is O(1/t) from the optimal solution [5]
which provides a convenient criterion for choosing the number tmax of iterations
to be performed. For further details on the Frank-Wolfe algorithm, its properties
and applications, we refer to [10] and [14].

4 Neural Training of Support Vector Machines

For the gradient of the objective function in (6), we simply have ∇f(α) = 2Mα
so that each iteration of the Frank-Wolfe algorithm has to compute

st = argmin
s∈Δn−1

sᵀM αt (14)

where we dropped the factor 2 as it exerts no influence on the outcome of argmin.
Clearly, the expression on the right of (14) is linear in s and needs to be

minimized over a compact convex set. Since the minima of a linear function over
a compact convex sets are necessarily attained at a vertex of that set, st on the
left of (14) must coincide with a vertex of Δn−1. Hence, as the vertices of the
standard simplex in R

n correspond to the standard basis vectors ej ∈ R
n, we

can rewrite (14) as

st = argmin
ej

eᵀ
j M αt (15)

≈ σ
(
M αt

)
. (16)

Here, the non-linear, vector-valued function σ(z) introduced in (16) denotes the
softmin operator whose components are given by

σ(z)i =
e−βzi

∑
j e−βzj

(17)

and we note that
lim

β→∞
σ(z) = ei = argmin

ej

eᵀ
j z. (18)

Given the relaxed optimization step in (16), we can rewrite the Frank-Wolfe
updates for our problem as

αt+1 = αt + ηt

(
st − αt

)
(19)

= (1 − ηt)αt + ηt st (20)

≈ (1 − ηt)αt + ηt σ
(
M αt

)
. (21)

18 R. Sifa et al.

But this is then to say that—by choosing an appropriate parameter β for the
softmin function—the following non-linear dynamical system

αt+1 = (1 − ηt)αt + ηt σ
((

Y ᵀKY + yyᵀ + 1
C I

)
αt

)
(22)

βt = Y αt (23)

mimics the Frank-Wolfe algorithm up to arbitrary precision and can therefore
accomplish support vector machine training.

The equivalence of the Frank-Wolfe algorithm for SVM training and the non-
linear dynamical system in (22), (23) is the main result of this paper. From the
point of view of neural network research, the system in (22), (23) is of interest
because it is structurally equivalent to the governing equations of the simple
recurrent architectures considered in the area of reservoir computing [9]. In other
words, we can think of this system in terms of a reservoir of n neurons whose
synaptic connections are encoded in the matrix Y ᵀKY +yyᵀ + 1

C I. The system
evolves without inputs, its output weights are given by Y , and the learning rate
ηt assumes the role of the leaking rate of the reservoir. At each time t, the next
internal state αt+1 of the network is a convex combination of the current state
and a nonlinear transformation of the synaptically weighted current state. Since
ηt decays towards zero, states will stabilize and the output is guaranteed to
approach a fixed point α∗ = limt→∞ αt.

What is further worth noting about the system in (22), (23) is that the
weight matrices Y ᵀKY +yyᵀ + 1

C I, and Y depend on the training data for the
problem under consideration. From the point of view of a learning system, they
could thus be interpreted as a form of short term memory. At the beginning of a
learning episode, data is loaded into this memory and used to determine crucial
properties (support vectors) of the problem at hand. At the end of a learning
episode, only those data points and labels required for decision making, i.e. those
xs and ys for which αs > 0, need to be persisted in a long term memory to be
able to compute the decision function in (11). In order for this memorization to
be efficient it would thus be desirable if α was sparse because then only a few
basis functions φi and weights βi could solve the problem satisfactory.

5 Practical Examples

In this section, we consider several examples to investigate the behavior of the
system in (22), (23) for training support vector machines. Note that, in order for
these examples to be intuitive and interpretable, they are deliberately simple.

Figure 2 shows three training sets of 200 two-dimensional data points each. It
also visualizes how a support vector machine with a Gaussian kernel solves the
corresponding classification problem after having been trained using the Frank-
Wolfe algorithm or, equivalently, the system in (22), (23) if the parameter of the
softmin activation function of the reservoir neurons is set to β = ∞.

Figures 3 and 4 illustrate intermediate steps in learning such decision func-
tions. Here, we considered a polynomial kernel and a Gaussian kernel and also

Simple Recurrent Neural Networks for SVM Training 19

replaced the sign function in the output of the classifier by tanh so as to see
more clearly, how class regions and margins evolve over time. What is noticeable
is that, in either case, the simple recurrent neural network model discussed in
this paper is able to train robust classifiers in only moderately many, i.e 100,
iterations.

(a) xor (b) nested circles (c) two moons

Fig. 2. Didactic data sets and support vector classifiers using Gaussian kernels.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4

(f) t = 10 (g) t = 25 (h) t = 50 (i) t = 75 (j) t = 100

Fig. 3. Evolution of a support vector classifier over 100 iterations of the system in (22),

(23) using a 5th-degree polynomial kernel k(x, xi) =
(
xᵀxi + 1

)5
.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4

(f) t = 10 (g) t = 25 (h) t = 50 (i) t = 75 (j) t = 100

Fig. 4. Evolution of a support vector classifier over 100 iterations of the system in (22),
(23) using a Gaussian kernel k(x, xi) = exp

(− 1
2σ2 ‖x − xi‖2

)
where σ = 1/2.

20 R. Sifa et al.

A natural question to ask is then: how sensitive is neural SVM training to
different choices of the parameter β of the reservoir activation function? To
investigate this, we randomly created 1000 different training sets for the xor,
nested circles, and two moons problems, used the system in (22), (23) to train
SVMs with polynomial and Gaussian kernels, and plotted the average training
error (measured in terms of 0–1 loss) over 100 training iterations. Somewhat
surprisingly, we observe in Fig. 5 that the choice of β does not impact the capa-
bilities of the corresponding networks to quickly reduce the training error. Again
somewhat surprisingly, the figure also shows that networks with the theoretically
optimal choice of β = ∞ need more time to converge to a good solution.

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
er
ro
r

β = 10.0
β = 100.0

β = 1000.0
β = inf

(a) xor, polynomial kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
er
ro
r

β = 10.0
β = 100.0

β = 1000.0
β = inf

(b) xor, Gaussian kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
er
ro
r

β = 10.0
β = 100.0

β = 1000.0
β = inf

(c) nested circles, polynomial kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
er
ro
r

β = 10.0
β = 100.0

β = 1000.0
β = inf

(d) nested circles, Gaussian kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
er
ro
r

β = 10.0
β = 100.0

β = 1000.0
β = inf

(e) moons, polynomial kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
er
ro
r

β = 10.0
β = 100.0

β = 1000.0
β = inf

(f) moons, Gaussian kernel

Fig. 5. Evolution of average training errors over 100 iterations of the system in (22),
(23). Regardless of the choice of softmin activation parameter β, training errors decrease
quickly.

However, Fig. 6 indicates that the quick learning behavior for parameters
β
 ∞ comes at a price. Here we plot the average number of support vectors
(in percentage of all training data) identified in each iteration of the training
process. What is noticeable is that running the recurrent network in (22), (23)
using larger values of β yields sparser solutions and letting β = ∞ yields much
sparser solutions and thus more efficient classifiers.

All in all, these experiments illustrate that the simple dynamical system in
(22), (23) or, equivalently, rather simple recurrent neural network models known

Simple Recurrent Neural Networks for SVM Training 21

from reservoir computing can train SVMs. This appears to be independent of
the choice of kernel function but care needs to be exercised when choosing the
activation function of the neuron in the reservoir.

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
SV

s

β = 10.0
β = 100.0

β = 1000.0
β = inf

(a) xor, polynomial kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
SV

s

β = 10.0
β = 100.0

β = 1000.0
β = inf

(b) xor, Gaussian kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
SV

s

β = 10.0
β = 100.0

β = 1000.0
β = inf

(c) nested circles, polynomial kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
SV

s

β = 10.0
β = 100.0

β = 1000.0
β = inf

(d) nested circles, Gaussian kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
SV

s

β = 10.0
β = 100.0

β = 1000.0
β = inf

(e) moons, polynomial kernel

0 20 40 60 80 100

t

0.00

0.25

0.50

0.75

1.00

%
SV

s

β = 10.0
β = 100.0

β = 1000.0
β = inf

(f) moons, Gaussian kernel

Fig. 6. Evolution of the average number (percentage of training data) of support vec-
tors identified in 100 iterations of the system in (22), (23).

6 Conclusion

Building on work in [2], we considered Frank-Wolfe optimization for the task of
training support vector machines and showed how to interpret this as a form
of reservoir computing. In other words, we showed that a recurrent reservoir of
neurons governed by simple dynamics can identify support vectors.

Since support vector machines themselves are basis function networks, our
results underline that both training and running an SVM are forms of neur-
computing. Moreover, the mechanism discussed in this paper is interpretable in
terms of short- and long-term memory processes. At the beginning of a learning
episode, data is encoded in the weights of a neural architecture for training; upon
convergence of a learning episode, crucial information is persisted in the basis
functions and weights of a neural architecture for classification.

With respect to practical application, we note that our experimental results
were obtained from direct implementations of the matrix-vector equations and

22 R. Sifa et al.

softmin activations discussed throughout the text. However, we mainly used this
notation because it seamlessly reveals that to train an SVM is to run a dynamical
system. For real world applications, training will be more efficient when using
(15) rather than (16). Likewise, implementations of the resulting classifier should
use the equation in the middle of (11) rather than Eq. (12).

References

1. Anguita, D., Boni, A.: Improved neural network for SVM learning. IEEE Trans.
Neural Netw. 13(2), 1243–1244 (2002)

2. Bauckhage, C.: A neural network implementation of Frank-Wolfe optimization. In:
Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds.) ICANN 2017. LNCS, vol.
10613, pp. 219–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68600-4 26

3. Bauckhage, C.: The dual problem of L2 SVM training. Technical report, Research-
Gate (2018)

4. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

5. Clarkson, K.: Coresets, sparse greedy approximation, and the Frank-Wolfe algo-
rithm. ACM Trans. Algorithms 6(4), 63:1–63:30 (2010)

6. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297
(1995)

7. Duch, W.: Support vector neural training. In: Duch, W., Kacprzyk, J., Oja, E.,
Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 67–72. Springer, Heidelberg
(2005). https://doi.org/10.1007/11550907 11

8. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist.
Q. 3(1–2), 95–110 (1956)

9. Jäger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving
energy in wireless communication. Science 304(5667), 78–80 (2004)

10. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. J.
Mach. Learn. Res. 28(1), 427–435 (2013)

11. Jändel, M.: Biologically relevant neural network architectures for support vector
machines. Neural Netw. 49, 39–50 (2014)

12. Koshiba, Y., Abe, S.: Comparison of L1 and L2 support vector machines. In: Pro-
ceedings IJCNN (2003)

13. Perfetti, R., Ricci, E.: Analogue neural network for support vector machine learn-
ing. IEEE Trans. Neural Netw. 17(4), 1085–1091 (2006)

14. Sifa, R.: An overview of Frank-Wolfe optimization for stochasticity constrained
interpretable matrix and tensor factorization. In: ICANN 2018 (2018)

15. Tang, Y.: Deep Learning using Linear Support Vector Machines. arXiv:1306.0239
[cs.LG] (2013)

16. Vincent, P., Bengio, Y.: A neural support vector network architecture with adaptive
kernels. In: Proceedings IJCNN (2000)

17. Xia, Y.: A new neural network for solving linear and quadratic programming prob-
lems. IEEE Trans. Neural Netw. 7(6), 1544–1547 (1996)

18. Yang, Y., He, Q., Hu, X.: A compact neural network for training support vector
machines. Neurocomputing 86, 193–198 (2012)

https://doi.org/10.1007/978-3-319-68600-4_26
https://doi.org/10.1007/978-3-319-68600-4_26
https://doi.org/10.1007/11550907_11
http://arxiv.org/abs/1306.0239

RNN-SURV: A Deep Recurrent Model
for Survival Analysis

Eleonora Giunchiglia1(B), Anton Nemchenko2, and Mihaela van der Schaar2,3,4

1 DIBRIS, Università di Genova, Genova, Italy
eleonora.giunchiglia@icloud.com

2 Department of Electrical and Computer Engineering, UCLA, Los Angeles, USA
3 Department of Engineering Science, University of Oxford, Oxford, UK

4 Alan Turing Institute, London, UK

Abstract. Current medical practice is driven by clinical guidelines
which are designed for the “average” patient. Deep learning is enabling
medicine to become personalized to the patient at hand. In this paper we
present a new recurrent neural network model for personalized survival
analysis called rnn-surv. Our model is able to exploit censored data to
compute both the risk score and the survival function of each patient.
At each time step, the network takes as input the features characterizing
the patient and the identifier of the time step, creates an embedding,
and outputs the value of the survival function in that time step. Finally,
the values of the survival function are linearly combined to compute
the unique risk score. Thanks to the model structure and the training
designed to exploit two loss functions, our model gets better concordance
index (C-index) than the state of the art approaches.

1 Introduction

Healthcare is moving from a population-based model, in which the decision mak-
ing process is targeted to the “average” patient, to an individual-based model,
in which each diagnosis is based on the features characterizing the given patient.
This process has been boosted by the recent developments in the Deep Learning
field, which has been proven to not only get impressive results in its traditional
areas, but also to perform very well in medical tasks.

In particular, in the medical field, the study of the time-to-event, i.e., the
expected duration of time until one or more events happen, such as death or
recurrence of a disease, is of vital importance. Nevertheless, it is often made more
complicated by the presence of censored data, i.e., data in which the information
about the time-to-event is incomplete, as it happens, e.g., when a patient drops
a clinical trial. Traditionally, these issues are tackled in a field called Survival
Analysis, a branch of statistics in which special models have been proposed
to predict the time-to-event exploiting censored data, while only a few deep
learning approaches have such an ability (e.g., [13,28]). About the latter, it is
interesting to note that most of the encountered deep learning approaches are
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 23–32, 2018.
https://doi.org/10.1007/978-3-030-01424-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_3&domain=pdf

24 E. Giunchiglia et al.

based on feedforward neural networks and, at least so far, there does not seem to
exist published results deploying recurrent neural networks despite the sequential
nature of the problem.

In this paper we present a new recurrent neural network model handling
censored data and computing, for each patient, both a survival function and
a unique risk score. The survival function is computed by considering a series
of binary classifications problems each leading to the estimation of the survival
probability in a given interval of time, while the risk score is obtained through
the linear combination of the estimates. rnn-surv three main features are:

1. its ability to model the possible time-variant effects of the covariates,
2. its ability to model the fact that the survival probability estimate at time t

is function of each survival probability estimate at t′ : t′ < t, and
3. its ability to compute a highly interpretable risk score.

The first two are given by the recurrent structure, while the last is given by the
linear combination of the estimates.

rnn-surv is tested on three small publicly available datasets and on two
large heart transplantation datasets. On these datasets rnn-surv performs sig-
nificantly better than the state of the art models, always resulting in a higher
C-index than the state of the art models (up to 28.4%). We further show that
if we simplify the model we always get worse performances, hence showing the
significance of rnn-surv different features.

This paper is structured as follows. We start with the analysis of the related
work (Sect. 2), followed by the background about Survival Analysis (Sect. 3).
Then, we present of our model (Sect. 4), followed by the experimental analysis
(Sect. 5), and finally the conclusions (Sect. 6).

2 Related Work

The problem of survival analysis has attracted the attention of many machine
learning scientists, giving birth to models such as random survival forest [11],
dependent logistic regressors [26], multi-task learning model for survival anal-
ysis [17], semi-proportional hazard model [27] and support vector regressor for
censored data [21], all of which not based on neural networks.

Considering the works that have been done in the field of Survival Analysis
using Deep Learning techniques, these can be divided in three main subcate-
gories, that stemmed from just as many seminal papers:

(1) Faraggi and Simon [7] generalized Cox Proportional Hazards model
(CPH) [5] allowing non-linear functions instead of the traditional linear
combinations of covariates by modeling the relationship between the input
covariates and the corresponding risk with a single hidden layer feedforward
neural network. This work has been later resumed in [13] and [28]. Contrar-
ily to rnn-surv, CPH and the models [13] and [28] assume time-invariant
effects of the covariates.

RNN-SURV: A Deep Recurrent Model for Survival Analysis 25

(2) Liestbl, Andersen and Andersen [18] subdivided time into K intervals,
assumed the hazard to be constant in each interval and proposed a feed-
forward neural network with a single hidden layer that for each patient
outputs the conditional event probabilities pk = P (T ≥ tk|T ≥ tk−1) for
k = 1, ...,K, T being the time-to-event of the given patient. This work was
then expanded in [2], but even in this later work the value of the estimate
pk−1 for a given patient is not exploited for the computation of the estimate
pk for the same patient. On the contrary, rnn-surv, thanks to the presence
of recurrent layers, is able to capture the intrinsic sequential nature of the
problem.

(3) Buckley and James [4] developed a linear regression model that deals with
each censored data by computing its most likely value on the basis of the
available data. This approach was then generalized using neural networks in
various ways (e.g., [6]). Unlike rnn-surv, in [4] and in the following ones,
estimated and known data are treated in the same way during the regression
phase.

3 Background on Survival Analysis

Consider a patient i, we are interested in estimating the duration Ti of the
interval in between the event of interest for i and the time t0 at which we start
to measure time for i. We allow for right censored data, namely, data for which
we do not know when the event occurred, but only that it did not occur before a
censoring time Ci. The observed time Yi is defined as Yi = min(Ti, Ci), and each
datapoint corresponds to the pair (Yi, δi) where δi = 0 if the event is censored
(in which case Yi = Ci) and δi = 1 otherwise.

In Survival Analysis, the standard functions used to describe Ti are the sur-
vival function and the hazard function [15].

1. The survival function Si(t) is defined as:

Si(t) = Pr(Ti > t) (1)

with Si(t0) = 1.
2. The hazard function hi(t) is defined as:

hi(t) = lim
dt→0

Pr(t ≤ Ti < t + dt | Ti ≥ t)
dt

. (2)

Further, in order to offer a fast understanding of the conditions of the patient,
a common practice of the field is to create a risk score ri for each patient i: the
higher the score the higher the risk of the occurrence of the event of interest.

4 RNN-SURV

In order to transform the survival analysis problem in a series of binary deci-
sion problems, we assume that the maximal observed time is divided into K

26 E. Giunchiglia et al.

Fig. 1. rnn-surv with N1 = 2 feedforward layers, followed by N2 = 2 recurrent layers.

intervals (t0, t1], . . . , (tK−1, tK] and that the characteristic function modeling Ti

is constant within each interval (tk−1, tk] with k = 1, . . . , K. Given a patient
i, the purpose of our model is to output both an estimate ŷ

(k)
i of the survival

probability Si for the kth time interval and a risk score ri.

4.1 The Structure of the Model

The overall structure of rnn-surv is represented in Fig. 1 and is described and
motivated below:

1. the input of each layer is given by the features xi of each patient i together
with the time interval identifier k. Thanks to this input, rnn-surv is able to
capture the time-variant effect of each feature over time,

2. taking the idea from the natural language processing field, the input is then
elaborated by N1 embedding layers. Thanks to the embeddings we are able
to create a more meaningful representation of our data, and

3. the output of the embedding layers is then passed through N2 recurrent layers
and a sigmoid non-linearity. This generates the estimates ŷ

(1)
i , . . . , ŷ

(K)
i from

which we can compute the risk score with the following equation:

r̂i =
K∑

k=1

wkŷ
(k)
i (3)

where wk for k = 1, . . . , K are the parameters of the last layer of rnn-surv.
Thanks to the linear combination, the risk score, whose quality is evaluated
with the C-index [9], is highly interpretable.

RNN-SURV: A Deep Recurrent Model for Survival Analysis 27

Further, in order to handle the vanishing gradient problem, the feedforward
layers use the ReLU non-linearity [19], while the recurrent layers are constituted
of LSTM cells [10], which are defined as:

⎛

⎜⎜⎝

it
ft
ot

gt

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

σ(Wi[wt,ht−1] + bi)
σ(Wf [wt,ht−1] + bf)
σ(Wo[wt,ht−1] + bo)
f(Wg[wt,ht−1] + bg)

⎞

⎟⎟⎠

ct = ft ∗ ct−1 + it ∗ gt

ht = ot ∗ f(ct).

(4)

4.2 Training

Since the neural network predicts both the discrete survival function and the
risk score for each datapoint, it is trained to jointly minimize two different loss
functions:
1. The first one is a modified cross-entropy function able to take into account

the censored data, defined as:

L1 = −
K∑

k=1

∑

i∈Uk

[
I(Yi > tk) log ŷ

(k)
i + (1 − I(Yi > tk)) log(1 − ŷ

(k)
i)] (5)

where Uk = {i | δi = 1 or Ci > tk} represents the set of individuals that are
uncensored throughout the entire observation time or for which censoring has
not yet happened at the end of the kth time interval.

2. The second one is an upper bound of the negative C-index [23] defined as:

L2 = − 1
|C|

∑

(i,j)∈C

[
1 +

(
log σ(r̂j − r̂i)

log 2

)]
(6)

where C is the set of pairs {(i, j) | δi = 1 and (Yi ≤ Yj)}. The advantage of
minimizing (6) instead of the negative C-index is that the former still leads to
good results [23], and the latter is far more expensive to compute and would
have made the experimental evaluation impractical.

The two losses L1 and L2 are then linearly combined, with the hyperparameters
of the sum optimized during the validation phase.

In order to avoid overfitting, we apply dropout to both the feedforward lay-
ers [22] and to the recurrent layers [8], together with a holdout-based early stop-
ping as described in [20]. Further, we add L2-regularization to the linear com-
bination of the losses. The entire neural network is trained using mini-batching
and Adam optimizer [14].

5 Experimental Analysis

All our experiments are conducted on two large datasets, UNOS Transplant and
UNOS Waitlist, from the United Network for Organ Sharing (UNOS)1 and on
1 https://www.unos.org/data/.

https://www.unos.org/data/

28 E. Giunchiglia et al.

three publicly available, small datasets, AIDS2, FLCHAIN, NWTCO.2 In each
experiment we deploy 60/20/20 division into training, validation and test sets
and the early stopping is configured as a no validation gain for 25 consecutive
epochs. The main characteristics of these datasets are shown in Table 1, while the
structure of rnn-surv for each dataset is shown in Table 2. The performances
of our model are measured using the C-index [9].3

Table 1. Datasets description

Dataset Num. features Num. patients (%) Censored Missing data

UNOS Transplant 53 60400 51.3 Yes

UNOS Waitlist 27 36329 48.9 Yes

NWTCO 9 4028 85.8 No

FLCHAIN 26 7874 72.5 Yes

AIDS2 12 2843 38.1 No

Table 2. Structure of the model for each experiment.

UNOS Transplant UNOS Waitlist NWTCO FLCHAIN AIDS2

FF layers 2 2 3 3 2

recurrent layers 2 2 2 2 2

neurons I FF layer 53 33 18 45 22

neurons II FF layer 51 35 18 40 25

neurons III FF layer - - 18 35 -

LSTM state size 55 26 17 32 15

5.1 Preprocessing

Our datasets present missing data and thus they require a preprocessing phase.
UNOS Transplant and UNOS Waitlist contain data about patients that reg-
istered in order to undergo heart transplantation during the years from 1985
to 2015. In particular UNOS Transplant contains data about patients who
have already undergone the surgery, while UNOS Waitlist contains data about
patients who are still waitlisted. From the complete datasets, we discard 12 fea-
tures that can be obtained only after transplantation and all the features for
which more than 10% of the patients have missing information. In order to deal
with the missing data on the remaining 53 and 27 features, we conduct 10 multi-
ple imputations using Multiple Imputation by Chained Equations (MICE) [24].

The three small datasets contain data about:

1. NWTCO: contains data from the National Wilm’s Tumor Study [3],
2. FLCHAIN: contains half of the data collected during a study [16] about the

possible relationship between serum FLC and mortality, and
3. AIDS2: contains data on patients diagnosed with AIDS in Australia [25].
2 https://vincentarelbundock.github.io/Rdatasets/datasets.html/.
3 Implementation by lifelines package.

https://vincentarelbundock.github.io/Rdatasets/datasets.html/

RNN-SURV: A Deep Recurrent Model for Survival Analysis 29

Table 3. Performances, in terms of C-index, of rnn-surv, CPH, AAH, deep-surv,
rfs and mtlsa together with the 95% confidence interval for the mean C-index. The *
indicates a p-value < 0.05 while ** < 0.01.

UNOS Transp. UNOS Waitlist NWTCO FLCHAIN AIDS2

CPH 0.566**

(0.565–0.567)

0.642**

(0.637–0.647)

0.706

(0.687–0.725)

0.883*

(0.879–0.887)

0.558

(0.546–0.570)

AAH 0.561**

(0.557–0.565)

0.636**

(0.632–0.640)

0.710

(0.601–0.719)

0.885

(0.879–0.891)

0.557

(0.542–0.572)

deep-surv 0.566**

(0.560–0.572)

0.645*

(0.638–0.652)

0.706

(0.686–0.726)

0.835

(0.774–0.896)

0.558

(0.532–0.584)

rfs 0.563**

(0.561–0.565)

0.646*

(0.642–0.650)

0.663*

(0.648–0.678)

0.828

(0.765–0.891)

0.501**

(0.489–0.513)

mtlsa 0.484**

(0.480–0.488)

0.529**

(0.525–0.533)

0.595*

(0.567–0.623)

0.696**

(0.688–0.704)

0.520*

(0.500–0.540)

rnn-surv 0.587

(0.583–0.591)

0.656

(0.652–0.660)

0.724

(0.697–0.751)

0.894

(0.886–0.902)

0.573

(0.553–0.593)

For these datasets, we complete the missing data using the mean value for the
continuous features and using the most recurrent value for the categorical ones.
Once complete the missing data, we then use one-hot encoding for the categorical
features and we standardize each feature so that each has mean μ = 0 and
variance σ = 1.

5.2 Comparison with Other Models

We have compared rnn-surv with the two traditional Survival Analysis models,
CPH and Aalen Additive Hazards model (AAH) [1], and with three recent models
that try to conjugate Machine Learning with Survival Analysis: rfs [11], deep-
surv [13] and mtlsa [17]. Both CPH and AAH have been implemented using
the lifelines package4, while we deployed the randomForestSRC package5

for rfs, the deepsurv package6 for deep-surv and the mtlsa package7 for
mtlsa. The results shown in Table 3 are obtained using k-fold cross validation
(with k = 5). As it can be seen from the table, rnn-surv outperforms the other
models in all the datasets. In particular, the biggest improvements are obtained
with respect to mtlsa, with a peak of 28.4% on the FLCHAIN dataset.

5.3 Estimating the Survival Curves

To further demonstrate the good results obtained by rnn-surv, in Fig. 2 we
show some of the survival curves obtained in largest dataset available, the UNOS
Transplant dataset.

Figure 2 shows that our model is able to capture the average trend of the
survival curves, both for the whole population and for subsets of it. Further,
4 https://github.com/CamDavidsonPilon/lifelines/.
5 https://cran.r-project.org/web/packages/randomForestSRC/.
6 https://github.com/jaredleekatzman/DeepSurv/.
7 https://github.com/yanlirock/MTLSA/.

https://github.com/CamDavidsonPilon/lifelines/
https://cran.r-project.org/web/packages/randomForestSRC/
https://github.com/jaredleekatzman/DeepSurv/
https://github.com/yanlirock/MTLSA/

30 E. Giunchiglia et al.

Fig. 2. Performances of rnn-surv on UNOS Transplant dataset on a 36 months horizon
on the test set. (a) average Survival Function obtained with rnn-surv and Kaplan-
Meier curve [12]. (b) average Survival Functions obtained with rnn-surv and Kaplan-
Meier curves for two subgroups of patients: patients who experienced an infection and
patients who did not. (c) Kaplan-Meier curve together with the survival curves of two
different patients (P1: Patient 1, P2: Patient 2).

rnn-surv demonstrates to have a great discriminative power: it is able to plot
a unique survival function for each patient and, as it is shown in Fig. 2(c), the
survival curves can be very different one from another and from the average
survival curve.

5.4 Analysis of the Model

We now analyze how the different main components of rnn-surv contribute to
its good performances. In particular, we consider the model without the three
main features of the model:

1. We first consider the case in which we do not have the feedforward layers,
i.e., with N1 = 0;

2. Then the case in which the interval identifier k as input to the feedforward
layer is always set to 1;

3. Finally the case in which the model has only one likelihood, i.e., L2.

The C-index of the various versions and of the complete model on the different
datasets are shown in Table 4. In the Table the best results are in bold, while the
worst results are underlined. As it can be seen, the best performances are always
obtained by the complete model, meaning that all the different components have
a positive contribution. Interestingly, the worst performances are obtained when
we disable the L1 score on the large datasets and the feedforward layers in the
small ones. The explanation for the very positive contribution of using both the
L1 and L2 scores on the two large datasets is that L1 allows to take into account
the intermediate performances of the network when computing ŷ

(1)
i , . . . , ŷ

(K)
i .

On the other hand, for the small datasets, the positive contribution of using the
two scores is superseded by the feedforward layers and this can be explained by
the characteristics of the datasets presenting a majority of discrete features.

RNN-SURV: A Deep Recurrent Model for Survival Analysis 31

Table 4. Performances, in terms of C-index, of the complete model compared with its
incomplete versions.

Dataset Without k input Without L1 Without FF rnn-surv

UNOS Transplant 0.583 0.501 0.562 0.587

UNOS Waitlist 0.653 0.516 0.623 0.656

NWTCO 0.683 0.665 0.578 0.724

FLCHAIN 0.874 0.874 0.865 0.894

AIDS2 0.558 0.542 0.535 0.573

6 Conclusions

In this paper we have presented rnn-surv: a new recurrent neural network
model for predicting a personalized risk score and survival probability function
for each patient in presence of censored data. The proposed model has three
main distinguishing features, each having a positive impact on the performances
on two large and three small, publicly available datasets. Our experiments show
that rnn-surv always performs much better than competing approaches when
considering the C-index, improving the state of the art up to 28.4%.

References

1. Aalen, O.: A Model for nonparametric regression analysis of counting processes.
In: Klonecki, W., Kozek, A., Rosiński, J. (eds.) Mathematical Statistics and Prob-
ability Theory. LNS, vol. 2, pp. 1–25. Springer, New York (1980). https://doi.org/
10.1007/978-1-4615-7397-5 1

2. Biganzoli, E., Boracchi, P., Mariani, L., Marubini, E.: Feed forward neural networks
for the analysis of censored survival data: a partial logistic regression approach.
Stat. Med. 17, 1169–1186 (1998)

3. Breslow, N.E., Chatterjee, N.: Design and analysis of two-phase studies with binary
outcome applied to Wilm’s tumour prognosis. Appl. Stat. 48, 457–468 (1999)

4. Buckley, J., James, I.: Linear regression with censored data. Biometrika 66(3),
429–436 (1979)

5. Cox, D.R.: Partial likelihood. Biometrika 62(2), 269 (1975)
6. Dezfouli, H.N.: Improving gastric cancer outcome prediction using time-point arti-

ficial neural networks models. Cancer Inform. 16, 117693511668606 (2017)
7. Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1),

73–82 (1995)
8. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recur-

rent neural networks. In: 29th NIPS, pp. 1019–1027 (2016)
9. Harrell, F.J., Califf, R., Pryor, D., Lee, K., Rosati, R.: Evaluating the yield of

medical tests. JAMA 247(18), 2543–2546 (1982)
10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
11. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival

forests. Ann. Appl. Stat. 2, 841–860 (2008)

https://doi.org/10.1007/978-1-4615-7397-5_1
https://doi.org/10.1007/978-1-4615-7397-5_1
https://doi.org/10.1162/neco.1997.9.8.1735

32 E. Giunchiglia et al.

12. Kaplan, E.L., Meier, P.: Non parametric estimation from incomplete observations.
J. Am. Stat. Assoc. 53, 457–481 (1958)

13. Katzman, J., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: Deep
survival: a deep cox proportional hazards network. CoRR (2016)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

15. Klein, J.P., Moeschberger, M.L.: Survival Analysis Techniques for Censored and
Truncated Data, 2nd edn. Springer, New York (2003)

16. Kyle, R., et al.: Use of monclonal serum immunoglobulin free light chains to predict
overall survival in the general population. N. Engl. J. Med. 354, 1362–1369 (2006)

17. Li, Y., Wang, J., Ye, J., Reddy, C.K.: A multi-task learning formulation for survival
analysis. In: 22nd ACM SIGKDD, KDD 2016, pp. 1715–1724. ACM, New York
(2016)

18. Liestbl, K., Andersen, P.K., Andersen, U.: Survival analysis and neural nets. Stat.
Med. 13(12), 1189–1200 (1994)

19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: 27th ICML, pp. 807–814 (2010)

20. Prechelt, L.: Early stopping—but when? In: Montavon, G., Orr, G.B., Müller,
K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 53–67.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8 5

21. Shivaswamy, P.K., Chu, W., Jansche, M.: A support vector approach to censored
targets. In: Proceedings of 7th IEEE ICDM, ICDM 2007, pp. 655–660. IEEE Com-
puter Society (2007). https://doi.org/10.1109/ICDM.2007.93

22. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

23. Steck, H., Krishnapuram, B., Dehing-oberije, C., Lambin, P., Raykar, V.C.: On
ranking in survival analysis: bounds on the concordance index. In: Platt, J.C.,
Koller, D., Singer, Y., Roweis, S.T. (eds.) 20th NIPS, pp. 1209–1216. Curran Asso-
ciates Inc., New York (2008)

24. Van Buuren, S., Oudshoorn, K.: Flexible mutlivariate imputation by MICE. TNO,
Leiden (1999)

25. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. Springer, Heidel-
berg (2002). https://doi.org/10.1007/978-0-387-21706-2

26. Yu, C.N., Greiner, R., Lin, H.C., Baracos, V.: Learning patient-specific cancer
survival distributions as a sequence of dependent regressors. In: Shawe-Taylor, J.,
Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) 24th NIPS, pp.
1845–1853. Curran Associates Inc., New York (2011)

27. Zhang, J., Chen, L., Vanasse, A., Courteau, J., Wang, S.: Survival prediction by
an integrated learning criterion on intermittently varying healthcare data. In: 30th
AAAI, AAAI 2016, pp. 72–78. AAAI Press (2016)

28. Zhu, X., Yao, J., Huang, J.: Deep convolutional neural network for survival analysis
with pathological images. In: IEEE International Conference on Bioinformatics and
Biomedicine, BIBM 2016, Shenzhen, China, pp. 544–547 (2016)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1109/ICDM.2007.93
https://doi.org/10.1007/978-0-387-21706-2

Do Capsule Networks Solve the Problem
of Rotation Invariance for Traffic Sign

Classification?

Jan Kronenberger(&) and Anselm Haselhoff(&)

Computer Science Institute, Hochschule Ruhr West, Mülheim, Germany
{jan.kronenberger,anselm.haselhoff}@hs-ruhrwest.de

Abstract. Detecting and classifying traffic signs is a very import step to future
autonomous driving. In contrast to earlier approaches with handcrafted features,
modern neural networks learn the representation of the classes themselves.
Current convolutional neural networks achieve very high accuracy when clas-
sifying images, but they have one big problem with their robustness to shift and
rotation. In this work an evaluation of a new technique with Capsule Networks
is performed and the results are compared to a standard Convolutional Neural
Network and a Spatial Transformer Network. Moreover various methods for
augmenting the training data are evaluated. This comparison shows the big
advantages of the Capsule Networks but also their restrictions. They give a big
boost in solving problems mentioned above but their computational complexity
is much higher than convolutional neural networks.

Keywords: Neural networks � Capsule network � Rotation invariance

1 Introduction

As long as there are human drivers left on the road (semi-) autonomous cars have to
read the signs which are designed for humans. Cameras imitate the human vision
system the most. Therefore the artificial intelligence has to analyze the images captured
by these sensors.

In early computer vision systems the features (and maybe relations) of the to be
detected objects were handcrafted. These systems had problems detecting a very high
range of varieties of single classes. Neural Networks can learn abstract representations
of the given data themselves. Due to the fact that these networks are statistically
approximating the training data, they are not good at recognizing new data which is
shifted or rotated. There are basically two options to avoid this. One option is to
generate more training data based on the given but with a bigger variance in rotation
and shift. The other one is to use pooling layers in the network. Pooling reduces the
resolution of the features to ignore these small shifts or rotations in the representation.
It also gives a big advance in performance, because smaller images are processed later
in the network. But while resizing the data some information is lost. CNNs also don’t
consider spatial relationships between the subfeatures of the objects.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 33–40, 2018.
https://doi.org/10.1007/978-3-030-01424-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_4

The newest approach from Sabour et al. [12] tries to address this problem with
capsules. These capsules contain multiple convolutional layers and try to represent
abstract features. Inside one capsule this feature is represented in different rotations and
scales giving the capsule the ability to output the presence and multiple characteristics
of this feature. This is inspired by the human vision and recognition system where not
only the presence of some features are analyzed but also their relation. This paper
compares three techniques and their performance in scenarios with rotated images.

2 Related Work

Most work done with image classification does not consider a special technique to
model the rotation or shift of their object classes. Either the training set already contains
enough variants or more data is augmented like in Sect. 3.2. Generating augmented
data is the most common way of achieving some rotation invariance. Shijie et al. [14]
demonstrated increasing performance when adding augmented data to the trainingset.
But they also remarked that adding to much augmentation may have negative effects.
Fukushima [4] follows a proposal of Hubel and Wiesel [6] to implement complex and
simple cells in the neural network. The simple cells are an early type of pooling. This
tries to adapt the human vision system. Another approach is presented by Simard et al.
[15]. They created so called tangent vectors which compactly represent the transfor-
mation invariance. Hadsell et al. [5] introduce a new technique to learn an invariant
mapping using prior knowledge. Their results also mention a big disadvantage for
neural networks which can also learn lightning and other variabilities instead of
focusing on the objects. The Spatial Transformer Networks which were proposed by
Jaderberg et al. [7] can spatial manipulate the data within the network. These networks
learn invariance in multiple transformations. Marcos et al. [10] extract rotation
invariant features from canonical filters. By doing so the rotation invariance is directly
encoded in the model. Cohen et al. [3] created so called G-convolutions where multiple
translations and rotations by 90 degree are composed. Zouh et al. [17] introduced
Oriented Response Networks which use Active Rotation Filters that actively rotate
during convolution and produce feature maps with location and orientation explicitly
encoded.

The Capsule Network as being proposed by Sabour et al. [12] uses a different
structure as traditional neurons. Instead of using weights and biases like in Eq. 1 where
the data is represented by scalars

aj ¼
X

i
wixi þ b; ð1Þ

they use no bias in their Eq. 2 and the data is represented as vectors.

sj ¼
X

i
cijbujji; bujji ¼ Wjiui; ð2Þ

where bu describes the affine transformation and cji are the coupling coefficients.

34 J. Kronenberger and A. Haselhoff

This design of the capsule allows more capabilities in representing its features.
Capsule Networks are also translation equivariance, which means they consider the
spatial position of key features.

3 Dataset

In this comparison the database GTSRB [16] is used because it has different problems
between its classes which are explained later. The images were cut from a sequence
recorded from a vehicle, leading to many similar data.

3.1 Preparation

The images in the dataset appear in different scales and aspect ratios. To feed the
images through the network they are resized to 48 � 48 px. At this point no nor-
malization was performed on the images. The networks use batch-normalization
instead. The original dataset has a widely spread number of samples per class. The
distribution is visualized in Fig. 1.

This gives a high a priori probability of the class existence to the network. The
network might learn that some classes are more important than others, which can be a
big problem if the distribution does not correlate with the real world distribution of the
data or the input data is not very good distinguishable between two classes. Multiple
datasets based on the original trainingset were created.

• Original (Or): Only images from the original dataset.
• A priori (Ap): Original images were copied to achieve the same amount of images

in each class.
• Augmented (Au): Each class contains the same number of images, but there are

new images generated based on the original ones.

Lawrence et al. [9] described the problem of having an uneven balance of the
individual classes. Buda et al. [1] presented different methods of addressing this issue.

0 5 10 15 20 25 30 35 40

1,000

2,000

class

im
ag

es

Fig. 1. Amount of images in each class of the original GTSRB dataset.

Do Capsule Networks Solve the Problem of Rotation Invariance 35

3.2 Augmentation

To create the augmented images their Rotation, Brightness, Color and Contrast were
randomly changed. It is important to not change these parameters too much to prevent
getting completely black or white images and not to loose the effect of augmentation as
mentioned by Shijie et al. [14].

To not mix the classes Keep left and Keep right the images were not rotated more
than 40� in each direction.

4 Approach

Given the three different datasets the three networks were trained using TensorFlow.
The convolutional network uses three convolution layer, where the first one is used

for normalizing the color. It uses the ReLU activation function. Except for the fully
connected layer only small filter were selected to fit the number of parameters to the
capsule network. This network contains a total number of 148.635 trainable parame-
ters. The network uses several regularization techniques like dropout and the batches
are normalized after each convolution. The learning rate was set to decay exponential
starting from 0.001. The Capsule Network was adapted from a project by Neveu [11].
The code was modified to work with the three different datasets. Also slight changes to
the hyperparameters were made resulting in a total number of 207.947 trainable
parameters. The Spatial Transformer Networks architecture was inspired by the CNN.
The biggest difference is the spatial transform layer where the network learns the
translation, scale, rotation and clutter of an input image. The amount of parameters is
close to the CNN. Currently the training process of capsule networks is very slow.
Running on the same machine this network runs about 5 times longer than the CNN.

5 Results

In this section several parameters are evaluated. In Sect. 5.1 the overall performance on
the different training- and testsets is compared. In Sect. 5.2 the rotation robustness of
some classes is appraised. The figures refer (if not mentioned) to the original training-
and testdata.

5.1 Accuracy

With the convolutional network the results mentioned in Table 1 can be accomplished
when running for 30 epochs.

These are not state-of-the-Art results for the testset, but they show how much the
accuracy drops if the augmented testset is evaluated with the network. When being
trained on the augmented trainingset the network becomes much more robust against
the augmented testset. Stallkamp et al. [16] measured the human performance on the
dataset with 98.97%. Sermanet et al. [13] got a performance of 98.31% using their
Multi-Scale CNN. Therefore they selected features from not only the last layer for

36 J. Kronenberger and A. Haselhoff

classification. Ciresat et al. [2] achieved 99.46% with their multi-column network. Jin
et al. [8] could reach a performance of 99.65%. But all these networks have a much
higher number on trainable parameters. The capsule network archives higher accuracy
than the CNN but needs to run longer till it reaches a stable state. 5,000 epochs worked
best for the used set of parameters.

While the results against the original testset are about 4% to 8% higher, the results
running the augmented testset and the capsule network get a higher score by about
14%. The spatial transformer network reaches similar accuracy on the default testset
compared to the capsule network. When testing against the augmented data the STN
achieves about 1% higher accuracy.

5.2 Rotation

For evaluating the rotation robustness the complete original testset was rotated from
�90� to 90�. Everything outside this range was not considered because it may not be
relevant for real world applications.

Figure 2a shows how the convolutional neural network (trained on the three
trainingsets mentioned in Sect. 3.1) performs on these rotated images. The network
trained with the augmented data obviously is more robust against rotation than the a
priori trained network which seems to overfit to not rotated data. Looking at the
network in general it always performs better than guessing which would be an accuracy
of 0.0233. This is the result of some classes performance not being affected by
rotations.

Table 1. Results for all three networks using the validationset, testset and the augmented testset.

CNN CapsNet STN
Or Ap Au Or Ap Au Or Ap Au

Val 0.9252 0.9766 0.9646 0.9944 0.9984 0.9980 0.9907 0.9995 0.9959
Test 0.8144 0.8253 0.8695 0.9393 0.9370 0.9441 0.9113 0.9336 0.9441
Augm test 0.4920 0.4809 0.6358 0.6882 0.6979 0.7721 0.6583 0.6666 0.7846

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

Rotation of Testset

A
cc
ur
ac
y

original
a priori

augmented

(a) Accuracy on the CNN

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

Rotation of Testset

A
cc
ur
ac
y

original
a priori

augmented

(b) Accuracy on the capsnet

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

Rotation of Testset

A
cc
ur
ac
y

original
a priori

augmented

(c) Accuracy on the STN

Fig. 2. Results on the different trainingsets with rotated testsets

Do Capsule Networks Solve the Problem of Rotation Invariance 37

The overall performance of the Capsule Network (Fig. 2b) is much better and there
is no accuracy drop when being trained with the a priori trainingset compared to the
original trainingset. The augmented trainingset gives a small boost in rotation
robustness. This shows the strength of the Capsules Network not being that prone to
overfitting. The STN, visualized in Fig. 2c, got about the same characteristics as the
Capsule Network but performs a bit better. Especially the augmented trainingset per-
forms quite well considering the rotation.

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

Rotation

A
cc
ur
ac
y

CNN
Caps
STN

(a) Accuracy on class 31.

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

Rotation

A
cc
ur
ac
y

CNN
Caps
STN

(b) Accuracy on class 12.

−100 −50 0 50 100

0

0.2

0.4

0.6

0

1

Rotation

A
cc
ur
ac
y

CNN
Caps
STN

(c) Accuracy on class 15.

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

Rotation

A
cc
ur
ac
y

CNN
Caps
STN

(d) Accuracy on class 8.

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

Rotation

A
cc
ur
ac
y

CNN
Caps
STN

(e) Accuracy on class 13.

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

Rotation

A
cc
ur
ac
y

CNN
Caps
STN

(f) Accuracy on class 40.

Fig. 3. Results on the different trainingsets with rotated testsets.

38 J. Kronenberger and A. Haselhoff

When looking at single classes and their rotation robustness most classes perform
similar to class 31 visualized in Fig. 3a. The angle where the accuracy drops may vary.
The accuracy with the augmented training data drops later most of the time while the a
priori data has a negative effect to the rotation robustness. Some of the classes where
the performance differs from this one are explained separately.

The sign priority road accuracy (Fig. 3b) drops as expected every 45� using the
Convolutional Neural Network. The Capsule Network is able to get an accuracy about
80% at this state. The STN is not that sensitive to rotation compared to the CapsNet but
its peak performance is a bit worse.

The no vehicles-sign is rotation invariant due to its definition. But as shown in
Fig. 3c the accuracy varies greatly. One reason for this behavior might be the back-
ground of the images which was also learned by the network. But generally there are no
big accuracy drops noticeable for this class. The CapsNet and the STN can reach about
18% more accuracy. The sign speed limit 120 has a very weak performance considering
the CNN. The STN and the CapsNet are producing similar results.

The sign Give way is the only class where the convolutional neural network per-
forms better than the capsule network. It reaches its highest accuracies every 120�.

The last special class is the roundabout-sign where the capsule network shows very
stable prediction performance (Fig. 3f). The drop at rotation 90� is only present with
the original training data. The convolutional neural network reacts similar to this sign
as to the Give way-sign in Fig. 3e.

6 Conclusion

These results show that the Capsule Networks are much more robust against rotated
input data but they are not the perfect solution to this problem. Because these networks
are very slow to train nowadays it is also possible to create an augmented trainingset or
use Spatial Networks which can achieve similar results on rotated inputs. Nevertheless
Capsule Networks are a very huge improvement to image classification because they
don’t just simply learn the somehow average of all training data but they learn sub-
features and their parameters. This is a huge benefit when thinking about explainable
artificial intelligence. Future works may have to “look inside” the capsules to extract
more information what features they learned in which representations.

References

1. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem
in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

2. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image
classification. In: CVPR (2002)

3. Cohen, T.S., Welling, M.: Group equivariant convolutional networks (2016)
4. Fukushima, K., Miyake, S.: Necognitron: a new algorithm for pattern recognition tolerant of

deformations and shifts in position. Pattern Recogn. 15(6), 455–468 (1982)

Do Capsule Networks Solve the Problem of Rotation Invariance 39

5. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant
mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, pp. 173–1742. IEEE (2006)

6. Hubel, D.H., Wiesel, T.N.: Receptive field of single neurons in the cat’s striate cortex.
J. Physiol. 148, 574–591 (1959)

7. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks
(2015)

8. Jin, J., Fu, K., Zhang, C.: Traffic sign recognition with hinge loss trained convolutional
neural networks. IEEE Trans. Intell. Transp. Syst. 15(5), 1991–2000 (2014)

9. Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural network classification and
prior class probabilities. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks:
Tricks of the Trade. LNCS, vol. 7700, pp. 295–309. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35289-8_19

10. Marcos, D., Volpi, M., Tuia, D.: Learning rotation invariant convolutional filters for texture
classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR),
pp. 2012–2017. IEEE (2016)

11. Neveu, T.: Capsnet-traffic-sign-classifier (2017). https://github.com/thibo73800/capsnet-
traffic-sign-classifier

12. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in
Neural Information Processing Systems (2017)

13. Sermanent, P., LeCun, Y.: Traffic sign recognition with multi-scale convolutional networks.
In: 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2809–2813. IEEE
(2011)

14. Shijie, J., Ping, W., Peiyi, J., Siping, H.: Research on data augmentation for image
classification based on convolution neural networks. In: 2017 Chinese Automation Congress
(CAC), pp. 4165–4170, October 2017

15. Simard, P.Y., Le Cun, Y.A., Denker, J.S., Victorri, B.: Transformation invariance in pattern
recognition: tangent distance and propagation. Int. J. Imaging Syst. Technol. 11(3), 181–197
(2000)

16. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking
machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012)

17. Zhou, Y., Ye, Q., Qui, Q., Jiao, J.: Oriented response networks. In: CVPR (2017)

40 J. Kronenberger and A. Haselhoff

http://dx.doi.org/10.1007/978-3-642-35289-8_19
http://dx.doi.org/10.1007/978-3-642-35289-8_19
https://github.com/thibo73800/capsnet-traffic-sign-classifier
https://github.com/thibo73800/capsnet-traffic-sign-classifier

Balanced and Deterministic
Weight-Sharing Helps
Network Performance

Oscar Chang(B) and Hod Lipson

Data Science Institute, Columbia University, New York City, USA
{oscar.chang,hod.lipson}@columbia.edu

Abstract. Weight-sharing plays a significant role in the success of many
deep neural networks, by increasing memory efficiency and incorporating
useful inductive priors about the problem into the network. But under-
standing how weight-sharing can be used effectively in general is a topic
that has not been studied extensively. Chen et al. [1] proposed Hashed-
Nets, which augments a multi-layer perceptron with a hash table, as a
method for neural network compression. We generalize this method into
a framework (ArbNets) that allows for efficient arbitrary weight-sharing,
and use it to study the role of weight-sharing in neural networks. We show
that common neural networks can be expressed as ArbNets with different
hash functions. We also present two novel hash functions, the Dirichlet
hash and the Neighborhood hash, and use them to demonstrate experi-
mentally that balanced and deterministic weight-sharing helps with the
performance of a neural network.

Keywords: Weight-sharing · Weight tying · HashedNets · Hashing
Entropy

1 Introduction

Most deep neural network architectures can be built using a combination of three
primitive networks: the multi-layer perceptron (MLP), the convolutional neural
network (CNN), and the recurrent neural network (RNN). These three networks
differ in terms of where and how the weight-sharing takes place. We know that
the weight-sharing structure is important, and in some cases essential, to the
success of the neural network at a particular machine learning task.

For example, a convolutional layer can be thought of as a sliding window
algorithm that shares the same weights applied across different local segments
in the input. This is useful for learning translation-invariant representations.
Zhang et al. [10] showed that on a simple ten-class image classification problem
like CIFAR10, applying a pre-processing step with 32, 000 random convolutional

This research was supported in part by the US Defense Advanced Research Project
Agency (DARPA) Lifelong Learning Machines Program, grant HR0011-18-2-0020.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 41–50, 2018.
https://doi.org/10.1007/978-3-030-01424-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_5&domain=pdf

42 O. Chang and H. Lipson

filters boosted test accuracy from 54% to 83% using an SVM with a vanilla
Gaussian kernel. Additionally, although the ImageNet challenge only started in
2010, from 2012 onwards, all the winning models have been CNNs. This sug-
gests the importance of convolutional layers for the task of image classification.
We show later on that balanced and deterministic weight-sharing helps network
performance, and indeed, the weights in convolutional layers are shared in a
balanced and deterministic fashion.

We also know that tying the weights of encoder and decoder networks can be
helpful. In an autoencoder with one hidden layer and no non-linearities, tying
the weights of the encoder and the decoder achieves the same effect as Prin-
cipal Components Analysis [8]. In language modeling tasks, tying the weights
of the encoder and decoder for the word embeddings also results in increased
performance as well as a reduction in the number of parameters used [5].

Developing general intuitions about where and how weight-sharing can be
leveraged effectively is going to be very useful for the machine learning prac-
titioner. Understanding the role of weight-sharing in a neural network from a
quantitative perspective might also potentially lead us to discover novel neu-
ral network architectures. This paper is a first step towards understanding how
weight-sharing affects the performance of a neural network.

We make four main contributions:

– We propose a general weight-sharing framework called ArbNet that can
be plugged into any existing neural network and enables efficient arbitrary
weight-sharing between its parameters (Sect. 1.1).

– We show that deep networks can be formulated as ArbNets, and argue that
the problem of studying weight-sharing in neural networks can be reduced to
the problem of studying properties of the associated hash functions (Sect. 2.4).

– We show that balanced weight-sharing increases network performance
(Sect. 5.1).

– We show that making an ArbNet hash function, which controls the weight-
sharing, more deterministic increases network performance, but less so when
it is sparse (Sect. 5.2).

1.1 ArbNet

ArbNets are neural networks augmented with a hash table to allow for arbi-
trary weight-sharing. We can label every weight in a given neural network with
a unique identifier, and each identifier maps to an entry in the hash table by
computing a given hash function prior to the start of training. On the forward
and backward passes, the network retrieves and updates weights respectively in
the hash table using the identifiers. A hash collision between two different iden-
tifiers would then imply weight-sharing between two weights. This mechanism of
forcing hard weight-sharing is also known as the ‘hashing trick’ in some machine
learning literature.

A simple example of a hash function is the modulus hash:

wi = tablei mod n (1)

Balanced and Deterministic Weight-Sharing 43

where the weight wi with identifier i maps to the (i mod n)th entry of a hash
table of size n.

Another example is the uniform hash, where the weights are uniformly dis-
tributed across a table of fixed length.

wi = tableUniform(n) (2)

An ArbNet is an efficient mechanism of forcing weight-sharing between any two
arbitrarily selected weights, since the only overhead involves memory occupied
by the hash table and the identifiers, and compute time involved in initializing
the hash table.

1.2 How the Hash Function Affects Network Performance

As the load factor of the hash table goes up, or equivalently as the ratio of the size
of the hash table relative to the size of the network goes down, the performance
of the neural network goes down. This was demonstrated by Chen et al. [1].
While the load factor is a variable controlling the capacity of the network, it is
not necessarily the most important factor in determining network performance.
A convolutional layer has a much higher load factor than a fully connected layer,
and yet it is much more effective at increasing network performance in a range
of tasks, most notably image classification.

There are at least two other basic questions we can ask:

– How does the balance of the hash table affect performance?
• The balance of the hash table indicates the evenness of the weight shar-

ing. We give a more precise definition in terms of Shannon entropy in
the Experimental Setup section, but intuitively, a perfectly balanced
weight sharing scheme accesses each entry in the hash table the same
number of times, while an unbalanced one would tend to favor using
some entries more than others.

– How does noise in the hash function affect performance?
• For a fixed identifier scheme, if the hash function is a deterministic opera-

tion, it will map to a fixed entry in the hash table. If it is a noisy operation,
we cannot predict a priori which entry it would map into.

• We do not have a rigorous notion for ‘noise’, but we demonstrate in
the Experimental Setup section an appropriate hash function whose
parameter can be tuned to tweak the amount of noise.

We are interested in the answers to these question across different levels
of sparsity, since as in the case of a convolutional layer, this might influence
the effect of the variable we are studying on the performance of the neural
network. We perform experiments on two image classification tasks, MNIST and
CIFAR10, and demonstrate that balance helps while noise hurts neural network
performance. MNIST is a simpler task than CIFAR10, and the two tasks show
the difference, if any, when the neural network model has enough capacity to
capture the complexity of the data versus when it does not.

44 O. Chang and H. Lipson

2 Common Neural Networks are MLP ArbNets

The hash function associated with an MLP ArbNet is an exact specification of
the weight-sharing patterns in the network, since an ordinary MLP does not
share any weights.

2.1 Multi-layer Perceptrons

An MLP consists of repeated applications of fully connected layers:

yi = σi(Wixi + bi) (3)

at the ith layer of the network, where σi is an activation function, Wi a weight
matrix, bi a bias vector, xi the input vector, and yi the output vector. None
of the weights in any of the Wi are shared, so we can consider an MLP in the
ArbNet framework as being augmented with identity as the hash function.

2.2 Convolutional Neural Networks

A CNN consists of repeated applications of convolutional layers, which in the
2D case, resembles an equation like the following:

Y
(j,k)
i = σi(

∑

m

∑

n

W
(m,n)
i X

(j−m,k−n)
i + B

(j,k)
i) (4)

at the ith layer of the network, where the superscripts index the matrix, σi

is an activation function (includes pooling operations), Wi a weight matrix of
size m by n, Xi the input matrix of size a by b, Bi a bias matrix and Yi the
output matrix. The above equation produces one feature map. To produce l
feature maps, we would have l different Wi and Bi, and stack the l resultant Yi

together. Notice that Eq. 4 can be rewritten in the form of Eq. 3:

yi = σi(W ′
ixi + bi) (5)

where the weight matrix W ′
i is given by the equation:

W ′(u,v)
i =

{
W

(�(u+v)/b�,(u+v) mod b)
i if the indices are defined for Wi

0 otherwise
(6)

W ′
i has the form of a sparse Toeplitz matrix, and we can write a CNN as an

MLP ArbNet with a hash function corresponding to Eq. 6. Convolutions where
the stride or dilation is more than one have not been presented for ease of
explanation but analogous results follow.

2.3 Recurrent Neural Networks

An RNN consists of recurrent layers, which takes a similar form as Eq. 3, except
that Wi = Wj and Bi = Bj for i �= j, i.e. the same weights are being shared
across layers. This is equivalent to an MLP ArbNet where we number all the
weights sequentially and the hash function is a modulus hash (Eq. 1) with n the
size of each layer.

Balanced and Deterministic Weight-Sharing 45

2.4 General Networks

We have shown above that MLPs, CNNs, and RNNs can be written as MLP Arb-
Nets associated with different hash functions. Since deep networks are built using
a combination of these three primitive networks, it follows that deep networks
can be expressed as MLP ArbNets. This shows the generality of the ArbNet
framework.

Fully connected layers do not share any weights, while convolutional layers
share weights within a layer in a very specific pattern resulting in sparse Toeplitz
matrices when flattened out, and recurrent layers share the exact same weights
across layers. The design space of potential neural networks is extremely big,
and one could conceive of effective weight-sharing strategies that deviate from
these three standard patterns of weight-sharing.

In general, since any neural network, not just MLPs, can be augmented with
a hash table, ArbNets are a powerful mechanism for studying weight-sharing in
neural networks. The problem of studying weight-sharing in neural networks can
then be reduced to the problem of studying the properties of the associated hash
functions.

3 Related Work

Chen et al. [1] proposed HashedNets for neural network compression, which is
an MLP ArbNet where the hash function is computed layer-wise using xxHash
prior to the start of training. Han et al. [4] also made use of the same layer-wise
hashing strategy for the purposes of network compression, but hashed according
to clusters found by a K-means algorithm run on the weights of a trained net-
work. Our work generalizes this technique, and uses it as an experimental tool
to study the role of weight-sharing.

Besides hard weight-sharing, it is also possible to do soft weight-sharing,
where two different weights in a network are not forced to be equal, but are
related to each other. Nowlan et al. [7] implemented a soft weight-sharing strat-
egy for the purposes of regularization where the weights are drawn from a Gaus-
sian mixture model. Ullrich et al. [9] also used Gaussian mixture models as soft
weight-sharing for doing network compression.

Another soft weight-sharing strategy called HyperNetworks [3] involves using
a LSTM controller as a meta-learning algorithm to generate the weights of
another network.

4 Experimental Setup

In this paper, we limit our attention to studying certain properties of MLP
ArbNets as tested on the MNIST and CIFAR10 image classification tasks. Our
aim is not to best any existing benchmarks, but to show the differences in test
accuracy as a result of changing various properties of the hash function associated
with the MLP ArbNet.

46 O. Chang and H. Lipson

4.1 Balance of the Hash Table

The balance of the hash table can be measured by Shannon entropy:

H = −
∑

i

pi log pi (7)

where pi is the probability that the ith table entry will be used on a forward pass
in the network. We propose to control this with a Dirichlet hash, which involves
sampling from a symmetric Dirichlet distribution and using the output as the
parameters of a multinomial distribution which we will use as the hash func-
tion. The symmetric Dirichlet distribution has the following probability density
function:

P (X) =
Γ (αN)
Γ (α)N

N∏

i=1

xα−1
i (8)

where the xi lie on the N − 1 simplex. The Dirichlet hash can be given by the
following function:

wi = tableMultinomialα(n) (9)

A high α leads to a balanced distribution (high Shannon entropy), and a low α

Fig. 1. Heatmap of multinomial parameters drawn from different values of α

leads to an unbalanced distribution (low Shannon entropy). The limiting case of
α → ∞ results in a uniform distribution, which has maximum Shannon entropy.
See Fig. 1 for a visualization of the effects of α on a hash table with 1000 entries.

Balanced and Deterministic Weight-Sharing 47

4.2 Noise in the Hash Function

A modulus hash and a uniform hash both have the property that the expected
load of all the entries in the hash table is the same. Hence, in expectation, both
of them will be balanced the same way, i.e. have the same expected Shannon
entropy. But the former is entirely deterministic while the latter is entirely ran-
dom. In this case, it is interesting to think about the effects of this source of
noise, if any, on the performance of the neural network. We propose to investi-
gate this with a Neighborhood hash, which involves the composition of a modulus
hash and a uniform distribution around a specified radius. This is given by the
following hash function:

wi = table(i+Uniform([−radius, radius])) mod n (10)

When the radius is 0, the Neighborhood hash reduces to the modulus hash,
and when the radius is at least half the size of the hash table, it reduces to
the uniform hash. Controlling the radius thus allows us to control the intuitive
notion of ‘noise’ in the specific setting where the expected load of all the table
entries is the same.

4.3 Network Specification

On MNIST, our ArbNet is a three layer MLP (200-ELU-BN-200-ELU-BN-10-
ELU-BN) with exponential linear units [2] and batch normalization [6].

On CIFAR10, our ArbNet is a six layer MLP (2000-ELU-BN-2000-ELU-
BN-2000-ELU-BN-2000-ELU-BN-2000-ELU-BN-10-ELU-BN) with exponential
linear units and batch normalization.

We trained both networks using SGD with learning rate 0.1 and momentum
0.9, and a learning rate scheduler that reduces the learning rate 10x every four
epochs if there is no improvement in training accuracy. No validation set was
used.

5 Results and Discussion

5.1 Dirichlet Hash

We observe in Fig. 2 that on the MNIST dataset, increasing α has a direct pos-
itive effect on test accuracy, across different levels of sparsity. On the CIFAR10
dataset, when the weights are sparse, increasing α has a small positive effect,
but at lower levels of sparsity, it has a huge positive effect. This finding seems
to indicate that it is more likely for SGD to get stuck in local minima when the
weights are both non-sparse and shared unevenly.

We can conclude that balance helps with network performance, but it is
unclear if it brings diminishing returns. Re-plotting the MNIST graph in Fig. 2
with the x-axis replaced with Shannon Entropy (Eq. 7) instead of α in Fig. 3
gives us a better sense of scale. Note that in this case, a uniform distribution on
1000 entries would have a Shannon entropy of 6.91. The results shown by Fig. 3
suggest a linear trend at high sparsity and a concave trend at low sparsity, but
more evidence is required to come to a conclusion.

48 O. Chang and H. Lipson

Fig. 2. Effect of α (balance) in Dirichlet hash on network accuracy across different
levels of sparsity

Fig. 3. Effect of Shannon entropy (balance) in Dirichlet hash on network accuracy
across different levels of sparsity

5.2 Neighborhood Hash

The trends in Fig. 4 are noisier, but it seems like an increase in radius has the
overall effect of diminishing test accuracy. On MNIST, we notice that higher
levels of sparsity result in a smaller drop in accuracy. The same effect seems to
be present but not as pronounced in CIFAR10, where we note an outlier in the
case of sparsity 0.1, radius 0. We hypothesize that this effect occurs because
the increase in noise leads to the increased probability of two geometrically
distant weights in the network being forced to share the same weights. This
is undesirable in the task of image classification, where local weight-sharing is
proven to be advantageous, and perhaps essential to the task. When the network
is sparse, the positive effect of local weight-sharing is not prominent, and hence
the noise does not affect network performance as much.

Balanced and Deterministic Weight-Sharing 49

Thus, we can conclude that making the ArbNet hash more deterministic
(equivalently, less noisy) boosts network performance, but less so when it is
sparse.

We notice that convolutional layers, when written as an MLP ArbNet as in
Eq. 6, have a hash function that is both balanced (all the weights are used with
the same probability) and deterministic (the hash function does not have any
noise in it). This helps to explain the role weight-sharing plays in the success of
convolutional neural networks.

Fig. 4. Effect of radius (noise) in Neighborhood hash on network accuracy across
different levels of sparsity

6 Conclusion

Weight-sharing is very important to the success of deep neural networks. We
proposed the use of ArbNets as a general framework under which weight-sharing
can be studied, and investigated experimentally, for the first time, how balance
and noise affects neural network performance in the specific case of an MLP
ArbNet and two image classification datasets.

References

1. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural
networks with the hashing trick, vol. 37 (2015)

2. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (ELUs) (2016)

3. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks (2017)
4. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-

works with pruning, trained quantization and Huffman coding (2016)
5. Inan, H., Khosravi, K., Socher, R.: Tying word vectors and word classifiers: a loss

framework for language modeling (2017)
6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift, vol. 37 (2015)

50 O. Chang and H. Lipson

7. Nowlan, S.J., Hinton, G.E.: Simplifying neural networks by soft weight-sharing.
Neural Comput. 4, 473–493 (1992)

8. Roweis, S.: EM algorithms for PCA and SPCA. In: Neural Information Processing
Systems, vol. 10 (1997)

9. Ullrich, K., Meeds, E., Welling, M.: Soft weight-sharing for neural network com-
pression (2017)

10. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires re-thinking generalization (2017)

Neural Networks with Block Diagonal
Inner Product Layers

Amy Nesky(B) and Quentin F. Stout

Computer Science and Engineering, University of Michigan,
Ann Arbor, MI 48109, USA
{anesky,qstout}@umich.edu

Abstract. We consider a modified version of the fully connected layer
we call a block diagonal inner product layer. These modified layers have
weight matrices that are block diagonal, turning a single fully connected
layer into a set of densely connected neuron groups. This idea is a natural
extension of group, or depthwise separable, convolutional layers applied
to the fully connected layers. Block diagonal inner product layers can be
achieved by either initializing a purely block diagonal weight matrix or
by iteratively pruning off diagonal block entries. This method condenses
network storage and speeds up the run time without significant adverse
effect on the testing accuracy.

Keywords: Neural networks · Block diagonal · Structured sparsity

1 Introduction

Ideally, efforts to reduce the memory requirements of neural networks would also
lessen their computational demand, but often these competing interests force a
trade-off. Fully connected layers are unwieldy, yet they continue to be present
in the most successful networks [13,23,28]. Our work addresses both memory
and computational efficiency without compromise. Focusing our attention on
the fully connected layers, we decrease network memory footprint and improve
network runtime.

There are a variety of methods to condense large networks without much
harm to their accuracy. One such technique that has gained popularity is prun-
ing [3,4,21], but traditional pruning has disadvantages related to network run-
time. Most existing pruning processes slow down network training, and the
resulting condensed network is usually significantly slower to execute [3]. Sparse
format operations require additional overhead that can greatly slow down per-
formance unless one prunes nearly all weight entries, which can damage network
accuracy.

Localized memory access patterns can be computed faster than non-localized
lookups. By implementing block diagonal inner product layers in place of fully
connected layers, we condense neural networks in a structured manner that

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 51–61, 2018.
https://doi.org/10.1007/978-3-030-01424-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_6&domain=pdf

52 A. Nesky and Q. F. Stout

speeds up the final runtime and does little harm to the final accuracy. Block
diagonal inner product layers can be implemented by either initializing a purely
block diagonal weight matrix or by initializing a fully connected layer and focus-
ing pruning efforts off the diagonal blocks to coax the dense weight matrix into
structured sparsity. The first method reduces the gradient computation time and
hence the overall training time. The latter method retains higher accuracy and
supports the robustness of networks to shaping. That is, pruning can be used as
a mapping between architectures—in particular, a mapping to more convenient
architectures. Depending on how many iterations the pruning process takes, this
method may also speed up training.

We have converted a single fully connected layer into a ensemble of smaller
inner product learners whose combined efforts form a stronger learner, in essence
boosting the layer. These methods also bring artificial neural networks closer
to the architecture of biological mammalian brains, which have more local
connectivity [6].

2 Related Work

There is an assortment of criteria by which one may choose which weights to
prune. With any pruning method, the result is a sparse network that takes less
storage space than its fully connected counterpart. Han et al. iteratively prune
a network using the penalty method by adding a mask that disregards pruned
parameters for each weight tensor [4]. This means that the number of required
floating point operations decreases, but the number performed stays the same.
Furthermore, masking out updates takes additional time. Han et al. report the
average time spent on a forward propagation after pruning is complete and
the resulting sparse layers have been converted to CSR format; for batch sizes
larger than one, the sparse computations are significantly slower than the dense
calculations [3].

More recently, there has been momentum in the direction of structured reduc-
tion of network architecture. Node pruning preserves some structure, but dras-
tic node pruning can harm the network accuracy and requires additional weight
fine-tuning [5,25]. Other approaches include storing a low rank approximation
for a layer’s weight matrix [22] and training smaller models on outputs of larger
models (distillation) [7]. Group lasso expands the concept of node pruning to con-
volutional filters [14,26,27]. That is, group lasso applies L1-norm regularization
to entire filters. Sidhawani et al. propose structured parameter matrices char-
acterized by low displacement rank that yield high compression rate as well as
fast forward and gradient evaluation [24]. Their work focuses on toeplitz-related
transforms of the fully connected layer weight matrix. However, speedup is gen-
erally only seen for compression of large weight matrices. According to their
Fig. 3, for displacement rank higher than 1.5 × 10−3 times the matrix dimen-
sion the forward pass is slowed down, and backward pass is slowed down for
displacement rank higher than 9 × 10−4 times the matrix dimension.

Group, or depthwise separable, convolutions have been used in recent CNN
architectures with great success [2,8,29]. In group convolutions, a particular filter

Neural Networks with Block Diagonal Inner Product Layers 53

does not see all of the channels of the previous layer. Block diagonal inner product
layers apply this idea of separable neuron groups to the fully connected layers.
This method transforms a fully connected layer into an ensemble of smaller fully
connected neuron groups that boost the layer.

3 Methodology

We consider two methods for implementing block diagonal inner product layers:

1. We initialize a layer with a purely block diagonal weight matrix and keep the
number of connections constant throughout training.

2. We initialize a fully connected layer and iteratively prune entries off the diag-
onal blocks to achieve a block substructure.

Within a layer, all blocks have the same size. Method 2 is accomplished in three
phases: a dense phase, an iterative pruning phase and a block diagonal phase. In
the dense phase a fully connected layer is initialized and trained in the standard
way. During the iterative pruning phase, focused pruning is applied to entries
off the diagonal blocks using the weight decay method with L1-norm. That is, if
W is the weight matrix for a fully connected layer we wish to push toward block
diagonal, we add

α
∑

i,j

|1i,jWi,j | (1)

to the loss function during the iterative pruning phase, where α is a tuning
parameter and 1i,j indicates whether Wi,j is off the diagonal blocks in W . The
frequencies of regularization and pruning during this phase are additional hyper-
parameters. During this phase, masking out updates for pruned entries is more
efficient than maintaining sparse format. When pruning is complete, to maxi-
mize speedup it is best to reformat the weight matrix once such that the blocks
are condensed and adjacent in memory.1 Batched smaller dense calculations for
the blocks use cuBLAS strided batched multiplication [20]. There is a lot of
flexibility in method 2 that can be tuned for specific user needs. More pruning
iterations may increase the total training time but can yield higher accuracy and
reduce overfitting.

4 Experiments: Speedup and Accuracy

Our goal is to reduce memory storage of the inner product layers while main-
taining or reducing the final execution time of the network with minimal loss in
accuracy. We will also see the reduction of total training time in some cases. All
experiments are run on the Bridges’ NVIDIA P100 GPUs through the Pittsburgh
Supercomputing Center.
1 When using block diagonal layers, one should alter the output format of the previous

layer and the expected input format of the following layer accordingly, in particular
to row major ordering.

54 A. Nesky and Q. F. Stout

0 2 4 6 8 10 12 14
Number of Blocks

10-1

100

101

102

Sp
ee

du
p

(m
s)

 20 22 24 26 28 210 212 214 0 2 4 6 8 10 12 14
Number of Blocks

10-2

10-1

100

101

102

Sp
ee

du
p

(m
s)

 20 22 24 26 28 210 212 214

n=128
n=256
n=512

n=1024
n=2048
n=4096

n=8192
n=16384
n=32768

Fig. 1. Speedup when performing matrix multiplication using an n× n weight matrix
and batch size 100. (Left) Speedup when performing only one forward matrix product.
(Right) Speedup when performing all three matrix products involved in the forward
and backward pass in gradient descent. Both images in this figure share the same key.

For speedup analysis we timed block diagonal multiplications using n × n
matrices with varying dimension sizes and varying numbers of blocks; we con-
sidered the forward pass and gradient updates. We also calculate an upper bound
on the ratio of the number of pruning iterations to the number of pure block
iterations that will yield speedup when using block diagonal method 2. For accu-
racy results, we ran experiments on the MNIST [16] dataset using a LeNet-5 [15]
network, and the SVHN [19] and CIFAR10 [10] datasets using Krizhevsky’s cuda-
convnet [11]. Cuda-convnet does not produce state-of-art accuracies for SVHN or
CIFAR10, but demonstrates the performance differences between our methods
and others. We implement our work in Caffe, which provides these architectures;
Caffe’s MNIST example uses LeNet-5 and cuda-convnet can be found in Caffe’s
CIFAR10 “quick” example.

4.1 Speedup

Figure 1 shows the speedup when performing matrix multiplication using an
n × n weight matrix and batch size 100 when the weight matrix is purely
block diagonal. The speedup when performing only the forward-pass matrix
product is shown in the left pane, and the speedup when performing all gra-
dient descent products is shown in the right pane. As the number of blocks
increases, the overhead to perform cuBLAS strided batched multiplication can
become noticeable; this library is not yet well optimized for performing many
small matrix products [17]. However, with specialized batched multiplications
for many small matrices, Jhurani et al. attain up to 6 fold speedup [9]. Using
cuBLAS strided batched multiplication, maximum speedup is achieved when the
number of blocks is 1/27 times the matrix dimension. When only timing the for-
ward pass, the speedup is always greater than 1 when the number of blocks is at
most 1/25 times the matrix dimension. When timing the forward and backward

Neural Networks with Block Diagonal Inner Product Layers 55

pass, the speedup is always greater than 1 when the number of blocks is at most
1/26 times the matrix dimension.

For a given inner product layer, using block diagonal method 2 we would see
speedup during training if

T (FC) − T (Block)
T (Prune)

>
y

x
(2)

where T (·) is the combined time to perform the forward and backward passes of
an inner product layer in the input state, x is the number of pure block iterations,
and y is the number of pruning iterations. T (Prune) is the time to regularize and
apply a mask to the off diagonal block layer weights, which happens once in a
training iteration. Figure 2 plots the upper bound in ratio 2 against the number
of blocks for a layer with an n × n weight matrix and batch size 100.

0 2 4 6 8 10 12 14
Number of Blocks

0

1

2

3

4

5

6

U
pp

er
 B

ou
nd

 in
 (2

)

 20 22 24 26 28 210 212 214

n=27

n=28

n=29

n=210

n=211

n=212

n=213

n=214

n=215

Fig. 2. Using batch size 100, upper bound on the ratio of the number of pruning
iterations to the number of pure block iterations that will result in an overall training
speedup when using block diagonal method 2.

Figure 3 shows timing results for the inner product layers in Lenet-5 (Left)
and cuda-convnet (Right), which both have two inner product layers. We plot
the forward time per inner product layer when the layers are purely block diag-
onal, the combined forward and backward time to do the three matrix products
involved in gradient descent training when the layers are purely block diago-
nal, and the runtime of sparse matrix multiplication with random entries in
CSR format using cuSPARSE [20]. For brevity we refer to a block diagonal
network architecture as (b1, . . . , bn)-BD; bi = 1 indicates that the ith inner prod-
uct layer is fully connected. FC is short for all inner product layers being fully
connected. The points at which the forward sparse and forward block curves
meet in each plot in Fig. 3 indicate the fully connected dense forward run-
times for each layer; these are made clearer with dotted, black, vertical lines.
In Lenet-5 (Left), the first inner product layer, ip1, has a 500 × 800 weight
matrix, and the second has a 10 × 500 weight matrix, so the (b1, b2)-BD archi-
tecture has (800 × 500)/b1 + (500 × 10)/b2 nonzero weights across both inner

56 A. Nesky and Q. F. Stout

Fig. 3. For each inner product layer in Lenet-5 (Left) and cuda-convnet (Right): for-
ward runtimes of block diagonal and CSR sparse formats, combined forward and back-
ward runtimes of block diagonal format. Lenet-5 uses batch size 64, and cuda-convnet
uses batch size 100.

product layers. There is ≥1.4× speedup for b1 ≤ 50, or 8000 nonzero entries,
when timing both forward and backward matrix products, and 1.6× speedup
when b1 = 100, or 4000 nonzero entries, in the forward only case. In cuda-
convnet (Right), the first inner product layer, ip1, has a 64×1024 weight matrix,
and the second has a 10 × 64 weight matrix. The (b1, b2)-BD architecture has
(1024 × 64)/b1 + (64 × 10)/b2 nonzero entries across both inner product layers.
In the ip1 layer, there is ≥1.26× speedup for b1 ≤ 32, or 2048 nonzero entries,
when timing both forward and backward matrix products, and ≥1.65× speedup
for b1 ≤ 64, or 1024 nonzero entries, in the forward only case. In both plots we
see sparse format performs poorly until there are less than 50 nonzero entries.

4.2 Accuracy Results

All hyperparameters and initialization distributions provided by Caffe’s example
architectures are left unchanged. Training is done with batched gradient descent
using the cross-entropy loss function on the softmax of the output layer. In our
experiments we performed only manual hyperparameter tuning of new hyperpa-
rameters introduced by block diagonal method 2 like the coefficient of the new
regularization term (see Eq. 1) and the pruning modulus cutoff.

In ShuffleNet, Zhang et al. note that when multiple group convolutions are
stacked together this can block information flow between channel groups and
weaken representation [29]. To correct for this, they suggest dividing the channels
in each group into subgroups, and shuffling the outputs of the subgroups in this
layer before feeding them to the next layer. Applying this approach to block inner
product layers requires either moving entries in memory or doing more, smaller
matrix products. Both of these options would hurt efficiency. Using pruning to
achieve the block diagonal structure, as in method 2, also addresses information
flow. Pruning does add some work to the training iterations, but, unlike the

Neural Networks with Block Diagonal Inner Product Layers 57

ShuffleNet method, does not add work to the final execution of the trained
network. After pruning is complete, the learned weights are the result of a more
complete picture; while the information flow has been constrained, it is preserved
like a ghost in the remaining weights. Another alternative is to randomly shuffle
whole blocks each pass like in the “random sparse convolution” layer in the CNN
library cuda-convnet [12]. We found that for the inner product layers in LeNet-5
and Krizhevsky’s Cuda-convnet, the ShuffleNet method did not show as much
improvement in accuracy as randomly shuffling the whole blocks, so we do not
include results using the ShuffleNet method.

Table 1 shows the accuracy results for block diagonal method 1, method 1
with random block shuffling, method 2 and traditional iterative pruning, which
uses the penalty method to prune weight entries not subject to any confinement
or organization. We show accuracy results for the most condensed net with block
diagonal inner product layers and the net with the fastest speedup in the inner
product layers.

Table 1. Accuracy results on MNIST, SVHN, and CIFAR10 datasets.

Method 1 Rand. shuff Method 2 Trad. it. prune

MNIST (99.11% accurate when using FC)

(10, 1)-BD 98.83% 98.81% 99.02% 99.04%

(100, 10)-BD 98.39% 98.42% 98.65% 98.55%

SVHN (91.96% accurate when using FC)

(8, 1)-BD 91.39% 91.46% 91.88% 91.15%

(64, 2)-BD 89.21% 89.69% 90.02% 90.93%

CIFAR10 (76.29% accurate when using FC)

(8, 1)-BD 75.07% 75.09% 76.05% 75.64%

(64, 2)-BD 72.7% 73.45% 74.81% 75.18%

MNIST. We experimented on the MNIST dataset with the LeNet-5 frame-
work [15] using a training batch size of 64 for 10000 iterations. LeNet-5 has
two convolutional layers with pooling followed by two inner product layers with
ReLU activation. FC achieves a final accuracy of 99.11%. In all cases testing
accuracy remains within 1% of FC accuracy.

Using traditional iterative pruning with L2 regularization, as suggested in [4],
pruning until 4000 and 500 nonzero entries survived in ip1 and ip2 respectively
gave an accuracy of 98.55%, but the forward multiplication was more than 8
times slower than the dense fully connected case (See Fig. 3 Left). Implementing
(100, 10)-BD method 2 with pruning using 15 dense iterations and 350 pruning
iterations gave a final accuracy of 98.65%. (10, 1)-BD yielded ≈1.4× speedup
for all gradient descent matrix products in both inner product layers after any
pruning is complete, and (100, 10)-BD condensed the inner product layers in
LeNet-5 ≈81 fold.

58 A. Nesky and Q. F. Stout

SVHN. We experimented on the SVHN dataset with Krizhevsky’s cuda-
convnet [11] using batch size 100 for 9000 iterations. Cuda-convnet has three
convolutional layers with ReLu activation and pooling, followed by two fully
connected layers with no activation. (8, 1)-BD yielded ≈1.5× speedup for all
gradient descent matrix products in both inner product layers when purely block
diagonal, and (64, 2)-BD condensed the inner product layers in Cuda-convnet
≈47 fold.

Using FC we obtained a final accuracy of 91.96%. Table 1 shows all methods
stayed under a 2.5% drop in accuracy. Using traditional iterative pruning with
L2 regularization until 1024 and 320 nonzero entries survived in the final two
inner product layers respectively gave an accuracy of 90.93%, but the forward
multiplication was more than 8 times slower than the dense fully connected com-
putation. On the other hand, implementing (64, 2)-BD method 2 with pruning,
which has corresponding numbers of nonzero entries, with 500 dense iterations
and <1000 pruning iterations gave a final accuracy of 90.02%. This is ≈47 fold
compression of the inner product layer parameters with only a 2% drop in accu-
racy when compared to FC.

CIFAR10. We experimented on the CIFAR10 dataset with Krizhevsky’s cuda-
convnet [11] using batch size 100 for 9000 iterations. Using FC we obtained a
final accuracy of 76.29%. Table 1 shows all methods stayed within a 4% drop in
accuracy. Using traditional iterative pruning with L2 regularization until 1024
and 320 nonzero entries survived in the final two inner product layers gave an
accuracy of 75.18%, but again the forward multiplication was more than 8 times
slower than the dense fully connected computation. On the other hand, imple-
menting (64, 2)-BD method 2 with pruning, which has corresponding numbers
of nonzero entries, with 500 dense iterations and <1000 pruning iterations gave
a final accuracy of 74.81%. This is ≈47 fold compression of the inner product
layer parameters with only a 1.5% drop in accuracy. The total forward runtime
of ip1 and ip2 in (64, 2)-BD is 1.6 times faster than in FC. To achieve comparable
speed with sparse format we used traditional iterative pruning to leave 37 and
40 nonzero entries in the final inner product layers giving an accuracy of 73.01%.
Thus implementing block diagonal layers with pruning yields comparable accu-
racy and memory condensation to traditional iterative pruning with faster final
execution time.

Whole node pruning decreases the accuracy more than corresponding reduc-
tions in the block diagonal setting. Node pruning until ip1 had only 2 outputs,
i.e. a 1024 × 2 weight matrix, and ip2 had a 2 × 10 weight matrix for a total of
2068 weights between the two layers gave a final accuracy of 59.67%. (64, 2)-BD
has a total of 1344 weights between the two inner product layers and had a final
accuracy 15.14% higher with pruning.

The final accuracy on an independent test set was 76.29% on CIFAR10 using
the FC net while the final accuracy on the training set itself was 83.32%. Using
the (64, 2)-BD net without pruning, the accuracy on an independent test set
was 72.49%, but on the training set was 75.63%. With pruning, the accuracy of

Neural Networks with Block Diagonal Inner Product Layers 59

(64, 2)-BD on an independent test set was 74.81%, but on the training set was
76.85%. Both block diagonal methods decrease overfitting; the block diagonal
method with pruning decreases overfitting slightly more.

5 Conclusion

We have shown that block diagonal inner product layers can reduce network size,
training time and final execution time without significant harm to the network
performance.

While traditional iterative pruning can reduce storage, the scattered surviv-
ing weights make sparse computation inefficient, slowing down both training
and final execution time. Our block diagonal methods address this inefficiency
by confining dense regions to blocks along the diagonal. Without pruning, block
diagonal method 1 allows for faster training time. Method 2 preserves the learn-
ing with focused, structured pruning that reduces computation for speedup dur-
ing execution. In our experiments, method 2 saw higher accuracy than the purely
block diagonal method. The success of method 2 supports the use of pruning as
a mapping from large dense architectures to more efficient, smaller, dense archi-
tectures. Both methods make larger network architectures more feasible to train
and use since they convert a fully connected layer into a collection of smaller
inner product learners working jointly to form a stronger learner. In particular,
GPU memory constraints become less constricting.

There is a lot of room for additional speedup with block diagonal layers.
Dependency between layers poses a noteworthy bottleneck in network paral-
lelization. With structured sparsity like ours, one no longer needs a full barrier
between layers. Additional speedup would be seen in software optimized to sup-
port weight matrices with organized sparse form, such as blocks, rather than
being optimized for dense matrices. For example, for many small blocks, one can
reach up to 6 fold speedup with specialized batched matrix multiplication [9].
Hardware has been developing to better support sparse operations. Block for-
mat may be especially suitable for training on evolving architectures such as
neuromorphic systems. These systems, which are far more efficient than GPUs
at simulating mammalian brains, have a pronounced 2-D structure and are ill-
suited to large dense matrix calculations [1,18].

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship under Grant No. DGE-1256260. This
work used the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant number OCI-1053575. Specif-
ically, it used the Bridges system, which is supported by NSF award number ACI-
1445606, at the Pittsburgh Supercomputing Center (PSC).

60 A. Nesky and Q. F. Stout

References

1. Boahen, K.: Neurogrid: a mixed-analog-digital multichip system for large-scale
neural simulations. Proc. IEEE 102(5), 699–716 (2014)

2. Chollet, F.: Xception: deep learning with depthwise separable convolutions.
arXiv:1610.02357 (2017)

3. Han, S., et al.: Deep compression: compressing deep neural networks with pruning,
trained quantization and Huffman coding. In: ICLR (2015)

4. Han, S., et al.: Learning both weights and connections for efficient neural networks.
In: NIPS, pp. 1135–1143 (2015)

5. He, T., et al.: Reshaping deep neural network for fast decoding by node-pruning.
In: IEEE ICASSP, pp. 245–249 (2014)

6. Herculano-Houzel, S.: The remarkable, yet not extraordinary, human brain as a
scaled-up primate brain and its associated cost. PNAS 109(Supplement 1), 10661–
10668 (2012)

7. Hinton, G., et al.: Distilling the knowledge in a neural network. In: NIPS (2014)
8. Ioannou, Y., et al.: Deep Roots: improving CNN efficiency with hierarchical filter

groups. In: CVPR (2017)
9. Jhurani, C., et al.: A GEMM interface and implementation on NVIDIA GPUs for

multiple small matrices. J. Parallel Distrib. Comput. 75, 133–140 (2015)
10. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical

report, Computer Science, University of Toronto (2009)
11. Krizhevsky, A.: Cuda-convnet. Technical report, Computer Science, University of

Toronto (2012)
12. Krizhevsky, A.: Cuda-convnet: high-performance C++/CUDA implementation of

convolutional neural networks (2012)
13. Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural net-

works. In: NIPS, pp. 1106–1114 (2012)
14. Lebedev, V., et al.: Fast convnets using group-wise brain damage. In: CVPR (2016)
15. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc.

IEEE 86(11), 2278–2324 (1998)
16. LeCun, Y., et al.: The MNIST database of handwritten digits. Technical report
17. Masliah, I., et al.: High-performance matrix-matrix multiplications of very small

matrices. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp.
659–671. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43659-3 48

18. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345(6197), 668–673 (2014)

19. Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learn-
ing. In: NIPS (2011)

20. Nickolls, J., et al.: Scalable parallel programming with CUDA. ACM Queue 6(2),
40–53 (2008)

21. Reed, R.: Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4(5), 740–747
(1993)

22. Sainath, T.N., et al.: Low-rank matrix factorization for deep neural network train-
ing with high-dimensional output targets. In: IEEE ICASSP (2013)

23. Simonyan, K., et al.: Very deep convolutional networks for large-scale image recog-
nition. arXiv:1409.1556 (2014)

24. Sindhwani, V., et al.: Structured transforms for small-footprint deep learning. In:
NIPS, pp. 3088–3096 (2015)

http://arxiv.org/abs/1610.02357
https://doi.org/10.1007/978-3-319-43659-3_48
http://arxiv.org/abs/1409.1556

Neural Networks with Block Diagonal Inner Product Layers 61

25. Srinivas, S., et al.: Data-free parameter pruning for deep neural networks.
arXiv:1507.06149 (2015)

26. Wen, W., et al.: Learning structured sparsity in deep neural networks. In: NIPS,
pp. 2074–2082 (2016)

27. Yuan, M., et al.: Model selection and estimation in regression with grouped vari-
ables. J. Royal Stat. Soc. Ser. B 68(1), 49–67 (2006)

28. Zeiler, M.D., et al.: Visualizing and understanding convolutional networks.
arXiv:1311.2901 (2013)

29. Zhang, X., et al.: ShuffleNet: an extremely efficient convolutional neural network
for mobile devices. arXiv:1707.01083 (2017)

http://arxiv.org/abs/1507.06149
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1707.01083

Training Neural Networks Using
Predictor-Corrector Gradient Descent

Amy Nesky(B) and Quentin F. Stout

Computer Science and Engineering, University of Michigan,
Ann Arbor, MI 48109, USA
{anesky,qstout}@umich.edu

Abstract. We improve the training time of deep feedforward neural
networks using a modified version of gradient descent we call Predictor-
Corrector Gradient Descent (PCGD). PCGD uses predictor-corrector
inspired techniques to enhance gradient descent. This method uses a
sparse history of network parameter values to make periodic predictions
of future parameter values in an effort to skip unnecessary training iter-
ations. This method can cut the number of training epochs needed for a
network to reach a particular testing accuracy by nearly one half when
compared to stochastic gradient descent (SGD). PCGD can also outper-
form, with some trade-offs, Nesterov’s Accelerated Gradient (NAG).

Keywords: Neural networks · Accelerated gradient methods

1 Introduction

The immense expressional power of artificial neural networks has advanced
machine learning and data science a great deal. Large networks can achieve
unprecedented accuracy in intricate learning problems, yet their size consumes
significant computational resources and, consequently, time [13]. Advances in
compute power allow neural networks with millions of parameters to be trained
on enormous, complex data sets, and the use of GPUs has decreased training
time drastically, but new techniques for reducing network training time must
arise for deep learning to progress.

In this work, we propose a new training technique called Predictor-Corrector
Gradient Descent (PCGD) that reduces the number of iterations required to
learn. In PCGD we monitor the trend of the parameters as the network learns
with gradient descent, and periodically adjust each parameter by inferring future
values from the trend. A number of standard gradient descent iterations between
predictions act to refine the predicted approximations. This alternating process
works in much the same way that predictor-corrector methods for solving ordi-
nary differential equations work. We will show that incorporating prediction into
the training process of networks makes learning significantly more efficient.

The human brain already utilizes predictions. Predictions are crucial to sur-
vival because they allow us to respond more appropriately to our surroundings
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 62–72, 2018.
https://doi.org/10.1007/978-3-030-01424-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_7&domain=pdf

Training Neural Networks Using Predictor-Corrector Gradient Descent 63

and they improve reaction time. Perception is also impacted by brain predic-
tions: our perceptions are a combination of expectations and sensory information
[7,14]. Thus, if we wish to improve artificial neural network efficiency, integrating
prediction into training is a natural modification.1

2 Related Work

There is a plethora of work that supplements standard gradient descent in
hopes of improving neural network training. Gradient noise and stale gradients
have been successful adaptations to gradient descent [8,15]. Adaptive Gradi-
ent techniques give frequently occurring features low learning rates and infre-
quent features high learning rates; these methods use the information theoretic
idea that infrequent features carry more information about the data distribution
[5,6,10,23,24]. Momentum and Nesterov’s Accelerated Gradient (NAG) accumu-
late a descent direction across iterations to alleviate zig-zagging and accelerate
convergence [17,19] . There are also meta-learning methods that allow networks
to be trained jointly with their learning algorithm. Meta-methods may intelli-
gently adjust hyperparameters like the learning rate, or learn the entire update
term perhaps as a function of the batched gradient [1,4]. Each of these tech-
niques complement gradient descent to improve network learning and can be
used in conjunction with our methods.

Prediction-correction methods are traditionally used in numerical analysis
to integrate ordinary differential equations [22]. Since their inception, predictor-
corrector methods have been used in a variety of fields that require optimization
like theoretical study of chemical reactions and time-varying convex optimization
[9,21]. Prediction-correction has been incorporated into neural network training
in the past by convolving a pair of neural networks, a prediction network and a
correction network [25,26].

Scieur et al. propose a related learning algorithm to the one presented in this
paper called Regularized Nonlinear Acceleration (RNA) [20]. RNA computes
estimates of the optimum from a nonlinear average of a history of iterations
produced by an optimization method like gradient descent. Like in RNA, the
prediction step in PCGD is based on a history of parameter values obtained
with gradient descent. However, our predictions use parameter specific linear
regression rather than a nonlinear average of complete historical iterations. Mak-
ing parameter specific predictions with linear regression allows our method to
update predictions incrementally, which removes the need to keep all historical
iterations relevant to a particular prediction. RNA must store the entire iteration
history relevant to a particular prediction, which makes this method unfeasible
for training large neural networks.

1 One caution ought to be mentioned here: brain predictions also enable prejudices,
so one must be careful how much trust is placed in predictions.

64 A. Nesky and Q. F. Stout

3 Methodology

PCGD uses best fit predictions and stochastic gradient descent in tandem. When
estimating the trend in the network parameters through training, we will use fit
functions for which the least squares problem has a closed form solution using
the normal equations. One could use more complex fit functions, but we want to
avoid needing an extra iterative process. Using only least squares problems with
closed form solutions to make parameter predictions also saves memory because
they can be solved incrementally, avoiding the need to store a long history of
network snapshots.

We will define the algorithm around the gradient descent iterations. We will
make parameter predictions every p gradient descent iterations and collect snap-
shots of the network parameters every sth gradient descent iteration where p > s
and s|p. Parameter predictions only consider the previous p/s network snapshots.
Since p > s, only a sparse history of snapshots are considered. We’ll call p the
prediction increment and s the snapshot increment. For the remainder of this
paper, the variables p and s will retain this definition.

Suppose our network has n weight and bias parameters. Let f(a, x) :
R

c × R → R be our chosen fit function class for parameter prediction. For
each network parameter, θ, we aim to solve for a, such that f(a, x) estimates a
future value of θ for a chosen prediction length x. f(a, x) has c unknowns where
c ≤ p/s. Define F (A, x) : Rc×n × R → R

n such that the ith entry of F (A, x) is
f(ai, x) where ai is the ith column of A. When using PCGD, network parameter
vector θ ∈ R

n receives the update,

vt = − ε∇L(θt)

θt+1 =

{
F (At+1, lt+1) if t + 1 ≡ 0 mod p

θt + vt otherwise

(1)

where L is the desired loss function, ε is some learning rate, lt+1 ≥ p/s is an
increasing prediction length and At+1 ∈ R

c×n, minimizes the L2-norms of the
columns of JAt+1 − Θt+1. Here, J ∈ R

(p/s)×c has entries Ji,j = ∂f(a, i)
/
∂aj ,

and the ith row of Θt+1 is the vector θ�
t+1−p+is for i < p/s and θ�

t + v�
t for

i = p/s.2 Note that the columns of At+1 each solve independent least squares
problems for particular network parameters; the systems are overdetermined
if c < p/s. We use one fit function class, f , but calculate network-parameter
specific fit function variables. One could easily add regularizers or momentum
to the velocity term, vt. lt+1 is an increasing prediction length dependent on the
gradient descent iteration, but one could also consider an adaptive, or parameter
specific prediction length. Iterations, t, in which t ≡ 0 mod p constitute the
‘predictive’ step in PCGD, and all other gradient descent iterations comprise
the ‘corrective’ step.

We solve for prediction fit function variables At+1 incrementally so as to
minimize the extra storage required to perform PCGD. Fit function variables
2 Note that the jacobian, J , is not specific to the column of At+1.

Training Neural Networks Using Predictor-Corrector Gradient Descent 65

are updated at snapshot intervals. Let Θ
(i)
t+1 denote the shorter matrix containing

only the first i rows of Θt+1. Similarly, J (i) is the shorter matrix containing only
the first i rows of J . When c snapshots have been recorded, we solve J (c)At+1 =
Θ

(c)
t+1 for the fit function variable matrix At+1; with c snapshots J (c)At+1 = Θ

(c)
t+1

is a determined system. After this initial solve, only At+1 must still be stored,
Θ

(c)
t+1 is no longer needed. At snapshot intervals c+1 through p/s we update the

fit function variable matrix using the incremental least squares algorithm found
in [3]. That is, for i ∈ [c + 1, p/s], we update,

At+1 ← At+1 + yi

((
θ
(i)
t+1

)�
− j�

i At+1

)
(2)

where
(
θ
(i)
t+1

)�
is the ith row in Θt+1, j�

i is the ith row of J , and yi is the

solution to
(
J (i)

)�
J (i)yi = ji.

This process then repeats writing over old fit function variables and param-
eter history in memory. Since fit functions variables are parameter specific, they
can be updated layer-wise. If a network has n total parameters, PCGD requires
storing at most an additional O(cn) values in memory at any one time during
training when using a fit function with c unknowns. The size of the extra storage
is c times the size of layers not being currently being updated plus at most 2c
times the size of the layer currently being updated.

By using an incremental least squares approach and solving for parameter
specific best fit functions, we are able to conserve memory during training; with-
out this approach one would need to store np/s parameter history values. This
makes PCGD a feasible technique for training large networks provided c is small.
Given the same history, RNA would solve for p/s coefficients for p/s entire net-
work snapshots to obtain a nonlinear average of the whole snapshots [20]. Hence,
RNA would require storing all np/s parameter history values. However, for the
memory conservation afforded by incrementally updating fix functions, one pays
a little extra work. Rather than solving for At+1 directly, one must perform
p/s − c + 1 incremental updates to At+1.

It should be noted that this is a general adaptation to stochastic gradient
descent that is not specific to neural networks. This method may also appropriate
for other high dimensional optimization problems.

4 Relationship to Nesterov’s Accelerated Gradient

One could make predictions every iteration, which would bring our method closer
to some existing accelerated gradient schemes. If one made predictions every
iteration using a linear fit function our algorithm could be written,

66 A. Nesky and Q. F. Stout

zt =

⎧⎨
⎩

θt if t < p

A�
t

[
1 lt

]�
otherwise

θt+1 =zt − ε∇L(zt)

where At minimizes the L2-norms of the columns of JAt−Θt. Here, J ∈ R
(p/s)×2

has
[
1i−1 2i−1 · · · (p/s)i−1

]� for its ith column vector, and Θt ∈ R
(p/s)×n has

θ�
t−p+is for its ith row vector. With p = 2 and s = 1, this begins to look quite a

bit like NAG algorithm which makes the update,

zt =(1 − γt−1)θt + γt−1θt−1 with z0 = θ0

θt+1 =zt − ε∇L(zt)

for specifically chosen series {γt}∞
t=0. With lt = 2 − γt−1 these methods are

identical. For continuously differentiable, smooth, convex loss functions NAG
can achieve a global convergence rate of O(1/t2) [2,17]. A natural extension of
NAG incorporates a history of three points such that the update is

λt =
(

1 +
√

1 + 4λ2
t−r

) /
2

zt =

{
λt−1
λt

θt + (λt−1)
λt

θt−r+1 − (λt−1−1)
λt

θt−r if t > r

θt otherwise

θt+1 =zt − ε∇L(zt)

(3)

where λ0, · · · , λr−1 = 0 and r ∈ Z
>0.

Theorem 1. Let L be a convex, continuously differentiable and β-smooth func-
tion that admits a minimizer θ∗ ∈ R

n. Given an arbitrary initialization θ0 ∈ R
n,

for T > r and ε = 1/β, update scheme (3) satisfies,

T∑
t=T−r

	(t + 1)/r
2 (L(θt+1) − L(θ∗)) ≤ 2β‖zr − θ∗‖22.

When r = 1 this reduces to NAG . If in addition we assume strong convexity
of our objective function L the convergence rate becomes clearer.

Corollary 1. Let L be strongly convex with parameter m > 0, continuously
differentiable and β-smooth function that admits a minimizer θ∗ ∈ R

n. Given
an arbitrary initialization θ0 ∈ R

n, for T > r and ε = 1/β, update scheme (3)
satisfies,

T∑
t=T−r

	(t + 1)/r
2 (L(θt+1) − L(θ∗)) ≤β2‖θ0 − θ∗‖22
mr

.

Training Neural Networks Using Predictor-Corrector Gradient Descent 67

The order of r in the denominator on each side of the above inequality is
the same. Hence, for m = β, mint∈{T−r,··· ,T}{L(θt+1) − L(θ∗)} converges at
the same rate as NAG. The proof of Theorem 1 and Corollary 1 can be found in
Appendix A [16].

In this well-behaved, theoretical environment, updating based on a linear
combination of older values maintains the convergence rate of NAG. However,
update method (3) is not practical for deep learning because it requires r× the
memory to save a history of network parameter values. Instead, making param-
eter predictions every pth iteration, as in update method (1), makes the addi-
tional memory requirement significantly more practical. In the setting of neural
network parameters, update method (1) has the capacity to outperform NAG.
Considering an evenly distributed history of values extending further in the past
allows one to de-noise trends. By incorporating a longer history, method (1) can
afford to make predictions further into the future while minimizing additional
memory requirements.

In comparison to NAG, employing update scheme (1) requires more memory
for the fit function variables At, but performs less work as snapshot increment
s and prediction increment p increase since fit function updates and parameter
predictions happen less often. One must strike a balance though: for large p
and large p/s one should be able to predict network parameters with more
confidence provided the chosen fit function is well suited for the trend, but large
p will exhibit delayed performance. Method (1) introduces a number of new
hyperparameters that can be tuned for a particular task.

5 Experimental Results

The goal of our approach is to decrease the number of training epochs needed for
a network to reach a particular testing accuracy. To test this, we ran experiments
on the SVHN [18], and CIFAR10 [11] datasets using Krizhevsky’s cuda-convnet
with 4 hidden layers [12]. This net does not produce state-of-art accuracies for
these datasets, but rather highlights the improvement seen by PCGD when com-
pared to SGD. We implement our work in Caffe, which provides this architecture
in their CIFAR10 “quick” example. We trained using batch size 100. Unless oth-
erwise specified, hyperparameters and initialization distributions provided by
Caffe’s “quick” architecture are left unchanged. All experiments are run on the
Bridges’ NVIDIA P100 GPUs through the Pittsburgh Supercomputing Center.
Training is done with batched gradient descent using the cross-entropy loss func-
tion on the softmax of the output layer.

In this paper we will only use linear fit functions to make parameter pre-
dictions. That is, the fit function class is f(a, x) = a1 + a2x and the number
of fit function variables to solve for each network parameter is c = 2. In this
case, a network with n parameters requires storing an additional 2n values. If
m is the maximum number of iterations we will train, p is the prediction incre-
ment and s is the snapshot increment, define g(d,u)(b, t) = b1 + b2 (t/p)d where
and b is chosen such that g(d,u)(b, 0) = p/s + u1 and g(d,u)(b,m) = p/s + u2

68 A. Nesky and Q. F. Stout

for some u1, u2 ∈ [0, 2p/s], u1 < u2. We chose our prediction length such that
lt = g(d,u)(b, t). This means that at iteration p, PCGD tries to predict what
the network weights will be at iteration p + su1 and sets the weights to those
predicted values. Similarly, at iteration m, PCGD would try to predict what
the network weights would be at iteration m + su2, but we do not make the
last, or last few, predictions because immediately after predicting there is often
a slight drop in accuracy that needs to be corrected by some gradient descent
steps. This slight drop after predicting could be minimized by less aggressive
predictions or better fit function choices, but we chose to simply leave out the
last few predictions. It is a good idea to have u1 small because parameter trends
can alter and we do not want to be over-influenced by start-up trends.1

We will compare PCGD with NAG and SGD. We also consider a hybrid
method combining NAG and PCGD, abbreviated as NAG-PCGD. To combine
the two methods we nest NAG updates inside PCGD updates; the update scheme
for NAG-PCGD is written out explicitly in Appendix B [16]. When training
with PCGD and NAG-PCGD, we use prediction increment p = 150, snapshot
increment s = 15 for all of our experiments. When plotting accuracy results, we
will plot the maximum testing accuracy seen so far by that training iteration
against iterations. While training, testing accuracy is usually noisy, which can
obscure differences in performance when comparing different methods. Plotting
the maximum testing accuracy seen so far displays these differences more clearly.
There was no noticeable difference in the amount of noise seen in the testing
accuracy for the various methods in our experiments.

5.1 SVHN

We experimented on the SVHN dataset with Krizhevsky’s cuda-convnet [12].
The base learning rate was 0.001 and dropped by a factor of 10 after 4,000
iterations. Testing took place every 50 training iterations. When training with
PCGD and NAG-PCGD, we use prediction length lt = g(6,[5,10])(b, t).

Figure 1 (Left) plots the maximum accuracy seen so far against iterations
using standard SGD, NAG, PCGD and NAG-PCGD. Figure 1 (Right) plots the
slopes of the curves in Fig. 1 (Left) versus iteration. We show the iterations of
steepest accuracy increase to highlight the difference in convergence rates of the
various methods. NAG and NAG-PCGD initially increase at nearly the same
rate which is ≈4× faster than PCGD and SGD. Around iteration 450 PCGD
leaves behind SGD, begins to catch up to NAG and eventually supersedes it.
NAG-PCGD tends to hug the top of all the other curves exhibiting the benefits
of both sub-methods. Confined to 2000 iterations, NAG-PCGD gives the best
results. At iterations 4000 when the learning rate decreases by a factor of 10,
there is another jump in accuracy where we can see the difference in convergence
rates again on a smaller scale.

After 9000 iterations, the network trained using traditional SGD achieves
a final accuracy of 91.96%, NAG has a final accuracy of 92.38%, PCGD has
a final accuracy of 92.42%, and NAG-PCGD has a final accuracy of 92.34%.
SGD hit a maximum testing accuracy of 92.06% at iteration 8600, NAG took

Training Neural Networks Using Predictor-Corrector Gradient Descent 69

4700 iterations to reach this accuracy level, PCGD also took 4700 iterations
and NAG-PCGD took 5100 iterations. That is, PCGD reached SGD’s testing
maximum in just over half the number of training iterations that SGD took.

1000 2000 3000 4000
Iterations

65

70

75

80

85

90

95

A
cc

ur
ac

y SGD
NAG
PCGD
NAG-PCGD

0 200 400 600 800 1000
Iterations

0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y
Sl

op
e SGD

NAG
PCGD
NAG-PCGD

Fig. 1. (Left) Maximum accuracy results on the SVHN data set. Testing takes place
every 50 training iterations (Right) slope of left figure versus iterations.

5.2 CIFAR10

We also trained Krizhevsky’s cuda-convnet on the CIFAR10 for 195,000 iter-
ations. The base learning rate was 0.001. We dropped the learning rate by a
factor of 10 after 60,000 iterations and again after 125,000 iterations. Testing
took place every 250 training iterations. We used lt = g(4,[5,10])(b, t) for our
prediction length at prediction intervals.

Figure 2 (Left) shows maximum accuracy results through training using SGD,
NAG, PCGD and NAG-PCGD. Again, we show only the iterations of steepest
accuracy increase. Here, the testing increment is larger than our prediction incre-
ment which may hide any initial convergence advantage of NAG over PCGD.
Given more time to excel, PCGD shows performance advantages over NAG;
NAG does not even consistently outperform SGD per iteration. At any one time,
NAG is at most 3.18% more accurate than SGD, PCGD is at most 3.91% more
accurate than SGD, and NAG-PCGD is at most 6.49% more accurate than SGD.

Figure 2 (Right) shows, for a given accuracy, the percent of SGD iterations
each method took to reach that accuracy. That is, if it took SGD x iterations
to reach a particular accuracy for the first time, and PCGD took y iterations
to reach that accuracy for the first time, then the value plotted for PCGD at
that accuracy is 100× y/x. This figure shows PCGD generally reaching particu-
lar accuracies before SGD and NAG-PCGD generally reaching accuracies before
PCGD. SGD took 114,000 iterations to become 81.7% accurate. Training with
NAG yielded 81.7% accuracy in 73% of the iterations required by SGD to reach
this accuracy, training with PCGD yielded 81.7% accuracy in 56% of the itera-
tions required by SGD and training with NAG-PCGD yielded 81.7% accuracy
in 50% of the iterations required by SGD. That is, PCGD took only 77% of the
iterations required by NAG to reach 81.7% accuracy.

70 A. Nesky and Q. F. Stout

For these values of s and p, using PCGD does not noticeably increase the
average iteration runtime when compared with SGD. For both methods, the aver-
age forward-backward pass took ≈46 ms when using batch size 100 on Bridges’
NVIDIA P100 GPU; time was measured using caffe time benchmarks.

Fig. 2. Results on the CIFAR10 data set. (Left) Maximum accuracy versus iterations.
Testing takes place every 250 training iterations. (Right) Percent of SGD iterations
each method took to reach a particular accuracy.

6 Conclusion

We have developed a general adaptation to gradient descent and considered the
impact in the case of training neural networks. Predictor-Corrector Gradient
Descent reduces the number of iterations required to learn by incorporating
traditional predictor-corrector inspired ideas into classic gradient descent.

We have shown that PCGD can significantly decreases the number of train-
ing epochs needed for a network to reach a particular testing accuracy when
compared to stochastic gradient descent. On both datasets considered, PCGD
reduced the number of required iterations to reach SGD maximum accuracy by
nearly one half. When two identical networks are allowed to train for the same
number of iterations, the networks trained using PCGD regularly outperforms
the network trained using SGD. We have also shown that PCGD can outperform
Nesterov’s Accelerated Gradient for more complex learning problems requiring
more training. By substantially reducing the number of iterations required to
reach a particular accuracy, PCGD can make training large networks more fea-
sible in cases where one can afford to increase the training storage by a small
constant multiple.

We have also considered the theoretical case of a strongly convex, contin-
uously differentiable and smooth objective function and showed that updating
parameters as a linear combination of historical values preserves the convergence
rate of NAG. Although our experimental environment is far from this hypotheti-
cal one, this theory holds true when using PCGD to train neural networks. After
an initial delay, we found PCGD can outperform NAG.

Training Neural Networks Using Predictor-Corrector Gradient Descent 71

In this work, we only used linear fit functions and a single prediction length
for every network parameter. These choices worked well, but there is room for
additional exploration. One may see further improvement by using a dynamic
value for the prediction interval p.

Acknowledgments. This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under Grant No. DGE-1256260.
This work used the Extreme Science and Engineering Discovery Environment, which
is supported by National Science Foundation grant number OCI-1053575. Specifically,
it used the Bridges system, which is supported by NSF award number ACI-1445606,
at the Pittsburgh Supercomputing Center.

References

1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
In: NIPS (2016)

2. Beck, A., et al.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

3. Cassioli, A., et al.: An incremental least squares algorithm for large scale linear
classification. Eur. J. Oper. Res. 224(3), 560–565 (2013)

4. Daniel, C., et al.: Learning step size controllers for robust neural network training.
In: AAAI (2016)

5. Dozat, T.: Incorporating Nesterov momentum into Adam. In: ICLR Workshop
(2016)

6. Duchi, J., et al.: Adaptive subgradient methods for online learning and stochastic
optimization. JMLR 12, 2121–2159 (2011)

7. Heeger, D.J.: Theory of cortical function. Proc. Natl. Acad. Sci. USA 114(8),
1773–1782 (2016)

8. Ho, Q., et al.: More effective distributed ML via a stale synchronous parallel param-
eter server. In: NIPS, pp. 1223–1231 (2013)

9. Hratchian, H., et al.: Steepest descent reaction path integration using a first-order
predictor-corrector method. J. Chem. Phys. 133(22), 224101 (2010)

10. Kingma, D., et al.: Adam: a method for stochastic optimization. In: ICLR (2015)
11. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical

report, Computer Science, University of Toronto (2009)
12. Krizhevsky, A.: cuda-convnet. Technical report, Computer Science, University of

Toronto (2012)
13. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural net-

works. In: NIPS, pp. 1106–1114 (2012)
14. Luca, M.D., et al.: Optimal perceived timing: integrating sensory information with

dynamically updated expectations. Sci. Rep. 6, 28563 (2016)
15. Neelakantan, A., et al.: Adding gradient noise improves learning for very deep

networks. arXiv:1511.06807 (2015)
16. Nesky, A., et al.: Training neural networks using predictor-corrector gradi-

ent descent: Appendix (2018). http://www-personal.umich.edu/∼anesky/PCGD
appendix.pdf

17. Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate o(1/sqr(k)). Soviet Mathematics Doklady 27, 372–376 (1983)

http://arxiv.org/abs/1511.06807
http://www-personal.umich.edu/~anesky/PCGD_appendix.pdf
http://www-personal.umich.edu/~anesky/PCGD_appendix.pdf

72 A. Nesky and Q. F. Stout

18. Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learn-
ing. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning
(2011)

19. Polyak, B.: Some methods of speeding up the convergence of iteration methods.
USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

20. Scieur, D., et al.: Regularized nonlinear acceleration. In: NIPS (2016)
21. Simonetto, A., et al.: Prediction-correction methods for time-varying convex opti-

mization. In: IEEE Asilomar Conference on Signals, Systems and Computers
(2015)

22. Süli, E., et al.: An Introduction to Numerical Analysis, pp. 325–329 (2003)
23. Tieleman, T., et al.: Lecture 6a - rmsprop. COURSERA: Neural Networks for

Machine Learning (2012)
24. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv:1212.5701

(2012)
25. Zhang, Y., et al.: Prediction-adaptation-correction recurrent neural networks for

low-resource language speech recognition. arXiv:1510.08985 (2015)
26. Zhang, Y., et al.: Speech recognition with prediction-adaptation-correction recur-

rent neural networks. In: IEEE ICASSP (2015)

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1510.08985

Investigating the Role of Astrocyte Units
in a Feedforward Neural Network

Peter Gergel’(B)and Igor Farkaŝ

Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava
Mlynská dolina, 84248 Bratislava, Slovak Republic
peter.gergel@gmail.com, farkas@fmph.uniba.sk

http://cogsci.fmph.uniba.sk

Abstract. Current research in neuroscience has begun to shift perspec-
tive from neurons as sole information processors to including the astro-
cytes as equal and cooperating units in this function. Recent evidence
sheds new light on astrocytes and presents them as important regulators
of neuronal activity and synaptic plasticity. In this paper, we present a
multi-layer perceptron (MLP) with artificial astrocyte units which lis-
ten to and regulate hidden neurons based on their activity. We test the
behavior and performance of this bio-inspired model on two classifica-
tion tasks, N-parity problem and the two-spirals problem and show that
proposed models outperform the standard MLP. Interestingly, we have
also discovered multiple regimes of astrocyte activity depending on the
complexity of the problem.

Keywords: Glial cells · Astrocytes · MLP · Classification
Computational model

1 Introduction

Glial cells, predominantly astrocytes, have gained a lot of attention in neu-
roscience during the last few decades, as compelling evidence has shown that
these cells are no longer considered as passive and supportive but are actively
involved in neuronal regulation and synaptic plasticity [1,12]. The classical view
on astrocytes supports the idea that they are inevitable in the development of
the central nervous system, providing metabolic and physical support to other
neural cells, or maintaining homeostasis. It was assumed that astrocytes were
not able to generate actions potentials similar to neurons, or be involved in brain
functions such as information transfer and processing, learning, and plasticity,
i.e. functions attributed solely to neurons.

However, recent research has challenged this view as it was discovered that
astrocytes were characterized as having resting membrane potential of ∼−80 mV,
pairing ∼1.4 astrocytes for every neuron in the human cortex [3] and encapsu-
lating ∼105 synapses [5]. This led to a novel concept of an intimate connection
between neurons and astrocytes named the tripartite synapse. Moreover, astro-
cytes release gliotransmitters to local neurons and propagate Ca2+ waves using
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 73–83, 2018.
https://doi.org/10.1007/978-3-030-01424-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_8&domain=pdf

74 P. Gergel’ and I. Farkaŝ

a cellular network called glial syncytium, although the signalization occurs on a
much slower time scale ranging from seconds to minutes, as opposed to neurons
whose time scale is milliseconds. This implies the existence of a bidirectional
communication between astrocytes and neurons whose importance is still not
well understood.

Still, it is assumed that the brain function and possibly higher cognition
emerge from the coordinated activity of astrocytes and neurons in neuron–glia
networks [11]. A better understanding of astrocyte–neuron coupling may lead
to providing building blocks for studying the regulatory capability of astrocytic
networks on a larger scale. Computational models of neural networks extended
with artificial glia may not only be used as an interesting novel concept, but
mainly to provide space for hypotheses for the potential roles of glial cells in
biological neuronal circuits and networks.

In this paper we propose a model of a MLP extended with artificial astrocytes
whose role is to regulate neuronal activity. For evaluating the model performance
we chose the classification task using two datasets: N-parity and two spirals. The
paper is organized as follows. Section 2 includes the related work. In Sect. 3, we
describe various versions of the investigated model. In Sect. 4, we provide the
experimental results. Section 5 concludes the paper.

2 Related Work

In computational neuroscience two modeling paradigms have so far been con-
sidered: (1) biophysical with the focus on low–level physical and chemical prop-
erties of a biological system or (2) connectionist which does not try to model
every single aspect of a system, but instead focuses on abstractions. Despite the
plethora of biophysical models of astrocytes, connectionist modeling is still in a
pre-mature state.

The concept of artificial astrocytes in connectionist systems was first intro-
duced in [6] where authors augmented the hidden layer of an MLP with an
astrocytic network whose function was to generate chaotic noise according to
the given tent map formula as a means of avoiding local minima during gradient
optimization. On the two-spirals problem the model achieved better performance
than the regular MLP. Later, the same authors presented multiple works includ-
ing impulse astrocytes with active listening and regulation of neurons based on
their activity [7], Hopfield network augmented with astrocytes [9], or neurogen-
esis driven by astrocytes [8].

Similar approach was taken in [13] and [2] where instead of modeling the
neuronal regulation, the authors focused on modeling synaptic plasticity driven
solely by astrocytes. Using an MLP with combination of evolutionary algo-
rithms they showed that the model with artificial astrocytes was superior to
the model without them. Using computer simulations they demonstrated that
the model was able to learn various problems despite the fact that no gradient-
based method was used for training neural networks.

Finally, in [10], the authors presented a model, SONG-Net, that combines an
MLP, a self-organizing map (SOM) and neuron–glial interactions. By evaluating

Investigating the role of astrocyte units in a feedforward neural network 75

the performance on four tasks, they showed that the proposed model achieved
faster convergence up to twelve times with a lower error rate. However, the
authors did not present glia as individual functional units, but instead they
were used only as an inspiration for the concept of neuronal regulation.

3 Proposed Models

Here we present multiple models, all based on an MLP combined with artificial
astrocytes. We start with a simplest model to allow faster in–depth exploration,
and we gradually move toward adding more complex, yet biologically plausible
mechanisms.

3.1 A-MLP

Since the human cortex contains on average 1.4 astrocytes for each neuron, we
simplify this notion and present a model with the ratio of astrocyte to neu-
ron being 1:1. Inspired by [7] we combine the hidden layer of an MLP with
impulse astrocytes that listen to and modulate neuronal activity of hidden neu-
rons (Fig. 1).

Fig. 1. Basic MLP architecture with astrocyte units (A-MLP). Each hidden neuron
is paired with an astrocyte that listens to and regulates its regime based on activity.
Since we consider binary classification problems, only one output unit is used.

The output of i-th hidden neuron is given by the following formula

hi(t + 1) = f(
M∑

j=0

wijxj(t) + αψi(t)) (1)

76 P. Gergel’ and I. Farkaŝ

where the activation function is

f(net) =
1

1 + exp (−net)
(2)

and the astrocyte activity is modified as

ψi(t) =

{
1, if θ < hi(t − 1)
γψi(t − 1), otherwise

(3)

Each astrocyte contributes, with a weight α, to the activity of the hidden
neuron (Eq. 1). When the neuron output exceeds the given threshold θ, the
astrocyte activation is set to 1 and then starts to decay by a factor γ, where
0 < γ < 1.

Note that the model consists of three free hyperparameters whose optimal
values have to be found experimentally. Since each problem requires a different
set of optimal parameters, finding them requires time-intensive computations.
We try to solve these issues by replacing constant parameters with modifiable
versions.

3.2 A-MLP(α)

Traditionally in supervised model learning, the neuron weights are updated using
a gradient descent method, better known as error backpropagation algorithm.
Since the astrocytic weight in Eq. 1 can be treated as any other weight, we can
apply the same optimization method for its update (derivation of the formula is
provided in appendix).

Next, instead of using a single mutual weight for all astrocytes, we equip each
astrocyte unit with an individual weight. The activation rule for the hidden unit
then becomes

hi(t + 1) = f(
M∑

j=0

wijxj(t) + αiψi(t)) (4)

3.3 A-MLP(θ)

Since we cannot directly update the parameter θ (Eq. 3) using a gradient-based
method, we propose an unsupervised learning rule. It is relatively common that
during training some neurons may get trapped in one of the two extremes, by
becoming either dead or permanently active. The weight update of such neurons
becomes problematic, because the gradient is close to zero and no errors would
propagate through a dead neuron, therefore no update would occur. On the
other hand, weights might grow into large values affecting other neurons in the
network, making the model unstable.

The same issue may happen in artificial astrocytes when the threshold θ
is set too low, making the astrocytes fire all the time, or too high, preventing
the neighboring neurons from exceeding the required activation. Moreover, since

Investigating the role of astrocyte units in a feedforward neural network 77

each neuron in the neural network develops its own role in the classification task,
single shared θ for all neurons may become more of a burden than benefit.

To solve these problems, we propose an individual θi for each astrocyte and
two variations of an update rule. In order to stabilize the astrocytic regime,
we can set the threshold θ either directly to the mean value 〈.〉t (Eq. 5) of an
astrocyte unit or only shift the threshold slightly closer to the mean value (Eq. 6)
using the learning speed ηθ. This forces the astrocyte to move only within its
mean values avoiding the critical values of 0 and 1. With a higher θ it becomes
harder for the neuron to overpass, thus the activity decays and vice versa. Hence,
the update rules are

θi(t + 1) = 〈ψi(t)〉t (5)

and
θi(t + 1) = θi(t) + ηθ(〈ψi(t)〉t − θi(t)) (6)

introducing another free parameter, namely the length of an averaging window.

3.4 A-MLP(γ)

Hyperparameter γ can be updated based on the same principle as explained in
the previous section. This time we update γ to achieve inverse correlation with
the mean value of the astrocytic activity

γi(t + 1) = 1 − 〈ψi(t)〉t (7)

γi(t + 1) = γi(t) + ηγ(1 − 〈ψi(t)〉t − γi(t)) (8)

Higher values of γ are achieved during a lower activity, thus a hypo-excited
astrocyte holds its activation value for a longer period. On the other hand, lower
γ triggers faster output decay forcing the astrocyte to avoid excessive simulation.

3.5 A-MLP(γ, θ), A-MLP(α, γ, θ)

Finally, the last two models are simple combinations of previous ideas. A-MLP
(γ, θ) combines models with dynamic θs and γs and A-MLP(α, γ, θ) includes
dynamic αs as well.

4 Experiments

We assess the performance of all six proposed models and standard MLP (with-
out astrocyte units) as a baseline, on two difficult classification tasks: (1) N-
parity problem and (2) two spirals problem. All results are averaged over 100
simulations with different initial setups. The learning rate in backpropagation
algorithm is set to η = 0.1.

78 P. Gergel’ and I. Farkaŝ

4.1 N-parity Problem

The task is to determine whether a binary input vector has even or odd number
of ones. More formally, an input vector has the form [x1, . . . , xN], xi = {0, 1} and
the target y = (1 +

∑N
i=1 xi) mod 2. Since the problem is notoriously difficult

to generalize to unseen patterns for machine learning algorithms, we train the
models on full dataset (no train/test split) whose total size is 2N .

Starting with MLP, we chose the hidden layer with N neurons (a higher
amount did not yield better results) and output layer of only single neuron (0 =
odd input vector, 1 = even input vector). Proposed models with astrocyte units
had the following values for fixed hyperparameters: α = −0.5, γ = 0.5, θ = 0.5
(previously found using the grid search). In Table 1 we present performance of
all models and although we see models with astrocyte units lead on average to
better performance, the differences are not statistically significant (p > 0.1).

Next, in order to get insight into learned parameters, we displayed the distri-
butions of astrocyte activities (shown in Fig. 2). It can be seen that astrocytes
develop various regimes depending on the problem complexity. With lower N it
is possible to clearly detect N astrocyte regimes, but with higher N the profiles
gradually lose their multimodality, albeit remaining non uniformly distributed.

Table 1. Mean squared error (MSE) + standard deviation of 100 instances on three
parity problems trained for 10000 epochs. Models with astrocyte units yield lower
error rate although no statistical significance was found. In each task, the best model
is denoted with ∗.

Model 4-parity 6-parity 8-parity

MLP 0.081 ± 0.060 0.065 ± 0.035 0.046 ± 0.070

A-MLP 0.083 ± 0.086 0.059 ± 0.034∗ 0.039 ± 0.023

A-MLP(α) 0.080 ± 0.065 0.072 ± 0.054 0.073 ± 0.069

A-MLP(θ) 0.083 ± 0.075 0.065 ± 0.036 0.037 ± 0.021∗
A-MLP(γ) 0.087 ± 0.065 0.062 ± 0.034 0.042 ± 0.026

A-MLP(γ, θ) 0.074 ± 0.051∗ 0.063 ± 0.055 0.042 ± 0.027

A-MLP(α, γ, θ) 0.092 ± 0.072 0.078 ± 0.056 0.056 ± 0.028

4.2 Two-Spirals Problem

The two spirals consist of two interleaved sets of points in 2D space (Fig. 3). The
problem is, given point (x, y), to decide whether it belongs to the first or the
second spiral. This is considered a complex nonlinear problem and hard for a
standard MLP due to a high number of local minima which are generally rather
problematic for gradient-based models.

Investigating the role of astrocyte units in a feedforward neural network 79

Fig. 2. Distributions of astrocyte activity (across 100 simulations) after being fully
trained on a parity problem. With lower N it is possible to detect N peaks assuming
that each astrocyte handles a single bit from an input vector. On the other hand, with
higher N , the peaks become less visible.

Fig. 3. Two-spirals problem where the task is to separate the interleaved classes.

For the simulations we firstly found optimal hyperparameter values for MLP
and then used them in models with astrocyte units. We used N = 30 hidden
neurons (more units did not produce better results), 5000 training epochs and
train/test dataset split in ratio 80:20. For models with astrocytes we found opti-
mal hyperparameters using grid search (presented in Fig. 4) and hence used the
values: α = −0.1, γ = 0.5, θ = 0.1.

Results averaged over 100 simulations are in Table 2 with A-MLP(γ, θ) being
the best model yielding 50% lower error rate compared to the standard MLP.
Similarly we looked at astrocyte activities of the fully trained network and
observed normal distribution shown in Fig. 6.

80 P. Gergel’ and I. Farkaŝ

Fig. 4. Grid search for optimal values of hyperparameters. Each heatmap uses a fixed
single parameter (shown in the title) and displays all combinations for the other two
parameters. Each cell in every heatmap is averaged over 5 simulations with lighter
color denoting better performance.

Table 2. Mean-squared error + standard deviation over 100 instances on the two-spirals
task trained for 5000 epochs. The best model, A-MLP(γ, θ), yields 50% lower error rate
compared to the MLP with statistical significance (p < 0.001) (Fig. 5).

Model Train Test

MLP 0.075 ± 0.067 0.094 ± 0.066

A-MLP 0.073 ± 0.067 0.088 ± 0.068

A-MLP(α) 0.050 ± 0.049 0.078 ± 0.050

A-MLP(θ) 0.034 ± 0.045 0.049 ± 0.046

A-MLP(γ) 0.068 ± 0.065 0.085 ± 0.063

A-MLP(γ, θ) 0.030 ± 0.035∗ 0.051 ± 0.041∗
A-MLP(α, γ, θ) 0.060 ± 0.051 0.095 ± 0.051

Fig. 5. Performance of the best model, A-MLP(γ, θ), compared to MLP on both train-
ing and testing sets.

Investigating the role of astrocyte units in a feedforward neural network 81

Fig. 6. Normal distribution of astrocyte activity (N = 30) at the end of training,
accumulated over 100 simulations.

5 Conclusion

Inspired by [7] and the recent findings from biological research of astrocyte phys-
iology and their interactions with surrounding neurons, we proposed artificial
astrocyte units to be integrated in a MLP.

It is known that astrocytes in CNS form networks in which they communicate
using Ca2+ waves whose purpose according to current knowledge is to regulate
neuronal activity and synaptic plasticity. In this paper we focused exclusively on
neuronal regulation using separate astrocytes each maintaining a single neuron.
Astrocytes contribute in neuronal summation formula (Eq. 4) weighted by the
factor αi which was either constant or dynamic. However, the dynamic change
of a weight along the negative gradient of the loss function does not always
provide better results (as in N-parity problem). We also proposed two methods
for dynamic update of both the astrocyte threshold and the decay (Eqs. 5–8)
with the second formula performing better than the first one which we used in
all our simulations.

We chose two classification problems, N-parity and two spirals, which are
known to be rather problematic for machine learning algorithms, so we used them
for analysis of the performance and behavior of our models. For both problems we
first selected an MLP with optimal parameters (the number of hidden neurons,
the learning rate, initial weight distribution) and then used them in models
with astrocyte units. The results obtained for N-parity did not outperform MLP,
assuming that all models already converged to the global minimum. However, for
the two spirals all our models performed better in terms of the lower errors with
statistical significance (p < 0.001). Both problems developed unique astrocyte
regimes in terms of output distributions whose shape depended on the number
of astrocytes in case of N-parity problem and was gaussian in the two spirals
task. Understanding of this phenomenon requires further investigations.

For our future research we would like to focus on a different set of problems
trying to explain why astrocyte regimes develop and how important they are
for the given problem. We only focused on feedforward models, but it makes
sense to apply the very same idea to recurrent neural networks. Another issue
worth investigation would be to adjust the dynamics of astrocytes. In our models,
astrocyte parameters were updated at the same speed as weights, but it is known

82 P. Gergel’ and I. Farkaŝ

that the dynamics of the biological astrocytes is much slower [4]. Last but not
least, since we only focused on modulations of single neurons, we would like to
connect astrocytes within the syncytium and incorporate their role in synaptic
plasticity.

Acknowledgments. This work was supported by grant UK/256/2018 from Comenius
University in Bratislava (P.G.) and Slovak Grant Agency for Science, project VEGA
1/0796/18 (I.F.)

Appendix: Derivation of the update formula

Here we derive formula for stochastic (online) update of astrocyte weights αi in
models A-MLP(α) and A-MLP(α, θ, γ). The goal is to minimize the loss function
E(w) = 1/2(d − y(x))2, by moving the astrocytic weights along the negative
gradient, i.e. Δαi = −∂E(w)/∂αi. Since E is differentiable with respect to αi,
we can write using the chain rule,

Δαi = −∂E

∂y

∂y

∂nety

∂nety
∂hi

∂hi

∂nethi

∂nethi

∂αi
(9)

Δαi = −
δy︷ ︸︸ ︷

(d − y(x))y(x)(1 − y(x)) wyhi
hi(1 − hi)ψi (10)

Δαi = −
δi︷ ︸︸ ︷

δywyhi
hi(1 − hi) ψi (11)

which yields the final formula:

Δαi = −δiψi (12)

References

1. Allen, N.J., Barres, B.A.: Signaling between glia and neurons: focus on synaptic
plasticity. Curr. Opin. Neurobiol. 15(5), 542–548 (2005)

2. Alvarellos-González, A., Pazos, A., Porto-Pazos, A.B.: Computational models of
neuron-astrocyte interactions lead to improved efficacy in the performance of neural
networks. Comput. Math. Methods Med. (2012). https://doi.org/10.1155/2012/
476324

3. Bass, N.H., Hess, H.H., Pope, A., Thalheimer, C.: Quantitative cytoarchitectonic
distribution of neurons, glia, and DNA in rat cerebral cortex. J. Comp. Neurol.
143(4), 481–490 (1971)

4. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., Smith, S.J.: Glutamate induces
calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941),
470–473 (1990)

5. Halassa, M.M., Fellin, T., Takano, H., Dong, J.H., Haydon, P.G.: Synaptic islands
defined by the territory of a single astrocyte. J. Neurosci. 27(24), 6473–6477 (2007)

https://doi.org/10.1155/2012/476324
https://doi.org/10.1155/2012/476324

Investigating the role of astrocyte units in a feedforward neural network 83

6. Ikuta, C., Uwate, Y., Nishio, Y.: Multi-layer perceptron with chaos glial network.
In: IEEE Workshop on Nonlinear Circuit, Networks, pp. 11–13 (2009)

7. Ikuta, C., Uwate, Y., Nishio, Y.: Multi-layer perceptron with impulse glial network.
In: IEEE Workshop on Nonlinear Circuit, Networks, pp. 9–11 (2010)

8. Ikuta, C., Uwate, Y., Nishio, Y.: Investigation of multi-layer perceptron with pulse
glial chain including neurogenesis. In: IEEE Workshop on Nonlinear Circuit, Net-
works, pp. 70–72 (2014)

9. Ikuta, C., Uwate, Y., Nishio, Y., Yang, G.: Hopfield neural network with glial
network. In: International Workshop on Nonlinear Circuits, pp. 369–372 (2012)

10. Marzouki, K.: Neuro-glial interaction: SONG-Net. In: Arik, S., Huang, T., Lai,
W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 619–626. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26555-1 70

11. Nedergaard, M., Ransom, B., Goldman, S.A.: New roles for astrocytes: redefining
the functional architecture of the brain. Trends Neurosci. 26(10), 523–530 (2003)

12. Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., Haydon, P.G.:
Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483), 744 (1994)

13. Porto-Pazos, A.B., et al.: Artificial astrocytes improve neural network performance.
PLoS ONE 6(4), e19109 (2011)

https://doi.org/10.1007/978-3-319-26555-1_70

Interactive Area Topics Extraction with
Policy Gradient

Jingfei Han1, Wenge Rong1(B), Fang Zhang2, Yutao Zhang2, Jie Tang2,
and Zhang Xiong1

1 School of Computer Science and Engineering, Beihang University, Beijing, China
{jfhan,w.rong,xiongz}@buaa.edu.cn

2 Department of Computer Science and Technology, Tsinghua University,
Beijing, China

{fang-zha15,yt-zhang13}@mails.tsinghua.edu.cn, jietang@tsinghua.edu.cn

Abstract. Extracting representative topics and improving the extrac-
tion performance is rather challenging. In this work, we formulate a novel
problem, called Interactive Area Topics Extraction, and propose a learn-
ing interactive topics extraction (LITE) model to regard this problem
as a sequential decision making process and construct an end-to-end
framework to use interaction with users. In particular, we use recur-
rent neural network (RNN) decoder to address the problem and policy
gradient method to tune the model parameters considering user feed-
back. Experimental result has shown the effectiveness of the proposed
framework.

Keywords: Interactive area topics extraction · RNN decoder
Policy gradient

1 Introduction

Extracting representative topics of an area plays an increasingly important role
in trend analysis or historical analysis. It can help researchers learn overview of
some disciplines or areas, grasp the development trend, and discover the potential
research points [20]. In addition, the newcomers to an area can be guided to find
hot topics by the topics extraction of the area.

Much attention has been paid to extracting hypernym-hyponym relationship
from big corpora or knowledge base [10,18]. In academic vocabulary, extract-
ing hypernym-hyponym relationship is equivalent to the topic of a given area
[1]. However, there are too many topics in an area according to the automatic
extraction from text. For example, the hypernym “AI” (Artificial Intelligence)
includes many coarse-grained hyponym such as “Machine Learning” and fine-
grained hyponym such as “Support Vector Machine”. It is necessary to extract
the representative topics of a given area automatically because people cannot
gain useful information from too many hypernym-hyponym relationship. Earlier
works [2,12] mainly focused on topics extraction from documents but not areas.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 84–93, 2018.
https://doi.org/10.1007/978-3-030-01424-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_9&domain=pdf

Interactive Area Topics Extraction with Policy Gradient 85

Recently, Zhang et al. [20] tried extract topics for areas based on knowledge base
[14], while the overall performance is greatly affected by the knowledge base.
Hence, we try to use additional information such as user feedback to improve
the extraction performance.

Interactive area topics extraction has rarely been explored. The major chal-
lenges lie in formally formulating the problem, extracting the representative
topics with user feedback, and designing experiments and evaluation to prove
the method’s effectiveness. To address the aforementioned challenges, we design
a Learning Interactive Topics Extraction (LITE) to consider topics sequences
extraction of a given area and user feedback and map it into an end-to-end
framework. The major contributions of this paper include: (1) We formulate
interactive area topics extraction as a sequential decision making problem, and
model interaction with users. (2) We propose an LITE, which applies a recurrent
decoder to model the topics generation of a given area and uses policy gradient
based reinforcement learning method to introduce user feedback or interaction.
(3) We design experiments on synthetic dataset to evaluate the proposed model.
Experimental results prove the effectiveness of the proposed model.

2 Related Work

Various approaches have been proposed to extract topics from document and
knowledge base, including topic model and keyphrase extraction. As to topic
model, Blei et al. [2] proposed Latent Dirichlet Allocation (LDA), whose main
idea is that each document consists of many topics and the probability of each
word appearing in the topic is different. The topic’s probability provides an
explicit representation of a specific document. However, it is hard to identify
what topics stand for because topics in LDA are multinomial distributions over
words. We need to label the topics if we need this information. Although many
researchers have conducted extensive research on automation of LDA [9,11],
there is a clear gap between automatic labeling and manual labeling.

Keyphrase extraction mainly includes two approaches: supervised learning
and unsupervised learning. In supervised learning, Jiang et al. [7] sort candidate
keyword set by features. They regard the problem as a ranking problem and
use Ranking SVM to address this problem. In unsupervised learning, Hasan
et al. divide unsupervised learning researches into four groups [6]: graph-based
ranking, topic-based clustering, simultaneous learning, and language modeling.
In addition, Zhang et al. [20] propose a FastKATE model feed knowledge bases
into the model to extract topics of a given area. However, it is difficult to generate
or gain a clean taxonomy. Hence, we try to introduce interaction with users to
improve the performance of extraction.

Many researchers also try to introduce user feedback to improve performance
for their tasks. Yang et al. [19] predict a user’s intention based on user’s feedback
for some questions by their proposed model in order to understand user intention
interactively. Carlson et al. [3] design a knowledge base called NELL, which can
make an iterative learning by interacting with a human for 10–15 min each day.

86 J. Han et al.

Deldjoo et al. [5] use interactive information to alter the recommendation results
so that the recommendation can increase the user satisfaction.

3 Methodology

3.1 Problem Formulation

Firstly we give formal definition of the basic terms in this research. Concept in
the following section refers to a set of all knowledge entities, like a vocabulary
list. It contains any knowledge from coarse-grained concept such as “Computer
Science” to fine-grained concept such as “Backpropagation”. Area is a subset
of concept, whose elements include hyponym concept. Topic is also a subset of
concept, but all topic’s elements have hypernym concept. Let C denote concept
space, X denote area space and Y denote topic space where X ⊂ C and Y ⊂ C,
and an area can be regarded as a topic.

Now the problem we are solving in this research can be formally defined as
follows: Given an specific area x ∈ X and an integer K ∈ Z+, we can extract a
topic set y = {y1, y2, . . . , yK}, which can represent the given area, where y ⊂ Y.
Intuitively, we hope that the extraction result will be closer to the feedback of
most users by tuning our model’s output.

User feedback U will be provided and uik represents the ith user’s evaluation
for the topics extraction of a given area xi. When considering user feedback,
our target is to improve extraction performance with feedback. Thus, a mapping
function f can be learnt, which is formally defined as follows:

f : {x, y, u∗x|x ∈ X , y ⊂ Y, u∗x ∈ U} �→ {ŷ = {ŷi|ŷi ∈ Y, i = 1, 2, . . . ,K}} (1)

where u∗x refers to all feedback of the area x.

3.2 LITE Model

In this research a learning interactive topics extraction (LITE) model is proposed
to obtain topics with user feedback. The model is divided into two steps, i.e.,
pre-training step and updating step, as shown in Fig. 1.

Pre-training. Considering that the length of the topics sequence of a given area
is K, a mapping function from x to {y1, y2, . . . , yK} need to be learnt. Assume
we extracted part of results {y1, y2, . . . , yk−1}, as such we should consider the
area x and the part of extraction when extracting the kth topic. Here we use
recurrent neural network (RNN) decoder model, which use RNN to generate
topics sequence of a given area, to address the problem and we define the input
and output space (IO space) V = X ∪ Y.

The left part of Fig. 1 is the pre-training step of area topics extraction and
here we set K = 4 for just illustration. Given an area x, which is from the user

Interactive Area Topics Extraction with Policy Gradient 87

Fig. 1. An overview of LITE model framework. x indicates a given area. Dash node
indicates a virtual hidden state, which is usually initialized to zero vector.

input in real application, the model can generate topic sequence one by one.
Formally, the conditional distribution of y given x can be written as:

p(y|x; θ) =
K∏

k=1

p(yk|x, y1, y2, . . . , yk−1; θ) (2)

where yi is the ith topic extracted from the IO space V. We define y0 = x to
simplify the formula. The area and topic representation is one hot vector, and
x, y ∈ R

|V|, where |V| is the size of IO space.
Let hk ∈ R

d be a hidden state at the kth step extraction. We have
hk = g1(hk−1, yk−1), where k = 1, 2, . . . , K. g1 is an activation function such
as tanh, ReLU, or a more complicated structure like GRU unit [4]. The condi-
tional distribution of the kth topic is

p(yk|yk−1, yk−2, . . . , y1, y0; θ) = g2(hk; θ) (3)

where g2 must produce valid probabilities such as softmax. Thus, the extraction
at step k is

y∗
k = arg max

y0,y1,...,yk−1∈V
g2(hk; θ) (4)

We first train this model and find an optimal parameter θ by maximizing the
conditional log-probability on a training set S. Then we infer the topics sequence
for every user’s query, which is regarded as an area input. In other words, we
divide the pre-trained model into two phases: training and inference.

In the training phrase, we need a training set to find optimal solution from
the large space. We use the training set to pre-train model for the following two

88 J. Han et al.

reasons. First, it is difficult to converge because of the too many parameters.
Second, we hope to improve performance using user feedback. Therefore our
model should have ability of generating diverse results so as to adjust the model
parameters using user feedback. Hence, we use K-Nearest Neighbors (KNN) to
generate a fixed sort of topics sequence of every area and shuffle the extracted
topics. In particular, we try to add noise into raw distance, which can be mea-
sured by word2vec [13]. The training set can be generated as Algorithm 1. Kd
tree can be adopted in Line 8 to reduce time complexity [16].

Algorithm 1. Generate training set using K-Nearest Neighbor.
Input: Topic space X , the number of shuffle data for one area T , output size K
Output: Training set S
1: Initialize training set S = φ
2: for each x ∈ X do
3: tuple ← ComputeDistance(x)
4: y ← tuple[0]
5: distance ← tuple[1]
6: for each t ∈ [1, T] do
7: newDistance ← distance + noise
8: sample ← SORTED(y, key = newDistance, descending = True)[1 : K]
9: Append sample into S

10: end for
11: end for
12: return S

In the inference phrase, when we make inference using the pre-trained model,
we hope to find the optimal topics sequence ŷ∗ = {ŷ∗

1 , ŷ
∗
2 , . . . , ŷ

∗
K} and the proba-

bility of each extraction step ŷ∗
k depends on the input area x and the previously

extracted sequence {ŷ∗
1 , ŷ

∗
2 , . . . , ŷ

∗
k−1}. However, finding the global optimal is

intractable. Thus, we try to make inference one by one. It means that we choose
the current topic with the highest probability using input and previous output,
which is similar with text generation. Thus, kth topic for the given area x and
previous output {ŷ∗

1 , ŷ
∗
2 , . . . , ŷ

∗
k−1} is

ŷ∗
k = arg max

yk∈Y
log p(yk|x, ŷ∗

1 , ŷ
∗
2 , . . . , ŷ

∗
k−1) (5)

Updating. The pre-trained model can extract a topics sequence by training
in lots of samples. However, the performance depends on training set, which is
from an existing knowledge base and text corpus. Through analysis of popular
knowledge base such as Wiki Taxonomy and Microsoft Field of Study, which
will be introduced in Sect. 4.1, there is a lot of noise in the existing knowledge
base. What’s more, the representative hypernym-hyponym relationship itself is
subjective and we cannot capture all users’ thoughts by a static knowledge base.
Hence, we try to improve performance by interaction with users. The user feed-
back matrix DU (x, y) denotes how well (x, y) pair considering user feedback,

Interactive Area Topics Extraction with Policy Gradient 89

where y is the inference results for area x. Given that, we can define the reward
as a function of user feedback, which can be written as: R(x, y) = g(DU (x, y)),
where g is a function mapping feedback into reward. Our current goal is to max-
imize the expected reward: J(θ|x) = Ey∼P (y|x;θ)[R(x, y)] We use policy gradient
[17] to maximize J(θ|x), and the gradient of J(θ|x) can be written as follows:

∇θJ(θ|x) = Ey∼P (y|x;θ)[R(x, y)∇θ log p(y|x; θ)] (6)

We then update parameters using Stochastic Gradient Descent (SGD) or
other advanced optimization algorithms such as Adam, RMSProp [15]. In sum-
mary, the algorithm can be described as Algorithm 2.

Algorithm 2. An overview of LITE model using SGD.
Input: Training set S, user feedback DU (x, y)
Output: Model parameters θ
1: Compute p(y|x; θ) using pre-trained model
2: for each user ui from all users U do
3: Collect area query x of ui

4: Sample topics extraction y for the given x according to p(y|x; θ)
5: Calculate R(x, y) according to Dui(x, y)
6: Calculate gradient ∇θJ(θ|x) by Eq. (6)
7: θ ← θ + α∇θJ(θ|x)
8: end for
9: return θ

4 Experimental Study

4.1 Experiment Configuration

Computer Science Taxonomy Knowledge Base. We use three knowledge
bases to gain concepts, including Wiki Taxonomy tree1, ACM CCS classifica-
tion tree2, and Microsoft Field of Study3. We extract all concepts from “Com-
puter Science” and merge them into a new CS taxonomy knowledge base, called
Computer Science Taxonomy Knowledge Base (CSTKB), where |C| = 13, 738.
We define Y = C. Then we extract some concepts, which include more than
threshold hyponyms (threshold = 100 in our experiments), and regard them as
areas. Finally, we select 100 of them. I.e. |X | = 100.

1 https://dumps.wikimedia.org.
2 https://www.acm.org/publications/class-2012.
3 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/.

https://dumps.wikimedia.org
https://www.acm.org/publications/class-2012
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

90 J. Han et al.

Synthetic Interaction Data. We need user feedback to update our model.
There are two reasons why we use synthetic user feedback to evaluate perfor-
mance of our model. Firstly, everyone may have different opinions for the same
pair (x, y) because feedback is subjective. Secondly, We need label the specific
data by crowdsourcing and annotators must have domain knowledge if we try to
evaluate the performance of the proposed model. There is a huge cost to collect
huge user feedback in short time. Hence, we try to generate Synthetic Interaction
Data according a fixed rule. Every user has an ideal topics sequence y, called
user ideal list. We assume all users ideal lists are samples of groundtruth. For
example, we define area x has a best topics extraction y∗, which is groundtruth,
y∗

i denotes the ith topic in y∗. For user u1, his or her top-3 ideal list may be
<y∗

3 , y
∗
1 , y

∗
4>, and <y∗

1 , y
∗
5 , y

∗
2> for user u2. We can gain the groundtruth if we

count enough users ideal lists statistically.

Evaluation Metrics. When we measure the effect of extraction, we need to
remove the individual difference of each user. Hence, we evaluate the result by
comparing them with groundtruth.

(1) P@k P refers to precision. We define the number of topics extraction for a
given area is the same as groundtruth. Given an area x ∈ X , a model’s out-
put sequence will be compared with groundtruth. P@k measures accuracy
of the first k topics of the models output compared with groundtruth.

P@k =
{y1, y2, . . . , yk} ∩ l

k
(7)

where l is the set of groundtruth. Since the topics order is also important,
we introduce MAP as follows.

(2) MAP@k. Average Precision (AP) emphasizes ranking right topics higher.

AP@k =
∑k

r=1(P@r × rel(r)
k

(8)

where rel(i) is a binary function on the relevence of a topics sequence. When
AP is used to measure the score from users, l denotes the user ideal list.
MAP@k denotes the mean AP@k of every user feedback.

Baseline Methods. We compare our method with the following baselines.

(1) KNN. We use KNN to generate training set for pre-training the model.
Hence, KNN is the best result before introducing user feedback.

(2) Counting. Considering user feedback, an intuitive method is to adjust
results by users’ click. However, we only get the score of entire topics
sequence. Thus, we assume that we can get all forms of user feedback in
the method.

(3) ε-greedy. This method can explore the better topics in candidate set and
exploit current experience. However, we only replace a topic that is selected
randomly because we only get the score of entire topics sequence, not of
each topic in output sequence. We set ε = 0.1 in our experiments.

Interactive Area Topics Extraction with Policy Gradient 91

4.2 Results and Discussion

In Algorithm 1, we set T = 100,K = 10. Assuming groundtruth is generated
only considering the first layer’s topics in the CSTKB, the user ideal lists can
be generated by adding noise into groundtruth. User feedback can be collected
from clicking every right topic, or giving a score considering the entire sequence.
We choose the latter because users can give a comprehensive evaluation based
on the order and accuracy. We regard AP@K as the score by users.

Table 1. Quantitative results comparing several methods.

Methods P@3 P@5 P@10 MAP@3 MAP@5 MAP@10

KNN 0.2267 0.2080 0.1810 0.1833 0.1490 0.1086

ε-greedy 0.2067 0.1660 0.1450 0.1722 0.1267 0.0906

Counting 0.4633 0.3380 0.1810 0.4633 0.3380 0.1810

LITE 0.7700 0.6280 0.3590 0.7656 0.6202 0.3506

Table 1 demonstrates that LITE model outperforms all other baseline meth-
ods, which proves LITE model can adjust the pre-training model by interaction
with users. The performance of ε-greedy is inferior to KNN, because the solution
space is huge and we only update the part of value from any topic samples.

(a) The range of T is 50 to 2000 (b) The range of T is 50 to 500

Fig. 2. MAP w.r.t the number of user feedback of one area.

In the experiments, we collect 100 users’ feedback of each given area x ∈
X , |X | = 100 to improve pre-training model’s performance. We change the num-
ber of user feedback and observe the performance. Assuming we have T feedback
for one area, Fig. 2 illustrates the performance with respect to the number of user
feedback of one area and T = 100 can get the best performance. However, we
cannot get global optimal parameters but local optimal parameters because of
the huge solution space. The performance may not be significantly improved
even though we collect more feedback because the extraction results may fluctu-
ate near the local optimal solution and we can improve performance using better
initialization parameters. We list the top-10 topics extraction by three methods.
As a case, Table 2 presents the extracted topics in “Data Mining” area.

92 J. Han et al.

Table 2. Top-10 topics in “Data Mining” area using different methods, where bold
items represent the same as groundtruth.

ε-greedy Counting LITE

Data Warehouse Data Visualization Data Visualization

Business Intelligence Big Data Big Data

Data Management Text Mining Information Extraction

Big Data Business Intelligence Sentiment Analysis

Expert System Machine Learning Text Mining

Machine Learning Data Analysis Business Analytics

Natural Language Processing Information Retrieval Decision Support System

Analytics Data Integration Business Intelligence

Data Visualization Data Management Deep Learning

Data Analysis Data Warehousing Data Integration

5 Conclusion

In this paper, we propose LITE, an end to end framework, aiming to extract
topics extraction of given area with interaction. We did experiments on real
knowledge base and synthetic interaction data. Experimental results prove the
effectiveness of the proposed method. We deployed the proposed model in Aminer
system4 and collect user feedback to improve extraction performance. A/B test
[8] can be used to evaluate the performance and we leave this to our future work.

References

1. Al-Zaidy, R.A., Giles, C.L.: Extracting semantic relations for scholarly knowl-
edge base construction. In: Proceedings of 12th IEEE International Conference
on Semantic Computing, pp. 56–63 (2018)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell,
T.M.: Toward an architecture for never-ending language learning. In: Proceedings
of 24th AAAI Conference on Artificial Intelligence, pp. 1306–1313 (2010)

4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of 2014 Conference on Empirical
Methods in Natural Language Processing, pp. 1724–1734 (2014)

5. Deldjoo, Y., Frà, C., Valla, M., Cremonesi, P.: Letting users assist what to watch:
an interactive query-by-example movie recommendation system. In: Proceedings
of 8th Italian Information Retrieval Workshop, pp. 63–66 (2017)

6. Hasan, K.S., Ng, V.: Automatic keyphrase extraction: a survey of the state of the
art. In: Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics, pp. 1262–1273 (2014)

4 https://aminer.org.

https://aminer.org

Interactive Area Topics Extraction with Policy Gradient 93

7. Jiang, X., Hu, Y., Li, H.: A ranking approach to keyphrase extraction. In: Pro-
ceedings of 32nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 756–757 (2009)

8. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experi-
ments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1),
140–181 (2009)

9. Lau, J.H., Grieser, K., Newman, D., Baldwin, T.: Automatic labelling of topic mod-
els. In: Proceedings of 49th Annual Meeting of the Association for Computational
Linguistics, pp. 1536–1545 (2011)

10. Liang, J., Zhang, Y., Xiao, Y., Wang, H., Wang, W., Zhu, P.: On the transitivity
of hypernym-hyponym relations in data-driven lexical taxonomies. In: Proceedings
of 31st AAAI Conference on Artificial Intelligence, pp. 1185–1191 (2017)

11. Mei, Q., Shen, X., Zhai, C.: Automatic labeling of multinomial topic models. In:
Proceedings of 13th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 490–499 (2007)

12. Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing (2004)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: Proceedings of
27th Annual Conference on Neural Information Processing Systems, pp. 3111–3119
(2013)

14. Ponzetto, S.P., Strube, M.: Wikitaxonomy: a large scale knowledge resource. In:
Proceedings of 18th European Conference on Artificial Intelligence, pp. 751–752
(2008)

15. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR
abs/1609.04747 (2016)

16. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Boston (1990)

17. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient meth-
ods for reinforcement learning with function approximation. In: Proceedings of
1999 Annual Conference on Neural Information Processing Systems, pp. 1057–1063
(1999)

18. Wang, C., Fan, Y., He, X., Zhou, A.: Predicting hypernym-hyponym relations for
Chinese taxonomy learning. Knowl. Inf. Syst. 1–26 (2018, in press)

19. Yang, Y., Tang, J.: Beyond query: interactive user intention understanding. In:
Proceedings of 2015 IEEE International Conference on Data Mining, pp. 519–528
(2015)

20. Zhang, F., Wang, X., Han, J., Wang, S.: Fast top-k area topics extraction with
knowledge base. In: Proceedings of 2018 IEEE International Conference on Data
Science in Cyberspace (2018)

Implementing Neural Turing Machines

Mark Collier(B) and Joeran Beel(B)

Trinity College Dublin, Dublin, Ireland
{mcollier,joeran.beel}@tcd.ie

Abstract. Neural Turing Machines (NTMs) are an instance of Memory
Augmented Neural Networks, a new class of recurrent neural networks
which decouple computation from memory by introducing an external
memory unit. NTMs have demonstrated superior performance over Long
Short-Term Memory Cells in several sequence learning tasks. A number
of open source implementations of NTMs exist but are unstable during
training and/or fail to replicate the reported performance of NTMs. This
paper presents the details of our successful implementation of a NTM.
Our implementation learns to solve three sequential learning tasks from
the original NTM paper. We find that the choice of memory contents
initialization scheme is crucial in successfully implementing a NTM. Net-
works with memory contents initialized to small constant values converge
on average 2 times faster than the next best memory contents initializa-
tion scheme.

Keywords: Neural Turing Machines
Memory Augmented Neural Networks

1 Introduction

Neural Turing Machines (NTMs) [4] are one instance of several new neural net-
work architectures [4,5,11] classified as Memory Augmented Neural Networks
(MANNs). MANNs defining attribute is the existence of an external memory
unit. This contrasts with gated recurrent neural networks such as Long Short-
Term Memory Cells (LSTMs) [7] whose memory is an internal vector main-
tained over time. LSTMs have achieved state-of-the-art performance in many
commercially important sequence learning tasks, such as handwriting recogni-
tion [2], machine translation [12] and speech recognition [3]. But, MANNs have
been shown to outperform LSTMs on several artificial sequence learning tasks
that require a large memory and/or complicated memory access patterns, for
example memorization of long sequences and graph traversal [4–6,11].

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 94–104, 2018.
https://doi.org/10.1007/978-3-030-01424-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_10&domain=pdf

Implementing Neural Turing Machines 95

The authors of the original NTM paper, did not provide source code for
their implementation. Open source implementations of NTMs exist1,2,3,4,5,6,7

but a number of these implementations (See footnote 5, 6 and 7) report that
the gradients of their implementation sometimes become NaN during training,
causing training to fail. While others report slow convergence or do not report
the speed of learning of their implementation. The lack of a stable open source
implementation of NTMs makes it more difficult for practitioners to apply NTMs
to new problems and for researchers to improve upon the NTM architecture.

In this paper we define a successful NTM implementation8 which learns to
solve three benchmark sequential learning tasks [4]. We specify the set of choices
governing our NTM implementation. We conduct an empirical comparison of a
number of memory contents initialization schemes identified in other open source
NTM implementations. We find that the choice of how to initialize the contents
of memory in a NTM is a key factor in a successful NTM implementation. Our
Tensorflow implementation is available publicly under an open source license
(See footnote 8).

2 Neural Turing Machines

NTMs consist of a controller network which can be a feed-forward neural network
or a recurrent neural network and an external memory unit which is a N ∗
W memory matrix, where N represents the number of memory locations and
W the dimension of each memory cell. Whether the controller is a recurrent
neural network or not, the entire architecture is recurrent as the contents of the
memory matrix are maintained over time. The controller has read and write
heads which access the memory matrix. The effect of a read or write operation
on a particular memory cell is weighted by a soft attentional mechanism. This
addressing mechanism is similar to attention mechanisms used in neural machine
translation [1,9] except that it combines location based addressing with the
content based addressing found in these attention mechanisms.

In particular for a NTM, at each timestep (t), for each read and write head the
controller outputs a set of parameters: kt, βt ≥ 0, gt ∈ [0, 1], st (s.t.

∑
k st(k) = 1

and ∀k st(k) ≥ 0) and γt ≥ 1 which are used to compute the weighting wt over
the N memory locations in the memory matrix Mt as follows:

wc
t (i) ← exp(βtK[kt,Mt(i)])

∑N−1
j=0 exp(βtK[kt,Mt(j)])

(1)

1 https://github.com/snowkylin/ntm.
2 https://github.com/chiggum/Neural-Turing-Machines.
3 https://github.com/yeoedward/Neural-Turing-Machine.
4 https://github.com/loudinthecloud/pytorch-ntm.
5 https://github.com/camigord/Neural-Turing-Machine.
6 https://github.com/snipsco/ntm-lasagne.
7 https://github.com/carpedm20/NTM-tensorflow.
8 Source code at: https://github.com/MarkPKCollier/NeuralTuringMachine.

https://github.com/snowkylin/ntm
https://github.com/chiggum/Neural-Turing-Machines
https://github.com/yeoedward/Neural-Turing-Machine
https://github.com/loudinthecloud/pytorch-ntm
https://github.com/camigord/Neural-Turing-Machine
https://github.com/snipsco/ntm-lasagne
https://github.com/carpedm20/NTM-tensorflow
https://github.com/MarkPKCollier/NeuralTuringMachine

96 M. Collier and J. Beel

wc
t allows for content based addressing where kt represents a lookup key into

memory and K is some similarity measure such as cosine similarity:

K[u,v] =
u · v

‖u‖ · ‖v‖ (2)

Through a series of operations NTMs also enable iteration from current or
previously computed memory weights as follows:

wg
t ← gtwc

t + (1 − gt)wt−1 (3)

w̃t(i) ←
N−1∑

j=0

wg
t (j)st(i − j) (4)

wt(i) ← w̃t(i)γt

∑N−1
j=0 w̃t(j)γt

(5)

where (3) enables the network to choose whether to use the current content based
weights or the previous weight vector, (4) enables iteration through memory by
convolving the current weighting by a 1-D convolutional shift kernel and (5)
corrects for any blurring occurring as a result of the convolution operation.

The vector rt read by a particular read head at timestep t is computed as:

rt ←
N−1∑

i=0

wt(i)Mt(i) (6)

Each write head modifies the memory matrix at timestep t by outputting
additional erase (et) and add (at) vectors:

M̃t(i) ← Mt−1(i)[1 − wt(i)et] (7)

Mt(i) ← M̃t(i) + wt(i)at (8)

Equations (1) to (8) define how addresses are computed and used to read and
write from memory in a NTM, but many implementation details of a NTM are
open to choice. In particular the choice of the similarity measure K, the initial
weightings w0 for all read and write heads, the initial state of the memory matrix
M0, the choice of non-linearity to apply to the parameters outputted by each
read and write head and the initial read vector r0 are all undefined in a NTM’s
specification.

While any choices for these satisfying the constraints on the parameters out-
putted by the controller would be a valid NTM, in practice these choices have a
significant effect on the ability of a NTM to learn.

Implementing Neural Turing Machines 97

3 Our Implementation

Memory contents initialization - We hypothesize that how the memory con-
tents of a NTM are initialized may be a defining factor in the success of a NTM
implementation. We compare the three memory contents initialization schemes
that we identified in open source implementations of NTMs. In particular, we
compare constant initialization where all memory locations are initialized to
10−6, learned initialization where we backpropagate through initialization and
random initialization where each memory location is initialized to a value drawn
from a truncated Normal distribution with mean 0 and standard deviation 0.5.
We note that five of the seven implementations (See footnote 1, 2, 3, 4 and 5)
we identified randomly initialize the NTM’s memory contents. We also identified
an implementation which initialized memory contents to a small constant value
(See footnote 6) and an implementation where the memory initialization was
learned (See footnote 7).

Constant initialization has the advantage of requiring no additional param-
eters and providing a stable known memory initialization during inference.
Learned initialization has the potential advantage of learning an initialization
that would enable complex non-linear addressing schemes [6] while also provid-
ing stable initialization after training. This comes at the cost of N ∗ W extra
parameters. Random initialization has the potential advantage of acting as a
regularizer, but it is possible that during inference memory contents may be in
a space not encountered during training.

Other parameter initialization - Instead of initializing the previously read
vectors r0 and address weights w0 to bias values as per [4] we backpropagate
through their initialization and thus initialize them to a learned bias vector.
We argue that this initialization scheme provides sufficient generality for tasks
that require more flexible initialization with little cost in extra parameters (the
number of additional parameters is W ∗ Hr + N ∗ (Hr + Hw) where Hr is the
number of read heads and Hw is the number of write heads). For example, if a
NTM with multiple write heads wishes to write to different memory locations at
timestep 1 using location based addressing then w0 must be initialized differently
for each write head. Having to hard code this for each task is an added burden on
the engineer, particularly when the need for such addressing may not be known
a priori for a given task, thus we allow the network to learn this initialization.

Similarity measure - For K, we follow [4] in using cosine similarity (2) which
scales the dot product into the fixed range [−1, 1].

Controller inputs - At each timestep the controller is fed the concatenation of
the input coming externally into the NTM xt and the previously read vectors
rt−1 from all of the read heads of the NTM. We note that such a setup has
achieved performance gains for attentional encoder-decoders in neural machine
translation [9].

98 M. Collier and J. Beel

Parameter non-linearities - Similarly to a LSTM we force the contents of
the memory matrix to be in the range [−1, 1], by applying the tanh function
to the outputs of the controller corresponding to kt and at while we apply the
sigmoid function to the corresponding erase vector et. We apply the function
softplus(x) ← log(exp(x) + 1) to satisfy the constraint βt ≥ 0. We apply the
logistic sigmoid function to satisfy the constraint gt ∈ [0, 1]. In order to make
the convolutional shift vector st a valid probability distribution we apply the
softmax function. In order to satisfy γt ≥ 1 we first apply the softplus function
and then add 1.

4 Methodology

4.1 Tasks

We test our NTM implementation on three of the five artificial sequence learning
tasks described in the original NTM paper [4].

Copy - for the Copy task, the network is fed a sequence of random bit vectors
followed by an end of sequence marker. The network must then output the input
sequence. This requires the network to store the input sequence and then read it
back from memory. In our experiments we train and test our networks on 8-bit
random vectors with sequences of length sampled uniformly from [1, 20].

Repeat Copy - similarly to the Copy task, with Repeat Copy the network is fed
an input sequence of random bit vectors. Unlike the Copy task, this is followed
by a scalar that indicates how many times the network should repeat the input
sequence in its output sequence. We train and test our networks on 8-bit random
vectors with sequences of length sampled uniformly from [1, 10] and number of
repeats also sampled uniformly from [1, 10].

Associative Recall - Associative Recall is also a sequence learning problem
with sequences consisting of random bit vectors. In this case the inputs are
divided into items, with each item consisting of 3× 6-dimensional vectors. After
being fed a sequence of items and an end of sequence marker, the network is then
fed a query item which is an item from the input sequence. The correct output is
the next item in the input sequence after the query item. We train and test our
networks on sequences with the number of items sampled uniformly from [2, 6].

4.2 Experiments

We first run a set of experiments to establish the best memory contents initial-
ization scheme. We compare the constant, random and learned initialization
schemes on the above three tasks. We demonstrate below (Sect. 5) that the
best such scheme is the constant initialization scheme. We then compare the
NTM implementation described above (Sect. 3) under the constant initialization
scheme to two other architectures on the Copy, Repeat Copy and Associative

Implementing Neural Turing Machines 99

Recall tasks. We follow the NTM authors [4] in comparing our NTM imple-
mentation to a LSTM network. As no official NTM implementation has been
made open source, as a further benchmark, we compare our NTM implementa-
tion to the official implementation9 of a Differentiable Neural Computer (DNC)
[5], a successor to the NTM. This provides a guide as to how a stable MANN
implementation performs on the above tasks.

In all of our experiments for each network we run training 10 times from
different random initializations. To measure the learning speed, every 200 steps
during training we evaluate the network on a validation set of 640 examples with
the same distribution as the training set.

For all tasks the MANNs had 1 read and 1 write head, with an external
memory unit of size 128×20 and a LSTM controller with 100 units. The controller
outputs were clipped elementwise to the range (−20, 20). The LSTM networks
were all a stack of 3 × 256 units. All networks were trained with the Adam
optimizer [8] with learning rate 0.001 and on the backward pass gradients were
clipped to a maximum gradient norm of 50 as described in [10].

5 Results

5.1 Memory Initialization Comparison

We hypothesized that how the memory contents of a NTM were initialized would
be a key factor in a successful NTM implementation. We compare the three mem-
ory initialization schemes we identified in open source NTM implementations.
We then use the best identified memory contents initialization scheme as the
default for our NTM implementation.

Copy - Our NTM initialized according the constant initialization scheme
converges to near zero error approximately 3.5 times faster than the learned ini-
tialization scheme, while the random initialization scheme fails to solve the Copy
task in the allotted time (Fig. 1). The learning curves suggest that initializing
the memory contents to small constant values offers a substantial speed-up in
convergence over the other two memory initialization schemes for the Copy task.

Repeat Copy - A NTM initialized according the constant initialization scheme
converges to near zero error approximately 1.43 times faster than the learned ini-
tialization scheme and 1.35 times faster than the random initialization scheme
(Fig. 2). The relative speed of convergence between learned and random ini-
tialization is reversed as compared with the Copy task, but again the constant
initialization scheme demonstrates substantially faster learning than either alter-
native.

Associative Recall - A NTM initialized according the constant initialization
scheme converges to near zero error approximately 1.15 times faster than the
learned initialization scheme and 5.3 times faster than the random initialization
scheme (Fig. 3).

9 https://github.com/deepmind/dnc.

https://github.com/deepmind/dnc

100 M. Collier and J. Beel

Fig. 1. Copy task memory initialization comparison - learning curves. Median error on
10 training runs (each) for a NTM initialized according to the constant, learned and
random initialization schemes.

Fig. 2. Repeat Copy task memory initialization comparison - learning curves. Median
error on 10 training runs (each) for a NTM initialized according to the constant, learned
and random initialization schemes.

The constant initialization scheme demonstrates fastest convergence to near
zero error on all three tasks. We conclude that initializing the memory contents
of a NTM to small constant values results in faster learning than backpropa-
gating through memory contents initialization or randomly initializing memory
contents. Thus, we use the constant initialization scheme as the default scheme
for our NTM implementation.

Implementing Neural Turing Machines 101

Fig. 3. Associative Recall task memory initialization comparison - learning curves.
Median error on 10 training runs (each) for a NTM initialized according to the constant,
learned and random initialization schemes.

5.2 Architecture Comparison

Now that we have established the best memory contents initialization scheme is
constant initialization we wish to test whether our NTM implementation using
this scheme is stable and has similar speed of learning and generalization ability
as claimed in the original NTM paper. We compare the performance of our NTM
to a LSTM and a DNC on the same three tasks as for our memory contents
initialization experiments.

Copy - Our NTM implementation converges to zero error in a number of steps
comparable to the best published results on this task [4] (Fig. 4). Our NTM
converges to zero error 1.2 times slower than the DNC and as expected both
MANNs learn substantially faster (4–5 times) than a LSTM.

Fig. 4. Copy task architecture comparison - learning curves. Median error on 10 train-
ing runs (each) for a DNC, NTM and LSTM.

102 M. Collier and J. Beel

Repeat Copy - As per [4], we also find that the LSTM performs better relative
to the MANNs on Repeat Copy compared to the Copy task, converging only 1.44
times slower than a NTM, perhaps due to the shorter input sequences involved
(Fig. 5). While both the DNC and the NTM demonstrate slow learning during
the first third of training both architectures then rapidly fall to near zero error
before the LSTM. Despite the NTM learning slower than the DNC during early
training, the DNC converges to near zero error just 1.06 times faster than the
NTM.

Fig. 5. Repeat Copy task architecture comparison - learning curves. Median error on
10 training runs (each) for a DNC, NTM and LSTM.

Associative Recall - Our NTM implementation converges to zero error in a
number of steps almost identical to the best published results on this task [4]
and at the same rate as the DNC (Fig. 6). The LSTM network fails to solve the
task in the time provided.

Our NTM implementation learns to solve all three of the five tasks proposed
in the original NTM paper [4] that we tested. Our implementation’s speed to
convergence and relative performance to LSTMs is similar to the results reported
in the NTM paper. Speed to convergence for our NTM is only slightly slower
than a DNC - another MANN. We conclude that our NTM implementation can
be used reliably in new applications of MANNs.

6 Summary

NTMs are an exciting new neural network architecture that achieve impressive
performance on a range of artificial tasks. But the specification of a NTM leaves
many free choices to the implementor and no source code is provided that makes
these choices and replicates the published NTM results. In practice the choices
left to the implementor have a significant impact on the ability of a NTM to learn.
We observe great diversity in how these choices are made amongst open source

Implementing Neural Turing Machines 103

Fig. 6. Associative Recall task architecture comparison - learning curves. Median error
on 10 training runs (each) for a DNC, NTM and LSTM.

efforts to implement a NTM, many of which fail to replicate these published
results.

We have demonstrated that the choice of memory contents initialization
scheme is crucial to successfully implementing a NTM. We conclude from
the learning curves on three sequential learning tasks that learning is fastest
under the constant initialization scheme. We note that the random initialization
scheme which was used in five of the seven identified open source implemen-
tations was the slowest to converge on two of the three tasks and the second
slowest on the Repeat Copy task.

We have made our NTM implementation with the constant initialization
scheme open source. Our implementation has learned the Copy, Repeat Copy and
Associative Recall tasks at a comparable speed to previously published results
and the official implementation of a DNC. Training of our NTM is stable and
does not suffer from problems such as gradients becoming NaN reported in other
implementations. Our implementation can be reliably used for new applications
of NTMs. Additionally, further research on NTMs will be aided by a stable,
performant open source NTM implementation.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber,
J.: A novel connectionist system for unconstrained handwriting recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009)

3. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: 2013 IEEE International Conference on Acoustics, speech and
Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

http://arxiv.org/abs/1409.0473

104 M. Collier and J. Beel

4. Graves, A., Wayne, G., Danihelka, I.: Neural Turing machines. arXiv preprint
arXiv:1410.5401 (2014)

5. Graves, A., et al.: Hybrid computing using a neural network with dynamic external
memory. Nature 538(7626), 471 (2016)

6. Gulcehre, C., Chandar, S., Cho, K., Bengio, Y.: Dynamic neural Turing machine
with soft and hard addressing schemes. arXiv preprint arXiv:1607.00036 (2016)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1412–1421 (2015)

10. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)

11. Sukhbaatar, S., Weston, J., Fergus, R.: End-to-end memory networks. In: Advances
in Neural Information Processing Systems, pp. 2440–2448 (2015)

12. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1607.00036
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.08144

A RNN-Based Multi-factors Model
for Repeat Consumption Prediction

Zengwei Zheng1, Yanzhen Zhou1,2, Lin Sun1(B), and Jianping Cai1

1 Hangzhou Key Laboratory for IoT Technology and Application,
Zhejiang University City College, Hangzhou, China

{zhengzw,sunl,jpcai}@zucc.edu.com
2 College of Computer Science and Technology, Zhejiang University,

Hangzhou, China
zhouyanzhen@zju.edu.com

Abstract. Consumption is a common activity in people’s daily life,
and some reports show that repeat consumption even accounts for a
greater portion of people’s observed activities compared with novelty-
seeking consumption. Therefore, modeling repeat consumption is a very
important study to understand human behavior. In this paper, we pro-
posed a multi-factors RNN (MF-RNN) model to predict the users’ repeat
consumption behavior. We analysed some factors which can influence
customers’ daily repeat consumption and introduced those factor in
MF-RNN model to predict the users’ repeat consumption behavior. An
empirical study on real-world data sets shows encouraging results on our
approach. In the real-world dataset, the MF-RNN gets good prediction
performance, better than Most Frequent, HMM, Recency, DYRC and
LSTM methods. We compared the effect of different factors on the cus-
tomers’ repeat consumption behavior, and found that the MF-RNN gets
better performance than non-factor RNN. Besides, we analyzed the dif-
ferences in consumption behaviors between different cities and different
regions in China.

Keywords: Repeat consumption · Recurrent Neural Network (RNN)
Multi-factors

1 Introduction

Nowadays, with the rapid development of mobile payment technology, people can
make payment in an store by smartphones apps (such as Alipay, WeChat pay and
Apple pay etc.) instead of by cash. Therefore, how to use previous consumption
record and model user’s repeat consumption behavior to predict which store the
user likely to go in future time is very important. The study of consumption
behavior is to know the way an individual spends his resources in the process
of consuming items. This is an approach that comprises of studies of the items
that they buy and the reason for buying and the timing. It is also about where

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 105–115, 2018.
https://doi.org/10.1007/978-3-030-01424-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_11&domain=pdf

106 Z. Zheng et al.

they make the purchase and how frequently. Due to the fact that people prefer
the things they are familiar with, they may repeatedly interact with same items
overtime. Therefore, users always like to visit the same stores that they have
purchased previously, such as shopping at a same fruit shop and eating regularly
at a same restaurant. For the reason of that, repeat consumption accounts for
a major portion of people’s daily consumption behavior, and we focus on the
repeat consumption behavior study in this paper.

In real life, some factors can affect peoples’ daily activities. For instance, we
usually visit some places in the vicinity of our office during the workdays, but
usually visit some places near our home in holidays; we probably go out for some
outdoor activities when the weather is nice but stay indoor when the weather is
terrible; we like to take cool drinks in summer day but choose some hot things
in winter instead. Therefore, we believe that peoples’ daily repeat consumption
behavior can be affected by some factors too. In this paper, we proposed an
MF-RNN model which is based on RNN and introduce some factors to pre-
dict peoples’ repeat consumption behavior. Through analysis, we selected three
factors as influential factors: holiday factor, weather factor and temperature fac-
tor. An empirical study on real-world dataset shows encouraging results on our
approach. The MF-RNN gets encouraging performance for repeat consumption
behavior prediction, better than MF, HMM, Recency, DYRC and LSTM model.
And the MF-RNN with all three factors gets better performance than without
any factors.

2 Related Works

Consumption behavior is an approach to know the way that an individual spends
his resources in the process of consuming items. Consumption behavior analy-
sis is critically extending the domain of behavior analysis and behavioral eco-
nomics into marketing theory. In past, the ways of predicting the consumers’
behavior involved Content-based recommendation, collaborative filtering-based
recommendation, time series analysis and data mining. Content-based recom-
mender systems are based on the idea that the features of items are useful in
suggesting relevant and interesting items for users [1]. Collaborative filtering-
based recommender systems identify users whose tastes are similar to that of a
target user and then recommend items that the others have liked [2,3]. Time
series analysis and data mining method used the historical data to extra some
feature to model the user’s consumption behavior [4].

But the study of repeat consumption behavior is a bit different of consump-
tion behavior, it focuses on predicting whether or not the user will repeat pur-
chase items which he has consumed in previous time. The problems of how and
why users repeatedly consume certain items have been approached from several
angles in various discipline [5]. Some of the earliest works focus on understanding
repeat behavior on the web, like re-searching queries and website revisitation.
Adar, Teevan and Fumais [6] carried out a large-scale analysis of revisitation,
and classified websites into different groups based in how often they attract

A RNN-Based Multi-factors Model for Repeat Consumption Prediction 107

revisitors. Then, those researchers explored the relationship between the con-
tent change in web pages and people’s revisition to these pages [7]. Teevan
et al. [8] studied query logs to find repeat queries in web research, and that
more than 40% of the queries are repeat queries. Then, many methods have
been proposed to predict people’s repeated consumption behavior. Anderson
et al. [9] analyzed the dynamics of repeat consumption. They studied the pat-
tern by which a user consumes the same item repeatedly over time, in some
wide variety domains ranging from check-ins at the same business location to
re-watches of the same video, and found that recency of consumption is the
strong predictor consumption. Chen et al. [10] formulate the problem of recom-
mendation for repeat consumption with user implicit feedback, then proposed
a time-sensitive personalized pairwise ranking (TS-PPR) method based on user
behavioral features. Rafailidis and Nanopoulos [11] present the CTF model and
W-CTF model for recommend items with repeat consumption, by capturing
the rate with which the current preferences of each user shift over time and by
exploiting side information in a coupled tensor factorization technique. Zhang
et al. [12] proposes a dining recommender system termed NDRS, which gives
associated recommendation strategies according to different novelty-seeking sta-
tuses. They first designed a CRF (Conditional Random Field) with constrains to
infer novelty-seeking status, then proposed a context-aware collaborative filtering
method and a HMM (Hidden Markov Model) with temporal regularity method
are proposed for novel and regular restaurant recommendation. Christina and
Lars [13] developed the multinomial SVM (Support Vector Machine) item rec-
ommender system MN-SVM-IR to calculate personalized item recommendation
for a repeat-buying scenario. Although there are many methods for predicting
repeated consumption behavior, most methods focus on the features of the con-
sumers or the items and rarely care about other relevant informations.

3 Methodolody

Recurrent Neural Network (RNN) is a type of feedforward neural network whose
output is not only depend on the weight of the current input, but also depend
on the present state of the network. Augmented by the inclusion of recurrent
edges that span adjacent time steps, the RNN introducing a notion of time to
the model [14]. In other words, the feedback from the hidden layer not only goes
to the output, but also goes into the next time step hidden layer. Thus, the
RNN has some memory. In the previous research, RNN proved to be very useful
in sequence learning problem. RNN can be employed in text processing, image
captioning, machine translation, video captioning and handwriting recognition.
In this paper, we proposed a prediction model based on RNN and combine
with several other influential factors to predict the users’ repeat consumption
behavior.

108 Z. Zheng et al.

3.1 RNN-based Multi-factors Prediction Model

As mentioned above, we selected 3 different factors as the influential factors
in the repeat consumption behavior prediction case. Then, we defined the MF-
RNN model which is a three-layers network include input layer, hidden layer
and output layer, shown in Fig. 1.

Fig. 1. The framework of MF-RNN.

Input Layer: The input layer X is a vector consists of four normalized input data
as Eq. (1): S is visited offline store sequence, H is the holiday factor sequence, C
is the weather factor sequence, T is the temperature factor sequence. The output
data Y is the prediction result represent the offline store which this customer
will visit in the next time.

X = [SHCT] (1)

Hidden Layer: Z is hidden layer, its state in time t z t is affected by the current
input x t and the state of the previous time step hidden layer z t−1:

zt = f(Uxt + Wzt−1 + bz) (2)

where U is the weight between the input and hidden layers, W is the recurrent
weight between the hidden layers at adjacent time steps, bz is the bias in hidden
layer.

Output Layer: The output layer Y is the prediction result represent offline
stores the user will visit at next times. The output in time t calculate as Eq. (3),

A RNN-Based Multi-factors Model for Repeat Consumption Prediction 109

and V is the weight between the output and hidden layers, g is an activation
function and by is the bias in output layer.

yt = g(V zt + by) (3)

Then, we used the historical data to training this network. A Back Propa-
gation Through Time (BPTT) algorithm is employed in the training process to
calculate the parameters U V W and bz by. The loss function of the networks
defined as Eq. (4), and et is the loss at each step.

E =
∑

t

et (4)

The gradient of V calculate as Eq. (5), yt’ is the supervision information at
time step t.

∇V =
∂E

∂V
=

∑

t

(yt − y′
t) ⊗ zt (5)

Then we defined two operator δzt as Eq. (6) and δyt as Eq. (7), and calculate the
gradient of U,W as Eqs. (8) and (9), finally calculate the gradient of two bias as
Eqs. (10) and (11). After parameters training process, we got a trained network to
calculate the output data Y, then to predict user’s repeat consumption behavior
in future time.

δzt =
∂E

∂(f(Uxt + Wzt−1 + bz))
(6)

δyt =
∂E

∂(g (V zt + by))
(7)

∇U =
∂E

∂U
=

∑

t

∂et
∂U

=
∑

t

δzt × xt (8)

∇W =
∂E

∂W
=

∑

t

∂et
∂W

=
∑

t

δzt × zt−1 (9)

Δbz =
∂E

∂bz
=

∑

t

∂et
∂bz

=
∑

t

δzt (10)

Δby =
∂E

∂by
=

∑

t

∂et
∂by

=
∑

t

δyt (11)

3.2 Influential Factors Selection

Holiday Factor: There is a big difference between peoples’ daily activities on
holidays and on workdays. For example, people prefer to choose the restaurant
near their office room to have lunch on workdays but choose the restaurant near
home to have lunch on holidays, and people can often visit supermarket during
holidays but can’t do it when they are at work. Therefore, the holiday factor will
affect peoples’ repeat consumption behavior. In this paper, according to Chinese
statutory holiday arrangements, we generate a holiday sequence for each user, 1
represent holiday and 0 represent workday.

110 Z. Zheng et al.

Weather Factor: Weather can also affect peoples’ daily activities. For instance,
people can do some outdoor activities like go to a playground and visit the park
when the weather is good, but they always stay indoors when rainy and snowy.
Then, we choose the weather as an influential factor in this repeat consumption
study. The types of weather are diverse, including sunny, cloudy, rainy, snowy
and etc. In this paper, we classify the weather into the following categories based
on the types and the severity of the weather, and give them different labels, as
shown in Table 1.

Temperature Factor: In addition to holiday factor and weather factor, tem-
perature can also influence peoples’ daily consumption behavior. When the tem-
perature is very high, people may buy some cool drink or ice-cream. And when
the temperature is low, people may prefer to buy some hot tea or hot coffee. We
generate two temperature sequence including the highest and lowest temperature
in each day for each user.

Table 1. Different weather conditions and their labels.

Weather type Label

Sunny 0

Light Rain −0.5

Heavy Rain −1

Light Snow −1.5

Heavy Snow −2

4 Experiment

4.1 Dataset

The dataset we used in this study is a real-world dataset [15]. It’s the consump-
tion record of consumer to use Alipay at offline stores. This dataset includes
2000 shops in different city over the country. The dataset time covers from July
1st 2015 to October 31th 2016. We selected 1057 consumers who consumed more
than 120 times and more than 3 different stores.

We calculated the information entropy of user’s consumption sequence
according to Eq. (12).

H(x) = E(log2(1/p(xi))] = −
∑

(p(xi)log2(1/p(xi))), (i = 1, 2, . . . , n) (12)

P(x i) in Eq. (12) represent the probability of random variables event x i. The
information entropy can be used to measure the uncertainty of random vari-
ables events. The higher the information entropy of the user’s consumption
record sequence, the more complex and unpredictable of consumer’s consump-
tion behavior is. Then we divided the all consumer to 3 groups by the information
entropy, show in Table 2. The users’ consumption behavior in Group3 is most
unpredictable.

A RNN-Based Multi-factors Model for Repeat Consumption Prediction 111

Table 2. Consumers grouping according to their consumption record sequence infor-
mation entropy.

Group1 Group2 Group3

Information entropy 0∼0.5 0.5∼1.0 >1.0

Numbers of consumer 448 296 313

4.2 Baselines Comparison

In this paper, we compared the performance of the proposed method with some
other baselines. These methods are:

Most Frequent (MF): We considerate the consumption frequency is a par-
ticular aspect of people’s consumption behavior, so we choose the most frequent
as the baseline of our data experiment.

Hidden Markov Model (HMM): HMM is a powerful statistical tool for
modeling generative sequences that can be characterized by an underlying pro-
cess generating an observable sequence. It’s one of the most basic and extensively
used statistical tools for modeling the discrete time series.

Recency [9]: This baseline assumes that the recently consumed items are more
likely to be reconsumed.

DYRC [16]: This method proposes a mixed weighted scheme to recommend
repeat items based on item popularity and recency effect.

Long Short-Term Memory (LSTM): LSTM introducing a memory cell
and generating a unit of computation to replace traditional artificial neurons
in the hidden layer of a network. With these memory cells, networks are able to
overcome some difficulties with training encountered in earlier recurrent nets.

In the experiment, we set 50 hidden units in the networks, and choose
MAE(Mean Absolute Error) as loss function and Adam as optimizer to train
this networks. A linear function was selected as the activation function in this
network. In all six methods, we set 60 as the length of training sequence. The
Fig. 2 illustrates the prediction accuracy of all the baselines and MF-RNN model
on the whole three groups of customers. The MF method undoubtedly got the
lowest prediction accuracy, nearly to the HMM. And we can find that the neu-
ral network method has a great performance improvement over the other four
methods. Finally, the model we proposed gets 83.5% prediction accuracy on the
most unpredictable group and win the best perform among all six methods. The
MF-RNN improve 26.0% than MF on Group3, 23.8% than HMM, 24.1% than
Recency, 21.8% than DYRC, and 6.8% than LSTM.

112 Z. Zheng et al.

Fig. 2. Prediction accuracy comparison among six methods.

4.3 Influential Factor Analyze

In order to understand which factor has the greatest impact on consumer behav-
ior, we compared the prediction accuracy of different influential factors on MF-
RNN model. The experiment on Group3 customers shown in Table 3. We can
find that the prediction model with all three factor has the best performance
on the real-world dataset. The MF-RNN improve 2.5% than the RNN without
any factors. This shows that the introduction of nature influential factors can
improve the performance of the prediction model. The MF-RNN improve 1.8%
than the non-factor RNN by introducing holiday factor, improve 1.3% by intro-
ducing weather factor, and improve 1.7% by introducing temperature factor.

Table 3. Prediction result of different influential factors on Group3.

Non-factor
(RNN)

+Holiday
factor

+Weather
factor

+Temperature
factor

+All factor

Prediction
accuracy

0.810 0.828 0.823 0.827 0.835

In general, consumers in different cities may have different lifestyles and lead
to different daily activities. Thence, we made some data experiment to compare
the repeat consumption behavior in cities of different level. We divided 313
customers in Group3 into two groups according to the city they living in. The
first group includes 219 users who lives in the first and second tier cities, such as
Beijing, Shanghai, Hangzhou and etc. And the second group includes 94 user who
lives in other small cities. We compared the differences in repeat consumption
behavior between these two groups of users. The result shows in Table 4. We can

A RNN-Based Multi-factors Model for Repeat Consumption Prediction 113

find that holiday factor has the greatest impact on users in first and second tier
cities. We think this is because the pace of life in these cities is fast and most of
the users in those big cities are office workers. Those users’ daily consumption
behavior between workdays and holidays are different. But the lifestyles in small
cities are different. From the results, it can be seen that not holiday factor but
the weather factor is the most important factor for the consumers in small cities.

Table 4. Prediction accuracy comparison between very large cities and small cities on
Group3.

+Holiday factor +Weather factor +Temperature factor

Very large cities 0.837 0.820 0.826

Other small cities 0.808 0.810 0.806

Besides, we try to analyze the consumption behavior differences in different
regions. We divided the customers in Group3 into south group and north group
according to their location. The south group includes 255 customers and the
north group includes 58 customers. We compared the differences in consumption
behavior between these two groups of users. The result shows in Table 5. It
illustrates that the North China group is most sensitive to temperature factor,
probably because of the extreme temperature changes in the northern China
regions. And weather factor has a greater impact on South group than on north
group.

Table 5. Prediction accuracy comparison between south China and north China on
Group3.

+Holiday factor +Weather factor +Temperature factor

South China 0.826 0.820 0.824

North China 0.838 0.837 0.840

5 Conclusion

In this paper, we proposed a prediction framework that based on MF-RNN
to predict the customer’s repeat consumption behavior. This method uses an
three-layer RNN structure, and introduce three factors include holiday factor,
weather factor and temperature factor to model customer’s repeat consumption
behavior. We compared the method with some other baseline methods. The
experiment result shows that our MF-RNN gets better performance than MF,
HMM, Recency, DYRC and LSTM. Then we compared the effect of different
factors on the customers’ repeat consumption behavior. And the result shows

114 Z. Zheng et al.

that after introduced three factors the MF-RNN get better performance, the
prediction accuracy improved 2.5% than RNN without any factors. Finally, we
found there is a large difference in consumption behavior between different cities
and regions in China. Therefore, to a certain extent, our research has practical
significance for predicting the repeat consumption behavior.

Acknowledgement. This work was supported by Zhejiang Provincial Natural Science
Foundation of China (NO. LY17F020008).

References

1. Ricci, F.: Recommender Systems Handbook. Springer, New York (2011). https://
doi.org/10.1007/978-1-4899-7637-6

2. Herlocker, J.L., Konstan, J.A., Borchers, A., et al.: An algorithmic framework
for performing collaborative filtering. In: 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 230–237.
ACM (1999)

3. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender
systems. Foundations and trends? Hum. Comput. Interact. 4(2), 81–173 (2011)

4. Yi, Z., Wang, D., Hu, K., et al.: Purchase behavior prediction in M-commerce
with an optimized sampling methods. In: IEEE International Conference on Data
Mining Workshop, pp. 1085–1092. IEEE Computer Society (2015)

5. Russell, C.A., Levy, S.J.: The temporal and focal dynamics of volitional recon-
sumption: a phenomenological investigation of repeated hedonic experiences. J.
Consum. Res. 39(2), 341–359 (2011)

6. Adar, E., Teevan, J., Dumais, S.T.: Large scale analysis of web revisitation pat-
terns. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 1197–
2008. ACM (2008)

7. Adar, E., Teevan, J., Dumais, S.T.: Resonance on the web: web dynamics and
revisitation patterns. In: SIGCHI Conference on Human Factors in Computing
Systems, pp. 1381–1390. ACM (2009)

8. Teevan, J., Adar, E., Jones, R., et al.: Information re-retrieval: repeat queries in
Yahoo’s logs. In 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 151–158. ACM (2007)

9. Anderson, A., Kumar, R., Tomkins, A., et al.: The dynamics of repeat consump-
tion. In: Proceedings of the 23rd International Conference on World Wide Web,
pp. 419–430. International World Wide Conference Committee (2014)

10. Chen, J., Wang, C., Wang, J.: Recommendation for repeat consumption from user
implicit feedback. IEEE Trans. Knowl. Data Eng. 28(11), 3083–3097 (2016)

11. Rafailidis, D., Nanopoulos, A.: Repeat consumption recommendation based on
users preference dynamics and side information. In 24th International Conference
on World Wide Web, pp. 99–100. ACM (2015)

12. Zhang, F., Zheng, K., Yuan, N.J., et al.: A novelty-seeking based dining recom-
mender system. In: 24th International Conference on World Wide Web, pp. 1362–
1372. International World Wide Conference Committee (2015)

13. Lichtenthäler, C., Schmidt-Thieme, L.: Multinomial SVM item recommender for
repeat-buying scenarios. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R.
(eds.) Data Analysis, Machine Learning and Knowledge Discovery. SCDAKO, pp.
189–197. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01595-8 21

https://doi.org/10.1007/978-1-4899-7637-6
https://doi.org/10.1007/978-1-4899-7637-6
https://doi.org/10.1007/978-3-319-01595-8_21

A RNN-Based Multi-factors Model for Repeat Consumption Prediction 115

14. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks
for sequence learning. Comput. Sci. (2015)

15. Tianchi big data contest. https://tianchi.aliyun.com/competition/index.htm.
Accessed 2 May 2018

16. Benson, A.R., Kumar, R., Tomkins, A.: Modeling user consumption sequences.
In: 25th International Conference on World Wide Web, pp. 519–529. International
World Wide Conference Committee (2016)

https://tianchi.aliyun.com/competition/index.htm

Practical Fractional-Order Neuron
Dynamics for Reservoir Computing

Taisuke Kobayashi(B)

Division of Information Science, Graduate School of Science and Technology,
Nara Institute of Science and Technology, Nara, Japan

kobayashi@is.naist.jp

Abstract. This paper proposes a practical reservoir computing with
fractional-order leaky integrator neurons, which yield longer memory
capacity rather than normal leaky integrator. In general, fractional-order
derivative needs all memories leading to the current state from the initial
state. Although this feature is useful as a viewpoint of memory capacity,
to keep all memories is intractable, in particular, for reservoir computing
with many neurons. A reasonable approximation to the fractional-order
neuron dynamics is therefore introduced, thereby deriving a model that
exponentially decays past memories before threshold. This derivation is
regarded as natural extension of reservoir computing with leaky integra-
tor that has been used most commonly. The proposed method is com-
pared with reservoir computing methods with normal neurons and leaky
integrator neurons by solving four kinds of regression and classification
problems with time-series data. As a result, the proposed method shows
superior results in all of problems.

Keywords: Reservoir computing · Fractional-order leaky integrator
Regression and classification

1 Introduction

Recently, recurrent neural network (RNN) is a general approach to predict and
classify time-series data, coupled with recent deep learning technology [6]. RNN
is one of the neural networks with recursive connections in hidden layer, which
enables to store past inputs for a certain period as internal states, which are
useful in solving real problems that does not have a Markov process. Let us call
“memory capacity” how much past inputs (and outputs) can be reflected on the
next outputs. The long memory capacity is suitable to handle the time-series
data. As a means to improve the memory capacity, long-short term memory
(LSTM) and its relatives [3,7] have been major proposals, and actually, they
have achieved excellent results. For embedded systems, however, backpropaga-
tion through time (BPTT) in RNN is sometimes intractable in terms of calcula-
tion cost since its calculation graph grows with time. A method to update LSTM

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 116–125, 2018.
https://doi.org/10.1007/978-3-030-01424-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_12&domain=pdf
http://orcid.org/0000-0002-3760-249X

Practical Fractional-Order Neuron Dynamics 117

β 1−

+

+

xI

−m

W in

W rec

W fb

u

W out

y

Fig. 1. Concept of reservoir computing with fractional-order leaky integrator: reservoir
layer consists of fractional-order leaky integrator neurons; each neuron has a practical
memory trace, which approximates the original one for computing with constant cost,
to improve the memory capacity.

parameters using evolutionary algorithm instead of BPTT was proposed [18], but
sufficient computational resources are still needed.

Under such circumstances, reservoir computing (RC) [11], typified by echo
state network (ESN) [8] and liquid state machine (LSM) [13], has been proposed
as a special case of RNN (see the left side of Fig. 1). As well as RNN, RC
has recursive connections in hidden layer (called reservoir layer), although the
connections are sparsely given in general. The decisive difference between RNN
and RC is the weights to be learned: in RC, only readout weights to generate
outputs from the internal states of the reservoir layer. The other weights, i.e.,
inputs and reservoir weights, are randomly given as constants. That is, BPTT is
no longer required in RC, and instead, RC is learned easily in a linear regression
manner. Even in terms of performance to predict or classify the time-series data,
it is known that RC is not inferior to RNN. In addition, since learning parameters
increased only linearly with respect to the number of neurons, a huge number
of neurons would easily be set in the reservoir layer like cerebellum [23].

To improve the memory capacity in RC, two important dynamics should be
considered: (i) network dynamics of the reservoir layer [5,17] and; (ii) neuron
dynamics in the reservoir layer [9,12,15,21]. Note that these combination has
been reported to be remarkable improvement of memory capacity [22]. Although
each summary is described in the below, a new method for (ii) the neuron dynam-
ics is proposed in this paper.

With regard to (i) the network dynamics, the reservoir layer, which is ran-
domly given in general, has been structured explicitly. For instance, Rodan and
Tino showed that several network models with minimal recursive connections have
sufficient performance for prediction [17]. Gallicchio et al. achieved longer memory
capacity by deepening the reservoir layer [5]. These results are, however, gained

118 T. Kobayashi

through trial-and-error (or heuristic) design based on the intuition of researchers,
namely not derived mathematically.

On the other hand, (ii) the neuron dynamics often employs firing models
of a neuron of organism. In particular, leaky integrator has shown utility in
LSM [21]. After that, it has been diverted to ESN, which does not directly deal
with neuron firing, by Jaeger et al., and has improved the memory capacity [9].
Recently, Lun et al. extended the leaky integrator to the one, which holds past
internal states with different leaking rates for a certain period [12]. This model
actually improved the performance of RC, while it is heuristically designed. Teka
et al. have proposed a new leaky integrator that explicitly holds all past internal
states according to a mathematically sophisticated approach, i.e., fractional-
order derivative [19,20]. The fractional-order leaky integrator has recently been
introduced to ESN by Pahnehkolaei et al. [15]. However, to hold all past internal
states in memory is practically infeasible, in particular in RC with many neurons.

Hence, this paper proposes the RC with practical fractional-order leaky inte-
grators (FLRC), a block diagram of which is shown in the right side of Fig. 1.
That is, a reasonable approximation is given to the fractional-order neurons so as
to calculate their dynamics with a constant cost. With this approximation, the
past internal states before threshold are treated in a recursive manner without
holding their values explicitly. FLRC is also regarded as the extension of the RC
with leaky integrator (LRC) by introducing a new parameter, named fractional
rate. In this paper, the proposed FLRC was evaluated via four kinds of time-
series data prepared as benchmarks for regression or classification problems. We
found that the proposed FLRC outperformed the conventional RC and LRC in
all benchmarks.

2 Preliminaries

2.1 Reservoir Computing with Leaky Integrator Neurons

RC is one of the recurrent neural networks, which updates only readout weights,
W out. Other weights, i.e., inputs weights, W in, feedback weights, W fb, and
recursive weights, W rec, are randomly given to be constants. Regarding W rec,
however, the magnitude of eigenvalues is limited to satisfy the echo state prop-
erty. This paper employs ρ(|W rec|) = 0.999, where ρ(·) gives the maximum
eigenvalue, as the echo state property according to ref. [24].

RC dynamics with N leaky integrator neurons is given as follows:

It = f(W recxt−1 + W inut + W fbyt−1) (1)
xt = (1 − aβ)xt−1 + βIt (2)

yt = g(W out[x�
t ,u�

t]�) (3)

where x are internal states of respective neurons, u and y are inputs and outputs
of this system, respectively. f(·) is the activation function (hyperbolic tangent in
general), and g(·) is task-dependent function: linear function in regression and

Practical Fractional-Order Neuron Dynamics 119

softmax function in classification. a is usually given to be 1 for simplicity. Note
that, when β = 1, the above equations match the basic RC.

β is generally a scalar, but in this paper, it is vectorized so as to have different
time constants for each neuron. In addition, W fb and direct inputs to outputs
are ignored for simplicity. That is, the LRC dynamics in this paper is defined as
follows:

It = f(W recxt−1 + W inut) (4)
xt = (1 − β) � xt−1 + βIt (5)

yt = g(W outxt) (6)

2.2 Learning of Readout Weights

Let us introduce the way to update readout weights, W out. Depending on the
conducted task (regression or classification), loss function is defined as follows:

L =

{∑nb

i=1
1
2‖yi − ti‖22 Regression

−∑nb

i=1 ln(yi)�ti Classification
(7)

where nb is the size of mini batch and t are supervisory signals. W out is updated
to minimize L generally by recursive least square method for linear regressor.
In this paper, however, stochastic gradient decent (SGD) is employed since the
latest SGD (Adam [10] with L2 regularization in this paper) can generate a
stable gradient every time step. Note that learning rate η is given as 10−3/N .

3 Fractional-Order Neuron Dynamics

3.1 Derivation of Fractional-Order Leaky Integrator

In this section, the practical dynamics of fractional-order leaky integrator neu-
rons are derived. Although derivation process is basically in accordance with
refs. [19,20], it is noticed that the way to handle discrete time is partially cor-
rected. In addition, the dynamics for single neuron is derived for simplicity of
description.

First of all, the derivative of fractional-order leaky integrator neuron is
defined as follows:

dαxt

dtα
= (−xt + It)τ−1 (8)

where τ > 0 is the time constant, and α ∈ (0, 1] is the order of the fractional
derivative, named fractional rate. The left side of the above equation can be
approximated by the following numerical integration using the L1 scheme of the
Caputo fractional derivative [4].

dαxt

dtα
� δ−α

Γ (2 − α)

[
t−1∑
k=0

(xk+1 − xk)
{
(t − k)1−α − (t − 1 − k)1−α

}]
(9)

120 T. Kobayashi

where δ is time step and Γ (·) is gamma function.
When δατ−1Γ (2 − α) is replaced as C, the above two equations are merged

as follows:

C(−xt + It) = xt − xt−1

+
t−2∑
k=0

(xk+1 − xk)
{
(t − k)1−α − (t − 1 − k)1−α

}
(10)

The last term on the right side of the above equation is defined as mt−1, named
a memory trace.

mt−1 :=
t−2∑
k=0

(xk+1 − xk)
{
(t − k)1−α − (t − 1 − k)1−α

}
(11)

In that case, xt is derived in a recursive manner.

(1 + C)xt = xt−1 + CIt − mt−1

xt =
1

1 + C
(xt−1 − mt−1) +

C

1 + C
It

∴ xt = (1 − β)(xt−1 − mt−1) + βIt (12)

where β replaces C/(1 + C).
As can be seen in Eq. (12), (5) is extended to it by adding the memory trace.

When α = 1, this equation is equivalent to Eq. (5) since the memory trace is no
longer stored (see Eq. (11)). In addition, when β = 1, the memory trace does
not affect the internal state, thereby matching the basic RC. In the original
derivation in refs. [19,20], (1 − β) was not multiplied with the memory trace,
which could always affect the internal state unless α = 1.

3.2 Approximation to Memory Trace

However, the memory trace defined in Eq. (11) is intractable to calculate numer-
ically because it requires all internal states from the initial time 0 to the current
time t. A single neuron still has room for computing, but it is infeasible in RC
with many neurons. A reasonable approximation is therefore applied to calculate
the memory trace feasibly.

Now, a parameter, n ∈ N, is introduced for approximation. The memory
trace mt is divided by using n as follows:

mt =
t−1−n∑

k=0

(xk+1 − xk)
{
(t + 1 − n − k)1−α − (t − n − k)1−α

}

× (t + 1 − k)1−α − (t − k)1−α

(t + 1 − n − k)1−α − (t − n − k)1−α

+
t−1∑

k=t−n

(xk+1 − xk)
{
(t + 1 − k)1−α − (t − k)1−α

}
(13)

Practical Fractional-Order Neuron Dynamics 121

0 t-1-n
k

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
ec
ay

ra
te

γ
α = 0.2 α = 0.4 α = 0.6 α = 0.8

(a) With respect to α

0 t-1-n
k

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
ec
ay

ra
te

γ

n = 1 n = 4 n = 7 n = 10

(b) With respect to n

Fig. 2. Decay rate γ(α, n, t, k): t is fixed with 500; as α and n increase, the approxi-
mation accuracy is expected to worsen; note that n yields the precise memory trace
up to n, although this fact cannot be shown in this figure.

The latter summation can be computed with a constant cost, and an efficient
solver has been proposed in ref. [14]. The former summation matches mt−n

if the multiplied coefficients, named decay rates, are excluded. It is therefore
approximated as a value unrelated to k.

(t + 1 − k)1−α − (t − k)1−α

(t + 1 − n − k)1−α − (t − n − k)1−α
=: γ(α, n, t, k) � γ(α, n) (14)

Since γ(α, n) is independent on k, it can be putted out of the summation. Namely,
mt is approximated in a recursive manner as follows:

mt � γ(α, n)mt−n +
t−1∑

k=t−n

(xk+1 − xk)
{
(t + 1 − k)1−α − (t − k)1−α

}
(15)

Note that, even after this approximation, the memory trace is 0 when α = 1.
The effect of this approximation can be confirmed from plots of the decay

rate γ(α, n, t, k) summarized in Fig. 2. The smaller α yields quicker convergence
to 1, which makes it easier to improve the approximation accuracy. The smaller
n also improves the approximation accuracy, while the latest memory trace up to
n can be calculated without the approximation. Then, to prioritize minimization
of cost, n = 1 is employed in this paper.

mt � γ(α, 1)mt−1 + (xt − xt−1)(21−α − 1) (16)

As approximation methods of γ, several methods are considered: an opti-
mistic method by approximating γ(α, n) = 1; a worst-used method by approxi-
mating γ(α, n) with a minimum decay rate in a range of approximation; and a
method mixing them. In the mixed method with mixing rate ζ (= 0.1, in this
paper), γ(α, 1) is given as follows:

γ(α, 1) = ζ + (1 − ζ)
31−α − 21−α

21−α − 1
(17)

122 T. Kobayashi

4 Performance Evaluation

4.1 Benchmark Problems

10th NARMA System (NARMA). The task in the nonlinear auto-
regressive moving average (NARMA) system [1] is to predict the next output
from the current input and output. The input s is generated uniformly from an
interval [0, 0.5]. The output in the 10th order system, y, is given by the following
equation.

y(t + 1) = 0.3y(t) + 0.05y(t)
9∑

i=0

y(t − i) + 1.5s(t − 9)s(t) + 0.1 (18)

That is, long memory capacity is required to predict the output since inputs and
outputs up to 10 steps before are necessary. In this paper, 500 steps have been
generated as one sequence, and 50 sequences are prepared as a dataset.

Inverse Kinematics for Two-Link Arm (IK). The task in the two-link
arm, which has links �1 and �2 with 0.5 m, is to predict the joint angles and their
angular velocities, (θ1, θ2) and (θ̇1, θ̇2), from the reference of the tip of arm, (x, y).
The reference trajectory is generated by sine waves with several frequencies for
respective axes. This inverse kinematics can be solved analytically as follows:

θ1 = atan2(y, x) − atan2
(√

x2 + y2 − d21, d1

)

θ2 = −θ1 + atan2(y, x) + atan2
(√

x2 + y2 − d22, d2

)
(19)

where d1 = (x2 + y2 + �21 − �22)/(2�1), d2 = (x2 + y2 − �21 + �22)/(2�2)

Their angular velocities are given as backward difference. In this paper, 500 steps
have been generated from the specific reference trajectory as one sequence, and
50 sequences are prepared as a dataset.

Walking Path Classification (MovementAAL). This dataset is provided
by ref. [2]. The task in this paper is to classify walking path into six paths accord-
ing to the current four radio signal strengths (RSS). Although classification task
with time-series data is generally evaluated by classifications for one sequence,
it is evaluated by classifications at respective times in this paper. This setting is
harder than general one and leads to clarifying the performance of the classifiers.
Note that the size of mini batch is smaller than the other datasets (nb = 5 in
this dataset and nb = 50 in the other datasets) due to the shorter sequences.

Activity Classification (AReM). This dataset is provided by ref. [16]. Seven
activity, i.e., bending1, bending2 cycling, lying, sitting, standing, and walking,
are classified from six inputs, i.e., respective means and variances of three RSS.
As well as the walking path classification, this task is also evaluated by the
classification results at respective times.

Practical Fractional-Order Neuron Dynamics 123

4.2 Evaluation Criteria

The prepared dataset is divided into training data with 75% and test data with
25%. Note that this division conducted 10 patterns for statistics. After learning
20 epochs with the training data, each method is evaluated with the test data.
Evaluation differs between regression problems (first two benchmarks) and clas-
sification problems (remaining two). In the regression problems, criterion is given
as normalized mean square error (NMSE).

NMSE =
‖y − t‖22

‖t‖22
(20)

A smaller value means higher regression performance. The classification cri-
terion is given as accuracy (ACC) of classification at each time.

ACC =
Tcor

Tall
(21)

where Tcor is the cumulative time successfully classified and Tall is the total
time of dataset. A larger value means higher classification performance.

4.3 Results

Three methods, i.e., RC with α,β = 1, LRC with α = 1 and β ∈ (0, 1), and
FLRC (proposal) with α,β ∈ (0, 1), were compared in terms of the evaluation
criteria. Note that α and β were generated uniformly (or fixed to 1) for respective
neurons, although they are usually scalars, which is specialized for a task to be
learned. This design aims to eliminate the task-dependent optimization and to
improve generalization. Except for α and β, all other network constants, such
as W rec, are commonly used.

Table 1. Means and standard deviations of evaluation results: in each benchmark, the
best results were shown in bold; the means of FLRC with N = 500 outperformed the
other methods in all benchmarks.

Benchmark RC LRC FLRC (proposal)

N = 100 N = 500 N = 100 N = 500 N = 100 N = 500

NARMA (NMSE×103) 37.8 ± 0.6 55.2 ± 1.3 37.0 ± 0.5 35.0 ± 0.4 35.9 ± 0.5 33.2 ± 0.5

IK (NMSE×102) 13.3 ± 1.7 13.3 ± 1.7 12.4 ± 1.6 12.2 ± 1.6 12.3 ± 1.6 12.0 ± 1.6

MovementAAL (ACC%) 38.4 ± 3.5 38.7 ± 3.0 52.6 ± 4.8 54.6 ± 4.2 58.6 ± 3.5 60.6 ± 3.4

AReM (ACC%) 63.0 ± 4.1 62.8 ± 4.2 68.2 ± 4.6 68.8 ± 4.8 68.7 ± 4.7 69.8 ± 4.7

Results were shown in Fig. 3(a) and (b) and Table 1. As can be seen in
them, FLRC outperformed the conventional RC and LRC in all benchmarks. In
NARMA and MovementAAL, significant superiorities were confirmed, although
the remaining two had no significances. This is because the former two bench-
marks required the longer memory capacity rather than the latter two. In partic-
ular, NARMA absolutely needs the longer memory capacity in accordance with
Eq. (18), while LRC is enough to predict the trajectory of the two-link arm from
the current states and the next references in IK (see Eq. (19)).

124 T. Kobayashi

NARMA IK
Benchmark

0.04

0.06

0.08

0.10

0.12

0.14

0.16

N
M
SE

RC-100
RC-500

LRC-100
LRC-500

FLRC-100
FLRC-500

(a) Regression problems

MovementAAL AReM
Benchmark

0.4

0.5

0.6

0.7

0.8

A
C
C

RC-100
RC-500

LRC-100
LRC-500

FLRC-100
FLRC-500

(b) Classification problems

Fig. 3. Box plots of evaluation results: the number behind the names of methods
represented the number of neurons N , which basically improved the performance to
some extent; FLRC outperformed the conventional methods, namely RC and LRC, in
all benchmarks, although its superiorities in IK and AReM were not so significant.

5 Conclusion

This paper proposed a practical fractional-order leaky integrator neurons for RC,
named FLRC, which yielded the long memory capacity. Although fractional-
order derivative generally needs all memories leading to the current state from
the initial state and this feature is intractable for RC with many neurons, a
reasonable approximation to the fractional-order neuron dynamics derives the
model that exponentially decays past memories before threshold. This deriva-
tion is regarded as natural extension of the normal leaky integrator. FLRC was
compared with the conventional RC and LRC by solving four kinds of regression
and classification problems with time-series data. As a result, FLRC achieved
superior results in all of problems.

Future work of this study is to analyze the optimal design of α and β.
Alternatively, they will be dynamically optimized according to SGD.

References

1. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the
algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–
709 (2000)

2. Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental
characterization of reservoir computing in ambient assisted living applications.
Neural Comput. Appl. 24(6), 1451–1464 (2014)

3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

4. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional
calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng.
194(6–8), 743–773 (2005)

http://arxiv.org/abs/1412.3555

Practical Fractional-Order Neuron Dynamics 125

5. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: a critical exper-
imental analysis. Neurocomputing 268, 87–99 (2017)

6. Hermans, M., Schrauwen, B.: Training and analysing deep recurrent neural net-
works. In: Advances in Neural Information Processing Systems, pp. 190–198 (2013)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and sav-
ing energy in wireless communication. Science 304(5667), 78–80 (2004)

9. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and appli-
cations of echo state networks with leaky-integrator neurons. Neural Netw. 20(3),
335–352 (2007)

10. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference for Learning Representations, pp. 1–15 (2015)

11. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

12. Lun, S.x., Yao, X.s., Hu, H.f.: A new echo state network with variable memory
length. Inf. Sci. 370, 103–119 (2016)

13. Maass, W., Markram, H.: On the computational power of circuits of spiking neu-
rons. J. Comput. Syst. Sci. 69(4), 593–616 (2004)

14. Marinov, T., Ramirez, N., Santamaria, F.: Fractional integration toolbox. Fract.
Calc. Appl. Anal. 16(3), 670–681 (2013)

15. Pahnehkolaei, S.M.A., Alfi, A., Machado, J.T.: Uniform stability of fractional order
leaky integrator echo state neural network with multiple time delays. Inf. Sci. 418,
703–716 (2017)

16. Palumbo, F., Gallicchio, C., Pucci, R., Micheli, A.: Human activity recognition
using multisensor data fusion based on reservoir computing. J. Ambient. Intell.
Smart Environ. 8(2), 87–107 (2016)

17. Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural
Netw. 22(1), 131–144 (2011)

18. Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent net-
works by evolino. Neural Comput. 19(3), 757–779 (2007)

19. Teka, W., Marinov, T.M., Santamaria, F.: Neuronal spike timing adaptation
described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol.
10(3), e1003526 (2014)

20. Teka, W.W., Upadhyay, R.K., Mondal, A.: Fractional-order leaky integrate-and-
fire model with long-term memory and power law dynamics. Neural Netw. 93,
110–125 (2017)

21. Verstraeten, D., Schrauwen, B., Stroobandt, D., Van Campenhout, J.: Isolated
word recognition with the liquid state machine: a case study. Inf. Process. Lett.
95(6), 521–528 (2005)

22. Xue, F., Li, Q., Li, X.: The combination of circle topology and leaky integrator
neurons remarkably improves the performance of echo state network on time series
prediction. PloS one 12(7), e0181816 (2017)

23. Yamazaki, T., Igarashi, J.: Realtime cerebellum: a large-scale spiking network
model of the cerebellum that runs in realtime using a graphics processing unit.
Neural Netw. 47, 103–111 (2013)

24. Yildiz, I.B., Jaeger, H., Kiebel, S.J.: Re-visiting the echo state property. Neural
Netw. 35, 1–9 (2012)

An Unsupervised Character-Aware
Neural Approach to Word and Context

Representation Learning

Giuseppe Marra1,2(B), Andrea Zugarini1,2, Stefano Melacci2,
and Marco Maggini2

1 DINFO, University of Firenze, Florence, Italy
{g.marra,andrea.zugarini}@unifi.it

2 DIISM, University of Siena, Siena, Italy
mela@diism.unisi.it, marco.maggini@unisi.it

Abstract. In the last few years, neural networks have been intensively
used to develop meaningful distributed representations of words and con-
texts around them. When these representations, also known as “embed-
dings”, are learned from unsupervised large corpora, they can be trans-
ferred to different tasks with positive effects in terms of performances,
especially when only a few supervisions are available. In this work, we fur-
ther extend this concept, and we present an unsupervised neural architec-
ture that jointly learns word and context embeddings, processing words
as sequences of characters. This allows our model to spot the regular-
ities that are due to the word morphology, and to avoid the need of a
fixed-sized input vocabulary of words. We show that we can learn com-
pact encoders that, despite the relatively small number of parameters,
reach high-level performances in downstream tasks, comparing them with
related state-of-the-art approaches or with fully supervised methods.

Keywords: Recurrent Neural Networks · Unsupervised learning
Word and context embeddings · Natural Language Processing
Deep learning

1 Introduction

Recent advances in Natural Language Processing (NLP) are characterized by
the development of techniques that compute powerful word embeddings and by
the extensive use of neural language models. Word Embeddings (WEs) aim at
representing individual words in a low-dimensional continuous space, in order to
exploit its topological properties to model semantic or grammatical relationships
between different words. In particular, they are based on the assumption that
functionally or semantically related words appear in similar contexts.

Despite the idea of continuous word representations was proposed a several
years ago [4], their importance became strongly popular mostly after the work of
Mikolov et al. [13], when the CBOW and Skip-Gram models were introduced as
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 126–136, 2018.
https://doi.org/10.1007/978-3-030-01424-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_13&domain=pdf

An Character-Aware Model to Word and Context Representation Learning 127

implementations of the word2vec idea. Key features of these models are the unsu-
pervised scheme of the learning process and the simplicity of the computation
that allows a highly efficient training from very large unlabeled corpora. More-
over, the learning objective function is task-independent, such that it allows the
development of embeddings suitable for several NLP tasks. WEs are generally
constituted by a single vector to represent each specific word in a vocabulary V
of N = |V | words. The requirement of a predefined vocabulary is an important
limitation for every NLP model. Rare and Out-Of-Vocabulary (OOV) words
will not have a meaningful vector representation. Moreover, WEs do not take
into account morphological properties of words. For instance, the same suffix ing
may suggest that two words have some functional similarity. Hence, the informa-
tion conveyed by the sequence of characters representing a word may be useful to
tackle both the problem of unseen words and the modelling of morphology for in-
vocabulary tokens. For instance, the character structure of tokens can also help
to detect Named Entities, usually treated as OOV elements, recognizing proper
nouns, by means of capital letters, or acronyms. Furthermore, a character-based
model can deal with noise caused by typos, slang, etc., that are common issues in
open-domain systems such as conversational agents or sentiment analysis tools.

There are several NLP tasks in which it is useful to generate vectorial rep-
resentations of contexts too. In fact, polysemy and homonymy cause inherent
semantic ambiguities in language interpretation, that can only be resolved by
looking at the surrounding context, that is the goal of the Word Sense Disam-
biguation (WSD) task. Neural approaches have been developed to learn context
embeddings, such as context2vec [12].

In this work we propose a character-based unsupervised model to learn both
context and word embeddings from generic text. The model consists in a hierar-
chy of two distinct Bidirectional Long Short Term Memories (Bi-LSTMs) [18],
to encode words as sequences of characters and word-level contextual represen-
tations, respectively. Our unsupervised learning approach, despite being more
compact than other related algorithms, yields generic embeddings with features
that can be efficiently exploited in different NLP tasks requiring either word or
context embeddings, such as chunking and WSD, as we show in our comparisons.

The paper is structured as follows. First, in Sect. 2 the related work is sum-
marized. Then, we describe the proposed model in Sect. 3. Section 4 reports our
experimental results and Sect. 5 draws our conclusions and the directions for
future work.

2 Related Work

Our unsupervised computational scheme follows the one of the CBOW instance
of the word2vec algorithm [13]. The method we propose in this paper is inspired
by the ideas behind context2vec [12], that we extend with a bidirectional recur-
rent neural model that processes words as sequence of characters. We also focus
on a single encoder that we use both to represent words alone and words belong-
ing to a context.

128 G. Marra et al.

There are several approaches that jointly learn task-oriented (supervised)
word and character-based representations, that are subsequently either concate-
nated or combined by a non-linear function. In [14] a gate adaptively decides
how to mix the two representations, whereas the models proposed in [16,17]
exploit the concatenation of word embeddings and character representations to
address Part-Of-Speech (POS) Tagging and Named Entity Recognition (NER),
respectively. Differently, our work focusses on a single character-level encoder
that is trained in an unsupervised manner.

There exists a number of different approaches that extract vectorial repre-
sentations directly from the character sequences of words, mostly focused on
Language Modeling (LM) or Character Language Modeling (CLM). These rep-
resentations are generally computed by either Convolutional Neural Networks
(CNNs) or Recurrent Neural Networks (RNNs) - mostly LSTMs [5]. Ling et al.
[11] applied Bidirectional LSTMs [18] to learn task-dependent character level
features for Language Modeling and POS tagging, showing particular improve-
ments in morphologically rich languages such as Turkish. A multi-layered Hier-
archical Recurrent Neural Network was applied in [7] to solve CLM. Differently
from our approach, the output of this model is a distribution over characters,
while we exploit word level predictions. The character-aware model of [10], is
based on a highway-network on top of 1-d convolutional filters processing input
characters. The resulting output is then handled by a LSTM for a LM task.
The highway-network output does provide the distributed representation of a
word. In [9] different architectures, mostly based on CNNs, are studied in LM
tasks. The proposed approach differs from most of the previous ones (1) for the
learning mechanism, that is completely unsupervised on large text corpora, thus
allowing the development of task-independent representations, and (2) for the
architecture that is aimed at obtaining character-aware representations of both
contexts and words, that are suitable for a large variety of NLP applications.

3 The Character-Aware Neural Model

The proposed model is organized as a hierarchical architecture based on Bi-
LSTMs processing sentences. Each sentence is first split into a sequence of
words using space characters (i.e. whitespaces, tabs, newlines, etc.) as separators.
Words are further split into sequences of characters, such that there is no need to
specify a vocabulary in advance. Then, the character sequence of an input word
x is processed to obtain its vectorial representation (word embedding), while the
character sequences of the surrounding words are used to encode the context to
which x belongs (context embedding). Given the current sentence, the context of
x comprises the words that precede and follow x. Inspired by the CBOW scheme
[13], our model is trained to predict the current word given its context. In the
following we describe each layer of the proposed architecture.

An Character-Aware Model to Word and Context Representation Learning 129

3.1 Word and Context Embeddings

We consider an input sentence s composed of n words, s = (x1, . . . , xn), where
each word is a sequence of characters xi = (ci,1, . . . , ci,|xi|), being |xi| the length
of the sequence xi. Each character cij is encoded as an index in a dictionary of
C characters and it is mapped to a real vector ĉij ∈ R

dc as

ĉij = Wc · 1(cij), (1)

where Wc ∈ R
C×dc is the matrix of the learnable character representations, each

of them of size dc, while 1(·) is a function returning a one-hot representation of its
integer input. Note that C is quite small, in the order of hundreds, compared to
common word vocabularies, whose size is in the order of hundreds of thousands.

For each input word xi, the first layer of the model extracts a word embedding
ei, using a bidirectional recurrent neural network with LSTM cells (Bi-LSTM)
[2]. Let −→rc and ←−rc be the forward and backward components of a Bi-LSTM taking
a sequence of character embeddings as input and returning their internal states−→
hc and

←−
hc after the entire sequence has been processed. The embeddings ei of

the word xi is then the concatenation of
−→
hc and

←−
hc:

ei = [
−→
hc,

←−
hc] = [−→rĉ (ĉi,1 . . . ĉi,|xi|),

←−rc (ĉi,|xi| . . . ĉi,1)], (2)

where we indicated with [· , ·] the concatenation operation and we emphasized
the backward nature of ←−rc by showing the character sequence in reverse order.

The second layer follows a similar scheme to compute the contextual embed-
ding êi of the word xi in the sentence s. Let −→re and ←−re be the forward and back-
ward components of a Bi-LSTM taking as inputs the embeddings of left context
of xi (i.e. [e1, . . . , ei−1]) and of the right context of xi (i.e. [ei+1, . . . , en]), respec-
tively. Given the Bi-LSTM internal states

−→
he and

←−
he obtained after processing

the input left and right context sequences, the contextual embedding êi of the
word xi is then obtained by projecting the concatenation of

−→
he and

←−
he into a

lower-dimensional space by means of a Multi-Layer Perceptron (MLP), with the
goal of merging and compressing the left and right context representations,

êi = MLP ([
−→
he,

←−
he]) = MLP ([−→re(e1 . . . , ei−1),←−re(en . . . ei+1)]). (3)

The overall architecture is sketched in Fig. 1. Notice that ei is the embedding
of word xi, whereas êi is the representation of xi in the context of s without
including xi itself. Hence, the model computes at the same time word (Eq. (2))
and context (Eq. (3)) embeddings for a specific word.

3.2 Learning Algorithm

Both word and context representations are learned following the unsupervised
approach used in CBOW [12,13]. Given a corpus of textual data, the objective
of our model is to predict each word given the representation of its surrounding

130 G. Marra et al.

context (Eq. (3)). In particular, the context embedding of Eq. (3) is projected
into the space of the corpus vocabulary using a linear projection. Instead of per-
forming a softmax activation and minimizing the cross-entropy (as commonly
done in LM tasks), the whole network is trained by minimizing the Noise Con-
trastive Estimation (NCE) loss function [3]. NCE belongs to a family of classifi-
cation algorithms, which approximate a softmax regression by means of sampling
methods. NCE is particularly helpful in all those cases in which the number of
output units is prohibitively high, as it is for our (and related) model.

LSTM LSTM LSTM

LSTM LSTM LSTM

'T' 'h' 'e'

LSTM

LSTM

'c' 'a' 't'[]

LSTM LSTM

LSTM LSTM

'i' 's'

MLP

cat

LSTM LSTM LSTM

LSTM LSTM LSTM

's' 'l' 'e'

LSTM

LSTM LSTM

LSTM LSTM

'e' 'p'

LSTM

LSTM

'y'

Character Embedding

Legend

Word Embedding Context Embedding

[[[]]]

Fig. 1. The sentence “The cat is sleepy” is fed to our model, with target word cat.
The sequence of character embeddings (orange squares on the bottom) are processed
by the word-level Bi-LSTM yielding the word embeddings (yellow-red squares in the
middle). The context-level Bi-LSTM processes the word embeddings in the left and
right contexts of cat, to compute a representation of the whole context (blue-green
squares on the top). Such representation is used to predict the target word cat, after
having projected it by means of a MLP. (Color figure online)

One could argue that a vocabulary of words is still needed, since it is required
to make the aforementioned word prediction. However, this is not a limitation,
since it is only necessary at training time, while it is not needed when deploying
the model. In principle, a different approach would be feasible, where the context
representation of Eq. (3) is decoded into a sequence of characters that represent
the word to predict. We tried both approaches and we found the word level
prediction to give the best results. Thanks to the dynamic behaviour of the
context-level RNNs, our model can deal with contexts of any length. In this
work, the state of the RNN re is reset at the beginning of a new sentence, to
reduce the variability of the contexts.

An Character-Aware Model to Word and Context Representation Learning 131

4 Experimental Results

We conducted different experiments to evaluate the word and context representa-
tions developed by the proposed model. In particular, we first trained our model
on a large corpora. Then, we detached the learned word and context encoders
and considered the tasks of Chunking and Word Sense Disambiguation (WSD),
exploiting our word and context embeddings as features for each task-specific
classifier, as shown in Fig. 2. Depending on the problem at hand, it may be useful
to use either both the word and context embeddings or only one of them. Any
other additional features can also be concatenated to these representations to
obtain a richer input vector. We also evaluated the robustness of our model to
character-level noise. Hence, we considered the WSD task when the input words
are perturbed by typos modelled as random replacements of single characters.
Finally we report some qualitative examples, showing the nearest neighbours for
both word and context representations of a set of sample words.
Model Setup. Our model has been trained on the ukWaC corpus1 (2 billion
words). The size dc of the character embeddings is set to 50, whereas word and
context embeddings are of sizes 1000 and 600, respectively. The MLP, that maps
the RNN states into the context embeddings, has one hidden layer of 1200 units
with ReLU activation functions. These settings are inspired by those used in the
context2vec architecture [12] (the structure of the last projection layer described
in Subsect. 3.2 is the same). The complete encoding model has around 7 million
trainable parameters, which is about 16 times smaller than the context2vec
model in [12]; this is due to the fact that words are encoded using a RNN that
does not depend on the vocabulary size.

Legend

Chunk
Classifier

The black [dog] was barking

Chunker

Sense
Classifier

Cook it right on the [bank] of the river.

WSD

"bank
(geography)"I-NP

Word Embedding Context Embedding Other Features

Task-related
Predictor

Text surrounding [word] that we
considered

Generic
task

output

Fig. 2. Examples of how word and context embeddings can be used in a generic task,
and in the cases of Chunking and WSD of this paper.

Chunking. Chunking is a classical NLP problem whose goal is to tag text seg-
ments with labels defining their syntactic roles, e.g. noun phrase (NP) or verbal
1 http://wacky.sslmit.unibo.it/doku.php?id=corpora

http://wacky.sslmit.unibo.it/doku.php?id=corpora

132 G. Marra et al.

phrase (VP). Each word is uniquely associated with a single tag expressing the
segment class and its position within the phrase. An instance of Chunking clas-
sification is shown in Fig. 2, where the word dog is marked with the label I-NP,
standing for Inside-chunk Noun Phrase. A standard benchmark for Chunking is
the CoNLL 2000 dataset that contains 211,727 tokens in the training set and
47,377 tokens in the test set. The chunk tag is predicted by training a classifier
that receives as input only the concatenation of the word and context embed-
dings computed by the model. This vector is projected onto a 600 dimensional
space, and further processed by a Bi-LSTM that outputs vectors of size 500
that are finally mapped to the space of 23 classes, representing the chunk tags.
Weights are updated using Adam Optimizer with default hyper-parameters and
weight decay regularization with a factor of 0.001. We compared several variants
of the proposed model and the resulting F1 scores are shown in Table 1. We
report results when using only Word Embeddings (WE), only Context Embed-
dings (CE), and both of them (WE+CE). In this case we also considered WE
and CE that are not generated by our model, but that are variables of the whole
architecture trained with the task-level supervision. Both the feature types (WE
and CE) are needed to achieve better performances, as expected. This experi-
ment highlights the importance of using embeddings that are pre-trained with
our model, that allows us to obtain the best F1 score of 93.30. This value can be
compared with the results reported by Collobert et al. [1] (94.32) and by Huang
et al. [6] (94.46), taking into account that in our case we did not make use of
any hand-crafted feature nor of any kind of post-processing to adjust incoherent
predictions. Moreover, when adding POS tagging features, our model reaches
the same performances (93.94) of the state-of-the-art architecture [6] without
Conditional Random Fields. Hence, we can conclude that the proposed architec-
ture provides word and context embeddings that convey enough information to
reach competitive performances. Furthermore, it should be considered that the
number of parameters in the model is dramatically reduced with respect to such
competitors, since there is no word vocabulary.

Table 1. Results on the Chunking task - different input features.

Input features F1 %

Our WE only 89.68

Our CE only 89.59

Our WE + Our CE 93.30

WE + CE trained on task 89.83

Word Sense Disambiguation. Experiments on WSD were carried out within
the evaluation framework proposed in [15], that collects multiple benchmarks
(Senseval*, SemEval*, and a merged collection - ALL). The goal of WSD is
to identify the correct sense of words. We followed the commonly used IMS

An Character-Aware Model to Word and Context Representation Learning 133

approach [19], that is based on an SVM classifier on top of conventional WSD
features. We compare our method against the original IMS model and other
instances of it in which the WSD features are augmented with different context
embeddings. We report the results in Tables 2 and 3. Our embeddings outper-
form both the IMS with only conventional features and word2vec embeddings,
opportunely averaged [8], moreover it is competitive with context2vec represen-
tations. It is also worth to mention that, to the best of our knowledge, the use
of context2vec features as input of the IMS is a novel attempt in the literature.

Table 2. Word Sense Disambiguation in the benchmarks collected in [15]. The best
results (F1 %) are obtained by the contex2Vec model that however has 16 times more
parameters than the proposed model and no capability to deal with OOV tokens.

Model Senseval2 Senseval3 SemEval2007 SemEval2013 SemEval2015 ALL

IMS 70.2 68.8 62.2 65.3 69.3 68.1

IMS+word2vec 72.2 69.9 62.9 66.2 71.9 69.6

IMS+context2vec 73.8 71.9 63.3 68.1 72.7 71.1

IMS+Our CE 72.8 70.5 62.0 66.2 71.9 69.9

Table 3. Overall results (F1%) grouped by Part of Speech (ALL benchmark [15]).

Model Noun Adjective Verb Adverb

IMS 70.0 75.2 56.0 83.2

IMS+word2vec 71.8 76.1 57.4 83.5

IMS+context2vec 73.1 77.0 60.5 83.5

IMS+Our CE 71.3 76.6 58.1 83.8

Robustness to Typos. Many NLP applications should deal with noisy tex-
tual data. Indeed, misspelled words are likely to be set as OOV in models based
on word dictionaries. We compare the proposed model against context2vec on
a WSD task (ALL benchmark), when introducing an increasing probability to
randomly perturb a character of a word. Conventional WSD features are com-
pletely removed for both the models, that only use context-level representations.
Figure 3 shows how the F1 score decreases with the increase of the noise prob-
ability. Both the models suffer for word perturbations, but the character-aware
embeddings yield a slower degradation in performances, that allows it to out-
performs context2vec for high levels of noise.

Qualitative Evaluation. One of the most intriguing properties of embeddings
is their capability to capture semantic and syntactic similarities into the topology
of the embedding space. Such characteristic is illustrated by means of examples
for both the representations (word and context) obtained by the proposed model.
Distance between the distributed representations are computed by the cosine

134 G. Marra et al.

0 0.2 0.4 0.6 0.8 1
Noise Probability

60

62

64

66

68

70

72

F1
 %

Context2Vec
Our Method

Fig. 3. Robustness to typos in a WSD task (ALL benchmark [15]). The “noise proba-
bility” represents the probability of having a typo in a word.

similarity. In Table 4 we show the 5 nearest neighbours for some given words.
The examples show that the character based model is capable of capturing both
morphological and semantic similarities.

Table 4. Top-5 closest words for a given target word.

Turkish Sometimes Usually Happiness

Danish Somehow Normally Weirdness

Welsh Altogether Basically Fairness

French Perhaps Barely Deformity

Kurdish Nonetheless Typically Ripeness

Swedish Heretofore Formerly Smoothness

For the evaluation of context representations, we considered 8 sentences
related to 2 different topics (4 sentences each): capitals of states and pizza.
A context embedding is obtained by considering the tokens around the word
capital or pizza. Then, a random sentence is chosen as query, and the remaining

Table 5. Some contexts sorted by descending cosine similarity with respect to the
query context “I like eating [] with cheese and ham” of (unused) target word pizza.

Query: I like eating [] with cheese and ham. pizza

Contexts sorted by

descending cosine

similarity

Do you like to eat [] with cheese and salami? pizza

Did you eat [] at lunch? pizza

What is the best [] i can eat here? pizza

Paris is the [] and most populous city in France ... capital

London is the [] and most populous city of England ... capital

Rome is the [] of Italian Republic capital

Washington , D.C. , , is the [] of the United States capital

An Character-Aware Model to Word and Context Representation Learning 135

sentences are sorted according to the distance between the query context embed-
ding and their vectors. An example is shown in Table 5, where it is clear that
all the contexts related to pizza instances are closer to the query than sentences
concerning capitals.

5 Conclusions

We presented an unsupervised neural model that can develop task-independent
word and context representations using character-level inputs. We trained our
model on a 2 billion word corpus, and the resulting word and context encoders
were used to produce robust input features to approach some popular NLP
tasks (Chunking, WSD). The proposed model has shown the capability of build-
ing powerful representations that are competitive to state-of-the-art embeddings
generated by models with a significantly larger number of parameters. Our future
work will include applications of this model to conversational systems.

References

1. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

2. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610
(2005)

3. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation prin-
ciple for unnormalized statistical models. In: AISTATS, pp. 297–304 (2010)

4. Hinton, G.E., Mcclelland, J.L., Rumelhart, D.E.: Distributed Representations, Par-
allel Distributed Processing: Explorations in the Microstructure of Cognition, vol.
1: foundations (1986)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991 (2015)

7. Hwang, K., Sung, W.: Character-level language modeling with hierarchical recur-
rent neural networks. In: 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5720–5724. IEEE (2017)

8. Iacobacci, I., Pilehvar, M.T., Navigli, R.: Embeddings for word sense disambigua-
tion: an evaluation study. In: ACL (Volume 1: Long Papers), pp. 897–907 (2016)

9. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits
of language modeling. arXiv preprint arXiv:1602.02410 (2016)

10. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language
models. In: AAAI, pp. 2741–2749 (2016)

11. Ling, W., et al.: Finding function in form: compositional character models for open
vocabulary word representation. In: EMNLP, pp. 1520–1530 (2015)

12. Melamud, O., Goldberger, J., Dagan, I.: context2vec: learning generic context
embedding with bidirectional LSTM. In: Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning, pp. 51–61 (2016)

http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1602.02410

136 G. Marra et al.

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Miyamoto, Y., Cho, K.: Gated word-character recurrent language model. In: Pro-
ceedings of the 2016 Conference on EMNLP, pp. 1992–1997 (2016)

15. Raganato, A., Camacho-Collados, J., Navigli, R.: Word sense disambiguation: a
unified evaluation framework and empirical comparison. In: EACL (2017)

16. Santos, C.D., Zadrozny, B.: Learning character-level representations for part-of-
speech tagging. In: ICML, pp. 1818–1826 (2014)

17. Santos, C.N.d., Guimaraes, V.: Boosting named entity recognition with neural
character embeddings. arXiv preprint arXiv:1505.05008 (2015)

18. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

19. Zhong, Z., Ng, H.T.: It makes sense: a wide-coverage word sense disambiguation
system for free text. In: ACL, pp. 78–83 (2010)

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1505.05008

Towards End-to-End Raw Audio Music
Synthesis

Manfred Eppe(B), Tayfun Alpay, and Stefan Wermter

Knowledge Technology, Department of Informatics, University of Hamburg,
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany

{eppe,alpay,wermter}@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/WTM/

Abstract. In this paper, we address the problem of automated music
synthesis using deep neural networks and ask whether neural networks
are capable of realizing timing, pitch accuracy and pattern generaliza-
tion for automated music generation when processing raw audio data.
To this end, we present a proof of concept and build a recurrent neu-
ral network architecture capable of generalizing appropriate musical raw
audio tracks.

Keywords: Music synthesis · Recurrent neural networks

1 Introduction

Most contemporary music synthesis tools generate symbolic musical representa-
tions, such as MIDI messages, Piano Roll, or ABC notation. These representa-
tions are later transformed into audio signals by using a synthesizer [8,12,16].
Symbol-based approaches have the advantage of offering relatively small prob-
lem spaces compared to approaches that use the raw audio waveform. A problem
with symbol-based approaches is, however, that fine nuances in music, such as
timbre and microtiming must be explicitly represented as part of the symbolic
model. Established standards like MIDI allow only a limited representation which
restricts the expressiveness and hence also the producible audio output.

An alternative is to directly process raw audio data for music synthesis. This
is independent of any restrictions imposed by the underlying representation, and,
therefore, offers a flexible basis for realizing fine tempo changes, differences in
timbre even for individual instruments, or for the invention of completely novel
sounds. The disadvantage of such approaches is, however, that the representation
space is continuous, which makes them prone to generating noise and other
inappropriate audio signals.

In this work, we provide a proof of concept towards filling this gap and
develop a baseline system to investigate how problematic the large continuous
representation space of raw audio music synthesis actually is. We hypothesize

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 137–146, 2018.
https://doi.org/10.1007/978-3-030-01424-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_14&domain=pdf

138 M. Eppe et al.

Fig. 1. The practical application and workflow of our system.

that a recurrent network architecture is capable of synthesizing non-trivial musi-
cal patterns directly in wave form while maintaining an appropriate quality in
terms of pitch, timbre, and timing.

The practical context in which we situate our system is depicted in Fig. 1. Our
system is supposed to take a specific musical role in an ensemble, such as gener-
ating a bassline, lead melody, harmony or rhythm and to automatically generate
appropriate audio tracks given the audio signals from the other performers in
the ensemble. To achieve this goal, we train a recurrent artificial neural network
(ANN) architecture (described in Fig. 2) to learn to synthesize a well-sounding
single instrument track that fits an ensemble of multiple other instruments. For
example, in the context of a classic rock ensemble, we often find a composition
of lead melody, harmony, bass line, and drums. Our proposed system will learn
to synthesize one of these tracks, say bass, given the others, i.e., lead melody,
harmony and drums. Herein, we do not expect the resulting system to be able to
fully replace a human musician, but rather focus on specific measurable aspects.
Specifically, we investigate:

1. Timing and beat alignment, i.e., the ability to play a sequence of notes that
are temporally aligned correctly to the song’s beat.

2. Pitch alignment, i.e., the ability to generate a sequence of notes that is correct
in pitch.

3. Pattern generalization and variation, i.e., the ability to learn general musical
patterns, such as alternating the root and the 5th in a bass line, and to apply
these patterns in previously unheard songs.

We hypothesize that our baseline model offers these capabilities to a fair degree.

2 Related Work

An example for a symbolic approach for music generation, melody invention
and harmonization has been presented by Eppe et al. [4,6], who build on con-
cept blending to realize the harmonization of common jazz patterns. The work
by Liang et al. [12], employs a symbol-based approach with recurrent neural
networks (RNNs) to generate music in the style of Bach chorales. The authors
demonstrate that their system is capable of generalizing appropriate musical
patterns and applying them to previously unheard input. An advanced general

Towards End-to-End Raw Audio Music Synthesis 139

artistic framework that also offers symbol-based melody generation is Magenta
[16]. Magenta’s Performance-RNN module is able to generate complex poly-
phonic musical patterns. It also supports micro timing and advanced dynamics,
but the underlying representation is still symbolic, which implies that the pro-
ducible audio data is restricted. For example, novel timbre nuances cannot be
generated from scratch. As another example, consider the work by Hung et al. [8],
who demonstrate an end-to-end approach for automated music generation using
a MIDI representation and Piano Roll representation.

Contemporary approaches for raw audio generation usually lack the gener-
alization capability for higher-level musical patterns. For example, the Magenta
framework also involves NSynth [3], a neural synthesizer tool focusing on high
timbre quality of individual notes of various instruments. The NSynth framework
itself is, however, not capable of generating sequences of notes, i.e., melodies or
harmonies, and the combination with the Performance-RNN Magenta melody
generation tool [16] still uses an intermediate symbolic musical representation
which restricts the produced audio signal. Audio generation has also been inves-
tigated in-depth in the field of speech synthesis. For example, the WaveNet
architecture [15] is a general-purpose audio-synthesis tool that has mostly been
employed in the speech domain. It has inspired the Tacotron text-to-speech
framework which provides expressive results in speech synthesis [18]. To the
best of our knowledge, however, WaveNet, or derivatives of it, have not yet been
demonstrated to be capable of generalizing higher-level musical patterns in the
context of generating a musical track that fits other given tracks. There exist
some recent approaches to sound generation operating on raw waveforms with-
out any external knowledge about musical structure, chords or instruments. A
simple approach is to perform regression in the frequency domain using RNNs
and to use a seed sequence after training to generate novel sequences [9,14]. We
are, however, not aware of existing work that has been evaluated with appropri-
ate empirical metrics. In our work, we perform such an evaluation and determine
the quality of the produced audio signals in terms of pitch and timing accuracy.

3 A Baseline Neural Model for Raw Audio Synthesis

For this proof of concept we employ a simple baseline core model consisting of
two Gated Recurrent Unit (GRU) [2] layers that encode 80 Mel spectra into a
dense bottleneck representation and then decode this bottleneck representation
back to 80 Mel spectra (see Fig. 2). Similar neural architectures have proven to
be very successful for various other audio processing tasks in robotics and signal
processing (e.g. [5]), and we have experimented with several alternative architec-
tures using also dropout and convolutional layers but found that these variations
did not improve the pitch and timing accuracy significantly. We also performed
hyperparameter optimization using a Tree-Parzen estimator [1] to determine the
optimal number of layers and number of units in each layer. We found that for
most experiments two GRU layers of 128 units each for the encoder and the
decoder, and a Dense layer consisting of 80 units as a bottleneck representation

140 M. Eppe et al.

produced the best results. The dense bottleneck layer is useful because it forces
the neural network to learn a Markovian compressed representation of the input
signal, where each generated vector of dense activations is independent of the
previous ones. This restricts the signals produced during the testing phase of
the system, such that they are close to the signals that the system learned from
during the training phase.

Fig. 2. Our proposed network for mapping the Mel spectra to a dense bottleneck
representation, back to Mel spectra, and then to linear frequency spectra.

To transform the Mel spectra generated by the decoding GRU layers back
into an audio signal, we combine our model with techniques known from speech
synthesis that have been demonstrated to generate high-quality signals [15].
Specifically, instead of using a Griffin-Lim algorithm [7] to transform the Mel
spectra into audio signals, we use a CBHG network to transform the 80 Mel
coefficients into 1000 linear frequency coefficients, which are then transformed
into an audio signal using Griffin-Lim. The CBHG network [11] is composed
of a Convolutional filter Bank, a Highway layer, and a bidirectional GRU. It
acts as a sequence transducer with feature learning capabilities. This module
has been demonstrated to be very efficient within the Tacotron model for speech
recognition [18], in the sense that fewer Mel coefficients, and therefore fewer
network parameters, are required to produce high-quality signals [15]. Our loss
function is also inspired by the recent work on speech synthesis, specifically the
Tacotron [18] architecture: We employ a joint loss function that involves an L1
loss on the Mel coefficients plus a modified L1 loss on the linear frequency spectra
where low frequencies are prioritized.

4 Data Generation

To generate the training and testing audio samples, we use a publicly available
collection of around 130,000 midi files1. The dataset includes various kinds of
musical genres including pop, rock, rap, electronic music, and classical music.
Each MIDI file consists of several tracks that contain sequences of messages that
indicate which notes are played, how hard they are played, and on which channel
they are played. Each channel is assigned one or more instruments. A problem
with this dataset is that it is only very loosely annotated and very diverse in
1 https://redd.it/3ajwe4, accessed 18/01/18.

https://redd.it/3ajwe4

Towards End-to-End Raw Audio Music Synthesis 141

terms of musical genre, musical complexity, and instrument distribution. We do
not expect our proof of concept system to be able to cope with the full diversity of
the dataset and, therefore, only select those files that meet the following criteria:

1. They contain between 4 and 6 different channels, and each channel must be
assigned exactly one instrument.

2. They are from a similar musical genre. For this work, we select classical pop
and rock from the 60s and 70s and select only songs from the following artists:
The Beatles, The Kinks, The Beach Boys, Simon and Garfunkel, Johnny
Cash, The Rolling Stones, Bob Dylan, Tom Petty, Abba.

3. We eliminate duplicate songs.
4. They contain exactly one channel with the specific instrument to extract.

For this work, we consider bass, reed, and guitar as instruments to extract. The
bass channel is representing a rhythm instrument that is present in most of
the songs, yielding large amounts of data. The reed channel is often used for
lead melody, and guitar tracks often contain chords consisting of three ore more
notes. As a result, we obtain 78 songs with an extracted guitar channel, 61 songs
with an extracted reed channel, and 128 songs with an extracted bass channel.
We split the songs such that 80% are used for training and 20% for testing for
each instrument. For each file, we extract the channel with the instrument that
we want to synthesize, generate a raw audio (.wav) file from that channel, and
chunk the resulting file into sliding windows of 11.5 s, with a window step size of
6 s. We then discard those samples which contain a low amplitude audio signal
with an average root-mean-square energy of less than 0.2.

5 Results and Evaluation

To obtain results, we trained the system for 40,000 steps with a batch size of 32
samples and generated a separate model for each instrument. For the training,
we used an Adam optimizer [10] with an adaptive learning rate. We evaluate
the system empirically by developing appropriate metrics for pitch, timing and
variation, and we also perform a qualitative evaluation in terms of generalization
capabilities of the system. We furthermore present selected samples of the system
output and describe qualitatively in how far the system is able to produce high-
level musical patterns.

5.1 Empirical Evaluation

For the empirical evaluation, we use a metric that compares the audio signals of
a generated track with the original audio track for each song in the test subset of
the dataset. The metric considers three factors: timing accuracy, pitch accuracy,
and variation.

Timing Accuracy. For the evaluation of the timing of a generated track, we
compute the onsets of each track and compare them with the beat times obtained

142 M. Eppe et al.

from the MIDI data. Onset estimation is realized by locating note onset events
by picking peaks in an onset strength envelope [13]. The timing error is estimated
as the mean time difference between the detected onsets and the nearest 32nd
notes. Results are illustrated in Fig. 3 for bass, guitar and reed track generation.
The histograms show that there exists a difference in the timing error between
the generated and the original tracks, specifically for the generated bass tracks.
Hence, we conclude that the neural architecture is very accurate in timing. This
coincides with our subjective impression that we gain from the individual samples
depicted in Sect. 5.2. The computed mean error is between 20 ms and 40ms, which
is the same for the original track. Since the onset estimation sometimes generates
wrong onsets (cf. the double onsets in the original track of Ob-La-Di, Ob-La-Da,
Sect. 5.2), we hypothesize that the error results from this inaccuracy rather than
from inaccurate timing.

Fig. 3. Timing results for bass, guitar and reed track generation. The x-axis denotes
the average error in ms and the y-axis the number of samples in a histogram bin.

Pitch Accuracy. We measure the pitch accuracy of the generated audio track by
determining the base frequency of consecutive audio frames of 50ms. Determining
the base frequency is realized by quadratically interpolated FFT [17], and we
compare it to the closest frequency of the 12 semitones in the chromatographic
scale over seven octaves. The resulting error is normalized w.r.t. the frequency
interval between the two nearest semitones, and averaged over all windows for
each audio sample. The results (Fig. 4) show that that the system is relatively
accurate in pitch, with a mean error of 11%, 7%, and 5.5% of the frequency
interval between the nearest two semitones for bass, guitar, and reed respectively.
However, in particular for the bass, this is a significantly larger error than the
error of the original track. The samples depicted in Sect. 5.2 confirm these results
subjectively, as the produced sound is generally much less clean than the MIDI-
generated data, and there are several noisy artifacts and chunks that are clearly
outside of the chromatographic frequency spectrum.

Variation. To measure variation appropriateness, we consider the number of
tones and the number of different notes in each sample. However, in contrast
to pitch and timing, it is not possible to compute an objective error for the

Towards End-to-End Raw Audio Music Synthesis 143

Fig. 4. Pitch accuracy results for bass, guitar and reed track generation; The x-axis
denotes the average pitch error in fractions of the half interval between the two closest
semitone frequencies.

amount of variation in a musical piece. Hence, we directly compare the variation
in the generated samples with the variation in the original samples and assume
implicitly that the original target track has a perfect amount of notes and tones.
Hence, to compute the variation appropriateness v we compare the number of
original notes (norig) and tones (torig) with the number of generated notes (ngen)
and tones (tgen), as described in Eq. 1.

v = vnotes · vtones with

vtones =

{
torig
tgen

if torig < tgen
tgen
torig

otherwise
vnotes =

{
norig

ngen
if norig < ngen

ngen

norig
otherwise

(1)

Results are illustrated in Fig. 5. The histograms show that there are several cases
where the system produces the same amount of variation as the original tracks.
The average variation value is approximately 0.5 for all instruments. However,
we do not consider this value as a strict criterion for the quality of the generated
tracks, but rather as an indicator to demonstrate that the system is able to
produce tracks that are not too different from the original tracks.

Fig. 5. Variation of generated tracks compared to the original track for three different
instruments.

144 M. Eppe et al.

5.2 Qualitative Evaluation

To evaluate the generated audio files qualitatively, we investigate the musical
patterns of the generated examples. The patterns that we found range from
simple sequences of quarter notes over salient accentuations and breaks to com-
mon musical patterns like minor and major triads. In the following, analyze two
examples of generated bass lines and, to demonstrate how the approach general-
izes over different instruments, also one example of a generated flute melody. We
visualize the samples using beat-synchronous chromagrams with indicated onsets
(vertical while lines). The upper chromagrams represent the original melodies
and the lower chromagrams the generated ones. Audio samples where the original
tracks are replaced by the generated ones are linked with the song titles.

Op. 74 No. 15 Andantino Grazioso - Mauro Giuliano.2 The piece has
been written for guitar and flute, and we obtained this result by training the
network on all files in our dataset that contain these two instruments. The newly
generated flute track differs significantly from the original one although style and
timbre are very similar. All notes of the generated track are played in D major
scale, same as the original track. The beat is also the same even though the
network generates more onsets overall. Near the end of the track, the flute plays
a suspended C# which dissolves itself correctly into the tonic chord D. This
shows how the network successfully emulates harmonic progression from the
original.

The Beatles - Ob-La-Di, Ob-La-Da.3 Most generated samples are similar to
the illustrated one from The Beatles - Ob-La-Di, Ob-La-Da, where the generated
notes are in the same key of the original composition, including the timings of
chord changes. In some places, however, alternative note sequences have formed
as can be seen in the first section of the chromagram, where the F-G is replaced
by an D-G pattern, and in the middle section of the chromagram, where the D
is exchanged with an A for two beats.

Bob Dylan - Positively 4th Street.4 In some instances, the generated track
contains melodies that are also played by other instruments (e.g. the left hand
of the piano often mirrors the bassline). For these cases, we observed that the
network has learned to imitate the key tones of other instruments. This results
in generated tracks that are nearly identical to the original tracks, as illustrated
in the following chromagram of Positively 4th Street.

However, while the original bass sequence has been generated by a MIDI
synthesizer, the new sample sounds much more bass-like and realistic. This

2 http://www.publications.eppe.eu/data/Giuliani Op74 No15 Andantino grazioso
merged

3 http://www.publications.eppe.eu/data/The Beatles Ob-La-Di Ob-La-Da merged.
wav

4 http://www.publications.eppe.eu/data/Bob Dylan Positively 4th Street merged.
wav

http://www.publications.eppe.eu/data/Giuliani_Op74_No15_Andantino_grazioso_merged
http://www.publications.eppe.eu/data/Giuliani_Op74_No15_Andantino_grazioso_merged
http://www.publications.eppe.eu/data/The_Beatles_Ob-La-Di_Ob-La-Da_merged.wav
http://www.publications.eppe.eu/data/The_Beatles_Ob-La-Di_Ob-La-Da_merged.wav
http://www.publications.eppe.eu/data/Bob_Dylan_Positively_4th_Street_merged.wav
http://www.publications.eppe.eu/data/Bob_Dylan_Positively_4th_Street_merged.wav

Towards End-to-End Raw Audio Music Synthesis 145

means that our system can effectively be used to synthesize an accurate vir-
tual instrument, which can exploited as a general mechanism to re-synthesize
specific tracks.

6 Conclusion

We have presented a neural architecture for raw audio music generation, and
we have evaluated the system in terms of pitch, timing, variation, and pattern
generalization. The metrics that we applied are sufficiently appropriate to deter-
mine whether our base line neural network architecture, or future extensions of
it, have the potential to synthesize music directly in wave form, instead of using
symbolic representations that restrict the possible outcome. We found that this
is indeed the case, as the system is very exact in terms of timing, relatively
exact in pitch, and because it generates a similar amount of variation as original
music. We also conclude that the system applies appropriate musical standard
patterns, such as playing common cadences. Examples like Positively 4th Street
also show that our system is potentially usable as a synthesizer to enrich and
replace MIDI-generated tracks.

As future work, we also want to investigate in how far the system implicitly
learns high-level musical features and patterns like cadences and triads, and how
it uses such patterns to generate appropriate musical audio data.

Acknowledgments. The authors gratefully acknowledge partial support from the
German Research Foundation DFG under project CML (TRR 169), the European
Union under project SECURE (No 642667).

References

1. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparam-
eter optimization in hundreds of dimensions for vision architectures. In: Interna-
tional Conference on Machine Learning (ICML) (2013)

2. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In: Neural Information Processing
Systems (NIPS) (2014)

3. Engel, J., et al.: Neural audio synthesis of musical notes with WaveNet autoen-
coders. Technical report (2017). http://arxiv.org/abs/1704.01279

4. Eppe, M., et al.: Computational invention of cadences and chord progressions by
conceptual chord-blending. In: Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 2445–2451 (2015)

5. Eppe, M., Kerzel, M., Strahl, E.: Deep neural object analysis by interactive audi-
tory exploration with a humanoid robot. In: International Conference on Intelligent
Robots and Systems (IROS) (2018)

6. Eppe, M., et al.: A computational framework for concept blending. Artif. Intell.
256(3), 105–129 (2018)

7. Griffin, D., Lim, J.: Signal estimation from modified short-time Fourier transform.
IEEE Trans. Acoust. Speech Signal Process. 32(2), 236–243 (1984)

http://arxiv.org/abs/1704.01279

146 M. Eppe et al.

8. Huang, A., Wu, R.: Deep learning for music. Technical report (2016). https://
arxiv.org/pdf/1606.04930.pdf

9. Kalingeri, V., Grandhe, S.: Music generation using deep learning. Technical report
(2016). https://arxiv.org/pdf/1612.04928.pdf

10. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (ICLR) (2015)

11. Lee, J., Cho, K., Hofmann, T.: Fully character-level neural machine translation
without explicit segmentation. Trans. Assoc. Comput. Linguist. 5, 365–378 (2017)

12. Liang, F., Gotham, M., Johnson, M., Shotton, J.: Automatic stylistic composition
of bach chorales with deep LSTM. In: Proceedings of the 18th International Society
for Music Information Retrieval Conference, pp. 449–456 (2017)

13. Mcfee, B., et al.: librosa: audio and music signal analysis in Python. In: Python in
Science Conference (SciPy) (2015)

14. Nayebi, A., Vitelli, M.: GRUV: algorithmic music generation using recurrent neural
networks. Stanford University, Technical report (2015)

15. van den Oord, A., et al.: WaveNet: a generative model for raw audio. Technical
report (2016). http://arxiv.org/abs/1609.03499

16. Simon, I., Oore, S.: Performance RNN: generating music with expressive timing
and dynamics (2017). https://magenta.tensorflow.org/performance-rnn

17. Smith, J.O.: Spectral Audio Signal Processing. W3K Publishing (2011)
18. Wang, Y., et al.: Tacotron: towards end-to-end speech synthesis. Technical report,

Google, Inc. (2017). http://arxiv.org/abs/1703.10135

https://arxiv.org/pdf/1606.04930.pdf
https://arxiv.org/pdf/1606.04930.pdf
https://arxiv.org/pdf/1612.04928.pdf
http://arxiv.org/abs/1609.03499
https://magenta.tensorflow.org/performance-rnn
http://arxiv.org/abs/1703.10135

Real-Time Hand Prosthesis Biomimetic
Movement Based on Electromyography

Sensory Signals Treatment and Sensors Fusion

João Olegário de Oliveira de Souza(&),
José Vicente Canto dos Santos, Rodrigo Marques de Figueiredo,

and Gustavo Pessin

UNISINOS University, Sao Leopoldo, Brazil
jolegario@unisinos.br

Abstract. The hand of the human being is a very sophisticated and useful
instrument, being essential for all types of tasks, from delicate manipulations
and of high precision, to tasks that require a lot of force. For a long time
researchers have been studying the biomechanics of the human hand, to
reproduce it in robotic hands to be used as a prosthesis in humans, in the
replacement of limbs lost or used in robots. In this study, we present the
implementation (electronics project, acquisition, treatment, processing and
control) of different sensors in the control of prostheses. The sensors studied and
implemented are: inertial, electromyography (EMG), force and slip. The tests
showed reasonable results due to sliding and dropping of some objects. These
sensors will be used in a more complex system that will approach the fusion of
sensors through Artificial Neural Networks (ANNs) and new tests should be
performed for different scenarios.

Keywords: Sensors fusion � Prosthesis biomimetic
Artificial neural networks (ANN)

1 Introduction

Human being can make a lot of activities using the hands. Hence, the loss of the hand
will limit the capabilities of realizing the daily activities of any person. In a psycho-
logical way, it is also very difficult for any one to accept any member amputation [1].
About 30% of the whole world 4 millions amputees society has the superior member
loss [2]. Hand prosthesis are solutions to help people who has superior member loss. In
order to diminish the psychological damage emerged the aesthetics prosthesis to hide
the deficiency, but with no movements. The development of digital systems integrated
to new prosthesis designs allowed movement function utilities. Every day situations,
such as handle objects, are possible to amputated people when the movement prosthesis
are available. However, nowadays, a simple and limited movement prosthesis is very
expensive. Thus, the research of new technologies of biomimetic prosthesis becomes
necessary.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 147–156, 2018.
https://doi.org/10.1007/978-3-030-01424-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_15

The interface between patient muscles and the acquisition system is a critical part of
this project. The measure of the muscle signals and understand the useful information
from it is very challenging. The system for prosthesis control are based on sensor-
fusion by an trained artificial neural network, and it will allow to implement new
movement features any time. The artificial neural network will be trained with the data
measured from the muscle (EMG sensor) and accelerometer, force and slipper sensors
connected in the prothesis.

The intension of this project is to build a hand prosthesis functional prototype with
a set of possible movements, such as, pinch, catch and hold objects, and make social
gestures like point and wave. First, the tests will run on non amputated people and after
that, this prototype will be ready to be tested on real amputated people. This proposal
aims a product with a low cost production and, therefore, provide it to a larger number
of amputated persons.

We already have a first version of the hand prosthesis. We used an open-source
project and printed at a 3D printer. With a preliminary hardware and software, the first
prototype of the prosthetic hand already have simple movements. The pressure of the
five fingers can be monitored when it holds an object and it can detect when an object is
slipping. These results will be presented forward.

2 Methodology

This project focuses in two main points in the study of robotics systems: elec-
tromyographic signal data acquisition and selective interpretation of those signals to be
used on robotic devices operation.

Another feature of the project is to apply artificial intelligence by using embedded
artificial neural networks for electromyographic pattern recognition. The system will
also learn and adapt to the environment habit changes and other behavior modifica-

tions. Figure 1 shows the proposed workflow for the threetier system (sensors, pro-
cessing and operation).

Fig. 1. Proposed system architecture

148 J. O. de Oliveira de Souza et al.

2.1 Electromyography (EMG)

Electromyography (EMG) is a monitoring technique for evaluating the electric activity
produced by the skeletal muscles. The final result of these measures are the potential
difference between two or more sensors applied to the patient skin versus time. Many
relevant information are contained on timing EMG signals, such as, the total time of the
muscle activation, the intensity of movement and the behavior variation in every
repetitive movement.

2.2 EMG Acquisition

The EMG signal is a continuous time information obtained through an sensor applied
to the patient near the muscles whose measurement we are interested. There are two
kind of sensors: surface and intramuscular. In this project we choose to use the surface
ones for a practical and non-invasive process. According to SENIAM (Surface EMG
for the Non-Invasive Assessment of Muscles) [3] the Ag-AgCl surface sensors should
be used with an conductor gel to an stable measurement along time and avoid unde-
sirable noise.

The EMG signal is obtained by the potential difference between two (or more)
surface sensors and it can be divided into mono-polar or multi-polar systems [4]. The
mono-polar configuration require an reference sensor and it is typically placed very far
from the sensor we want to measure, in order to acquire simple signals. In the multi-
polar configuration the potential difference is acquired through three or more points: a
reference point and two or more signal points in relation to the reference, and the
potential difference is obtained by subtracting these signals. In this project the bipolar
sensor was used for better information acquisition from different muscle movements.
Figure 2 shows the fixation of the electrodes on the arm for the tests of this work.

2.3 Signal Treatment

Typically EMG signal are represented in low frequencies from 70 Hz to 500 Hz [5].
However, it is not so easy to extract useful information from the signal without an
electronic circuit that separates the real data of the muscle movement from noise. Noise is

Fig. 2. Fixation of the electrodes on the arm

Real-Time Hand Prosthesis Biomimetic Movement 149

any other signal out of EMG information, such as, cardiac beatings, neighbor muscles or
electric coupling between wires and sensors. The electronic circuit was developed with
different technologies of frequency active filters in order to catch the real data from the
EMG.

After a good filtering, the signal should be converted to discrete time. With the data
correctly sampled it is possible to evaluate the behavior of the signal in time domain or
even in the frequency domain. Many tools like digital filters or Fourier analysis are
useful to extract important information and proceed a good data mining.

And after the choice of the analog-digital converter device, we have almost all data
captured from muscle movements ready to be stored in a database. As will be explained
forward, this database is the information to, in the first step, train an artificial neural
network that is the main process core of this project. After a good training, this neural
network will be embedded into the main core that will control other actuators to move
the prosthetic hand. An electronic circuit was developed to real time sampling the
analogical signal and supply the main core, already programmed, to move the pros-
thetic hand.

2.4 The Prosthetic Hand

The prototype developed of the hand prosthesis (Fig. 3) was based on the InMoov [6]
open source design for full size 3D printer. The material used for the construction of its
mechanical structure was ABS and the hand has 16 degrees of freedom. Each finger
moves with a plastic coated steel cable and a servomotor (Towerpro, MG995). The
finger returns to the rest position is done with a rubber band attached to each one. The
five servomotors are located in the forearm of the prosthesis and the electric drive was
realized by an ATmega2560 microcontroller embedded on an Arduino. This first
prototype has many issues, like gaps and non precise movements, and a better one
should be build.

At this stage of the work, the pressure of the five fingers from the prosthetic hand
are monitored when it holds an object and it can detect when an object is slipping. For
this monitoring, force and slippery sensors are used and each finger has its own
servomotor. The myoelectric signal, from a human arm is used to open and close the
fingers of the prosthetic hand. For the signal capture, non-invasive superficial

Fig. 3. Test holding the plastic cup with minimal force

150 J. O. de Oliveira de Souza et al.

electrodes were used. To measure the force applied, the force sensor FSR400 from
Interlink Electronics was used (Fig. 4). The slippery sensor (Fig. 5) used was the
LDT0-028K from Measurement Specialties [7]. The slippery sensor is responsible to
detect if an object is slipping from the fingers.

2.5 Database and Artificial Neural Networks

Artificial neural networks (ANNs) are often used to determine these relationships
because the artificial neurons can learn nonlinear behaviors [8–10]. The artificial
neuron arrangement increases the ANN learning capacity [11, 12]. ANNs are regularly
used for correlating stochastic variables in other fields, such as weather forecasting
[13], load forecasting in electric systems [14], satellite imaging classification [15] and
others. ANNs are also used in industrial applications and academic studies [14, 16].
Massively parallel distributed ANNs can process generic behaviors and mimic patterns
[17]. They are based on processing units called artificial neurons [18].

There are different types of neural networks exist in the literature, as feedforward
neural networks. Feedforward neural networks consist of layers that are input, hidden
and output layers (Fig. 6).

MLP and RBF networks, are the two most commonly used types of feedforward
neural networks. They differ in the way that the hidden layer performs its computation.
The MLP use inner products and training is done through Backpropagation. In RBF,
each neuron in the hidden layer computes the Euclidean distance between an input
vector and a point in the neuron which can be viewed as a centre vector [19]. After the
first tests of Prosthetic Hand, different Multilayer Perceptron (MLP) and Radial Basis
Function (RBF) neural network techniques will be used and compared to control the
movements of the prosthesis.

Fig. 4. Sensor force FSR400 and fixation

Fig. 5. Slippery sensor LDT0-028K

Real-Time Hand Prosthesis Biomimetic Movement 151

2.6 Sensors Fusion

Using two different sensors to acquire data information, instead of one, bring best and
more accurate results, the sensor fusion algorithms are based on this idea [20]. Despite
the principle behind the idea is simple, the implementation needs a functional algorithm
to be able to implement, this algorithm to fuse the information from two or more
sensors can be done based on optimal estimation [21].

The combination of the sensor information and the subsequent state estimation can
be done in a coherent way, so that the uncertainty is reduced. The Kalman Filter is a
state-estimator algorithm widely used to optimally estimate the unknown state of a
linear dynamic system from noise-corrupted measurements [22]. In this work, after the
first tests, an Artificial Neural Network will be used as an algorithm to fuse the
information from the EMG, slip, force and accelerometer sensors.

3 Preliminary Results

For the system kick-start and preliminary tests, the InMoov [6] open-source project was
used. The prosthetic hand was prototyped using a 3D printer at the University. On this
first version, an Arduino was used to acquire the input signals (myoelectric and other
sensors) and for the operation of the servomotor that controls the fingers of the pros-
thetic hand. On the current status of the project, the neural network was not yet
implemented. To analyze the results, a video of each test was recorded and then
checked frame by frame through video analysis software called Tracker. The objects
used in the tests were: a plastic cup, a tennis ball and a whiteboard eraser.

At first test with the cup (Fig. 7), the prosthetic hand only applied minimal force to
the object to hold it. It doesn’t monitored slippery (used EMG and force sensors)
applying the minimum force on the object. In Fig. 9(a) we can verify that the glass
moved 44.8 mm down, in relation to its initial position.

Fig. 6. A feedforward neural network

152 J. O. de Oliveira de Souza et al.

Then, at second stage the test (Fig. 8), the prosthetic hand monitored the slippery
and applied more force when it detected that the object started to slip.

The prosthetic hand was tested ten times. It was possible to observe in the Fig. 9(b)
that the object slid less than in the previous test.

Fig. 7. Holding and slipping test of the plastic cup

Fig. 8. Holding and slipping test of the plastic cup

Fig. 9. Results with the tennis ball - (a) without slip sensor and (b) all sensors.

Real-Time Hand Prosthesis Biomimetic Movement 153

The third test was with the tennis ball (Fig. 10). The system monitored the slippery
and applied more force when it detected that the object started to slip. The system was
tested ten times and on average the ball slid 2.5 mm down. In Fig. 11, one of the tests
completed.

As a final test, a whiteboard eraser (Fig. 12). The prosthetic hand was tested ten
times with this object and it did not fall. The lowest value was 1.63 mm, the highest
value was 18.75 mm and the mean slip was 5.63 mm. Figure 13 shows the result of
one of the tests.

Fig. 10. Holding and slipping test of the tennis ball

Fig. 11. Result with the tennis ball

Fig. 12. Holding and slipping test of the whiteboard eraser

154 J. O. de Oliveira de Souza et al.

4 Conclusion

This study was focused on performing a set of experiments of one Prosthetic Hand to
grasp different objects by EMG, force and slip sensors. This work contributes with the
thesis that only simulation is not sufficient to evaluate the characteristics of real sys-
tems, since some behaviors can not be predicted. Future works can be made to use
fusion sensor techniques to improve the Prosthetic Hand. Having more accurate sensors
techniques, different tests with various different objects can be used to best perfor-
mance comparison of the systems.

References

1. Pillet, J., Didierjean-Pillet, A.: Aesthetic hand prosthesis: gadget or therapy? Presentation of
a new classification. J. Hand Surg. 26(6), 523–528 (2001)

2. Toledo, C., Leija, L., Munoz, R., Vera, A., Ramirez, A.: Upper limb prostheses for
amputations above elbow: a review. In: Health Care Exchanges, PAHCE 2009, Pan
American, pp. 104–108. IEEE (2009)

3. Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G.: Development of recommendations
for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10(5), 361–
374 (2000)

4. Duchêne, J., Goubel, F.: Surface electromyogram during voluntary contraction: processing
tools and relation to physiological. Crit. Rev. Biomed. Eng. 21(4), 313–397 (1993)

5. Delsys Homepage. Neuromuscular Research Center. Boston University. http://www.delsys.
com/library/papers. Accessed 31 Mar 2018

6. Langevin, G.: Inmov | Open-Source 3d Printed Life-Size Robot (2015). http://inmoov.fr/
project/. Accessed 15 Sept 2017

7. LDT with Crimps Vibration Sensor/Switch. Measurement Specialties (2015). https://www.
variohm.com/images/datasheets/ENG_DS_LDT_with_Crimps_A.pdf. Accessed 25 Sept
2017

8. Philip Chen, C.L., Liu, Y.J., Wen, G.X.: Fuzzy neural network-based adaptive control for a
class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2014)

Fig. 13. Result with the whiteboard eraser

Real-Time Hand Prosthesis Biomimetic Movement 155

http://www.delsys.com/library/papers
http://www.delsys.com/library/papers
http://inmoov.fr/project/
http://inmoov.fr/project/
https://www.variohm.com/images/datasheets/ENG_DS_LDT_with_Crimps_A.pdf
https://www.variohm.com/images/datasheets/ENG_DS_LDT_with_Crimps_A.pdf

9. Li, K., Huang, Z., Cheng, YC., Lee, CH.: A maximal figure-of-merit learning approach to
maximizing mean average precision with deep neural network based classifiers. In: 2014
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 4503–4507 (2014)

10. Tong, S., Wang, T., Li, Y., Zhang, H.: Adaptive neural network output feedback control for
stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE
Trans. Cybern. 44(6), 910–921 (2014)

11. Yu, Z., Li, S.: Neural-network-based output-feedback adaptive dynamic surface control for a
class of stochastic nonlinear time-delay systems with unknown control directions.
Neurocomputing 129, 540–547 (2014)

12. Zeng, X., Hui, Q., Haddad, W.M., Hayakawa, T., Bailey, J.M.: Synchronization of
biological neural network systems with stochastic perturbations and time delays. J. Franklin
Inst. 351(3), 1205–1225 (2014)

13. Culclasure, A.: Using neural networks to provide local weather forecasts. Electronic Theses
& Dissertations, Jack N. Averitt College of Graduate Studies (COGS) (2013)

14. Hayati, M., Shirvany, Y.: Artificial neural network approach for short term load forecasting
for Illam region. World Acad. Sci. Eng. Technol. 28, 280–284 (2007)

15. Piscini, A., et al.: A neural network approach for the simultaneous retrieval of volcanic ash
parameters and SO2 using modis data. Atmos. Meas. Tech. 7(12), 4023 (2014)

16. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s
thesis. Department of Computer Science University of Toronto (2009)

17. Shamir, R.R., et al.: A Method for Predicting the Outcomes of Combined Pharmacologic and
Deep Brain Stimulation Therapy for Parkinson’s Disease. In: Golland, P., Hata, N., Barillot,
C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 188–195. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_24

18. Haykin, S.: Neural Networks and Learning Machines, vol. 3. Pearson Education, Upper
Saddle River (2009)

19. Sereno, F., Marques de Sá, J.P., Matos, A., Bernardes, J.: A comparative study of MLP and
RBF neural nets in the estimation of the fetal weight and length. In: Campilho, A.,
Mendonça, A. (eds.) Proceedings of RECPAD 2000 - 11th Portuguese Conference on
Pattern Recognition, University of Porto (2000)

20. Waltz, E., Llinas, J.: Multisensor Data Fusion, vol. 685. Artech House, Norwood (1990)
21. Surachai, P., Afzulpurkar, N.: Sensor Fusion Techniques in Navigation Application for

Mobile Robot. INTECH Open Access Publisher (2011)
22. Manyika, J., Durrant-Whyte, H.: Data Fusion and Sensor Management: A Decentralized

Information - Theoretic Approach. Ellis Horwood, London (1994)

156 J. O. de Oliveira de Souza et al.

http://dx.doi.org/10.1007/978-3-319-10470-6_24

An Exploration of Dropout with RNNs
for Natural Language Inference

Amit Gajbhiye1(B), Sardar Jaf1, Noura Al Moubayed1, A. Stephen McGough2,
and Steven Bradley1

1 Department of Computer Science, Durham University, Durham, UK
{amit.gajbhiye,sardar.jaf,noura.al-moubayed,s.p.bradley}@durham.ac.uk

2 School of Computing, Newcastle University, Newcastle upon Tyne, UK
stephen.mcgough@ncl.ac.uk

Abstract. Dropout is a crucial regularization technique for the Recur-
rent Neural Network (RNN) models of Natural Language Inference
(NLI). However, dropout has not been evaluated for the effectiveness
at different layers and dropout rates in NLI models. In this paper, we
propose a novel RNN model for NLI and empirically evaluate the effect
of applying dropout at different layers in the model. We also investigate
the impact of varying dropout rates at these layers. Our empirical eval-
uation on a large (Stanford Natural Language Inference (SNLI)) and a
small (SciTail) dataset suggest that dropout at each feed-forward con-
nection severely affects the model accuracy at increasing dropout rates.
We also show that regularizing the embedding layer is efficient for SNLI
whereas regularizing the recurrent layer improves the accuracy for Sci-
Tail. Our model achieved an accuracy 86.14% on the SNLI dataset and
77.05% on SciTail.

Keywords: Neural networks · Dropout · Natural Language Inference

1 Introduction

Natural Language Understanding (NLU) is the process to enable computers to
understand the semantics of natural language text. The inherent complexities
and ambiguities in natural language text make NLU challenging for computers.
Natural Language Inference (NLI) is a fundamental step towards NLU [14]. NLI
involves logically inferring a hypothesis sentence from a given premise sentence.

The recent release of a large public dataset the Stanford Natural Language
Inference (SNLI) [2] has made it feasible to train complex neural network models
for NLI. Recurrent Neural Networks (RNNs), particularly bidirectional LSTMs
(BiLSTMs) have shown state-of-the-art results on the SNLI dataset [9]. However,
RNNs are susceptible to overfitting − the case when a neural network learns the
exact patterns present in the training data but fails to generalize to unseen data
[21]. In NLI models, regularization techniques such as early stopping [4], L2
regularization and dropout [20] are used to prevent overfitting.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 157–167, 2018.
https://doi.org/10.1007/978-3-030-01424-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_16&domain=pdf

158 A. Gajbhiye et al.

For RNNs, dropout is an effective regularization technique [21]. The idea
of dropout is to randomly omit computing units in a neural network during
training but to keep all of them for testing. Dropout consists of element-wise
multiplication of the neural network layer activations with a zero-one mask (rj)
during training. Each element of the zero-one mask is drawn independently from
rj ∼ Bernoulli(p), where p is the probability with which the units are retained
in the network. During testing, activations of the layer are multiplied by p [19].

Dropout is a crucial regularization technique for NLI [9,20]. However, the
location of dropout varies considerably between NLI models and is based on
trail-and-error experiments with different locations in the network. To the best
of our knowledge no prior work has been performed to evaluate the effectiveness
of dropout location and rates in the RNN NLI models.

In this paper, we study the effect of applying dropout at different locations in
an RNN model for NLI. We also investigate the effect of varying the dropout rate.
Our results suggest that applying dropout for every feed forward connection,
especially at higher dropout rates degrades the performance of RNN. Our best
model achieves an accuracy of 86.14% on the SNLI dataset and an accuracy of
77.05% on SciTail dataset.

To the best of our knowledge this research is the first exploratory analysis of
dropout for NLI. The main contributions of this paper are as follows: (1) A RNN
model based on BiLSTMs for NLI. (2) A comparative analysis of different loca-
tions and dropout rates in the proposed RNN NLI model. (3) Recommendations
for the usage of dropout in the RNN models for NLI task.

The layout of the paper is as follows. In Sect. 2, we describe the related work.
In Sect. 3, we discuss the proposed RNN based NLI model. Experiments and the
results are presented in Sect. 4. Recommendations for the application of dropouts
are presented in Sect. 5. We conclude in Sect. 6.

2 Related Work

The RNN NLI models follow a general architecture. It consists of: (1) an embed-
ding layer that take as input the word embeddings of premise and hypothesis (2)
a sentence encoding layer which is generally an RNN that generates representa-
tions of the input (3) an aggregation layer that combines the representations and;
(4) a classifier layer that classifies the relationship (entailment, contradiction or
neutral) between premise and hypothesis.

Different NLI models apply dropout at different layers in general NLI archi-
tecture. NLI models proposed by Ghaeini et al. [9] and Tay et al. [20] apply
dropout to each feed-forward layer in the network whereas others have applied
dropout only to the final classifier layer [13]. Bowman et al. [2] apply dropout
only to the input and output of sentence encoding layers. The models proposed
by Bowman et al. [3] and Choi et al. [7] applied dropout to the output of embed-
ding layer and to the input and output of classifier layer. Chen et al. [4] and
Cheng et al. [6] use dropout but they do not elaborate on the location.

Dropout rates are also crucial for the NLI models [15]. Even the models which
apply dropout at the same locations vary dropout rates.

An Exploration of Dropout with RNNs for Natural Language Inference 159

Previous research on dropout for RNNs on the applications such as neural
language models [16], handwriting recognition [18] and machine translation [21]
have established that recurrent connection dropout should not be applied to
RNNs as it affects the long term dependencies in sequential data.

Bluche et al. [1] studied dropout at different places with respect to the LSTM
units in the network proposed in [18] for handwriting recognition. The results
show that significant performance difference is observed when dropout is applied
to distinct places. They concluded that applying dropout only after recurrent
layers (as applied by Pham et al. [18]) or between every feed-forward layer (as
done by Zaremba et al. [21]) does not always yield good results. Cheng et al. [5],
investigated the effect of applying dropout in LSTMs. They randomly switch
off the outputs of various gates of LSTM, achieving an optimal word error rate
when dropout is applied to output, forget and input gates of the LSTM.

Evaluations in previous research were conducted on datasets with fewer sam-
ples. We evaluate the RNN model on a large, SNLI dataset (570,000 data sam-
ples) as well as on a smaller SciTail dataset (27,000 data samples). Furthermore,
previous studies concentrate only on the location of dropout in the network
with fixed dropout rate. We further investigate the effect of varying dropout
rates. We focus on the application of widely used conventional dropout [19] to
non-recurrent connection in RNNs.

Fig. 1. The Recurrent Neural Network model with possible dropout locations

3 Recurrent Neural Network Model for NLI Task

The RNN NLI model that we have developed follows the general architecture of
NLI models and is depicted in Fig. 1. The model combines the intra-attention
model [13] with soft-attention mechanism [11]. The embedding layer takes as
input word embeddings in the sentence of length L. The recurrent layer with
BiLSTM units encodes the sentence. Next, the intra-attention layer generates
the attention weighted sentence representation following the Eqs. (1)–(3)

M = tanh
(
W yY + WhRavg ⊗ eL

)
(1)

160 A. Gajbhiye et al.

α = softmax
(
wTM

)
(2)

R = Y αT (3)

where, W y, Wh are trained projection matrices, wT is the transpose of trained
parameter vector w, Y is the matrix of hidden output vectors of the BiLSTM
layer, Ravg is obtained from the average pooling of Y , eL ∈ R

L is a vector of
1s, α is a vector of attention weights and R is the attention weighted sequence
representation. The attention weighted sequence representation is generated for
premise and hypothesis and is denoted as Rp and Rh. The attention weighted
representation gives more importance to the words which are important to the
semantics of the sequence and also captures its global context.

The interaction between Rp and Rh is performed by inter-attention layer,
following the Eqs. (4)–(6).

Iv = RT
p Rh (4)

R̃p = softmax(Iv)Rh (5)

R̃h = softmax(Iv)Rp (6)

where, Iv is the interaction vector. R̃p contains the words which are relevant
based on the content of sequence Rh. Similarly, R̃h contains words which are
important with respect to the content of sequence Rp. The final sequence encod-
ing is obtained from the element-wise multiplication of intra-attention weighted
representation and inter-attention weighted representation as follows:

Fp = R̃p � Rp (7)

Fh = R̃h � Rh (8)

To classify the relationship between premise and hypothesis a relation vector is
formed from the encoding of premise and hypothesis generated in Eqs. (7) and
(8), as follows:

vp,avg = averagepooling(Fp), vp,max = maxpooling(Fp) (9)

vh,avg = averagepooling(Fh), vh,max = maxpooling(Fh) (10)

Frelation = [vp,avg; vp,max; vh,avg; vh,max] (11)

where v is a vector of length L. The relation vector (Frelation) is fed to the MLP
layer. The three-way softmax layer outputs the probability for each class of NLI.

4 Experiments and Results

4.1 Experimental Setup

The standard train, validation and test splits of SNLI [2] and SciTail [10] are
used in empirical evaluations. The validation set is used for hyper-parameter
tuning. The non-regularized model is our baseline model. The parameters for

An Exploration of Dropout with RNNs for Natural Language Inference 161

the baseline model are selected separately for SNLI and SciTail dataset by a
grid search from the combination of L2 regularization [1e − 4, 1e − 5, 1e − 6],
batch size [32, 64, 256, 512] and learning rate [0.001, 0.0003, 0.0004]. The Adam
[12] optimizer with first momentum set to 0.9 and the second to 0.999 is used. The
word embeddings are initialized with pre-trained 300-D Glove 840B vectors [17].
Extensive experiments with dropout locations and hidden units were conducted
however we show only the best results for brevity and space limits.

4.2 Dropout at Different Layers for NLI Model

Table 1 presents the models with different combinations of layers to the output
of which dropout are applied in our model depicted in Fig. 1. Table 2. shows the
results for the models in Table 1. Each model is evaluated with dropout rates
ranging from 0.1 to 0.5 with a granularity of 0.1.

Table 1. Models with corresponding layers to the outputs of which dropout is applied.

Model Layer

Model 1 No Dropout (Baseline)

Model 2 Embedding

Model 3 Recurrent

Model 4 Embedding and Recurrent

Model 5 Recurrent and Intra-Attention

Model 6 Inter-Attention and MLP

Model 7 Recurrent, Inter-Attention and MLP

Model 8 Embedding, Inter-Attention and MLP

Model 9 Embedding, Recurrent, Inter-Attention and MLP

Model 10 Recurrent, Intra-Attention, Inter-Attention and MLP

Model 11 Embedding, Intra-Attention, Inter-Attention and MLP

Model 12 Embedding, Recurrent, Intra-Attention, Inter-Attention and MLP

Model 13 Embedding, Recurrent, Inter-Attention and MLP

Dropout at Individual Layers. We first apply dropout at each layer including
the embedding layer. Although the embedding layer is the largest layer it is
often not regularized for many language applications [8]. However, we observe
the benefit of regularizing it. For SNLI, the highest accuracy is achieved when
the embedding layer is regularized (Model 2, DR 0.4).

For SciTail, the highest accuracy is obtained when the recurrent layer is reg-
ularized (Model 3, DR 0.1). The dropout injected noise at lower layers prevents
higher fully connected layers from overfitting. We further experimented regular-
izing higher fully connected layers (Intra-Attention, Inter-Attention and MLP)
individually, however no significant performance gains were observed.

162 A. Gajbhiye et al.

Table 2. Model accuracy with varying dropout rates for SNLI and SciTail datasets.
Bold numbers shows the highest accuracy for the model within the dropout range.

Models Dataset Dropout Rate (DR)

0.1 0.2 0.3 0.4 0.5

Model 1 SNLI 84.45

SciTail 74.18

Model 2 SNLI 84.56 84.59 84.42 86.14 84.85

SciTail 75.45 75.12 74.22 73.10 74.08

Model 3 SNLI 84.12 84.21 83.76 81.04 79.63

SciTail 76.15 75.78 73.50 73.19 75.26

Model 4 SNLI 83.83 85.22 84.34 80.82 79.92

SciTail 74.65 76.08 74.22 74.46 73.19

Model 5 SNLI 84.72 83.43 72.89 70.49 62.13

SciTail 75.87 75.13 75.26 73.71 72.25

Model 6 SNLI 84.17 84.32 83.71 82.79 81.68

SciTail 73.85 75.68 75.26 73.95 73.28

Model 7 SNLI 84.33 82.97 82.00 81.15 79.25

SciTail 73.75 75.02 74.37 73.37 73.42

Model 8 SNLI 84.67 85.82 84.60 84.14 83.94

SciTail 73.80 73.52 69.29 75.82 73.89

Model 9 SNLI 84.44 83.05 82.09 81.64 79.62

SciTail 75.68 76.11 75.96 70.84 74.55

Model 10 SNLI 84.45 80.95 75.31 70.81 69.34

SciTail 73.30 75.21 74.98 74.65 71.59

Model 11 SNLI 84.31 82.43 78.94 74.93 70.54

SciTail 75.63 73.47 74.93 74.93 70.32

Model 12 SNLI 84.32 82.60 73.36 71.53 66.67

SciTail 73.47 75.63 74.74 73.42 74.40

Dropout at Multiple Layers. We next explore the effect of applying dropout
at multiple layers. For SNLI and SciTail, the models achieve higher performance
when dropout is applied to embedding and recurrent layer (Model 4, DR 0.2).
This supports the importance of regularizing embedding and recurrent layer as
shown for individual layers.

It is interesting to note that regularizing the recurrent layer helps SciTail
(Model 7, DR 0.2) whereas regularizing the embedding layer helps SNLI (Model
8, DR 0.2). A possible explanation to this is that for the smaller SciTail dataset
the model can not afford to lose information in the input, whereas for the larger
SNLI dataset the model has a chance to learn even with the loss of information in
input. Also, the results from models 7 and 8 suggests that applying dropout at a

An Exploration of Dropout with RNNs for Natural Language Inference 163

single lower layer (Embedding or Recurrent; depending on the amount of training
data) and to the inputs and outputs of MLP layer improves performance.

We can infer from models 9, 10, 11 and 12 that applying dropout to each
feed forward connection helps preventing the model overfit for SciTail (DR 0.1
and 0.2). However, for both the datasets with different dropout locations the
performance of the model decreases as the dropout rate increases (Sect. 4.4).

Fig. 2. Convergence Curves: (a) Baseline Model for SNLI (Model 1), (b) Best Model
for SNLI (Model 2, DR 0.4), (c) 100 Unit Model for SciTail (Model 13 DR 0.4), (d)
300 Unit Model for SciTail (Model 9 DR 0.2).

4.3 The Effectiveness of Dropout for Overfitting

We study the efficacy of dropout on overfitting. The main results are shown in
Fig. 2. For SNLI, Fig. 2(a)–(b), shows the convergence curves for the baseline
model and the model achieving the highest accuracy (Model 2, DR 0.4). The
convergence curves show that dropout is very effective in preventing overfitting.
However, for the smaller SciTail dataset when regularizing multiple layers, we
observe that the highest accuracy achieving model (Model 9, DP 0.2), overfits
significantly (Fig. 2(d)). This overfitting is due to the large model size. With
limited training data of SciTail, our model with higher number of hidden units
learns the relationship between the premise and the hypothesis most accurately
(Fig. 2(d)). However, these relationships are not representative of the validation
set data and thus the model does not generalize well. When we reduced the
model size (50, 100 and 200 hidden units) we achieved the best accuracy for
SciTail at 100 hidden units (Table 3). The convergence curve (Fig. 2(c)) shows
that dropout effectively prevents overfitting in the model with 100 hidden units
in comparison to 300 units. Furthermore, for SciTail dataset, the model with 100
units achieved higher accuracy for almost all the experiments when compared
to models with 50, 200 and 300 hidden units.

164 A. Gajbhiye et al.

Table 3. Accuracy of 100 unit model for SciTail dataset

Models Dataset Dropout Rate (DR)

0.1 0.2 0.3 0.4 0.5

Model 13 SciTail 76.72 76.25 77.05 72.58 74.22

The results of this experiment suggest that given the high learning capac-
ity of RNNs an appropriate model size selection according to the amount of
training data is essential. Dropout may independently be insufficient to prevent
overfitting in such scenarios.

4.4 Dropout Rate Effect on Accuracy and Dropout Location

We next investigate the effect of varying dropout rates on the accuracy of the
models and on various dropout locations. Figure 3 illustrates varying dropout
rates and the corresponding test accuracy for SNLI. We observe some distinct
trends from the plot. First, the dropout rate and location does not affect the
accuracy of the models 2 and 8 over the baseline. Second, in the dropout range
[0.2–0.5], the dropout locations affect the accuracy of the models significantly.
Increasing the dropout rate from 0.2 to 0.5 the accuracy of models 5 and 12
decreases significantly by 21.3% and 15.9% respectively. For most of the models
(3, 4, 6, 7, 9 and 10) the dropout rate of 0.5 decreases accuracy.

Fig. 3. Plot showing the variation of test accuracy across the dropout range for SNLI.

From the experiments on SciTail dataset (Fig. 4), we observed that the
dropout rate and its location do not have a significant effect on most of the mod-
els, with the exception of model 8 (which shows erratic performance). Finally,
for almost all the experiments a large dropout rate (0.5) decreases the accuracy
of the models. The dropout rate of 0.5 works for a wide range of neural networks
and tasks [19]. However, our results show that this is not desirable for RNN
models of NLI. Based on our evaluations a dropout range of [0.2–0.4] is advised.

An Exploration of Dropout with RNNs for Natural Language Inference 165

Fig. 4. Plot showing the variation of test accuracy across the dropout range for SciTail.

5 Recommendations for Dropout Application

Based on our empirical evaluations, the following is recommended for regular-
izing a RNN model for NLI task: (1) Embedding layer should be regularized
for large datasets like SNLI. For smaller datasets such as SciTail regularizing
recurrent layer is an efficient option. The dropout injected noise at these layers
prevents the higher fully connected layers from overfitting. (2) When regularizing
multiple layers, regularizing a lower layer (embedding or recurrent; depending on
the amount of data) with the inputs and outputs of MLP layer should be consid-
ered. The performance of our model decreased when dropout is applied at each
intermediate feed-forward connection. (3) When dropout is applied at multiple
feed forward connections, it is almost always better to apply it at lower rate −
[0.2 − 0.4]. (4) Given the high learning capacity of RNNs, an appropriate model
size selection according to the amount of training data is essential. Dropout may
independently be insufficient to prevent overfitting in the scenarios otherwise.

6 Conclusions

In this paper, we reported the outcome of experiments conducted to investi-
gate the effect of applying dropout at different layers in an RNN model for the
NLI task. Based on our empirical evaluations we recommended the probable
locations of dropouts to gain high performance on NLI task. Through extensive
exploration, for the correct dropout location in our model, we achieved the accu-
racies of 86.14% on SNLI and 77.05% on SciTail datasets. In future research, we
aim to investigate the effect of different dropout rates at distinct layers.

166 A. Gajbhiye et al.

References

1. Bluche, T., Kermorvant, C., Louradour, J.: Where to apply dropout in recurrent
neural networks for handwriting recognition? In: 2015 13th International Confer-
ence on Document Analysis and Recognition (ICDAR), pp. 681–685. IEEE (2015)

2. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus
for learning natural language inference. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 632–642. Association for
Computational Linguistics (2015)

3. Bowman, S.R., Gauthier, J., Rastogi, A., Gupta, R., Manning, C.D., Potts, C.: A
fast unified model for parsing and sentence understanding. In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, pp. 1466–1477 (2016)

4. Chen, Q., Zhu, X., Ling, Z.H., Inkpen, D.: Natural language inference with external
knowledge. arXiv preprint arXiv:1711.04289 (2017)

5. Cheng, G., Peddinti, V., Povey, D., Manohar, V., Khudanpur, S., Yan, Y.: An
exploration of dropout with LSTMs. In: Proceedings of Interspeech (2017)

6. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine
reading. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 551–561 (2016)

7. Choi, J., Yoo, K.M., Lee, S.G.: Learning to Compose Task-specific Tree Structures.
AAAI (2017)

8. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recur-
rent neural networks. In: Advances in Neural Information Processing Systems, pp.
1019–1027 (2016)

9. Ghaeini, R., et al.: Dr-bilstm: Dependent reading bidirectional LSTM for natural
language inference. arXiv preprint arXiv:1802.05577 (2018)

10. Khot, T., Sabharwal, A., Clark, P.: SciTail: a textual entailment dataset from
science question answering. In: Proceedings of AAAI (2018)

11. Kim, Y., Denton, C., Hoang, L., Rush, A.M.: Neural machine translation by jointly
learning to align and translate. In: Proceedings of ICLR (2017)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Liu, Y., Sun, C., Lin, L., Wang, X.: Learning natural language inference using
bidirectional LSTM model and inner-attention. CoRR abs/1605.09090 (2016)

14. MacCartney, B.: Natural language inference. Stanford University (2009)
15. Munkhdalai, T., Yu, H.: Neural tree indexers for text understanding. In: Proceed-

ings of the Conference, Association for Computational Linguistics, Meeting, vol.
1, p. 11. NIH Public Access (2017)

16. Pachitariu, M., Sahani, M.: Regularization and nonlinearities for neural language
models: when are they needed? arXiv preprint arXiv:1301.5650 (2013)

17. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

18. Pham, V., Bluche, T., Kermorvant, C., Louradour, J.: Dropout improves recurrent
neural networks for handwriting recognition. In: 2014 14th International Confer-
ence on Frontiers in Handwriting Recognition (ICFHR), pp. 285–290. IEEE (2014)

http://arxiv.org/abs/1711.04289
http://arxiv.org/abs/1802.05577
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1301.5650

An Exploration of Dropout with RNNs for Natural Language Inference 167

19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

20. Tay, Y., Tuan, L.A., Hui, S.C.: A compare-propagate architecture with align-
ment factorization for natural language inference. arXiv preprint arXiv:1801.00102
(2017)

21. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 (2014)

http://arxiv.org/abs/1801.00102
http://arxiv.org/abs/1409.2329

Neural Model for the Visual Recognition
of Animacy and Social Interaction

Mohammad Hovaidi-Ardestani1,2, Nitin Saini1,2, Aleix M. Martinez3,
and Martin A. Giese1(B)

1 Section of Computational Sensomotorics, Department of Cognitive Neurology,
CIN and HIH, University Clinic Tübingen,

Ottfried-Müller-Str. 25, 72076 Tübingen, Germany
martin.giese@uni-tuebingen.de

2 IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
3 Department of Electrical and Computer Engineering, The Ohio State University,

Columbus, OH 43210, USA

Abstract. Humans reliably attribute social interpretations and agency
to highly impoverished stimuli, such as interacting geometrical shapes.
While it has been proposed that this capability is based on high-level
cognitive processes, such as probabilistic reasoning, we demonstrate that
it might be accounted for also by rather simple physiologically plausible
neural mechanisms. Our model is a hierarchical neural network archi-
tecture with two pathways that analyze form and motion features. The
highest hierarchy level contains neurons that have learned combinations
of relative position-, motion-, and body-axis features. The model repro-
duces psychophysical results on the dependence of perceived animacy on
motion smoothness and the orientation of the body axis. In addition, the
model correctly classifies six categories of social interactions that have
been frequently tested in the psychophysical literature. For the genera-
tion of training data we propose a novel algorithm that is derived from
dynamic human navigation models, and which allows to generate arbi-
trary numbers of abstract social interaction stimuli by self-organization.

Keywords: Hierarchy · Neural network model · Animacy
Social interaction perception

1 Introduction

Humans spontaneously can decode animacy and social interactions from strongly
impoverished stimuli. A classical study by Heider and Simmel [1] demonstrated
that humans derived very consistently interpretations in terms of social interac-
tions from simple geometrical figures that moved around in the two-dimensional
plain. The figures were interpreted as living agents, to which even personality
traits were attributed. More recent studies have characterized in more detail
which critical features of simple stimuli affect the perception of animacy, that

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 168–177, 2018.
https://doi.org/10.1007/978-3-030-01424-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_17&domain=pdf

Neural Model for the Visual Recognition of Animacy and Social Interaction 169

is whether the object is perceived as alive [2–4]. Furthermore, detailed studies
have focused on the perception of social interactions between multiple moving
shapes, e.g. focusing on ‘chasing’ or ‘fighting’ [5,6]. Six interaction types have
been used in a number of studies [7–9], McAleer and Pollick [9] showed that
these categories can be reliably classified from stimuli showing moving circular
disks whose movements were derived from real interactions.

Coarse neural substrates of the processing of such stimuli have been iden-
tified in fMRI studies. Animacy has been studied, modulating the movement
parameters of individual moving shapes [10–12], and stimuli similar to the ones
by Heider & Simmel have been frequently used in studies addressing Theory of
Mind [13,14]. In fMRI and monkey studies regions like the superior temporal
sulcus (STS) and human area TPJ were found to be selective for these stimuli
[15–18]. In spite of this localization of relevant cortical areas, the underlying
exact neural circuits of this processing remain entirely unclear. Some theories
have associated the processing of such abstract stimuli with probabilistic reason-
ing [19,20], while others have linked them to lower-level visual processing [6]. So
far no ideas exist how such functions could be accounted for by physiologically
plausible neural circuits.

The goal of this paper is to present a simple neural model that reproduces
some of the key observations in psychophysical experiments about the percep-
tion of animacy and social interactions from simple abstract stimuli. The model
in its present form is simple, but in principle extendable for the processing of
more complex stimuli that require also the processing of shape details or shapes
in clutter. The model is an extension of classical models of the visual process-
ing stream that account for the processing of object shape and actions [21–24].
However, such models never have been applied to account for the perception of
animacy or social interaction. Our attempt to use these types of architectures
is motivated by recent work that showed that models of this type for the recog-
nition of hand actions also account for the perception of causality from simple
stimulus displays that consist of moving disks [25]. This modeling work predicted
also the existence of neurons in macaque cortex that are specifically involved in
the visual perception of causality [26]. Here we show that a model based on
similar principles accounts for the perception of animacy and social interactions.

In the following section, we first describe how we generated a stimulus set for
training of the neural model, devising a generative model for social interaction
stimuli that is based on a dynamical systems approach. We then describe the
architecture of the model. The following section describes the results, followed
by a brief discussion.

2 Stimulus Synthesis

For the training of neural network models a sufficient set of stimuli is required.
The problem is that from the classical psychophysical studies only a rather small
set of stimuli is publicly available. For a meaningful application of learning-based
neural networks approaches thus a sufficiently large training data set with similar

170 M. Hovaidi-Ardestani et al.

properties needs to be generated. In our study we used movies showing individual
moving agents, and interaction of 2 agents (chasing, playing, following, flirting,
guarding, fighting) described in psychophisical studies [7–9].

In order to model the interaction of two moving agents we exploited a dynam-
ical systems approach, which before was used very successfully for the modeling
of human navigation [27]. The underlying idea, originally derived from robotics
[28], is to define a dynamical systems or differential equations for the heading
directions φi and the instantaneous propagation speeds vi of the interacting
agents (in our case i = 1, 2). The specified movement is dependent on goal and
obstacle points in the two dimensional plain, where the other agent can also act
as goal or obstacle as well. We modified a model for human steering behavior
during walking [29] to reproduce the movements during social interactions.

The resulting dynamics is given by the following differential equations for
the heading direction:

φ̈i = −bφ̇i − kg(φi − ψg,i)(e−c1dg,i + c2)

+ ko

Nobst∑

n=1

(φi − ψo,ni)(e−c3|φi−ψo,ni|)(e−c4do,ni). (1)

The variables ψg,i and dg,i signify the absolute direction of the actual goal point
and the distance of the goal from the agent in the 2D plain. Likewise, ψo,ni and
do,ni signify the absolute direction and distance from obstacle number n from
the agent, where Nobst is the number of relevant obstacles, and where km and
cm signify constants. The forward speed of the agents is specified by the two
stochastic differential equations

τ v̇i = −vi + Fi(dg,i) + kεεi(t), (2)

where εi(t) is Gaussian white noise. The two functions Fi that specify the dis-
tance dependence of the speed dynamics are different for the two agents:

F1(d) =
1

1 + e−c5(d−c6)
− c7e

−kd (3)

F2(d) =
c8

1 + e−c9(d−c10)
− c11e

−kd + c12. (4)

The goal point of the second agent was typically the first agent. The goal
points for the first agent was given by a sequence of fixed positions, which were
randomly generated by uniformly sampling from the 2D plain and rejecting
the samples that were closer than a fixed distance from the last sample. Since
it turned out that the influence of the obstacle terms was rather low for the
speed dynamics, we dropped the obstacle terms from the speed control dynam-
ics. Table 1 provides an overview of the model parameters for the six simulated
behaviors. We generated 50 stimuli for each interaction class. Figure 1 shows
examples paths of the agents for the different behaviors for typical simulations.

Neural Model for the Visual Recognition of Animacy and Social Interaction 171

Table 1. Parameters of simulation algorithm.

Agent 1 Agent 2

kε C5 C6 C7 k kε C8 C9 C10 C11 C12 k

Guarding (Gu) 0 1 5 0 0 0 1 1 3 0 0.5 0

Following (FO) 0 10 7 0 0 0 1 4 4 0 0 0

Fighting (FI) 1 1 3 1 0.1 1 1 1 3 1 0 0.1

Chasing (CH) 0 10 7 0 0 0 1 1 7 0 0 0

Flirting (FL) 0 1 5 0 0 1 0.6 1 2 1 0 0.5

Playing (PL) 0 1 5 0 0 1 1 1 10 0 0.5 0

0 5 10 15 20 25 30 35

x

0

5

10

15

20

25

30

35

y

0 5 10 15 20 25 30 35
x

0

5

10

15

20

25

30

35

y

0 5 10 15 20 25 30 35

x

0

5

10

15

20

25

30

35

y

0 5 10 15 20 25 30 35
x

0

5

10

15

20

25

30

35

y

0 5 10 15 20 25 30 35
x

0

5

10

15

20

25

30

35

y

0 5 10 15 20 25 30 35
x

0

5

10

15

20

25

30

35

y

Fig. 1. Sample trajectories for 6 different social interactions. Colors indicate the posi-
tions of the two agents (agent 1: blue, agent 2: red). Color saturation indicates time,
the color fading out after long times. (Color figure online)

3 Model Architecture

An overview of the model architecture is shown in Fig. 2. Building on classical
biologically-inspired models for shape and action processing [21,22], the model
comprises a form and a motion pathway, each consisting of a hierarchy of fea-
ture detectors. Presently, these pathways were modelled following these classical
papers, which was sufficient for the tested simple stimuli.

Form Pathway: The form pathway of the simple model implementation here
comprises only three hierarchy layers. The first is composed from (even and
uneven) Gabor filters with 8 different orientations (cf. [22]), whose centers were
placed in a grid of 120 by 120 points across the pixel image. The outputs of

172 M. Hovaidi-Ardestani et al.

Fig. 2. Model consisting of a form and a motion pathway. ME signifies a layer of motion
energy detectors, and RPM the relative position map. The top level of the model is
formed by neural detectors for the perceived animacy, and a network that classifies six
different types of interactions. (See text for details.)

this Gabor filter array are pooled by the next layer using a maximum oper-
ation over a grid of 41 by 41 filters, separately for the different orientations,
in order to increase the position-invariance of the representation. The highest
layer of the form pathway is formed by Gaussian radial basis function, which are
trained with the shapes of the agents in different 2D orientations. Opposed to
many other object recognition architectures, these shape-selective neurons have
receptive fields of limited size (about 20% of the width of the image), which is
consistent with neural data from area IT [30]. The outputs of this layer provide
thus information about the identity of the agents, their positions, and their ori-
entation in the image plain. The signal uk(φ, x, y) is the output activity of the
neural detectors detecting shape k at the 2D position (x, y). Summing this signal
over all φ provides a neural activity distribution upk

(x, y) whose peak signals
the position of agent k in the image. This signal is used to compute the velocity
and the relative positions of the moving elements or animate objects. Similarly,
by summing over the positions one obtains a activity distribution uφk

(φ) over
the directions with a peak at φk.vadjust

Neural Model for the Visual Recognition of Animacy and Social Interaction 173

Motion Pathway: It analyzes the 2D motion and the relative motion of the
moving agents. As input we use the time-dependent signals upk

(x, y) for each
agent as input to a field of standard motion energy detectors (ME in Fig.
2), resulting in an output that encodes the motion energy in terms of a four-
dimensional neural activity distribution (dropping the index k in the following)
uv(x, y, vx, vy, t), where v = (vx, vy) is the preferred velocity vector of the motion
energy detector. Pooling this output activity distribution over all spatial posi-
tions using a maximum operation, a position-invariant neural representation of
velocity is obtained. From this a neural representation of motion direction is
obtained by pooling this activity distribution over all neurons with the same
(similar) motion direction, resulting in a one-dimensional activity distribution
uθ(θ, t) over the motion direction θ, from which the direction can be easily esti-
mated by computing a population vector1. The same applies to the length of
the velocity vector2 v = |v|. In order to compute also the acceleration of the
agents, we transmit the position-invariant activity distribution uv(vx, vy, t) as
input to another field of motion energy detectors, which computes from this an
energy distribution ua(x, y, ax, ay, t) over the acceleration vectors a = (ax, ay).
By pooling over directions, from this an activity distribution over the length of
these vectors a = |a|) is computed, and again this parameter can be estimated
by a simple population vector. The population estimates of θ, v and a enter the
animacy computation (s.b.).

For analyzing the relative motion of the two agents, following [22], the output
distributions upk

(x, y) of the form pathway are also fed into a gain field network
that computes a representation of the position of the second agent in a coordinate
frame that is centered on the first. Its output is computed as convolution-like
integral of the form upR

(x, y) =
∫

x′,y′ up1(x
′, y′)up2(x + x′, y + y′) dx′dy′. This

output defines a neural relative position map that represents the position of agent
2 as an activity peak in a coordinate frame that is centered on the first. The inte-
gral is taken over a finite region of shifts |(x, y)| < D, implying that situations
where the agents have a distance substantially larger than D will not produce
an output peak. This makes sense since agents that are too distant do not pro-
duce the percept of a social interaction. The activity distribution upR

(x, y, t) is
again processed by a cascade of two levels of motion energy detectors in order
to compute the relative speed and acceleration of the two agents. Population
estimates of the relative distance dR = |pR|, velocity vR, and the acceleration
aR enter the interaction classifier.

Recognition Level: The highest level of the model consists of a circuit that
derives the perceived animacy of the two agents, and another one that classifies
the perceived interaction class. The neurons detecting instantaneous animacy
(dropping again the index k and time) multiply two input derived from the signal
of both pathways signals B = A1A2. The first signal measures the alignment of

1 A simple estimate of the encoded angle is given by θ̂ = arg
(
(
∑

m exp(iθm)
uθ(θm, t))/(

∑
m uθ(θm, t))

)
, where the θm are the preferred directions of the neurons.

2 Here the estimator is v̂ = arg
(
(
∑

m vmuv(vm, t))/(
∑

m uv(vm, t))
)
, where the vm

are the preferred speeds of the neurons.

174 M. Hovaidi-Ardestani et al.

the body axis of the moving agent with its direction of its motion. It is just
given by the scalar product of the activity distributions over the body axis
of the agent uφ(φ) and the motion direction of the agent uθ(θ) in the form
A1 =

∑
n uφ(θn)uθ(θn). The second signal A2 linearly combines information

about the speed, and the magnitude changes and angular changes of speed, which
are given by a and the angular component of a. The linear mixing weights of
the animacy neurons were estimated by fitting the psychophysical results from
[2]. Final animacy responses were computed as time averages over the whole
trajectories.

The second circuit at the top level of the model classifies the different inter-
action types based on the following features: speeds vi and acceleration ai of
the agents, and relative position pR, velocity vR, and acceleration aR of the
agents. These features served as inputs of different classifier models, We tested
a multi-layer perceptron, linear and nonlinear discriminant analysis (see also
[31]), k-nearest neighbor classification, and a linear and a nonlinear support
vector machine.

4 Results

Results on animacy detection are shown in Fig. 3. The model reproduces at least
qualitatively the dependence of animacy ratings on directions and speed changes
[2]. In these experiments an agent shape moved along a straight line and then
suddenly changed speed or direction by different amounts. In addition, the model
reproduces the fact that a moving figure that has a body axis, like a rectangle,
results in stronger perceived animacy than a circle if the movement, and that
the rating is highest if the body axis is aligned with the motion than if it is not
aligned [2].

Table 2. Classification results with
different classifiers (6 interaction
types).

Classifier Accuracy

Linear SVM 99.0%

Gaussian kernel SVM 96.3%

LDA 94.7%

KNN 94.7%

Nonlinear LDA 94.3%

Neural Network 94.0%

Figure 4 shows example results from the
application of the different classifier models
for the 6 interaction behaviors in the study
[9]. The classifiers were trained on movies
generated with the stimulus generation algo-
rithm described in Sect. 2. The linear SVM
classifier achieves 99% correct classifications
on this data set. See Table 2 for the results
with the other classifiers. Most importantly,
the model achieved also 100 % correct clas-
sifications on the example videos from [9],
even though these movies were not used for
training.

Neural Model for the Visual Recognition of Animacy and Social Interaction 175

Fig. 3. Simulation results for animacy perception in comparison with experimental
results. (a), (d): Dependence of animacy ratings on size of direction change. (b), (e):
Dependence of animacy rating on size of speed change. (c), (f): Effect of alignment of
body axis with motion direction, compared with moving circle (no body axis).

Fig. 4. Confusion matrices for the best (Linear SVM) and the worst (KNN) classifier;
TP: true positive rate, FN stands for false negative rate. 50 videos per class.

5 Conclusion

Our model accounts by combination of very elementary neural mechanisms for a
number of classical results from animacy and social interaction perception from
abstract figures. To our knowledge this is the first neural model that can account
for such results. Evidently the model is only a proof-of-concept with many short-
comings, a major one being that the accuracy of the form and motion pathway
that provide input to the animacy and interaction detection have to be improved.
Since the model is in principle consistent with deep architectures for form and

176 M. Hovaidi-Ardestani et al.

action recognition that can achieve high performance level it seems likely that it
can be extended to the processing of much more challenging stimulus material.
Even in its simple form the model proves that animacy and social interaction
judgements partly might be derived by very elementary operations in hierarchical
neural vision systems, without a need of sophisticated or accurate probabilistic
inference.

Acknowledgments. This work was supported by: HFSP RGP0036/2016; the Euro-
pean Commission HBP FP7-ICT2013-FET-F/604102 and COGIMON H2020-644727,
the DFG KA 1258/15-1, and BMBF CRNC FK: 01CQ1704.

References

1. Heider, F., Simmel, M.: An experimental study of apparent behavior. Am. J. Psy-
chol. 57(2), 243–259 (1944)

2. Tremoulet, P.D., Feldman, J.: Perception of animacy from the motion of a single
object. Perception 29, 943–951 (2000)

3. Tremoulet, P.D., Feldman, J.: The influence of spatial context and the role of
intentionality in the interpretation of animacy from motion. Percept. Psychophys.
68(6), 1047–1058 (2006)

4. Hernik, M., Fearon, P., Csibra, G.: Action anticipation in human infants reveals
assumptions about anteroposterior body structure and action. In: Proceedings,
Biological Sciences (2014)

5. Scholl, B.J., Tremoulet, P.D.: Perceptual causality and animacy. Trends Cogn. Sci.
4(8), 299–309 (2000)

6. Gao, T., Scholl, B.J.: Perceiving animacy and intentionality. In: Rutherford, M.D.,
Kuhlmeier, V.A., (eds.) Social Perception. The MIT Press (2013)

7. Blythe, P., Miller, G.F., Todd, P.M.: How motion reveals intention: categorizing
social interactions. In: Gigerenzer, G., Todd, P. (eds.) Simple heuristics that make
us smart, pp. 257–285. Oxford University Press, London (1999)

8. Barrett, H.C., Todd, P.M., Miller, G.F., Blythe, P.W.: Accurate judgments of inten-
tion from motion cues alone: a cross-cultural study. Evol. Hum. Behav. 26(4),
313–331 (2005)

9. McAleer, P., Pollick, F.E.: Understanding intention from minimal displays of
human activity. Behav. Res. Methods 40, 830–839 (2008)

10. Schultz, J., Friston, K.J., O’Doherty, J., Wolpert, D.M., Frith, C.D.: Activation
in posterior superior temporal sulcus parallels parameter inducing the percept of
animacy. Neuron 45(4), 625–635 (2005)

11. Morito, Y., Tanabe, H.C., Kochiyama, T., Sadato, N.: Neural representation of
animacy in the early visual areas: a functional MRI study. Brain Res. Bull. 79(5),
271–280 (2009)

12. Shultz, S., McCarthy, G.: Perceived animacy influences the processing of human-
like surface features in the fusiform gyrus. Neuropsychologia 60, 115–120 (2014)

13. Blakemore, S.-J., Boyer, P., Pachot-Clouard, M., Meltzoff, A., Segebarth, C.,
Decety, J.: The detection of contingency and animacy from simple animations
in the human brain. Cereb. Cortex 13(8), 837–844 (2003)

14. Yang, D.Y.-J., Rosenblau, G., Keifer, C., Pelphrey, K.A.: An integrative neural
model of social perception, action observation, and theory of mind. Neurosci. Biobe-
hav. Rev. 51, 263–275 (2015)

Neural Model for the Visual Recognition of Animacy and Social Interaction 177

15. Lahnakoski, J.M., et al.: Naturalistic FMRI mapping reveals superior temporal
sulcus as the hub for the distributed brain network for social perception. Front.
Hum. Neurosci. 6, 233 (2012)

16. Isik, L., Koldewyn, K., Beeler, D., Kanwisher, N.: Perceiving social interactions in
the posterior superior temporal sulcus. PNAS 114, E9145–E9152 (2017)

17. Sliwa, J., Freiwald, W.A.: A dedicated network for social interaction processing in
the primate brain. Science 356(6339), 745–749 (2017)

18. Walbrin, J., Downing, P., Koldewyn, K.: Neural responses to visually observed
social interactions. Neuropsychologia 112, 31–39 (2018)

19. Baker, C.L., Saxe, R., Tenenbaum, J.B.: Action understanding as inverse planning.
Cogn. Reinf. Learn. High. Cogn. 113, 329–349 (2009)

20. Shu, T., Peng, Y., Fan, L., Lu, H., Zhu, S.-C.: Perception of human interaction
based on motion trajectories: from aerial videos to decontextualized animations.
Top. Cogn. Sci. 10(1), 225–241 (2018)

21. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex.
Nat. Neurosci. 2, 1019–1025 (1999)

22. Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological move-
ments. Nat. Rev. Neurosci. 4, 179–192 (2003)

23. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action
recognition. In: IEEE 11th International Conference on Computer Vision (2007)

24. Fleischer, F., Caggiano, V., Thier, P., Giese, M.A.: Physiologically inspired model
for the visual recognition of transitive hand actions. J. Neurosci. 15(33), 6563–80
(2013)

25. Fleischer, F., Christensen, A., Caggiano, V., Thier, P., Giese, M.A.: Neural theory
for the perception of causal actions. Psychol. Res. 76(4), 476–493 (2012)

26. Caggiano, V., Fleischer, F., Pomper, J.K., Giese, M.A., Thier, P.: Mirror neurons
in Monkey premotor area F5 show tuning for critical features of visual causality
perception. Current Biology 26(22), 3077–3082 (2016)

27. Warren, W.H.: The dynamics of perception and action. Psychol. Rev. 113(2), 358–
389 (2006)

28. Schner, G., Dose, M.: A dynamical systems approach to task-level system inte-
gration used to plan and control autonomous vehicle motion. Robot. Auton. Syst.
10(4), 253–267 (1992)

29. Fajen, B.R., Warren, W.H.: Behavioral dynamics of steering, obstacle avoidance,
and route selection. J. Exp. Psycholology Hum. Percept. Perform. 1(3), 184–184
(2003)

30. di Carlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object
recognition? Neuron 73(3), 415–434 (2012)

31. You, D., Hamsici, O.C., Martinez, A.M.: Kernel optimization in discriminant anal-
ysis. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 631–638 (2011)

Attention-Based RNN Model for Joint
Extraction of Intent and Word Slot Based

on a Tagging Strategy

Dongjie Zhang1,2, Zheng Fang1,2, Yanan Cao2(&), Yanbing Liu2,
Xiaojun Chen2, and Jianlong Tan2

1 School of Cyber Security,
University of Chinese Academy of Sciences, Beijing, China

2 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

{zhangdongjie,fangzheng,caoyanan,liuyanbing,

chenxiaojun,tanjianlong}@iie.ac.cn

Abstract. In this paper, we proposed an attention-based recurrent neural net-
work model based on a tagging strategy for intent detection and word slot
extraction. Unlike other joint models dividing the joint task into two sub-models
by sharing parameters, we explore a tagging strategy to incorporate the intent
detection task and word slot extraction task in a sequence labeling model. We
implemented experiments on a public dataset and the results show that the
tagging strategy methods outperform most of the existing pipelined and joint
methods. Our tagging strategy model obtained 97.65% accuracy rate on intent
detection task and 95.15% F1 score on word slot extraction task.

Keywords: Intent detection � Word slot extraction � Joint model
Attention mechanism � Tagging strategy

1 Introduction

Intent detection and word slot extraction are two basic issues in the field of Natural
Language Understanding and these two tasks are usually handled separately [19].
Intent detection and word slot extraction can be regarded as a sentence classification
and sequence tagging task respectively. Traditionally, we solve these problems in a
sequential order, extracting the word slots first and then detecting the intent of the given
sentence. This separated framework makes the task easy to handle and can deal with
different subtask issues more flexibly. It is assumed that these two tasks have no
correlation between them which enables them to be treated as an independent model,
however, in many cases this is not true. Thus, the results of the word slot extraction can
affect the outcome of the intent detection by the propagation of errors.

Compared with the pipeline models, the joint learning framework handles the two
tasks using a single model [2]. The joint model can integrate the information of word
slots and of intent by sharing collective parameters and it has been shown to perform
well on the joint extraction task [20]. These joint models can make the intent detection

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 178–188, 2018.
https://doi.org/10.1007/978-3-030-01424-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_18

and word slot extraction process simpler as we only need to train one model to fine-
tune the tasks.

Although the aforementioned joint methods can handle the two subtasks in a single
model, they can also produce redundant information by extracting word slots and
intents separately. Generally, these frameworks need two classifiers which have sep-
arate label collections: one for intent extraction and another for word slot labeling. So
the total number of labels is the combined size of the two label collections. However,
this may produce redundant labeling results, that is, if there is a slot s that never appears
in the intent i, the model may still give the result of labeling a word as word slot s along
with the intention i. In addition, it’s inevitable to propagate the error of two classifiers
to each other during training the joint model. In our work, we model the relation of
word slots and intent directly by using only one sequential label classifier instead of
extracting the word slots and intents separately. We redefined a set of tags containing
the information of word slot and the intent of the whole sentence. Based on this tagging
strategy, the joint extraction of word slot and intent can be converted into a sequence
tagging problem. With this strategy, we can easily use sequence-to-sequence models to
handle the two tasks simultaneously without complicated feature engineering.

However, one word slot may have various intents in different sentences and the
words indicating the intent of the sentence may locate far away from the current input
word. Many sequence labeling model are capable of capturing long-distance depen-
dence information but they still strongly focus on the parts around the current input
word. The attention mechanism which has made satisfactory effect in the field of
machine translation [1] can effectively learn global attention information of the
sequence by emphasizing the influence of key words on the model results. Specially,
we wonder if the attention mechanism can be utilized in and improve our joint tagging
model. So we implemented the attention mechanism on our joint model to make it
more sensitive to key information, especially the long-distance information indicating
the intent.

In this paper, we focus on resolving the issue of redundant labeling results, prop-
agation of interactions intrinsically in the pipeline as well as the traditional joint
training models on word slot extraction task and intent detection task. Based on the
motivation, we applied a tagging strategy accompanied with an end-to-end model to
settle the problem by transforming the joint extraction task into a sequence tagging
problem. In order to solve the influence of the diversified relation between word slots
and intentions, we introduce global sentence information through attention mechanism
to enhance the effect of sentence intent. Experiments on ATIS data set show that our
joint model significantly outperforms pipeline and traditional joint models.

The rest of our paper is organized as follows. In Sect. 2, we introduce the related
works of RNN sequence labeling model and the attention mechanism for sequence
labeling. In Sect. 3, we describe our labeling strategy and end-to-end RNN extraction
models in detail. In Sect. 4 we mainly show the settings and results of our experiments.
Finally, we conclude the work in Sect. 5.

Attention-Based RNN Model for Joint Extraction of Intent and Word Slot 179

2 Related Works

Intent detection and word slot extraction are corresponded to two fundamental prob-
lems–text classification and sequence labeling, which are the basis of many natural
language applications and are usually solved in a pipeline manner. For Intent detection,
Support Vector machines (SVMs) [3], deep neural network methods [14] and Con-
volutional Neural Networks (CNNs) [7] have been widely used. The boosting method
[16] and its improved method with dependency parsing-based sentence simplification
[17] can handle the complex, longer and natural utterances more effectively. The
adaptation of the recursive neural network also achieved competitive performance on
the intent detection task [2]. In case of word slot extraction, few of the most popular
methods include Maximum Entropy Markov Models (MEMMs) [10], Conditional
Random Fields (CRFs) [13] and Recurrent Neural Networks (RNNs) [11]. Label
dependency is beneficial for word slot extraction task by feeding previous output label
[9]. The RNN-CRF networks can also be used in word slot extraction task [5]. In
general, simple Recurrent Neural Networks and Convolutional Neural Networks have
shown to significantly outperform the previous state-of-the-art Maximum Entropy
Markov Models and Conditional Random Fields and the deep Long Short-Term
Memories (LSTMs) was emphatically proposed to be applied to the word slot
extraction task [20]. In addition, the joint training model has become a research hot-
spot. The joint model of Recursive Neural Networks integrated two subtasks into one
compositional model by providing an elegant mechanism for incorporating both dis-
crete syntactic structure and continuous-space word and phrase representations [2]. The
CNN-CRF model can be jointly trained by extracting features automatically from CNN
layers and sharing with the intent model [19].

Recently, a novel tagging strategy has been proposed in joint extraction of entities
and relations [22]. Results show that the tagging methods are better than most of the
existing pipelined and joint learning methods without identifying entities and relations
separately. This task mainly focuses on extracting a triplet consisting of two entities
and the relation of the two entities. Unlike traditional models, this work proposed a
tagging strategy that label triples directly rather than extracting entities and relation-
ships separately. To implement this tagging strategy, a new set of labels containing
information about the entities and the relation between them has been designed. With
this tagging strategy, the joint extraction of entities and relations can be transformed
into a sequence labeling problem. In this way, the sequence labeling model can be
conveniently used to handle the joint task without complex feature engineering.
However, this tagging strategy still has deficiencies in identifying overlapping rela-
tionships and the diversity association between two corresponding entities still needs to
be refined.

180 D. Zhang et al.

3 Proposed Methods

3.1 The Tagging Strategy

Traditional model labels the intent and the words slot separately as Table 1 shows. The
labels of intent and word slot are divided into two collections.

In order to avoid the redundant labeling results and propagation interaction, we
adopt a new tagging strategy. How the results are tagged is shown in Fig. 1. Based on
our tagging strategy, each word is assigned to a tag that contains three parts: the word
position in word slot, the word slot type, and the intent of the whole sentence. With the
symbol “O” at the head of the tag, this represents the “Other” tag, which means that the
corresponding word is not in any of the word slots. In addition to symbol “O”, we
apply the “BIES” symbol to represent the position information in word slot. The word
slot type is obtained from a predefined set. The intent type symbol can also get from a
predefined set but the intention of all words in a given sequence is exactly the same.
Thus, the total number of tags is Nt ¼ Np � Ns � Ni � U, where Np is the number of the
“BIES” position information symbol, Ns is the size of the word slot set, Ni is the
number of all intents and U is the number of redundant labels.

As is shown in Fig. 1, the word “atlanta” is signed the tag “B-fromloc-flight”. The
position information is marked as “B”, the word slot type is marked as “fromloc”, the
intent type is marked as “flight” and the three parts of the tag are connected by the
symbol “-”. The intent of a sentence is obtained from the majority intent symbols of all
the words.

Table 1. The word slots and intent of a sentence instance in ATIS corpus.

Sentence Flights From Boston To Kansas City On Friday

Word slot O O B-fromloc O B-toloc I-toloc O B-depart time
Intent Flight

Fig. 1. The instance of our tagging strategy. The word slot symbol “fromloc” and “toloc”
represent the departure and destination of the flight. the “flight” symbol expresses the intent of
asking for flight information.

Attention-Based RNN Model for Joint Extraction of Intent and Word Slot 181

3.2 Attention-Based RNN Model

In recent years, end-to-end model based on recurrent neural network has been widely
used in sequence labeling task [12, 20]. In this paper, we investigate an end-to-end
model to produce the extraction results as Fig. 2 shows. It contains an embedding layer,
a bi-directional RNN layer and a hidden layer with attention mechanism.

The Bi-RNN Layer. In the sequence labeling task, we generally learn a function
f : X ! Y that maps the input sequence to its corresponding label sequence explicitly
aligned to the given the input sequence X x1; x2; � � � ; xTð Þ and its corresponding label
sequence Y y1; y2; � � � ; yTð Þ. In our joint task, we want to find the best label sequence Y
given input words X such that:

ŷ ¼ argmax P Y jXð Þ ð1Þ

The bidirectional RNN model has been proven to capture the semantic and
sequential information for each word effectively in sequence tagging task by reading
sentences bidirectionally. In our proposed model, we use a bidirectional RNN layer
reading the input sequence in both forward and backward directions. The forward RNN
reading the input sequence in its original order generates a hidden state fhi at each time
step i. Similarly, the backward RNN reading the input sequence in its reverse order
generates a sequence of hidden states bh1; bh2; � � � ; bhT½ �. The bidirectional RNN layer
hidden state hi at each time step i is combined of the forward state fhi and backward
state bhi, hi ¼ fhi; bhi½ �. Each hidden state hi carries information of the entire input
sequence with strong focus on the parts around the i th word. The hidden state h and the
bi-RNN output y are then combined with an attention context vector c to produce the
label distribution.

Fig. 2. The illustration of our model with a word embedding layer, a bi-LSTM layer and a
hidden layer. yi is the hidden layer output, hi is the hidden layer state and ci is the attention
context vector.

182 D. Zhang et al.

The Attention Mechanism. Attention mechanism can be regarded as the process of
selectively filtering a small amount of important information from all the provided
information ignoring most of the non-important information [18]. The process can be
reflected in the calculation of the weight coefficient. The greater the weight is, the more
it focuses on its corresponding value. The weight represents the importance and the
value is its corresponding information. In the joint extraction task, the attention
mechanism can provide the classifier with global attention information by giving dif-
ferent weights to the words.

The attention mechanism is applied in a hidden layer above the bi-RNN layer. We
initialize the hidden layer state using the last hidden state of the bi-RNN layer fol-
lowing the approach in [2]. At each time step i, the hidden layer state si is calculated as
a function of the previous bi-RNN output yi�1, the bi-RNN hidden state hi and the
attention context vector ci:

si ¼ f yi�1; hi; cið Þ ð2Þ

The attention context distribution c is generated by the hidden state h of the
bidirectional RNN. In detail, ci is calculated as the weighted sum of the bi-RNN states
h ¼ h1; h2; � � � ; hTð Þ [2]:

ci ¼
XT

j¼1
ai;jhj ð3Þ

ai;jhj ¼
exp ei;j

� �
PT

k¼1 exp ei;k
� � ð4Þ

ei;k ¼ g si�1; hkð Þ ð5Þ

where g is a feed-forward neural network. The attention context vector ci provides
additional information to the hidden layer that can be viewed as weighted sequential
features of the RNN hidden layer states h1; h2; � � � ; hTð Þ. In this way, the attention
mechanism can provide global weighted information to generate labels.

The Bias Loss Function. In order to enhance the influence of word slots we tried to
use the RMSprop optimization method [15] by defining the loss function as:

L ¼ max
XjDj

j¼1

XT

i¼1
ð1þ aI Oð ÞÞlogðpi ¼ yijxi; hÞ ð6Þ

p jð Þ
i ¼

exp o jð Þ
i

� �
PNt

k¼1 exp o kð Þ
i

� � ð7Þ

Where Dj j is the size of the data set, T is the length of the sequence, yi is the label of
the i th word, pi is the normalized probability of the tags which is defined in formula 7.
Nt is the total number of tags, oi is the output of the i th word, a is the bias weight of the

Attention-Based RNN Model for Joint Extraction of Intent and Word Slot 183

loss function. The larger a is, the more influence the corresponding tag has. I Oð Þ is a
binary function that distinguishes the loss of tag “O” and word slot tags and it was
defined as follows:

I Oð Þ ¼ 0; tag ¼ O
1; tag 6¼ O

�

4 Experiments

For a better comparison with previous methods and presenting the effect of our method,
we carried out experiments on the Air Travel Information System (ATIS) pilot corpus.
Then our model was compared with the previous pipeline and joint training models to
demonstrate the performance in both independent and joint tasks.

4.1 Experimental Settings

Dataset. ATIS (Airline Travel Information Systems) data set [4] is widely used in
intent detection and word slot extraction task. The data set contains the conversation
text of persons who made the flight reservation. In this work, we follow the ATIS
corpus setup used in [9, 11, 16, 19]. There are 4978 conversation text from the ATIS-2
and ATIS-3 corpora in the training set and 893 conversation text from the ATIS-3
NOV93 and DEC94 data sets in the test set. The total number of word slot labels is 127
and the size of intent types is 18. We use the F1 score to evaluate the results on word
slot extraction and evaluate the performance of intent detection by using classification
accuracy rate.

Hyperparameters. In our experiments, LSTM cell is used as the basic RNN unit.
Our LSTM implementation follows the design in [21]. The number of cells in the
LSTM layer is 128. We set the initial LSTM forget gate bias as 1 [6]. In our model,
there is only one LSTM layer and the multilayer LSTM will be explored in future work.
The word embeddings dimension is set to 128. We randomly initialize the word
embeddings and fine-tuned during backward propagation. The training batch size is 16.
Dropout rate on the fully connected network is set to 0.5 for regularization [21]. To
prevent the gradient from exploding, the maximum value of gradient clipping is set to
5. The bias of the loss function is set to 10 and the number of headers of the attention is
set to 10. We apply Adam optimization to our model following the settings in [8].

4.2 Intent Detection Task Results

We first report the results on independent tasks of intent detection and word slot
extraction. We used the bi-LSTM model as our baseline and compared the performance
of our proposed model with previously reported methods on intent detection task and
illustrate the results in Table 2.

As we can see, our joint methods performs better than pipelined methods on intent
detection. The attention-based bi-LSTM joint model and the bi-LSTM joint model with

184 D. Zhang et al.

bias loss function advances the bi-LSTM model. Moreover, the bi-LSTM model
combined with attention mechanism and bias loss function achieved the best accuracy
of intent detection. This could be attributed to the combination of attention mechanism
and bias loss function that allows the model to learn the sequence level information
more efficiently.

While training the attenuation model, we found the attention mechanism is helpful
to enhance the influence of long-distance keywords when the intent of words is been
labeling. As shown in Fig. 3, We can find that the attention weights at the beginning of
the sentence are higher when we label the last word “thursday”. The word slot of
“thursday” is a date slot which may appear in many sentences with different intents. So
we should know the intent of the sentence as well as the slot of the word “thursday”
and then label the word with “B-depart_date-flight”. Obviously, the beginning words
carry most information of the intent and the attention mechanism can find additional
long-distance information effectively to solve multiple intent issues. This may explain
one side of the reason for the good performance of our joint model on intent detect task.

4.3 Word Slot Extraction Task Results

Table 3 shows the performance of our proposed model for word slot extraction and
previously reported results. Once again, the joint model performs better than the
pipeline method. Besides, the attention-based model gives slightly better F1 score than
the non-attention-based models. The reason could be the attention mechanism seeking
to find other supporting information from input word sequence for the word slot label

Table 2. The results on independent task of intent detection

Model Intent accuracy (%)

Recursive NN [2] 95.40
Boosting [16] 95.62
Boosting + Simplified sentences [17] 96.98
bi-LSTM 97.14
bi-LSTM with attention 97.31
bi-LSTM with bias loss function 97.20
bi-LSTM with attention-bias loss function 97.65

Fig. 3. The distribution of the attention weights when labeling the last word “thursday” with the
intent “flight” of the sentence. The darker shade is the higher attention weight is.

Attention-Based RNN Model for Joint Extraction of Intent and Word Slot 185

prediction. Overall, attention-based RNN Models outperform the ones without atten-
tion mechanism and the bias loss function is helpful for the word slot extraction.

When we combine attention mechanism and bias loss function on bi-LSTM model
we find the F1 score gets slight reduction. We think the weight of bias loss function
may disrupt the weight of attention during backpropagation. As the bias is manually
set, it is difficult to select a perfectly suitable hyperparameter, which may lead to human
errors affecting the training process. In the next work, we will try to optimize the bias
by setting it as a parameter of the model.

4.4 Joint Task Results

Table 4 shows our tagging model’s performance on joint extraction task of intent and
word slots comparing to previously reported results.

As shown in this table, the joint model using tagging strategy achieved promising
performance on both intent detection and word slot extraction. The attention based bi-
LSTM get the best performance during our experiments. However, the combination
model based on attention mechanism and bias loss function still have much room for
improvement.

Table 3. The results on independent task of word slot extraction

Model F1 score (%)

CNN-CRF [19] 94.35
RNN with Label Sampling [9] 94.89
Hybrid RNN [11] 95.06
Deep LSTM [20] 95.08
bi-LSTM 94.89
bi-LSTM with attention 95.15
bi-LSTM with bias loss function 95.13
bi-LSTM with attention-bias loss function 95.05

Table 4. The results of joint task on intent detection and word slot extraction

Model F1 score (%) Intent accuracy(%)

RecNN [2] 93.22 95.40
RecNN + Viterbi [2] 93.96 95.40
bi-LSTM 94.89 97.09
bi-LSTM with attention 95.15 97.20
bi-LSTM with bias loss function 95.13 96.89
bi-LSTM with attention-bias loss function 95.05 97.09

186 D. Zhang et al.

We checked the badcase in the results, most of which were caused by the word
“UNK” which represents low frequency words. Besides, many word slots are also
infrequent in the mislabeling results. It can be speculated that due to the limit of the
data size, the training data could not cover all the cases well, especially for words and
word slots with low frequency. In future missions, we will scale the size of the data set
and adopt a deeper RNN model to further improve the performance of our model.

The experimental results show the effectiveness of our proposed method. But it still
has shortcoming on identifying multiple tags. In the next work, we will replace the
softmax function in the output layer with multiple classifier, so that a word can be
labeled multiple tags. In this way, the word tagging process can be transformed into a
multi-classification problem, which can solve the problem of multiple tags. Although,
our model can enhance the effect of word slot words, the associations between word
slots and sentence intent still require refinement in next works.

5 Conclusion

In this paper, we explored a tagging strategy and investigated the end-to-end RNN
models to jointly extract of intent and word slots. We further improved our joint
tagging strategy model with the attention mechanism to solve the problem of diver-
sified relationship between word slots and intentions. Based on our tagging strategy
model, the joint task of intent detection and word slot extraction is greatly simplified as
only one sequence tagging model needs to be trained and deployed. We conduct
experiments on a public dataset and the experimental results show that our joint model
achieved better performance on the benchmark ATIS task compared with most of the
existing pipelined and joint models for both independent and joint extraction task.

Acknowledgement. This work was supported by the National Key Research and Development
program of China (No. 2018YFB1004703).

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Guo, D., Tur, G., Yih, W., Zweig, G.: Joint semantic utterance classification and slot filling
with recursive neural networks. In: 2014 IEEE Spoken Language Technology Workshop
(SLT), pp. 554–559. IEEE (2014)

3. Haffner, P., Tur, G., Wright, J.H.: Optimizing SVMs for complex call classification. In: 2003
IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings
(ICASSP 2003), vol. 1, pp. I–I. IEEE (2003)

4. Hemphill, C.T., Godfrey, J.J., Doddington, G.R.: The ATIS spoken language systems pilot
corpus. In: Speech and Natural Language: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, 24–27 June 1990 (1990)

5. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv
preprint arXiv:1508.01991 (2015)

Attention-Based RNN Model for Joint Extraction of Intent and Word Slot 187

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.01991

6. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network
architectures. In: International Conference on Machine Learning, pp. 2342–2350 (2015)

7. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:
1408.5882 (2014)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:
1412.6980 (2014)

9. Liu, B., Lane, I.: Recurrent neural network structured output prediction for spoken language
understanding. In: Proceedings of the NIPS Workshop on Machine Learning for Spoken
Language Understanding and Interactions (2015)

10. McCallum, A., Freitag, D., Pereira, F.C.: Maximum entropy markov models for information
extraction and segmentation. In: ICML, vol. 17, pp. 591–598 (2000)

11. Mesnil, G., et al.: Using recurrent neural networks for slot filling in spoken language
understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 23(3), 530–539 (2015)

12. Mikolov, T., Kombrink, S., Burget, L., Černocký, J., Khudanpur, S.: Extensions of recurrent
neural network language model. In: 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5528–5531. IEEE (2011)

13. Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken language
understanding. In: Eighth Annual Conference of the International Speech Communication
Association (2007)

14. Sarikaya, R., Hinton, G.E., Ramabhadran, B.: Deep belief nets for natural language call-
routing. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5680–5683. IEEE (2011)

15. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of
its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

16. Tur, G., Hakkani-Tür, D., Heck, L.: What is left to be understood in ATIS? In: 2010 IEEE
Spoken Language Technology Workshop (SLT), pp. 19–24. IEEE (2010)

17. Tur, G., Hakkani-Tür, D., Heck, L., Parthasarathy, S.: Sentence simplification for spoken
language understanding. In: 2011 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5628–5631. IEEE (2011)

18. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing
Systems, pp. 6000–6010 (2017)

19. Xu, P., Sarikaya, R.: Convolutional neural network based triangular CRF for joint intent
detection and slot filling. In: 2013 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), pp. 78–83. IEEE (2013)

20. Yao, K., Peng, B., Zhang, Y., Yu, D., Zweig, G., Shi, Y.: Spoken language understanding
using long short-term memory neural networks. In: 2014 IEEE Spoken Language
Technology Workshop (SLT), pp. 189–194. IEEE (2014)

21. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329 (2014)

22. Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction of entities and
relations based on a novel tagging scheme. arXiv preprint arXiv:1706.05075 (2017)

188 D. Zhang et al.

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1706.05075

Using Regular Languages to Explore the
Representational Capacity of Recurrent

Neural Architectures

Abhijit Mahalunkar(B) and John D. Kelleher

Dublin Institute of Technology, Dublin, Ireland
abhijit.mahalunkar@mydit.ie, john.d.kelleher@dit.ie

Abstract. The presence of Long Distance Dependencies (LDDs) in
sequential data poses significant challenges for computational models.
Various recurrent neural architectures have been designed to mitigate
this issue. In order to test these state-of-the-art architectures, there is
growing need for rich benchmarking datasets. However, one of the draw-
backs of existing datasets is the lack of experimental control with regards
to the presence and/or degree of LDDs. This lack of control limits the
analysis of model performance in relation to the specific challenge posed
by LDDs. One way to address this is to use synthetic data having the
properties of subregular languages. The degree of LDDs within the gen-
erated data can be controlled through the k parameter, length of the
generated strings, and by choosing appropriate forbidden strings. In this
paper, we explore the capacity of different RNN extensions to model
LDDs, by evaluating these models on a sequence of SPk synthesized
datasets, where each subsequent dataset exhibits a longer degree of LDD.
Even though SPk are simple languages, the presence of LDDs does have
significant impact on the performance of recurrent neural architectures,
thus making them prime candidate in benchmarking tasks.

Keywords: Sequential models · Long distance dependency
Recurrent neural networks · Regular languages
Strictly piecewise languages

1 Introduction

A Recurrent Neural Network (RNN) is able to model temporal data efficiently
[1]. In theory, RNNs are capable of modeling infinitely long dependencies. A long
distance dependency (LDD) describes a contingency (or interaction) between two
(or more) elements in a sequence that are separated by an arbitrary number of
positions. LDDs often occur in natural language, for example in English there
is a requirement for subjects and verbs to agree, compare: “The dog in that
house is aggressive” with “The dogs in that house are aggressive”. However,
in practice successfully training an RNN to model LDDs is still extremely dif-
ficult, due in-part to exploding or vanishing gradients [2,3]. There have been
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 189–198, 2018.
https://doi.org/10.1007/978-3-030-01424-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_19&domain=pdf
http://orcid.org/0000-0001-5795-8728
http://orcid.org/0000-0001-6462-3248

190 A. Mahalunkar and J. D. Kelleher

significant advances in this domain, and various architectures have been devel-
oped to address the issue of LDDs [4–11]. Indeed, the fact that a number of RNN
extensions are specifically designed to address the problem of modeling LDDs is
a testament to the fundamental importance of the challenge posed by LDDs.

In order to test the representational capacity of these models and aide in
future development of new models, there is a growing need for large datasets
which manifest various degrees of LDDs. Various benchmarking datasets and
tasks which exhibit such properties are currently being employed [4,7,12,13].
However, using them provides no experimental control over the degree of LDD
these datasets exhibit. Although, the copy and add task [4] does have control over
this factor, the dataset generated via this scheme does not possess comparable
complexity with datasets sampled from real world sequential processes.

Strictly k -Piecewise (SPk) languages, as studied by Rogers et al. [14], are
proper subclasses of piecewise testable languages [15]. SPk languages are natural
and can express some of the kinds of LDDs found in natural languages [16,18]. In
relation to research on LDDs, SPk languages are particularly interesting because
by controlling the parameter k and the length of the strings, one can control the
maximum LDD in the dataset, and by choosing appropriate forbidden strings,
it is possible to simulate a natural dataset exhibiting a certain degree of LDD.
These properties make SPk languages prime candidate for benchmarking tasks.

Contribution: This research used a finite-state implementation of an SP2
grammar to generate strings of varying length, from 2 to 500. SP2 is analogous to
subject-verb agreement in English language, thus using this grammar generates
LDDs of similar complexity, and controlling the length of the strings generated
controls the maximum LDD span in the dataset. Appropriate forbidden strings
were chosen. State-of-the-art sequential data models were trained to predict the
next character for every generated dataset. It was observed that as the length
of the strings in the datasets increased the perplexity of the models increased.
This is due in-part to the limitations of the representational capacity of these
models. However, of the models tested it was observed that Recurrent Highway
Networks display the lowest perplexity on character prediction task for large
sequences exhibiting very high LDDs.

2 Recurrent Neural Architectures for LDDs

The focus of this paper is to experimentally evaluate the ability of modern
RNN architectures to model LDDs by testing current state-of-the-art models
on datasets of SPk sequences which exhibit LDDs of varying lengths. For our
experiments we chose the following architectures as the relevant representatives
of RNNs: Long Short Term Memory [4], Recurrent Highway Networks [9] and
Orthogonal RNNs [10]. This choice of networks was based on the fact that (a)
each of these networks were specifically designed to address performance issue
of the standard RNN while modeling LDD datasets, and (b) taken together the
set of selected models provide coverage of the different approaches found in the
literature to the problem of LDDs.

Regular Languages and Recurrent Neural Architectures 191

LSTMs were an early effort in addressing the vanishing gradient effect
by introducing “constant error carousels”, which enforced constant error flow
through thereby bridging minimal time lags in excess of 1000 discrete steps.
Neural Turing Machines are memory augmented networks. They are composed
of a network controller and a memory bank. These components allowed the
network to provide attention to different memory locations. Recurrent Highway
Networks (RHNs) extended the LSTM architecture to allow step-to-step tran-
sition depths larger than one. Orthogonal RNNs (ORNNs) extend the standard
RNN architecture by enforcing soft or hard orthogonality on the weight matrix.

3 Benchmarking Datasets

There is a relatively small number of datasets that are popular for testing the
representational capacity of RNNs. Most of these datasets are known to exhibit
LDDs, which is a necessary criteria for their selection as a benchmarking dataset.
The Penn Treebank [12] (PTB) is one of these datasets. It consists of over 4.5
million words of American English and was constructed by sampling English
sentences from a range of sources. The WikiText language modeling dataset [7]
was released in 2016 and has become a popular choice for language modeling
experiments. It is a collection of over 100 million tokens extracted from various
Wikipedia articles. This dataset is much larger than the PTB, which is the
primary reason that it is preferred to the PTB in recent works. Although, the
PTB and WikiText differ in terms of the sources that the sentences they contain
are sampled from, both dataset exclusively contain English language sentences.
Hence both the datasets are constrained by English language grammar, and
therefore will exhibit similar LDD characteristics. Moreover, it is unclear what
these LDDs are because the data is sampled from a natural process (the English
language) the LDD characteristics of which are not accurately estimated.

The difficulty of using naturally occurring datasets to investigate LDDs has
been recognized and several synthetic benchmarks have been used to test the
ability of RNNs to learn LDDs in sequential data. The copy and adding tasks,
introduced in [4], is one such example. The task entails remembering an input
sequence followed by a string of blank inputs. The sequence is terminated using a
delimiter after which the network must produce the input sequence, ignoring the
string of blanks inputs that follow the original sequence [10]. This task provides
an experimenter with a great degree of control over the length of LDD in the
dataset they synthesize in order to train and test their models.

Another method of testing models on simulated LDDs, is to train them to
learn the MNIST image classes [13]. This is achieved by sequentially feeding all
the 784 pixels of a MNIST image to the model under test and then training the
network to classify MNIST image category. Every image is fed to the network
pixel by pixel, starting from the top left pixel and finishing at the bottom right
pixel. This simulates LDDs of length 784 as the network has to remember all
the 784 pixels in order to classify the images.

Formal languages, have previously been used to train RNNs and investigate
their inner workings. The Reber grammar [19] was used to train various first order

192 A. Mahalunkar and J. D. Kelleher

RNNs [21,22]. The Reber grammar was also used as a benchmarking dataset in
the original work on LSTM models [4]. Regular languages, studied by Tomita
[20], were used to train RNNs to learn grammatical structures of the string.
A very recent example of research using formal languages to evaluate RNNs is
Avcu et al. [17]. The work presented in this paper falls within this tradition of
analysis, however it extends the previous research on using formal languages by:
(a) broadening the variety of LDDs within the generated datasets, (b) evaluating
a broader variety of models, and (c) using language model perplexity as the
evaluation metric.

4 Formal Language Theory and Regular Languages

Formal Language Theory (FLT) finds its use in various domains of science. Pri-
marily developed to study the computational basis of human language, FLT is
now being used to extensively analyze any rule-governed system [23–25]. Regu-
lar languages are the simplest grammars (type-3 grammars) within the Chom-
sky hierarchy which are driven by regular expressions. Subregular languages,
e.g. Strictly k -Piecewise or Strictly k -Local, are subclasses of regular languages.
These languages can be identified by mechanisms much less complicated than
Finite-State Automata. Many aspects of human language such as local and non
local dependencies are similar to subregular languages [26], and there are certain
types of LDDs in human language which allow finite-state characterization [18].
These types of LDD can be modeled using Strictly k -Piecewise languages.

4.1 Strictly Piecewise Languages

In order to explain how we used SPk languages to generate datasets appropriate
to our experimental goals it is first necessary to present an explanation of these
languages. Following [14,16,17], a language L is described by a finite set of
symbols, i.e. an alphabet, denoted by Σ. The symbols are analogous to words or
characters in English, music notes in music theory, genes in genomics, etc. A set
Σ∗ is a free monoid, a set of finite sequences of zero or more elements from Σ.
For example, for Σ = {a, b, c}, its Σ∗ contains all concatenations of a, b, and c:
{λ, a, ab, ba, cac, acbabc, ...}. The string of length zero is denoted by λ. wi is the
ith word/string (w) of L. The length of a string u is denoted |u|. A stringset (or
Formal Language) is a subset of Σ∗.

If u and v are strings, uv denotes their concatenation. For all u, v, w, x
∈ Σ∗, if x=uwv, then w is a substring of x. For example, bc is a substring of
abcd, as concatenating a,bc,d yields abcd. Similarly, a string v is a subsequence of
string w iff v = σ1σ2...σn and w ∈ Σ∗σ1Σ

∗σ2Σ
∗...Σ∗σnΣ

∗, where σ ∈ Σ. For
example, string bd is a subsequence of length k = 2 of abcd, acd is a subsequence
of length k = 3 of the same string abcd, but string db is not a subsequence of
abcd. A subsequence of length k is called a k-subsequence. Let subseqk(w) denote
the set of subsequences of w up to length k.

Regular Languages and Recurrent Neural Architectures 193

A Strictly Piecewise grammar can be defined as a set of permissible sub-
sequences. The grammar G is simply all strings whose k -long subsequences are
permissible according to G. Consider a language L, consisting of Σ = {a, b, c, d}.
The grammar, GSP2 = {aa, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd} are
comprised of these permissible subsequences of length k = 2. Note, however, that
although {ab} is a logically possible subsequence of length k, it is not in the gram-
mar. Subsequences which are not in the grammar are called forbidden strings.
The string u = [bbcbdd], where |u| = 6 belongs to GSP2, because it is composed of
subsequences that are in that grammar. Similarly, the string v = [bbdbbbcbddaa],
where |v| = 12 belongs to GSP2. However, the string w = [bbabbbcbdd] does not
because {ab} is a forbidden subsequence as it is not part of the grammar. This
condition applies for any string x for |x| ∈ Z. One can also define an SP grammar
for k = 3 and k = 4 for Σ = {a, b} as GSP3 and GSP4 respectively. For example,
GSP3 = {aaa, aab, abb, baa, bab, bba, bbb}, with {aba} as forbidden string. A
string [aaaaaaab] of length 8 is a valid GSP3 string and [aaaaabaa] is invalid.
Thus, an appropriate grammar reflecting the dataset one intends to simulate can
be designed by selecting appropriate permissible strings in the grammar. For the
specific language, forbidden strings can be computed1. Note, to define an SPk
grammar it is necessary to specify at least one forbidden string.

Fig. 1. The automaton for GSP2 (k = 2) which generates strings of length = 6

Figure 1 illustrates the finite-state diagram of a GSP2 for strings of length 6
with forbidden string {ab}. Traversing a path from state 1 until state 11 will gen-
erate valid GSP2 strings of length 6, e.g. {accdda, caaaaa}. It can also be noted
that there is no path which generates a string which has an {ab} subsequence e.g.
{abcccc}. Using the above described methodology, of choosing strings of appro-
priate length, one can simulate appropriate LDDs in a dataset. One can also
control the number of dependent elements by choosing an appropriate k. Forbid-
den strings allow for elimination of certain combinations in generated datasets,
which can be useful when one is trying to simulate real world datasets.

1 Refer Sect. 5.2 Finding the shortest forbidden subsequences in [16] for method to
compute forbidden sequences for a particular SP language.

194 A. Mahalunkar and J. D. Kelleher

5 Experiment

In this experiment, we generate 4 datasets of SP2 language. For each dataset
we train an LSTM, an ORNN, and a RHN, and evaluate and compare the
performance of the models.

5.1 Generating SP2 dataset

For our experiment, Σ = {a, b, c, d} was selected. Forbidden strings for this
language were selected as {ab,bc}. In order to introduce various degrees of LDDs,
strings with lengths l were generated in random order, where 2 ≤ l ≤ 500. For
every l, the number of strings per l is nl. For this experiment, nl ≤ 1, 000, 000.
This allowed for uniform distribution of strings of all lengths. These strings were
grouped in 4 datasets as described in Table 1. Within each dataset, strings were
randomly ordered to avoid biased gradients. For training the neural networks, a
subset of these generated datasets were used due to the size of each dataset.

Table 1. Datasets of SP2 language

Dataset Min length Max length Max LDDs Original Sample

Dataset 1 2 20 20 15MB 15 MB

Dataset 2 21 100 100 470MB 50 MB

Dataset 3 101 200 200 1.5 GB 100 MB

Dataset 4 201 500 500 9.9 GB 200 MB

The strings were generated using the tool foma [27]. A post processing python
script was developed to select the small sample from the original datasets 1, 2,
3 and 4 as described in Table 1. Every dataset is made up of strings of varying
l. The python script was also used to randomize the order of strings (as per the
length), so as not to bias the models2.

5.2 Training Task

All the networks were trained on a character prediction task. For each net-
work type (LSTM, ORNN, RHN) a network was trained on each of the 4 SP2
datasets, and also on a standard dataset of English language. The English lan-
guage datasets were included in the experiments to provide a comparison for
model performance when the vocabulary and type of data was varied. For the
LSTM and ORNN the PTB was used as the standard English language dataset,
and for the RHN the Text8 dataset was used. Note, that the experimental task
was kept constant across all datasets, so although the PTB and Text8 datasets

2 Source code available at https://github.com/silentknight/ICANN2018.

https://github.com/silentknight/ICANN2018

Regular Languages and Recurrent Neural Architectures 195

are often used as part of a word-prediction task, in these experiments the net-
works were trained and evaluated on character prediction on the PTB and Text8
datasets. For SPk languages, the generated datasets were split into training
(60%), validation (20%) and test (20%) sets. The LSTM3 with dropout models
were trained as advised in [28]; the ORNN4 models were trained as recommended
in [10]; and, the RHN5 models were trained following [9].

The performance of all the three network types was measured by computing
the perplexity of the network after each epoch. The performance curve for the
LSTM model is plotted in Fig. 2a, the performance of ORNN model is plotted
in Fig. 2b, and the performance curve of RHN is plotted in Fig. 2c.

(a) LSTM Network (b) Orthogonal RNN

(c) Recurrent Highway Network

Fig. 2. Perplexity vs training epoch for recurrent neural architectures.

3 LSTM source https://github.com/tensorflow/models/blob/master/tutorials/rnn/
ptb/ptb word lm.py.

4 ORNN Source https://github.com/veugene/spectre release.
5 RHN source https://github.com/julian121266/RecurrentHighwayNetworks.

https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
https://github.com/veugene/spectre_release
https://github.com/julian121266/RecurrentHighwayNetworks

196 A. Mahalunkar and J. D. Kelleher

6 Analysis

In Fig. 2, we visualize the impact of increasing LDDs while training all the three
architectures. Our results show that during the initial phase of the training,
the LSTM network displayed perplexity directly proportional to the degree of
LDDs present in the dataset. It is seen that dataset 4 (LDD order of around
500) presents higher perplexity as compared to the other datasets. However,
every dataset eventually exhibits lower perplexity after epoch 20. When com-
pared with the PTB task, one can observe lower perplexity by LSTM network
in modeling datasets 1, 2, 3 and 4 during the initial phase of training. This is
due in-part to the small vocabulary size in the SP2 datasets (Σ = {a,b,c,d}).
A small vocabulary size tends to lower entropy in a sequence. The PTB has
much larger vocabulary thus increasing the entropy and eventually increasing
perplexity. Selection of more forbidden strings leads to much richer grammar.
SPk languages generated for this experiment contained only 2 forbidden strings,
this led to generation of less rich grammar as compared to the PTB (English
grammar). However, one can observe that the LSTM model learns the PTB
much faster than SP2 languages (the graph drops earlier). This can be directly
attributed to the presence of longer LDDs in the SP2 datasets.

Orthogonal RNNs enforce soft orthogonality to address vanishing gradient
problem. When compared with LSTM network training of the PTB, it is observed
that the perplexity of both architectures is very similar during the initial train-
ing phase, but ORNNs performance does not improve with more training as
compared to LSTM. The impact of vocabulary size is also evident in this case
(the perplexity for PTB is much higher than for the SP2 datasets). However, it
can be seen that ORNNs trained with datasets 1 and 2 present higher perplexity
as compared to datasets 3 and 4 (longer LDDs) suggesting that ORNN models
overfit datasets 1 and 2 and are able to generalize on datasets 3 and 4. This
could be attributed to orthogonal weight initializations which makes learning
longer dependencies easier.

Focusing on the graph for the Recurrent Highway Networks it can be observed
that the model tended to exhibit lower perplexity on SP2 datasets with higher
degrees of LDDs. This could be attributed to the architecture of the network.
Due to increased depth in recurrent transitions in these networks, it was possible
for the model to achieve good performance on datasets with long LDDs. However,
on datasets with lower degrees of LDDs these models tend to overfit and, thus,
exhibit higher perplexity. Furthermore, comparing the RHN graph on the Text8
dataset with the LSTM and ORNN graphs on the PTB it is apparent that RHNs
are better at handling larger vocabularies: the RHN graph for Text8 is lower than
the LSTM and ORNN graphs on the PTB.

7 Conclusion

In this paper, we used SPk languages to generate benchmarking datasets for
LDDs. We trained various RNNs with the generated datasets and analyzed their

Regular Languages and Recurrent Neural Architectures 197

performance. The analysis revealed that SPk languages are able to generate
datasets with varying degree of LDDs. Consequently, using SPk languages gives
experimental control over the generation of rich datasets by controlling the k, the
length of the strings, the vocabulary of the generated language, and by choosing
appropriate forbidden strings. The analysis also revealed that RHNs have a much
better capability (as compared with LSTMs and ORNNs) to model LDDs.

Acknowledgements. This research was partly supported by the ADAPT Research
Centre, funded under the SFI Research Centres Programme (Grant 13/RC/2106) and
is co-funded under the European Regional Development Funds. The research was also
supported by an IBM Shared University Research Award. We also, gratefully, acknowl-
edge the support of NVIDIA Corporation with the donation of the Titan Xp GPU under
NVIDIA GPU Grant used for this research.

References

1. Elman, J.L.: Finding structure in time. Cogn. Sci. 14, 179–211 (1990)
2. Hochreiter. S.: Untersuchungen zu dynamischen neuronalen Netzen. Diploma the-

sis, TU Munich (1991)
3. Yoshua, B., Simard, P., Frasconi, P.: Learning long-term dependencies with gradi-

ent descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)
4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
5. Graves, A., Wayne, G., Danihelka, I.: Neural Turing Machines. CoRR (2014)
6. Salton, G.D., Ross, R.J., Kelleher, J.D.: Attentive language models. In: Proceedings

of the 8th International Joint Conference on Natural Language Processing, pp.
441–450 (2017)

7. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models.
In: ICLR 2016 (2016)

8. Chang, S. et al.: Dilated recurrent neural networks. In: Guyon, I., et al. (eds.)
Advances in Neural Information Processing Systems, vol. 30, pp. 77–87. Curran
Associates, Inc. (2017)

9. Zilly, J.G., Srivastava, R.K., Koutnk, J., Schmidhuber, J.: Recurrent highway net-
works. In: Proceedings of the 34th International Conference on Machine Learning,
Sydney, Australia, PMLR, vol. 70 (2017)

10. Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning
recurrent networks with long term dependencies. In: Proceeding of ICML 2017
(2017)

11. Henaff, M., Szlam, A., LeCun, Y.: Recurrent orthogonal networks and long-memory
tasks. In: Proceedings of the 33rd International Conference on Machine Learning,
PMLR, vol. 48, pp. 2034–2042 (2016)

12. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated cor-
pus of English: The Penn Treebank. Comput. Linguist. 19(2), 313–330 (1993).
ISSN 0891–2017

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Rogers, J., et al.: On languages piecewise testable in the strict sense. In: Ebert,
C., Jäger, G., Michaelis, J. (eds.) MOL 2007/2009. LNCS (LNAI), vol. 6149, pp.
255–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14322-
9 19

https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19

198 A. Mahalunkar and J. D. Kelleher

15. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

16. Ogihara, M., Tarui, J. (eds.): TAMC 2011. LNCS, vol. 6648. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20877-5

17. Avcu, E., Shibata, C., Heinz, J.: Subregular complexity and deep learning. In:
Proceedings of the Conference on Logic and Machine Learning in Natural Language
(LaML 2017), vol. 1, pp. 20–33 (2017)

18. Heinz. J., Rogers, J.: Estimating strictly piecewise distributions. In: Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pp.
886–896 (2010)

19. Reber, A.S.: Implicit learning of artificial grammars. J. Verbal Learn. Verbal Behav.
6(6), 855–863 (1967)

20. Tomita, M.: Learning of construction of finite automata from examples using hill-
climbing. In: Proceedings of Fourth International Cognitive Science Conference,
pp. 105–108 (1982)

21. Casey, M.: The dynamics of discrete-time computation, with application to recur-
rent neural networks and finite statemachine extraction. Neural Comput. 8(6),
1135–1178 (1996)

22. Smith, A.W., Zipser, D.: Encoding sequential structure: experience with the real-
time recurrent learning algorithm. Proc. IJCNN I, 645–648 (1989)

23. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory
2, 113–124 (1956)

24. Chomsky, N.: On certain formal properties of grammars. Inf. Control. 2, 137–167
(1959)

25. Fitch, W.T., Friederici, A.D.: Artificial grammar learning meets formal language
theory: an overview. Philos. Trans. R. Soc. B Biol. Sci. 367(1598), 1933–1955
(2012)

26. Jager, G., Rogers, J.: Formal language theory: refining the Chomsky hierarchy.
Philos. Trans. R. Soc. B Biol. Sci. 367(1598), 1956–1970 (2012)

27. Hulden, M.: Foma: a finite-state compiler and library. In: Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Lin-
guistics, pp. 29–32 (2009)

28. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
In: Proceedings of ICRL (2015)

https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/978-3-642-20877-5

Learning Trends on the Fly in Time Series
Data Using Plastic CGP Evolved Recurrent

Neural Networks

Gul Mummad Khan1(&) and Durr-e-Nayab2

1 Electrical Engineering Department, UET Peshawar, Peshawar, Pakistan
gk502@uetpeshawar.edu.pk

2 Computer System Engineering Department, UET Peshawar,
Peshawar, Pakistan

nayaab_khan@nwfpuet.edu.pk

Abstract. An approach of Direct Online Learning (DOL) to incorporate devel-
opmental plasticity in Recurrent Neural Networks termed as Plastic Cartesian
Genetic Programming evolved Recurrent Neural Network (PCGPRNN), is pro-
posed to exploit the trends in the data of the foreign currency to forecast the future
currency rates, while reshaping its connectivity, biasing factors and selecting
various parameters from the input vector ‘on the fly’ according to the traversed
trends. The developedmodel learns in real time and exhibits the optimum topology
for the best possible output using neuro-evolution. The network performance is
observed in a range of scenarios with varying network parameters and various
currencies and trading indexes obtaining competitive results. Networks trained to
predict single instances are further explored in independent scenarios to predict
various time intervals in advance, achieving remarkable results.

Keywords: Cartesian genetic programming � Developmental plasticity
Foreign currency exchange � Neuro evolution � Recurrent Neural Networks

1 Introduction

Plasticity in neural networks is an efficient phenomenon that exists in biological neural
networks [19]. In artificial neural networks (ANNs) plasticity is attained by ability to
change the aspects of the network in response to environmental conditions [15–17].
Due to their natural capacity they are turning more famous to study in variable work
environments. They are becoming more known due to their essential ability to train live
in the variable task environment. Similarly, systems with memory (i.e. recurrent) neural
networks have tremendous fast learning ability that makes them efficient for dealing
with challenging scenarios [8]. The developmental plastic neural networks when
incorporated with the capabilities of the feedback give rise to a novel neural network
approach which combines the capabilities of the developmental plasticity and recurrent
networks. In this work, it is applied to evolve for prediction of foreign currency
exchange rates. This mechanism is called Plastic Cartesian Genetic Programming
evolved Recurrent Neural Network (PCGPRNN). The proposed dynamic ANN creates
new neural sub-systems when they witness dynamic learning scheme and have

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 199–207, 2018.
https://doi.org/10.1007/978-3-030-01424-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_20

premiere performance due to feedback mechanism. The plasticity allows the network to
customize its aspects while the problem domain is evolving and solves multiple
linear/nonlinear issues without adversity from the damaging interference. Catastrophic
interference or catastrophic forgetting occurs when a neural network trained on one
problem forgets how to solve it when trained on another problem [2, 18]. The feedback
mechanism of the network is both constructive and destructive and proves to be useful
and convenient for the unsteady financial time series data because of its quick learning
ability [8]. PCGPRNN is an exceptional technique because of the existence of a
feedback mechanism in the network which takes the system status inputs into con-
sideration while continuously converting the morphology at runtime. PCGPRNN as
opposed to feed-forward can measure random sequence inputs because of its ability of
exploiting the internal memory [8]. Through this task our target is to seek a neural
network technique which integrates bio-inspired developmental measures using feed-
back. The Plastic Cartesian Genetic Programming based Recurrent Neural Network
(PCGPRNN) proposed in this work is obtained for a dynamic network with capability
to regularly fix its design and weights in response to external environment. Foreign
Exchange (Forex) rates are directly influenced by many macro and micro economic
factors collectively besides international relations and global state of business. Like-
wise the inflation rate, rate of interest, Per capita income, role of speculations, cost of
manufacturing, industry, economic growth in terms of Gross Domestic Income,
Political Stability and Relative Strength Index (RSI) of the stocks and the econo-
mization of other countries changes the worth of a currency instantaneously as well as
in long run [23].

With linear data sets the traditional statistical models shows better performance
compare to that of the performance with non-linear data sets where it shows some
limitations, for example stock indices [6]. Time series forecasting [1] was used for
Hidden Markov model (HMM) which shows susceptibility to external factors like stock
indices making it ambiguous and immutable. A support vector machine used in [27]
learnt progression of volatility levels of forex data predicted by Hidden Markov Model
& predicted approximations of the level. Improved outputs were obtained by executing
numerical measure of actual data. The two ANN schemes Multilayer Perceptron
(MLP) and Volterra mentioned in [4] are also exploited for time series forecasting.
Multi-neural ANN evolved comprising a master with three sub networks [15] that
forecasted US Dollar and Taiwan Dollar (TWD) exchange rates, their predisposition on
five macro-economic factors. The MLP forecasting model produces efficient and
accurate results of three (3) days’ ahead USD/Euro exchange rates but its performance
plunged with intrusion of external factors [11]. In [24] an extension of the traditional
application of Genetic Programming was proposed in the domain of daily currency
exchange rates predictions, in conjunction with trigonometric operators. High-order
statistical functions to analyze each system performance using daily returns of the
British Pound and Japanese Yen were proposed with a unique representation. It was
presented that using high-order statistical functions with integration of trigonometric
functions outperformed the traditional models.

200 G. M. Khan and Durr-e-Nayab

The trend of Genetic Programming based prediction model for Forex rate predic-
tion started recently [24–26]. Before this, statistical models [22], ANN and data mining
concepts were employed [21].

2 Literature Review

Generative and developmental approaches of artificial neural networks dynamically
changes the aspects of the network continuously during problem solving phase. Nolfi
introduced indirect mapping of ANN model [17]. In [10] a similar network was pro-
posed where a single cell utilizes the process of mitosis and migration forming a 2-D
neural network. The plastic neural model introduced in [12] could develop itself at run
time influenced by changes in the environment. In [14], Floreano et al. explored the
behavioral sturdiness of synaptic plasticity evolving neuro-controllers to solve light
switching scenario having no reward mechanism. The HyperNEAT encoding scheme
in [5] is exploited for evolution of synaptic weights and learning rules parameter set
with poor testing results in the T-maze foraging bee scenario. The learning capability of
the agents was enhanced later on [7]. In [18] developmental model of neurons, com-
prising of seven chromosomes encoding various computational functions of biological
neuron is presented to demonstrate learning with development. In [20] the interaction
of Hebbian homo-synaptic with fast non-hebbian hetero-synaptic plasticity is demon-
strated to be sufficient for assembly formation. The reminiscence don’t forget in a
spiking recurrent network model with excitatory and inhibitory neurons. Blocking any
component of plasticity averted strong functioning as a memory network.

The work here uses Cartesian Genetic Programming to obtain suitable computa-
tional functions for internal processing and developmental rules. To solve the time
series forecasting scenario of currency exchange learning potential of the system is
evaluated. Promising results are obtained in this work demonstrating robustness to deal
with the dynamic scenarios. Miller pioneered Cartesian Genetic Programming
(CGP) for evolution of digital circuits in 1999 [13]. It comprises of a 2D-two
dimensional graphical architecture unlike the traditional tree based structure of genetic
programming, having function nodes arranged in Cartesian format interconnected in a
feed-forward manner. CGP has been evaluated in diverse fields of application gener-
ating fascinating and competitive results [13].

3 Plastic Cartesian Genetic Programming Evolved Recurrent
Neural Network

Plasticity in the form of dynamic weights, topology and complexity of the network is
incorporated in Cartesian Genetic Programming (CGP) based Recurrent Neural Net-
work (RNN) to explore the ability of online learning at runtime. RNN provide the state
information to be part of the input parameters thus making the network markovian [8].
Plasticity is introduced by providing additional genes to make the developmental
decisions [9]. The CGPRNN is having feedback mechanism, which feeds one or more
system outputs back to the system. The general approach of Plastic CGPRNN is

Learning Trends on the Fly in Time Series Data 201

depicted in Fig. 1. Figure 1 shows the basic CGPRNN block illustrating the network
parameters developmental gene to introduce plasticity in the network.

Development in the network occurs as a reflection of the system weighted output
passed through a log-sigmoid function. The uniqueness of the approach is that changes
in the network take place in real time related to the flow of data in the network,
modifying its architecture, topology, complexity and weights.

4 Experimental Setup

The PCGPRNN currency forecaster model introduced here exploits the currency
exchange rates data acquired from the Australian Reserved Bank (ARB) for training
and testing of the model. Daily exchange rates of US Dollars are considered for up to
500 days to train the model. Testing is performed on independent set of exchange rates
data of 1000 days, for ten currencies namely: Korean Won (KW), Indonesian Rupiah
(IDR), Canadian Dollars (CAD), Singapore Dollars (SGD), New Zealand Dollars
(NZD), Taiwanese Dollars (TWD), Great Britain Pounds (GBP), Euros (EUR), Swiss
Franc (CHF), Japanese Yen (YEN) and Malaysian Ringgits (MR). Initially random
populations of PCGPRNN networks are produced for training purposes, these networks
develop during the run time of a particular generation. Ten independent networks

x0

x1

Inputs

Sigmoid Ac va on
Func on

Sigmoid Ac va on
Func on

Averaging
Process

Sum

Sum

Output

Sigmoid Ac va on
Func on

Decision
Box

Sum

f0

fN-1

X i

CGPANN Block

Y0

Y N-1

Fig. 1. A generalized approach of PCGPRNN

202 G. M. Khan and Durr-e-Nayab

having different genotype sizes and each working on five independent random seeds
are introduced for training purposes. Maximum numbers of generations are restricted to
one million in each training phase. The optimal trained networks are then evaluated on
ten different currencies for their performance. Five inputs are allowed per neuron, log-
sigmoid being used as activation function, system inputs are ten (10) in numbers, the
mutation rate (lr) is set at 10%. The evolutionary strategy used is 1 + k, with k set to 9,
representing the number of offspring. These parameters are based on the previous
performance of CGPANN and CGPRNN [2, 3, 8].

5 Results and Analysis

Experimentation is performed on offline historical data and performance is obtained
from the difference of estimated and actual values during training and testing processes.
The system takes ten days daily averaged currency values as input and the eleventh
days’ currency value is estimated. Once the optimal system is achieved during training
phase, it is tested with the new data sets keeping the output historical values hidden
from the system. The system predicts the unknown eleventh days’ exchange rate and is
compared with the actual exchange rate to assess the system enactment. The experi-
ments are carried out for the mentioned network architecture and the results are shown
in Tables 1, 2, 3 and 4. Table 1 enlists results of the PCGPRNN forecaster model
during training phase in terms of Mean Absolute Percentage Error (MAPE) values. The
performance of the network is analyzed and the preeminent performance is attained
with 150 nodes network securing the MAPE value of 1.537. Table 2 shows the per-
formance of the PCGPRNN model during the testing phase. The results show that the
best results are accomplished with Korean Won (KW) data set for the network of 150
nodes securing the MAPE value of 1.1315.

Table 1. Training phase results of PCGPRNN

Nodes MAPE

50 1.715
100 1.698
150 1.537
200 1.700
250 2.928
300 1.621
350 1.571
400 1.574
450 2.010
500 1.541

Learning Trends on the Fly in Time Series Data 203

Table 3 highlights a comparison between the accuracy of PCGPRNN forecaster
model with the contemporary ANN models introduced previously for similar exchange
rates. PCGPRNN with 98.87% seems to outperform all. Note that all other networks
are static, whereas PCGPRNN continue to change at runtime in response to the input
data patterns.

Learning with Development
In order to evaluate ‘learning on the fly’ capability of the network, we have tested the
network for its performance in a completely new scenario. We have evaluated the
performance of PCGPRNN to predict more days (i.e. 7, 10, 15, 30, 60) rather than
single day. Table 4 shows the MAPE values of the proposed PCGPRNN model for
multiple days’ prediction. It can be observed the proposed model performs better in the
advance prediction scenarios as well.

Table 2. Testing phase results of PCGPRNN model

Data 50 100 150 200 250 300 350 400 450 500

SDR 1.71 1.69 1.53 1.70 2.92 1.62 1.57 1.57 2.01 1.54
CNY 2.45 2.21 2.28 2.25 3.21 2.40 2.26 2.26 3.07 2.29
IDR 1.89 1.61 1.56 1.69 3.18 1.80 1.55 1.63 2.59 1.57
KW 1.79 1.18 1.13 1.23 3.91 3.60 1.14 1.40 2.82 1.13
TD 2.34 1.50 1.45 1.59 5.14 4.13 1.45 1.80 3.84 1.45
MR 1.90 1.68 1.62 1.75 3.10 7.32 1.62 1.68 2.48 1.63
HKD 1.87 1.58 1.53 1.67 3.11 7.58 1.52 1.61 2.57 1.54
CAD 1.98 1.62 1.59 1.74 3.22 7.99 1.57 1.67 2.79 1.61
NZD 5.08 1.76 1.68 1.85 5.55 3.93 1.69 2.05 4.10 1.68
CHF 7.38 1.85 1.73 1.98 8.22 3.63 1.75 2.19 4.52 1.73
GBP 15. 9 1.84 1.74 1.94 26.4 7.48 1.73 1.85 2.87 1.75
EUR 15.1 1.82 1.73 1.87 25.6 7.14 1.73 1.78 2.51 1.73
TWI 12.1 2.24 2.11 2.27 21.4 5.97 2.11 2.22 3.33 2.11
YEN 17.2 1.56 1.52 1.68 28.2 8.03 1.51 1.59 2.58 1.54
Avg 11.5 1.36 1.30 1.43 20.9 5.59 1.29 1.49 2.75 1.31

Table 3. Comparison of PCGPRNN with contemporary ann models

Network Accuracy

Multi Layer Perceptron [4] 72
Volterra Network [4] 76
AFERFM [1] 81.2
HFERFM [1] 69.9
Back Propagation Network [15] 62.27
Multi Neural Network [15] 66.82
CGPANN [2] 98.84
PCGPRNN (Proposed) 98.87

204 G. M. Khan and Durr-e-Nayab

6 Conclusion and Future Enhancements

We have enhanced the forecasting of foreign currency volatility in the global market
using the power of neuro evolution and its amalgamation with DOL to its next station.
The recurrent models, that are used in work exhibit self-modifying and orientation
capabilities. Cartesian Genetic Programming is explored to encode the dynamic
computational networks and is evolved for its learning behavior at runtime in the
proposed system. It incorporates synaptic as well as developmental plasticity in
Recurrent Neural Networks. Plastic Cartesian Genetic Programming evolved Recurrent
Neural Network (PCGPRNN), the model exploits the trends in foreign exchange to
predict the upcoming currency exchange rates, while developing its topology, synaptic
connectivity and other architectural component including input vector ‘on the fly’. The
results demonstrated the system to be robust and able to learn on the fly to predict the
volatile nature of foreign exchange rates.

References

1. Philip, A.A., Tofiki, A.A., Bidemi, A.A.: Artificial neural network model for forecasting
foreign exchange rate. World Comput. Sci. Inf. Technol. J. 1(3), 110–118 (2011)

2. Khan, G.M., Nayab, D., Mehmud, S.A., Zafar, M.H.: Evolving dynamic forecasting model
for foreign currency exchange rates using plastic neural networks. In: IEEE 12th
International Conference on Machine Learning and Applications ICMLA (2013)

3. Nayab, D., Muhammad Khan, G., Mahmud, S.A.: Prediction of foreign currency exchange
rates using CGPANN. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS,
vol. 383, pp. 91–101. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
41013-0_10

Table 4. Testing results of PCGPRNN model

Currency 7 10 15 30 60

SDR 3.8298 3.9776 4.5585 5.8555 7.9523
CNY 3.0987 3.4626 4.0178 5.3280 7.5935
IDR 2.2317 2.5736 3.3274 4.7754 7.2544
KW 2.9470 3.2516 3.9662 5.8721 9.3758
TD 3.1521 3.5315 4.1070 5.6000 7.9183
MR 3.0304 3.3461 3.8826 5.1105 7.2978
HKD 3.1586 3.4931 3.9919 5.2200 7.1626
CAD 3.2143 3.9818 4.8699 6.2117 8.8012
NZD 3.8877 4.4869 5.4938 6.5251 9.9959
CHF 3.4591 4.3415 5.3881 7.0680 8.6958
GBP 3.3462 4.0830 4.8516 5.5046 8.0757
EUR 4.2062 5.0777 6.4202 7.9186 9.8737
TWI 2.9801 3.3947 3.8889 5.0798 6.6557
YEN 2.7573 3.1262 3.8094 4.8327 6.2890

Learning Trends on the Fly in Time Series Data 205

http://dx.doi.org/10.1007/978-3-642-41013-0_10
http://dx.doi.org/10.1007/978-3-642-41013-0_10

4. Kryuchin, O.V., Arzamastsev, A.A., Troitzsch, K.G.: The prediction of currency exchange
rates using artificial neural networks. Exch. Organ. Behav. Teach. J., no. 4 (2011)

5. Risi, S., Stanley, Kenneth O.: Indirectly encoding neural plasticity as a pattern of local rules.
In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB
2010. LNCS (LNAI), vol. 6226, pp. 533–543. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15193-4_50

6. Kadilar, C., Alada, H.: Forecasting the exchange rate series with ANN: the case of Turkey.
Econ. Stat. Chang. 9, 17–29 (2009)

7. Galeshchuk, S., Mukherjee, S.: Deep networks for predicting direction of change in foreign
exchange rates. Intell. Syst. Account., Financ. Manag. 24, 100–110 (2017)

8. Khan, M.M., Khan, G.M., Miller, J.F.: Efficient representation of recurrent neural networks
for Markovian/non-Markovian non-linear control problems. In: International Conference on
Intelligent Systems Design and Applications, pp. 615–620 (2010)

9. Khan, M.M., Khan, G.M., Miller, J.F.: Developmental plasticity in cartesian genetic
programming artificial neural networks. In: Proceedings of the International Conference on
Informatics in Control, Automation and Robotics, pp. 449–458 (2011)

10. Cangelosi, A., Nolfi, S., Parisi, D.: Cell division and migration in a ‘genotype’ for neural
networks. Netw. Comput. Neural Syst. 5, 497–515 (1994)

11. Pacelli, V., Bavelacqua, V., Azzollini, M.: An artificial neural network model to forecast
exchange rates. J. Int. Learn. Syst. Appl. 3(2A), 57–69 (2011)

12. Upegui, A., Perez-Uribe, A., Thoma, Y., Sanchez, E.: Neural development on the Ubichip
by means of dynamic routing mechanisms. In: Hornby, G.S., Sekanina, L., Haddow, P.C.
(eds.) ICES 2008. LNCS, vol. 5216, pp. 392–401. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85857-7_35

13. Miller, J.F.: Cartesian Genetic Programming. Natural Computing Series. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3

14. Floreano, D., Urzelai, J.: Evolutionary robots with on-line self-organization and behavioral
fitness. Neural Netw. 13(4), 431–443 (2000)

15. Chen, A.P., Hsu, Y.C., Hu, K.F.: A hybrid forecasting model for foreign exchange rate based
on a multi-neural network. In: Fourth International Conference on Natural Computation,
ICNC, vol. 5, pp. 293–298 (2008)

16. Coleman, O.J., Blair, A.D.: Evolving plastic neural networks for online learning: review and
future directions. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS (LNAI), vol. 7691,
pp. 326–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35101-3_28

17. Nolfi, S., Miglino, O., Parisi, D.: Phenotypic plasticity in evolving neural networks. In:
Proceedings of the International Conference from Perception to Action, pp. 146–157. IEEE
Press (1994)

18. Khan, G.M., Miller, J.F., Halliday, D.M.: A developmental model of neural computation
using cartesian genetic programming. In: Proceedings of the Genetic and Evolutionary
Computation (Companion), pp. 2535–2542. ACM (2007)

19. Massobrio, P., et al.: In vitro studies of neuronal networks and synaptic plasticity in
invertebrates and in mammals using multielectrode arrays. Neural Plast. (2015)

20. Zenke, F., Agnes, E.J., Gerstner, W.: Diverse synaptic plasticity mechanisms orchestrated to
form and retrieve memories in spiking neural networks. Nat. Commun. 21(6), 6922 (2015)

21. Ravi, V., Lal, R., Kiran, N.R.: Foreign exchange rate prediction using computational
intelligence methods. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 4, 659–670 (2012)

22. FOREX Tutorial: Economic Theories, Models, Feeds & Data Available: http://www.
investopedia.com/university/forexmarket/forex5.asp.Accessed:September. Accessed Sep
2017

206 G. M. Khan and Durr-e-Nayab

http://dx.doi.org/10.1007/978-3-642-15193-4_50
http://dx.doi.org/10.1007/978-3-642-15193-4_50
http://dx.doi.org/10.1007/978-3-540-85857-7_35
http://dx.doi.org/10.1007/978-3-540-85857-7_35
http://dx.doi.org/10.1007/978-3-642-17310-3
http://dx.doi.org/10.1007/978-3-642-35101-3_28
http://www.investopedia.com/university/forexmarket/forex5.asp.Accessed:September
http://www.investopedia.com/university/forexmarket/forex5.asp.Accessed:September

23. Patel, P.J., Patel, N.J., Patel, A.R.: Factors affecting currency exchange rate, economical
formulas and prediction models. International Journal of Application or Innovation in
Engineering Managment. 3, 53–56 (2014)

24. Schwaerzel, R., Bylander, T.: Predicting currency exchange rates by genetic programming
with trigonometric functions and high-order statistics. In: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation. ACM (2006)

25. Alvarez Diaz, M.: Speculative strategies in the foreign exchange market based on genetic
programming predictions. Appl. Financ. Econ. 20(6), 465–476 (2010)

26. Shylajan, C.S., Sreejesh, S., Suresh, K.G.: Rupee-dollar exchange rate and macroeconomic
fundamentals: an empirical analysis using flexible-price monetary model. J. Int. Bus. Econ.
12(2), 89–105 (2011)

27. Shioda, K., Deng, S., Sakurai, A.: Prediction of foreign exchange market states with support
vector machine. In: 2011 10th International Conference on Machine Learning and
Applications and Workshops (ICMLA), vol. 1. IEEE (2011)

Learning Trends on the Fly in Time Series Data 207

Noise Masking Recurrent Neural Network
for Respiratory Sound Classification

Kirill Kochetov(B), Evgeny Putin, Maksim Balashov, Andrey Filchenkov,
and Anatoly Shalyto

Computer Technologies Lab, ITMO University,
49 Kronverksky Pr, 197101 St. Petersburg, Russia

{kskochetov,eoputin,balashov,afilchenkov,shalyto}@corp.ifmo.ru

Abstract. In this paper, we propose a novel architecture called noise
masking recurrent neural network (NMRNN) for lung sound classifica-
tion. The model jointly learns to extract only important respiratory-like
frames without redundant noise and then by exploiting this information
is trained to classify lung sounds into four categories: normal, containing
wheezes, crackles and both wheezes and crackles. We compare the perfor-
mance of our model with machine learning based models. As a result, the
NMRNN model reaches state-of-the-art performance on recently intro-
duced publicly available respiratory sound database.

Keywords: Respiratory sound classification
Recurrent neural networks · Deep learning

1 Introduction

In the last decades many machine learning (ML) approaches have been intro-
duced to analyze respiratory cycle sounds including crackles, coughs, wheezes [1–
6]. However almost all conventional ML models solely rely on hand-crafted fea-
tures. Furthermore, highly complex preprocessing steps are required to make use
of designed features [4–6]. Thus, merely ML-based models may not be robust
to external/internal noises in lung sounds and may not generalize their perfor-
mance across different softwares and measuring devices. However, to be used in
clinics respiratory tracking systems have to reach high classification accuracy.

From that perspective deep learning (DL) models [7] have gained a lot of
attention in the community. DL-based models primary rely on high abstract rep-
resentation of data that are learned through the training of models. Due to this
fact, DL models reach state-of-the-art performance on the range of tasks includ-
ing image recognition [8], speech recognition [9], time series forecasting [10].

In this work, we propose an architecture of recurrent neural network (RNN)
called NMRNN that is trained in end-to-end manner to simultaneously detect
noise in respiratory cycles and to classify lung sounds into several categories such
as: normal, wheezes, crackles or wheezes and crackles. In other words, our model

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 208–217, 2018.
https://doi.org/10.1007/978-3-030-01424-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_21&domain=pdf

NMRNN for Respiratory Sound Classification 209

itself decides what information and from what time points it should use to make
effective prediction of respiratory sounds. The crucial feature of the model is
that it is trained without applying any hand preprocessing stages like slicing of
individual respiratory cycles. Through extensive testing, the proposed model has
reached state-of-the-art performance on recently published large open database
of lung sound records [11].

The rest of the paper is organized as follows. In Sect. 2, we review several
notable works in respiratory sounds classification using ML and DL based mod-
els. Detailed description of NMRNN is given in Sect. 3. Sections 4 and 5 presents
results and comparative study with solely ML-based models. Conclusions are
presented in Sect. 6.

2 Related Work

Recently a comprehensive comparative study of applying different ML models to
automatic wheeze detection was done in [4]. Authors used a lot of models includ-
ing feed-forward neural network, random forest (RF), support vector machine
(SVM) and trained them on two datasets: phonopneumogram samples and the
Dubrovnik General Hospital (DGH) dataset. To reduce the influence of cardio-
vascular and muscular noise, they applied Yule-Walker filter followed by STFT
procedure. Then, two types of features were extracted from the lung sounds:
MFCC (Mel-frequency cepstral coefficients) features and some statistical fea-
tures. The authors reported that their best model with statistical features got
93.62% and 91.77% accuracy on phonopneumograms and DGH datasets, accord-
ingly. Meanwhile, based on MFCC features SVM model reached 99% accuracy
on both datasets.

In [12], authors proposed to use hidden Markov models (HMM) coupled
with Gaussian mixture models (GMM) for classification of respiratory sounds
into four categories: normal, containing wheezes, crackles and both crackles and
wheezes. The main idea behind applying HMM was that it is able to take into
account frame position in a sequence which leads to better accuracy comparing
to GMM. To tackle with noise in sound records, they applied spectral subtraction
technique [13]. MFCC extracted from the records were used as input features
to the model. In addition to MFCC features obtained in range from 50 Hz to
2000 Hz, the first time derivatives of MFCCs were used to track feature dynam-
ics and to decorrelate feature vectors resulting in feature set with size 30. As a
result, the ensemble model of 28 HMMs with 5 states and 1 Gaussian per state
achieved 0.495 and 0.396 scores on the cross-validation and second evaluation
score respectively. In both experiments different patients were used for train-
ing and testing, so it was honest validation, and we can compare these results
with ours.

One of the most successful attempts of applying DL models to the field of
respiratory sound classification was done in [14]. Authors used convolutional
neural networks (CNN) to detect wheezes in lung sound records. Firstly, respi-
ratory records were augmented by biasing sound sample in several time frames.

210 K. Kochetov et al.

Then, STFT features were computed followed by standard normalization. Lastly,
obtained normalized spectrograms of lung sounds were used to train 2D CNN.
The final model received 99% accuracy and 0.96 AUC on the dataset.

3 Method

RNNs are a class of artificial neural networks (ANNs), which are able to pro-
cess temporal data, such as sound and text. RNNs can use their internal state
(memory) and feedback to process sequences of inputs.

LSTM (Long short-term memory) and GRU (gated recurrent unit) networks
[15,16] are popular variants of RNN. They are show unprecedented performance
on sequence-related tasks such as NLP (Natural Language Processing) [17] and
speech recognition [18].

We use both LSTM and GRU units for our experiments. NMRNN is based
on three main ideas:

1. Adapt RNNs, which are designed for time-scale data and can consider all
information from sequential frames of input signal.

2. Distinguish noise and content automatically during training.
3. Make predictions using only breath (without noise), because noise can include

biased anomalies similar to wheezes or crackles.

Fig. 1. MNRNN architecture. Stacked Noise RNN predicts one noise label per frame
using original MFCC data. MASK block adds attention mechanism of the most impor-
tant frames with respiratory cycles. Stacked Anomalies RNN predicts one anomaly
label per sample using highlighted data from the MASK block.

The MNRNN model consists of three parts: noise classifier, respiratory (or
anomaly) classifier and some kind of attention called MASK. Schematic overview
of the model is shown in Fig. 1.

NMRNN for Respiratory Sound Classification 211

First of all, before model training each sound sample was split on frames with
equal length. There is only one anomaly label for sound sample and one noise
label for each frame.

Noise classifier is a stacked RNN called NRNN, which predicts noise label for
every frame from the sample. NRNN optimizes a cross-entropy loss calculated
for each output during training

LCE(p, q) = −
∑

p(x) × log(q(x)). (1)

Then predicted noise labels propagates through masking layer called MASK,
where original frames multiplies with masking coefficient (1−X)× Y , where X
is the predicted noise label (X = 1 for noise frame) and Y is a frame.

Anomaly classifier is a stacked RNN called ARNN, which predicts one
anomaly label for one sample (all frames). ARNN takes highlighted frames from
MASK block as input data and optimize cross-entropy loss for one label per
sample.

The final loss of the proposed architecture is following:

Lmodel = a1 × LCEnoise + a2 × LCEanom. (2)

Values of coefficients a1 and a2 are based on the idea that the main goal of
the model is anomaly classification, not noise classification.

The proposed MASK mechanism is simple and efficient and was inspired
by gating technique used in GRU cell, where memory needs to be rewritten on
each time step using only important information from the input. NRNN param-
eters were optimized using both NRNN and ARNN losses, so together NRNN
and MASK mechanisms allow not only to mask noise frames, but to highlight
useful subsamples with respiratory-like content. Attention mechanism used in
current model is not the same as usually used for seq2seq models [19]. The main
difference is that seq2seq attention mechanism commonly create context vector
with weighted sum of encoder hidden states and maps it with current decoder
hidden state. So attention in seq2seq extends sight of decoder during sequence
prediction. Our MASK layer relies on both predicted noise and anomaly labels,
because it receives gradients from both RNN blocks. We conducted additional
experiment to show that model with MASK mechanism outperforms model with-
out it in terms of classification metrics.

The main feature of MNRNN method is the ability to perform end-to-end
classification without using any manual preprocessing steps like slicing breath
on separate cycles. The only commonly used preprocessing step that we did was
splitting data to equal frames. The amount of frames does not affect on model
training and testing too.

4 Experiments

In the study, logistic regression (LR), random forest (RF), gradient boosting
machine (GBM), SVM-based classifier [20] and standard RNN were used as

212 K. Kochetov et al.

baselines for comparison with the NMRNN model. For baseline experiments, we
used the same preprocessing as provided in [4].

4.1 Database

For training and evaluation the ICBHI Scientific Challenge database was
used [11]. The database contains audio samples, collected independently by two
research teams in two different countries over several years. The database con-
sists of 920 annotated audio samples from 126 patients. It includes 6898 different
respiratory cycles with 1864 crackles, 886 wheezes and 506 crackles and wheezes.
The database summary is presented in Table 1.

There are a lot of noise in sounds: 1840 noise cycles in all data and 1366
in AKGC417L data. It simulates real life conditions and made the classification
algorithm more robust and stable for noise attack.

Table 1. Database summary. Recordings columns includes statistics about separate
sound recordings data. Cycles columns includes statistics about individual respiratory
cycles

Num of Recordings Cycles

All equipment AKGC417L All equipment AKGC417L

Patients 126 56 126 56

Samples 920 683 6898 4697

Normal breath 287 196 3642 2226

Wheezes 134 77 886 512

Crackles 297 252 1864 1578

Wheezes and Crackles 202 158 506 381

4.2 Experiments Setup

In this work, we conducted several experiments. Different data and preprocessing
steps were used for them. The key idea of all experiments is to compare proposed
approach with other machine learning models in different situations in terms of
performance and robustness.

1. Simple noise binary classification experiment for initial model checking.
2. 4-class anomalies classification using individual respiratory cycle as input.
3. 4-class anomalies classification using sound samples with several respiratory

cycles in each (end-to-end classification).

The aim of the first experiment is to check RNN and NMRNN ability to learn
respiratory and noise cycle interval lengths and frequencies. The second exper-
iment should compare our baseline models with recently proposed method [12].

NMRNN for Respiratory Sound Classification 213

The second experiment is demonstrative, but it has one critical limitation: it is
not end-to-end experiment, because first of all we need to split lung sounds on
respiratory cycles, but there is no automatic universal solution for this task yet.
So, for each new lung sound record we need to manually split it into respiratory
cycles.

For this reason, the third experiment was conducted. The aim of this exper-
iment is to check the abilities of the models to find what input information is
important and where it is located in multidimensional feature space. Model as
end-to-end classifier needs to find respiratory-dependent features in the data by
itself.

Also, there are two variations of data for each experiment. We use all available
data and data recorded only on AKGC417L microphone. The main idea of using
second data type is to show that the models can achieve better performance
using only one unbiased data source.

All experiments were conducted on a computer with Intel Core i7-6900 CPU
with 128GB of RAM and NVIDIA GTX 1080Ti GPU.

4.3 Result Evaluation

Due to the unbalanced data set, we used sensitivity and specificity as statistical
indicators of the models performance. Sensitivity, specificity and overall score
were proposed in the original data set paper [11,12].

Overall evaluation score can be formulated as:

Score =
Sensitivity + Specificity

2
. (3)

We used 5-fold cross-validation over patients to evaluate the results and it is
important to note that there is no patients from the train set in the test set on
each split. So, we used honest real-oriented division of the data for validation.

4.4 Preprocessing

To remove sounds caused by heartbeats, the signal components at low frequencies
have to be suppressed. We use the high pass finite impulse response (FIR) filter
with cutoff frequency fc = 100 Hz for remove sounds caused by heartbeat [12].

In this work, MFCC was used as feature extractor. The lower and upper
frequencies of processed content were cut to 50 and 2000 Hz respectively, because
wheezes and crackles are in this interval [12]. Parameters frame length and frame
step were both chosen equal to 0.05 s using grid search optimization [21].

Every sound sample from original database was sliced on pieces called frames
with length of 0.5 s each. Every frame was split on 10 non-overlapping frames.
Both frame length and frame step are 0.05 s. One MFCC set (13 values) was
extracted from each frame. So, every piece is described by 130 MFCC features.
Each frame and sample corresponds to a breathing (presence of anomaly) and
noise label. There are four breathing classes in the database: normal breathing,
breathing with wheezes, crackles and with both wheezes and crackles.

214 K. Kochetov et al.

During anomaly classification using all frames (one label per sound) or subset
of frames (one label per respiratory cycle) we want to predict existence of anoma-
lies in the overall sound sample or in the only one respiratory cycle respectively.
So, for baseline models each sound sample or respiratory cycle was reshaped into
a single flattened array. Taking into account different audio lengths, final data
samples were cut or filled using standard padding technique. Also, augmentation
technique (was proposed in [14]) with shifting was used for solving the problem
of respiratory cycles localization. PCA (Principal Component Analysis) was used
for dimensionality reduction (only for baseline models).

5 Results

For noise binary classification task NMRNN achieved 0.89 evaluation score com-
pared with the best baseline model GBM, which reached only 0.53 score. It can
be explained by the ability of RNN to learn cycle and noise intervals length and
frequency and use this additional information during prediction.

Table 2. Results of 4-class classification of each respiratory cycle. Metrics of Jakovljevic
HMM was not provided with AKGC417L data

All equipment AKGC417L

Model Sens Spec Score Sens Spec Score

GBM 0.476 0.554 0.515 0.534 0.568 0.551

LR 0.425 0.508 0.466 0.426 0.51 0.468

RF 0.438 0.538 0.488 0.483 0.521 0.502

SVM 0.49 0.502 0.496 0.502 0.518 0.51

Jakovljevic [12] 0.423 0.567 0.495 - - -

RNN (ours) 0.584 0.73 0.657 0.617 0.741 0.679

Results of 4-class classification of each respiratory cycle are presented in
Table 2. There is a comparison of our baseline and NMRNN models with HMM-
based method proposed by Jakovljevic. All models were trained on MFCC fea-
tures. Performance of our models is similar with performance of Jakovljevic
HMM [12], except for NMRNN, which outperforms competitors. So, it is correct
to compare presented baseline models with proposed RNN-based approach in
the next experiment. Also, models trained only on AKGC417L data show better
scores as expected due to reduced bias of data distribution. The second exper-
iment is less complex than the third one, because of data manually sliced on
respiratory cycles before training.

Results of end-to-end classification are provided in Table 3. NMRNN def-
initely outperforms other methods with respect to the chosen criterion. The
main reason is that RNN was designed to process such kind of data with tem-
poral dependencies. Another models face with problems of large dimensionality

NMRNN for Respiratory Sound Classification 215

Table 3. Results of 4-class classification of each sound sample

All equipment AKGC417L

Model Sens Spec Score Sens Spec Score

GBM 0.362 0.142 0.252 0.348 0.174 0.261

LR 0.348 0.184 0.266 0.366 0.236 0.301

RF 0.433 0.054 0.244 0.451 0.079 0.265

SVM 0.313 0.251 0.282 0.278 0.256 0.267

RNN (ours) 0.511 0.717 0.614 0.572 0.728 0.65

NMRNN (ours) 0.56 0.736 0.648 0.62 0.75 0.685

and localization of respiratory cycles. So, neither PCA or augmentation do not
help to solve these problems, because the baseline models are not adapted for
unstable data with floating content such as sound with several respiratory cycles.

MASK block with noise classification increases performance on about 0.035
in terms of score. It can be explained by ability of the final model to concentrate
only on frames with respiratory cycles, not with noise. Also MASK block helps to
distinguish false positive anomalies (biased noise) with real anomalies (crackles
or wheezes) as justified on Fig. 2.

Fig. 2. Confusion matrices of RNN and NMRNN. MASK block helps to clarify some
samples similarity by masking false positive anomalies detected in noise frames. Due
to that both sensitivity and specificity was improved.

Models trained only on AKGC417L data show performance as in the previous
experiments. This proves that the model can be adapted for single source and
can in theory boost performance with increasing of amount of unbiased data for
training.

We used grid search [21] as optimization algorithm for finding best hyper-
parameters for baseline and RNN-based models. So the best RNN-based model

216 K. Kochetov et al.

with MASK block consists of 2-layer RNNs as both NRNN and ARNN parts
with GRU cells with 256 units in each. Coefficients a1 and a2 from Eq. 2 are 0.3
and 0.7 respectively, which corresponds to the main task of the model (anomaly
classification). Overall model architecture was trained using Adam [22] optimizer
with learning rate = 0.0001.

6 Conclusion

In this paper, we proposed RNN-based end-to-end model architecture called
NMRNN to detect different anomalies in lung sound data with masking of noise.
MASK block is very powerful, so it allows the model to consider only relevant
frames during classification. We assume, that the trained MASK mechanism is
a superior direction of further improvement.

The main contribution of this approach is that it is trained without apply-
ing any manual preprocessing steps using respiratory records of any lengths.
NMRNN reaches state-of-the-art performance in comparison with another ML
models on respiratory sound classification task and, including recently proposed
[12], on individual respiratory cycle classification task.

Also, this study shows the ability of the model to learn cycle and the lengths
of noise intervals and frequencies. Experiments with AKGC417L microphone
motivate to concentrate on single data source during creation of approach appli-
cable in real life conditions.

Acknowledgements. This work was financially supported by the Government of the
Russian Federation, Grant 08-08.

References

1. Bahoura, M., Pelletier, C.: Respiratory sounds classification using cepstral analysis
and Gaussian mixture models. In: 26th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, IEMBS 2004, vol. 1, pp. 9–12.
IEEE (2004)

2. Mayorga, P., Druzgalski, C., Morelos, R.L., Gonzalez, O.H., Vidales, J.: Acoustics
based assessment of respiratory diseases using GMM classification. In: 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 6312–6316. IEEE (2010)

3. Palaniappan, R., Sundaraj, K., Sundaraj, S.: A comparative study of the SVM
and K-NN machine learning algorithms for the diagnosis of respiratory pathologies
using pulmonary acoustic signals. BMC Bioinform. 15(1), 223 (2014)

4. Milicevic, M., Mazic, I., Bonkovic, M.: Classification accuracy comparison of asth-
matic wheezing sounds recorded under ideal and real-world conditions. In: 15th
International Conference on Artificial Intelligence, Knowledge Engineering and
Databases (AIKED 2016), Venice (2016)

5. Rocha, B.M., Mendes, L., Chouvarda, I., Carvalho, P., Paiva, R.P.: Detection
of cough and adventitious respiratory sounds in audio recordings by internal
sound analysis. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Preci-
sion Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 51–55.
Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6 9

https://doi.org/10.1007/978-981-10-7419-6_9

NMRNN for Respiratory Sound Classification 217

6. Serbes, G., Ulukaya, S., Kahya, Y.P.: An automated lung sound preprocessing
and classification system based onspectral analysis methods. In: Maglaveras, N.,
Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and
Connected Health. IP, vol. 66, pp. 45–49. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-7419-6 8

7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
8. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet

and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)
9. Palaz, D., Magimai-Doss, M., Collobert, R.: Analysis of CNN-based speech recog-

nition system using raw speech as input. Technical report, Idiap (2015)
10. Weigend, A.S.: Time Series Prediction: Forecasting the Future and Understanding

the Past. Routledge, New York (2018)
11. Rocha, B.M., et al.: A respiratory sound database for the development of auto-

mated classification. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Pre-
cision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 33–37.
Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6 6

12. Jakovljević, N., Lončar-Turukalo, T.: Hidden Markov model based respiratory
sound classification. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Pre-
cision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 39–43.
Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6 7

13. Berouti, M., Schwartz, R., Makhoul, J.: Enhancement of speech corrupted by
acoustic noise. In: IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 1979, vol. 4, pp. 208–211. IEEE (1979)

14. Kochetov, K., Putin, E., Azizov, S., Skorobogatov, I., Filchenkov, A.: Wheeze
detection using convolutional neural networks. In: Oliveira, E., Gama, J., Vale,
Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 162–173.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2 14

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

16. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the proper-
ties of neural machine translation: encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014)

17. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language model-
ing. In: Thirteenth Annual Conference of the International Speech Communication
Association (2012)

18. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: 2013 IEEE international conference on Acoustics, speech and
signal processing (ICASSP), pp. 6645–6649. IEEE (2013)

19. Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

20. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

21. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://doi.org/10.1007/978-981-10-7419-6_8
https://doi.org/10.1007/978-981-10-7419-6_8
https://doi.org/10.1007/978-981-10-7419-6_6
https://doi.org/10.1007/978-981-10-7419-6_7
https://doi.org/10.1007/978-3-319-65340-2_14
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1508.04025
https://doi.org/10.1007/978-0-387-84858-7
http://arxiv.org/abs/1412.6980

Lightweight Neural Programming:
The GRPU

Felipe Carregosa1(B), Aline Paes2, and Gerson Zaverucha1

1 Department of Systems Engineering and Computer Science, Universidade Federal
do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

{fborda,gerson}@cos.ufrj.br
2 Department of Computer Science, Institute of Computing, Universidade Federal

Fluminense, Niterói, RJ, Brazil
alinepaes@ic.uff.br

Abstract. Deep Learning techniques have achieved impressive results
over the last few years. However, they still have difficulty in producing
understandable results that clearly show the embedded logic behind the
inductive process. One step in this direction is the recent development
of Neural Differentiable Programmers. In this paper, we designed a neu-
ral programmer that can be easily integrated into existing deep learning
architectures, with similar amount of parameters to a single commonly
used Recurrent Neural Network. Tests conducted with the proposal sug-
gest that it has the potential to induce algorithms even without any
kind of special optimization, achieving competitive results in problems
handled by more complex RNN architectures.

Keywords: Recurrent Neural Networks
Neural Differentiable Programmers

1 Introduction

Recently there has been a renewed interest in merging traditional programming
and Neural Networks (NNs), particularly thanks to more advanced Automatic
Differentiation (AD) tools [8]. These new tools can evaluate functions written
in the host languages idiomatic structures, allowing programmers to easily and
efficiently obtain the gradient of varied units of code with respect to their argu-
ments. This enables augmenting the programming toolset with the Machine
Learning capabilities.

With a similar goal, Neural Differentiable Programmers (NDPs) [9,11] have
been developed to allow NNs to compose algorithms in more traditional ways.
This allows them to potentially tackle hard problems, involving complex arith-
metic and logical reasoning. Thus, in order to model the input-output relation-
ship, instead of applying a series of transformations directly over the input, NDPs

The authors would like to thank the Brazilian Research Agencies CNPq and CAPES
for partially finance this research.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 218–227, 2018.
https://doi.org/10.1007/978-3-030-01424-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_22&domain=pdf

Lightweight Neural Programming: The GRPU 219

choose a sequence of transformations from a predefined instruction set, yielding
an explicit algorithm to transform the input into the solution. Furthermore,
they can also decouple its learned logic from the specific input values, allowing
for better generalization and re-usability in different contexts. However, current
NDP models focus on end-to-end solutions for specific contexts and problems,
instead of being easily integrated into current Deep Learning models.

In this paper, we propose The Gated Recurrent Programmer Unit (GRPU),
a NDP technique that can be easily integrated into any current model that uses
a Recurrent Neural Network (RNN). Moreover, GRPU uses around the same
amount of parameters as a simple Gated Recurrent Unit (GRU) [4], is agnostic
in terms of external memory structure and data inputs, and can be extended
in similar ways to RNNs, like stacking and soft attention strategies. This way
it can provide a lightweight way of augmenting Deep Learning models with the
induction of more traditional programs.

The rest of the paper is organized as follows. The next section briefly explains
the GRU and the most known NDPs in the literature. The 3rd section details
the model devised in this work. The 4th section brings the experiments we have
conducted in this work, and the last section is the conclusion.

2 Preliminaries

Here we briefly explain the GRUs, by which our model is inspired, and the most
relevant neural programmers found in the related literature.

2.1 Gated Recurrent Unit (GRU)

Recently, a new, simpler, architecture for RNNs has been developed, the Gated
Recurrent Unit (GRU) [4]. GRUs present comparative performance to the tradi-
tionally used Long Short-Term Memory (LSTM) [5], while using fewer parame-
ters, as they have only two interacting layers instead of three: the update gate and
the reset gate. When the value computed at the reset gate is close to 0, the cor-
responding previous hidden state is erased and, therefore, ignored when creating
the new state. This allows the GRU to drop information judged irrelevant. The
update gate, on the other hand, controls how much information from the previ-
ous hidden state should be directly carried over to the current hidden state. This
shortcut between the previous state and the following one allows information to
be kept untouched indefinitely, helping with the Vanishing Gradient Problem [3].

The value of the current hidden state is computed as ht = (1 − ut) ∗ ht−1 +
ut ∗ h̃t, where u and r stands for the update and reset gates, respectively, and
˜ht, the new candidate state: ˜ht = tanh(W.[rt ∗ ht−1, xt] + b). The values of the
update and reset gates are defined with their own set of parameters, where the
update gate is computed as ut = σ(Wz.[ht−1, xt] + bu) and the reset gate as
rt = σ(Wr.[ht−1, xt] + br).

220 F. Carregosa et al.

2.2 Related Work: Neural Programmers

Neural Differentiable Programming (NDP) techniques try to combine the pat-
tern matching and universal approximation nature of the neural networks with
the discrete series of operations from traditional algorithms [9]. Fundamentally,
neural networks are simply a chain of geometric transformations, and finding
one of such transformations that can fully generalize each traditional operation,
such as arithmetic and logic operations, is hard and require potentially large
amounts of data. For example, even a simple sum or product of numbers is not
a trivial task for a neural network to learn, especially considering the distortion
caused by the non linear transformations that occur at each step.

Integrating algorithmic-like aspects has been a tendency since the success of
the attention models [12]. They allow the network to learn to choose the data it
wants to access in a completely differentiable way. NDPs go one step further and
not only apply the selection to the input data, but also to the operation applied
to the data. For that, they comprise a selection of differentiable operations,
and through soft attention they are able to select an operation for each step,
and the results of each step can then become the input of the following step.
They possess, then, the ability to induce algorithms that transform the original
input into the desired output through the multiple steps. The selection operation
usually has the form result = oplist(args)T softmax(opcode), where oplist is an
N -sized vector in which each field is an operation like sum or multiplication, and
opcode is a vector with N values, generated by a RNN at each step.

Some of the most notable neural programmers are:

– The Neural Programmer [9] is a table query based model that, given an
input question, selects a series of aggregate operations and a series of columns
from the input table for each operation to be applied. The training phase
involves finding the operations and column arguments that minimizes the
error towards the given output, using two LSTMs and two softmax layers.

– The Neural Programmer Interpreter [10] is composed of a single LSTM and
a domain specific encoder for the state of the environment. The LSTM has
three selector units to choose the next operation, its arguments, and when
the subprogram terminates. It predicts the next step of a program only, and
not the full program at once, requiring the program trace as input.

– The Neural Random Access Machines [7] is a sequence-to-sequence program-
mer model, in which every data register of the virtual machine it implements
contains a pointer (a probability distribution) that can be transformed into
new pointers through look-up-table based operations. Each pointer can be
used to read or write from a memory tape using attention.

3 The Gated Recurrent Programmer Unit

We introduce a novel neural differentiable programmer architecture that focuses
on low footprint and easy integration with other neural architectures. It has
considerably fewer parameters than the models described in the previous section,

Lightweight Neural Programming: The GRPU 221

and it does not require a complex input in both training and execution (such as
tables, preprocessed lists or programs traces). Additionally, unlike the previous
models, the GRPU instructions can have any number of arguments, due to not
requiring softmax selection, and of operations transforming those arguments in
a single step.

3.1 The Architecture

Figure 1 exhibits the GRPU architecture, which is built upon the structure of
a regular GRU. GRPU is not only easily exchangeable wherever a GRU can be
used, enabling traditional algorithmic manipulation of it’s inputs, but it can also
be implemented with just a few lines of codes over the GRU. The fundamental
difference between the two models is the way the new state is produced, but this
small difference also affects how everything else is interpreted.

Thus, in GRPU, the affine transformation is replaced by an Arithmetic and
Logic Unit (ALU), a module that executes one operation for each set of fields of
the hidden state to produce the next state values. The Virtual Machine (VM)
state, which replaces the hidden state in the GRU, is hvm ∈ RN , where N
is both the ALU’s operation’s outputs sizes summed and the argument’s sizes
summed. In other words, the VM state is both the arguments for the ALU, and
the outputs of the ALU.

The ALU receives the previous VM state and returns a new candidate for
the next state from the results of each operation. The reset gate, in this context,
operates as the argument selector, responsible for determining which arguments
will be fed to the ALU, turning the ones that should be ignored to zero. The
update gate defines which operations have their results kept and which ones are
ignored. In this last case, the previous values of the VM state are restored, and
the operation is replaced by a NOP , No Operation. The algorithm is, therefore
produced by producing the GRU gates [ut, rt] based on the inputs, which is
equivalent to producing the opcode [operations, operands]t. Calculating every
step gives the final algorithm, like the example displayed in Fig. 2.

Unlike with GRUs though, the hidden state, or the VM state, shouldn’t
be used in the creation of the gates output, and therefore in the creation of
the instructions. This is done so the model can learn generic algorithms, that
can automatically deal with data not seen in the training base. In the current

Fig. 1. The basic Gated Recurrent Programmer Unit. Dashed lines are the input of
the gates, normal lines are the hidden (VM) state path.

222 F. Carregosa et al.

Fig. 2. Example of a two step algorithm: -(arg1+arg3). Each row has one argument
and one operation throughout two recurrent steps. The reset gate selects the arguments
for the ALU operations (grayed in the image with solid lines), while the update gate
selects which operation results or arguments will be kept (grayed operation results).

architecture it means that there is a direct mapping between the current input
and the respective instruction.

While this behavior is sometimes enough, we would like the model to use
past information for creating the algorithm, and, for that reason, we include
an additional controller unit, which acts in parallel to the programmer and has
the same structure as the GRU. The complete model is depicted in Fig. 3, and
represented by the following set of equations (from Eqs. 2 to 5):

rt = σ(Wr.[hc
t−1, xt] + br) (1)

ut = σ(Wu.[hc
t−1, xt] + bu) (2)

˜hc
t = tanh(W.[rct ∗ hc

t−1, xt] + b) (3)

˜hvm
t [i] = ALU(rvmt , hvm

t−1, externalt, operation[i]) (4)

ht = (1 − ut) ∗ ht−1 + ut ∗ h̃t (5)

Fig. 3. The Gated Recurrent Programmer Unit. The upper part is the virtual machine,
which executes the instruction according to the selections made by the gates. The lower
part is the controller, which encodes a representation of all past inputs for the gates,
producing instructions that aren’t just a mapping of the current input.

Lightweight Neural Programming: The GRPU 223

Where vm defines the Virtual Machine (VM) section and c the controller
section of the state and gate outputs, ht = [hvm

t , hc
t], rt = [rvmt , rct] and ut =

[hvm
t , hc

t] are the hidden state (formed by the concatenation of VM and controller
states), reset gate (which assumes the task of argument selector for the VM state)
and update gate (which assumes the task of the operation selector for the VM
state), respectively. ˜ht = [˜hvm

t ,˜hc
t] is the next state candidate. The ALU is a

function that receives the VM state (arguments), the argument selection (reset
gate output), any external data or differentiable memory that can be read/write
through specific operations, and the list of operations to apply to the arguments.

3.2 The Arithmetic and Logic Unit (ALU)

The ALU natively supports n-ary operations, with the arguments selected
directly with the argument selector. But one aspect that must be considered
is what is the neutral element in the operation. The argument selector rejects
arguments by multiplying them by zero. This behavior does not influence oper-
ations such as summation and the logical or. In other cases, though, such as the
product or the logical and, a zero valued (rejected) argument would guarantee
that the result is zero or False, respectively. To solve this issue, we introduce
a transformation that makes rejected arguments (in which rt[i] = 0) to have
value one, instead of zero, and selected arguments to have the argument value
itself, which may include zero. Table 1 shows the output we would like the both
cases have.

Table 1. Target inputs for operations with neutral element 0 and 1.

Input (i) Selector (r) Neutral 0 Neutral 1 Input (i) Selector (r) Neutral 0 Neutral 1

0 0 0 1 x 0 0 1

0 1 0 0 x 1 x x

An additional complication is that the argument selector gate is not restricted
to binary outputs, but instead, covers the entire space between 0 and 1. To
handle that we need to work on a superset of the Boolean algebra, like the
Fuzzy Logic [6]. In particular, we choose the following generalized form for the
basic logic operators, though other options are also possible: x AND y = x ∗ y,
x OR y = 1 − (1 − x) ∗ (1 − y) = x + y − x ∗ y and NOT x = 1 − x.

Converting the neutral 1 column in terms of i and r in the truth Table 1 into
a sum of products representation (where “.” is the logical and, “+” is the logical
or, and “x” is the logical negation of x) we get i.r + i.r + i.r. Next, by factoring
r on the last two terms, we reach r.(i + i) + i.r, and by applying the identity
i + i = 1), we reach Eq. 6.

r + i.r (6)

Then, replacing the boolean operators for the fuzzy operators in the form of
(NOT r) OR (i AND r), we get (1−r) OR (i∗r) = (1−r)+(i∗r)−(1−r)∗(i∗r) =
1 − r + i ∗ r − i ∗ r + i ∗ r2, which brings us the Eq. 7.

224 F. Carregosa et al.

1 − r + i ∗ r2 (7)

Similarly, the sum of product form for the neutral 0 in Table 1 is simply
i AND r, and, therefore in the generalized operators it is defined as i ∗ r, which
is already how the reset gate output is applied to the hidden state.

Thus, for any operation wherein the neutral element is zero we do i ∗ r and
for any operation wherein the neutral element is one we apply Eq. 7 as its input.

For lesser arity operations, it’s possible to simply eliminate some of the con-
nections to the arguments (for example a toggle operation only needs a connec-
tion to it’s previous result), and/or to use aggregate functions. By averaging the
reset gate outputs before multiplying the VM state, it’s also possible to have a
soft selection equivalent to the softmax.

Besides the operations that map arguments to results, algorithms also require
testing and flow control, and for that we first have to define comparison opera-
tions. Comparison operations typically have arity two (such as equal, not equal,
less than, greater than), or one (equal to zero, not equal to zero, etc.) and return
one if the condition is true, or zero otherwise. The way we implement the differ-
entiable not equal (and the equal, by simply subtracting it from 1) is by having
|arg1 − arg2|/(|arg1 − arg2| + ε) where ε is a constant to avoid division by
zero. Greater than and less − than can be implemented with a shifted sigmoid
(logistic) function, approximating the Heaviside step function.

With the comparison operator, we can implement an element of control flow
in the differentiable machine, the conditional operation. It makes the instruction
to be executed only if the condition determined by a comparison operation, or
a combination of them through logical operators, is met, and otherwise all the
instruction is rejected. This is implemented by changing the operation selection
mechanism according to Table 2, in which ũcond is the operation selector value
(update gate value) for the conditional operation, ũop is the operation selector
value for the target normal operation, hcond is the result of the comparison used
for the conditional, and uop is the final operation selector values (the value of the
operation or a NOP , or No Operation, equivalent to the update gate rejecting
the operation). Simplifying the table like with the neutral element above:

uop = ũop AND ((NOT ũcond) OR ˜hcond) (8)

And using the same transformation inspired by Fuzzy Logic we discussed
above, we arrive in the Eq. 9 below:

uop = uop ∗ (1 + ũcond ∗ (˜hcond − 1)) (9)

And for integrating it within the model equations, with ut being the final
output of the update gate for using in Eq. 5, ũc

t the controller section and ũvm
t

the VM section of the update gate calculated in Eq. 2:

ut = [ũvm
t , ũvm

t ∗ (1 + ucond ∗ (˜hcond − 1))] (10)

Lightweight Neural Programming: The GRPU 225

If the rejection condition happens, the whole programmer section of the
update gate is multiplied by a scalar zero, and the new VM state becomes hvm

t−1,
and, therefore, the algorithm does not produce any effect in that step.

Table 2. Desired output when accepting or rejecting the input.

ucond
˜hcond ũop uop ucond

˜hcond ũop uop

0 (-) 0 (-) 0 (-) 0 (nop) 1 (if) 0 (false) 0 (-) 0 (nop)

0 (-) 0 (-) 1 (do op) 1 (op) 1 (if) 0 (false) 1 (do op) 0 (nop)

0 (-) 1 (-) 0 (-) 0 (nop) 1 (if) 1 (true) 0 (-) 0 (nop)

0 (-) 1 (-) 1 (do op) 1 (op) 1 (if) 1 (true) 1 (do op) 1 (op)

3.3 Expanding the Model

Since the GRPU is similar in structure to a GRU, it can be extended in similar
ways. For instance, by stacking a number of GRPUs it is possible to have different
control flows, executing multiple operations per step, according to the number
and order of transformations over the VM state. Another possibility is to use
the encoder-decoder with soft attention [2] as inspiration, allowing the model to
learn its own sequencing through the input, while also decoupling the input size
from the program size.

4 Experimental Results

To produce the results presented here, we run all the tests with Tensorflow [1] on
a single GPU, Adam optimization, learning rate 10−4, and, otherwise, default
parameters and no regularization. The controller hidden state has size 100.

4.1 The Adding Problem

To evaluate the potential to learn long algorithms, we use a variant of the RNN
Adding Problem described in [13]. In each step the network is fed with a control
value of either −1, 0 or 1 and an input value ranged [0, 1]. If the control is 1,
which always happens in exactly two of the steps, then the corresponding input
value should be one of the operands in the sum. There are between 50 and 55
steps. With a 10,000 samples training set and a 1,000 samples test set, batch
size of 100, and using a bidirectional GRU with the outputs connected to a fully
connected linear regression layer, the cited author achieves the mean squared
error of 0.0041 on the test set.

Using the GRPU, we feed only the control vector to the controller unit to
avoid dependence between the induction of the algorithm and the processed data.
The ALU also contains 3 operations, a READ operator that returns the control
vector, an ADD operator and a PRODUCT operator. This means that each step

226 F. Carregosa et al.

has to choose to store the result of each of the 3 possible operations, or keep
the previous argument, and to choose any combination of the 3 previous results
as input for the operations, creating a very large search space with a program
up to 55 instructions long. The output of the model is the result of the sum.

Table 3. Experiments. *Bidirectional GRU results from [13]

Configuration 1,000 epochs
(training)

1,000 epochs (test)

Bidirectional GRU - batch 100
- 1,000 samples*

N/A 0.0041

GRPU - batch 100 - 10,000 samples 0.247 0.759

GRPU - batch 32 - 32,000 samples 0.0089 0.00699

GRPU - batch 10 - 10,000 samples 0.0000387 0.00709

GRPU - batch 10 - 10,000 samples
- Varying number of steps

0.000426 0.000696

GRPU - batch 10 - 10,000 samples
- (Multiplication Variant)

0.00616 0.0166

GRPU - batch 10 - 10,000 samples
(Conditional Variant)

0.06 0.06

Table 3 shows that using the same batch size leads to very poor performance,
indicating that the model is more prone to getting stuck in local minima. Either
increasing the number of samples or reducing the batch size, which increases the
stochastic effect, brings the results much closer to the more complex traditional
model. Starting with just 10 steps and increasing the number up to the target
throughout the epochs yields the best generalization.

4.2 Other Variations

Just changing the example above from addition to product, and changed the
input range to [0.5, 1.5], to prevent values frequently close to zero, allow us to
evaluate the logic for the operations with neutral element one. The network
behaved similarly, reducing the error to adequate levels after the 1,000 epochs,
as seen on the Multiplication Variant on Table 3.

To test the conditional, we moved the control vector of the Adding Problem
to the virtual machine, to be read on a second READ operator. It’s also added
a conditional operation that checks if it’s input is 1, and if otherwise it forces
a NOP in the step. This adds to 5 operations in the ALU, and the controller
in this variation has no input besides it’s state, and it’s therefore incapable of
choosing on it’s own when to select the ADD operation and when to skip. This
variation converges very fast, but gets easily stuck in a local minima worse than
the original variant.

Lightweight Neural Programming: The GRPU 227

5 Conclusions and Future Work

Here, we presented a novel Neural Programming architecture that can help build-
ing a framework connecting neural networks and traditional programming. It
has the potential of helping both models that write programs autonomously and
users to integrate their logic within the neural network operation. The experi-
ments have found some of the issues of previous neural programmer works: the
convergence of such models is not trivial, possibly since the higher restriction on
the search space may conduct to more local minima. More research in this area
could provide better insights on the model behavior during training.

A number of further tests could be conducted in future works to better
understand the potential of our model, such as tuning the hyper-parameters
and ALU settings, adding regularization, experimenting with transfer learning
and domain adaptation using the added transparency, evaluating deep GRPU
models, and also techniques to extract efficient discrete algorithms.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Bengio, Y., Simard, P.Y., Frasconi, P.: Learning long-term dependencies with gra-
dient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing, pp. 1724–1734. ACL (2014)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Pren-
tice Hall, Upper Saddle River (1995)

7. Kurach, K., Andrychowicz, M., Sutskever, I.: Neural random access machines.
ERCIM News 2016(107) (2016)

8. Maclaurin, D., Duvenaud, D., Adams, R.P.: Autograd: effortless gradients in
numpy (2015)

9. Neelakantan, A., Le, Q.V., Sutskever, I.: Neural programmer: inducing latent pro-
grams with gradient descent. CoRR abs/1511.04834 (2015). http://arxiv.org/abs/
1511.04834

10. Reed, S.E., de Freitas, N.: Neural programmer-interpreters. CoRR abs/1511.06279
(2015). http://arxiv.org/abs/1511.06279

11. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems (NIPS 2015), vol. 28, pp. 2692–2700 (2015)

12. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual
attention. In: Proceedings of the 32nd International Conference on Machine Learn-
ing, pp. 2048–2057 (2015)

13. Zhou, G.B., Wu, J., Zhang, C.L., Zhou, Z.H.: Minimal gated unit for recurrent
neural networks. Int. J. Autom. Comput. 13(3), 226–234 (2016)

https://www.tensorflow.org/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1511.04834
http://arxiv.org/abs/1511.04834
http://arxiv.org/abs/1511.06279

Towards More Biologically Plausible
Error-Driven Learning for Artificial

Neural Networks

Krist́ına Malinovská(B), Ľudov́ıt Malinovský, and Igor Farkaš

Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava,
Bratislava, Slovakia

{malinovska,farkas}@fmph.uniba.sk
http://cogsci.fmph.uniba.sk/cnc/

Abstract. Since the standard error backpropagation algorithm for
supervised learning was shown biologically implausible, alternative mod-
els of training that use only local activation variables have been proposed.
In this paper we present a novel algorithm called UBAL, inspired by the
GeneRec model. We shortly describe the model and show the perfor-
mance of the algorithm for XOR and 4-2-4 problems.

Keywords: Error-driven learning · Biological plausibility

In search for an alternative to error backpropagation [5], considered to be
biologically implausible [1], O’Reilly proposed the GeneRec model [4]. Instead
of propagating error values, neuron activation is propagated in GeneRec bidirec-
tionally. The weight update is based on the difference in the net activation in the
minus phase (producing output from input) and the plus phase (desired value
is “clamped” on the output layer and the activation spread back to the hidden
layer). Building on this principle, we proposed the BAL model [3] for bidirec-
tional heteroassociative mappings, but failed to reach 100% convergence on the
canonical 4-2-4 encoder task despite extensive experimental tuning [2]. As an
improvement, we propose the Universal Bidirectional Activation-based Learning
(UBAL) algorithm with additional learning parameters enabling the model to
perform also unidirectional association tasks such as classification. As GeneRec,
our model uses activation state differences, but with separate weight matrices
M and W for each direction of activation flow. The activation is propagated in
four phases (Fig. 1).
As outlined in Table 1, in the forward prediction phase FP, the input is presented
to layer p and the activation spreads to layer q and vice versa for the backward
prediction BP. Additionally, there are echo activation phases (FE and BE) in
which the network’s previous outputs qFP and pBP are echoed back to p and q
through weights M and W , respectively.

The learning rule in Eqs. 1 and 2 takes as inputs intermediate terms t (target)
and e (estimate) from Table 2.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 228–231, 2018.
https://doi.org/10.1007/978-3-030-01424-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_23&domain=pdf

Towards More Biologically Plausible Error-Driven Learning 229

Fig. 1. Activation propagation in a network with input-output layers x and y and one
hidden layer.

Table 1. Activation propagation rules, p and q denote two layers of the network
connected by weight matrices W and M . Symbols b and d denote the biases and σ
stands for the standard logistic activation function.

Direction and phase Term Value

Forward prediction qFP
j σ(

∑
i wijp

FP
i + bj)

Forward echo pFE
i σ(

∑
j mjiq

FP
j + di)

Backward prediction pBP
i σ(

∑
j mjiq

BP
j + di)

Backward echo qBE
j σ(

∑
i wijp

BP
i + bj)

Table 2. Definition of terms used in the learning rule.

Term name Term Value

Forward target tFj βF
q qFP

j + (1 − βF
q)qBP

j

Forward estimate eFj γF
q qFP

j + (1 − γF
q)qBE

j

Backward target tBi βB
p pBP

i + (1 − βB
p)pFP

i

Backward estimate eBi γB
p pBP

i + (1 − γB
p)pFE

i

Δwij = λ tBi (tFj − eFj) (1)

Δmij = λ tFj (tBi − eBi) (2)

230 K. Malinovská et al.

The learning rate λ and parameters β (target prediction strength) and γ
(estimate prediction strength) used in the learning rule terms in Table 2 drive
the network learning. Depending on their values the network can accomplish
different tasks.

In Fig. 2 we present results from experiments with the 4-2-4 encoder indi-
cating that using a reasonable learning rate the network always converges to a
solution. Unlike its predecessor BAL, given a certain parameter setup (Table 3),
UBAL converges in the XOR task as shown in Fig. 3. Preliminary results from
further experiments suggest that UBAL could get us closer towards a biologically
plausible alternative to error backpropagation.

Table 3. Parameters β a γ in our experiments, βB = 1 − βF .

4-2-4 Encoder XOR

X — H — Y X — H — Y

βF 1.0 – 0.5 – 0.0 0.01 – 1.0 – 0.0

γF 0.5 – 0.5 0.0 – 0.0

γB 0.5 – 0.5 0.0 – 0.0

0 1 2 3
0.9

0.92

0.94

0.96

0.98

1

0 1 2 3
−200

0

200

400

Fig. 2. Results from 4-2-4 encoder experiments with varying λ (1000 nets). Success
rate indicates how many networks were able to learn the task with 100% accuracy.

Towards More Biologically Plausible Error-Driven Learning 231

2 4 6 8

0.2

0.4

0.6

0.8

1

2 4 6 8

0

1

2

·104

Fig. 3. Results from XOR experiments with varying hidden layer size (1000 nets) and
λ = 0.2. Maximum training epochs: 20000.

Acknowledgment. This work was supported by grants VEGA 1/0796/18 and KEGA
017UK-4/2016.

References

1. Crick, F.: The recent excitement about neural networks. Nature 337(6203), 129–132
(1989)

2. Csiba, P., Farkaš, I.: Computational analysis of the bidirectional activation-based
learning in autoencoder task. In: International Joint Conference on Neural Networks
(IJCNN), pp. 1–6. IEEE (2015)

3. Farkaš, I., Rebrová, K.: Bidirectional activation-based neural network learning algo-
rithm. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini,
B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 154–161. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40728-4 20

4. O’Reilly, R.: Biologically plausible error-driven learning using local activation differ-
ences: the generalized recirculation algorithm. Neural Comput. 8(5), 895–938 (1996)

5. Rumelhart, D., Hinton, G., Williams, R.: Learning Internal Representations by Error
Propagation, pp. 318–362. no. 1. The MIT Press, Cambridge (1986)

https://doi.org/10.1007/978-3-642-40728-4_20

Online Carry Mode Detection for Mobile
Devices with Compact RNNs

Philipp Kuhlmann(B), Paul Sanzenbacher, and Sebastian Otte

Cognitive Modeling Group Computer Science Department, University of Tübingen,
Sand 14, 72076 Tübingen, Germany

kuhlmann.ph+icann18@gmail.com, sebastian.otte@uni-tuebingen.de

Abstract. Nowadays mobile devices are an essential part of our daily
life. Especially fitness tracking application, which record our daily actions
or exercise sessions, require a robust carry mode detection of the device.
For a detailed and accurate analysis of the acquired data it is essential to
know the relative position and thus the expected movement of the phone
relative to the performed actions. On the other hand, it is important
that such a detection is as energy-efficient as possible, which eliminates
common deep convolutional approaches in advance. The contribution of
this paper is twofold. First, we provide a mobile device carry mode data
set, which currently consists of 6 h and 28 min of labeled accelerometer
recordings. Second, we developed a robust online method to estimate the
carry mode of such a device, which allows robust classification of long
sequences of data based on compact Recurrent Neural Networks (RNNs),
particularly Long Short-Term Memories (LSTMs). Our approach is gen-
erally applicable due to only requiring data from an accelerometer and
is lightweight enough to run on small embedded devices. Specifically, we
demonstrate that LSTMs can almost perfectly distinguish between the
carry modes hand, bag and pocket.

Keywords: Mobile devices · RNN · LSTM · Carry mode detection

1 Introduction

Modern mobile devices contain a variety of sensors including accelerometer,
gyroscope, magnetometer and GPS, to name just a few. While single sensors
or combinations thereof fulfill essential functions such as estimating location or
orientation of the device, they are also increasingly used in exercising or health
applications. The broad availability of sensor data from a huge variety of sen-
sors also allows for using machine learning techniques to extract all kinds of
information. In particular, sequentially recorded sensor data can be processed
using recurrent neural networks. We present an approach for classifying the carry
mode of a mobile device using accelerometer data. The carry mode is classified
into one of three categories hands, bag and pocket using a LSTM-based recurrent
neural network [3]. Knowing the current carry mode can be useful for several
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 232–241, 2018.
https://doi.org/10.1007/978-3-030-01424-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_24&domain=pdf

Online Carry Mode Detection 233

applications. For example, the time required to pick up the phone when it starts
ringing depends on its location that is directly related to the carry mode. The
carry mode information can therefore be used to notify the calling party so they
can decide if it is worth waiting for the call to be picked up. Another example
application is to use the carry mode as a safety measure. While a certain safety
mode is activated, the phone is assumed to be in the bag or pocket. As soon as
the hand carry mode is detected in that safety mode, an alarm can be triggered
if somebody is trying to steal the device.

Previous works already explored the possibilities of using accelerometer mea-
surements to estimate or classify external conditions. Hernandez et al. [2] used
the accelerometer measurements to monitor physiological conditions like the
heart or breath rate of the person carrying the devices. Additionally, they proved
that the measurement is possible regardless of the carry mode of the phone but
with significantly varying accuracy. Otte et al. [5] have demonstrated the poten-
tial of LSTM-based RNNs to classify the terrain type on which a mobile robot
is driving by only evaluating the vibrations of the robot platform on the dif-
ferent terrain types. The aim of this paper, however, is to evaluate if and how
well RNNs, particularly ones with relatively few parameters, are able to detect
the current carry mode of the device in an online fashion, that is, without a
time-window incrementally classifying each new time step of input data.

The paper is organized as follows. First, in Sect. 2 the dataset that we used
in our experiments is introduced. Second, the applied RNN architecture is moti-
vated and sketched out in Sect. 3. Third, our experimental results are presented
and discussed in Sect. 4. Finally, Sect. 5 recapitulates this study and gives ideas
for the next research steps.

2 Dataset

Alongside our work, we recorded our own extensive dataset1 for training and
verification purposes. The complete dataset was recorded by multiple persons
using different mobile devices. A detailed composition of the recorded data is
shown in Table 1.

Table 1. Composition of our recorded dataset that is used for training and verification.

Phone # Datapoints Total length # Recordings by class

Pocket Hands Bag

Sony Xperia ZX1 555028 4:43:29 21 7 5

HTC M8 One 60087 36:04 5 4 2

OnePlus 5T 106782 58:35 4 3 0

Total 721897 6:28:09 30 14 7

1 Available under: http://cm.inf.uni-tuebingen.de.

http://cm.inf.uni-tuebingen.de

234 P. Kuhlmann et al.

2.1 Acquisition

For recording of the training and validation sequences, an Android application
is used that offers the user the possibility to select the carry mode and add
an optional comment in case there are some unexpected irregularities in the
recording. A single sequence is created by pressing a start button at the beginning
and a stop button at the end. After a sequence is recorded, the application
encodes the data as JSON object and uploads it to a server, where it is stored in
a database. If the upload fails, e.g., due to missing internet connectivity, the data
is stored on-device and can be re-uploaded as soon as a connection is established
again.

The recorded data includes the raw accelerometer data, consisting of the
x, y, z acceleration of the mobile device in the device’s local coordinate system
and the time-stamp of each sample. The time-stamp is used to detect and account
for deviations from the requested sampling rate of 50Hz.

Each recording is tagged with the associated carry mode. We distinguish
between bag, hands, and pocket, which are the most commonly used methods for
carrying a mobile device and which have significantly different characteristics.

Most of the data was recorded during the everyday usage of the mobile
devices, while some recordings were specially crafted to cover edge cases. To
prevent over-fitting we tried to vary the device’s orientation and location between
each recording. Figure 1 shows example extracts from different recordings.

2.2 Dataset Preparation

For training, sequences of length 100 or 200 were extracted from the recordings.
Since especially for the pocket and bag carry modes the mobile device is not
carried in the expected mode at the beginning and at the end of the recorded
sequence, it is cut at both ends by three seconds.

Fig. 1. Extracts of sequences recorded in carry mode pocket for three different devices.
All extracts contain 50 samples which corresponds to one second.

Online Carry Mode Detection 235

3 Recurrent Neural Networks

Due to their cyclic connections RNNs are able to learn temporal dependencies
in data sequences, whereas feed-forward networks can only learn static pattern
mappings. In contrast to traditional RNNs, the before mentioned LSTM model
[3], which can be seen as a differentiable memory cell, overcomes the problem of
vanishing gradients. LSTMs are capable to handle even very long time lags up to
10 000 time steps. Due to this and other capabilities, e.g., precise timing, precise
value reproduction, or counting, LSTM-like RNNs unleash an impressive learn-
ing potential and are the de-facto standard for sequential learning tasks. Note
that we applied specific RNN regularization [8]. Prior to classification we may
optionally apply some preprocessing steps to prepare the data for the network.

3.1 Data Preprocessing

The preprocessing consists of multiple steps depending on the mode of operation.
First of all the input data is split into multiple sequences of length n. The value of
n depends on whether we are training or evaluating the model. When evaluating
the model we use n = N , where N is the total length of the recording.

The second step is an optional dimensionality reduction via principle compo-
nent analysis. The reduction was intended to prevent over-fitting on the device
orientation, which can normally be detected due to the gravity acceleration.
Nevertheless the evaluation has shown that the network does not over-fit on the
data and the dimensionality reduction significantly reduces the information for
the network.

Lastly, we have to take care of all three classification categories to be equally
represented in the training dataset in order to prevent over-fitting on one cat-
egory. Therefore we select only an equally sized subset of sequences for each
category from the available input data.

3.2 RNN Architecture

The input is fed into three convolution layers with kernel sizes k = 1, 3, 5, per-
forming a convolution along the temporal axis of our input data stream. The
outputs of the convolutional layers are concatenated and then used as input to
each cell of our LSTM block, resulting in a sequence of 9 samples per time step.
Each sample of the concatenated sequence is fed into an LSTM block consisting
of c = 50 parallel independent LSTM cells. Also the only recurrent connec-
tions are within this block. Each LSTM cell receives the concatenated input and
the recurrent output from every other cell. The output from each LSTM cell is
connected to a fully connected layer with 20 neurons that uses a leaky ReLU
activation function. The category mapping is achieved through a final fully con-
nected layer with a softmax output function, resulting in a probability for each
output category. An overview over the complete network structure is shown in
Fig. 2. The network comprises a total of 13,173 trainable parameters.

236 P. Kuhlmann et al.

input convolutional layer

concatenation
fully-connected

+ softmax
fully-connected
+ leaky ReLU

LSTM block

cell 1

conv1

conv3

conv5
cell 50

output

Fig. 2. Network architecture consisting of multiple parallel temporal convolutions of
different size, an LSTM block with multiple independent LSTM cells, and a fully-
connected layer followed by a softmax function.

3.3 Training

Given the ground-truth one-hot vectors for each input sequence, the cross-
entropy is minimized between the ground truth and the output of the network
via Back-Propagation Through Time (BPTT) [6]. For optimization, we use the
Adam optimizer [4] with a constant learning rate of η = 10−5 and default param-
eters β1 = 0.9, β2 = 0.999, and ε = 10−3.

3.4 Implementation Details

The network architecture as well as the training and testing procedures are
implemented in TensorFlow [1] and using Tensorpack as a training interface
[7]. Although TensorFlow is not particularly efficient when it comes to train-
ing recurrent neural networks with low-dimensional sequences, it allows for fast
prototyping and for models to be exported and run on mobile devices using
TensorFlow Lite2. The preprocessing is performed online, as it does not require
much computation time.

4 Experimental Results

4.1 Network Configurations

In order to find a suitable network architecture for achieving a high accuracy and
fast convergence, several network components were added and explored. Using a
single LSTM block is sufficient for achieving a high validation accuracy, whereas
using two successive blocks drastically slows down the training process with-
out increasing the overall accuracy. Appending additional fully-connected layers
after the LSTM block can increase the convergence speed. However, they do in
general not increase the final accuracy. Applying several parallel convolutional
2 https://www.tensorflow.org/mobile/tflite/.

https://www.tensorflow.org/mobile/tflite/

Online Carry Mode Detection 237

layers with different sizes of receptive fields allows the network to extract the
most important local information from the input sequences and can also help to
smoothen out high-frequency noise. We found out that the convolutional layers
are especially helpful when training the architecture using data from multiple
different devices, as the acceleration sensors in the devices have different noise
characteristics.

4.2 Results

The network architecture (see Fig. 2) was trained on two datasets containing
sequences from three devices and one single device respectively. The training
results and accuracies are listed in Table 2.

Table 2. Accuracies for different datasets and number of sequences on the training
and validation set.

Dataset Devices Size Training accuracy Validation accuracy

1 3 1497 Sequences 0.994 0.984

2 1 753 Sequences 0.998 0.987

Fig. 3. Classification example of a sequence of the hands class.

Since the acceleration sensors in mobile devices have different signal charac-
teristics, it is important to have a uniform distribution of training data across
the different devices and carry modes in order for the model to generalize ade-
quately. We can show that training the network on data from a single device
can further increase the classification accuracy, as it can adapt to these specific
sensor characteristics. Another significant observation we made is that the hand
carry mode is detected a lot better than the other carry modes. This is because

238 P. Kuhlmann et al.

Fig. 4. Classification example of a sequence of the pocket class.

Fig. 5. Classification example of an sequence of the bag class. Although the classifica-
tion is generally correct, the noise level is much higher than the results for the other
two classes.

Fig. 6. Classification example of an sequence of the bag class, which shows that the
classification remains stable despite the long sequence length of over 10 min with over
36000 samples.

Online Carry Mode Detection 239

Fig. 7. Comparison of convergence rates of the two datasets with different training
sequence lengths. The different sample sizes for each curve result from the dataset
sizes as well as from the number of epochs depending on the sequence length.

the transition between the bag and the pocket carry mode is not as clear as
between the hand carry mode and the others. While the mobile device follows a
characteristic movement pattern when carried in a pocket or a bag, the move-
ment is damped when carried in the hands. Classified example sequences for
each class are shown in Figs. 3, 4, and 5. Figure 6 shows that the classification
remains stable even when processing long sequences.

We tested several different options for the sequence length for our training
input, where 100 and 200 proved to yield the best results. On the one hand,
the longer sequence length with a length of 200 time steps achieves significantly
better results on the diverse dataset 1 that contains data captured from multiple
devices. On the other hand, if the data is relatively uniform a longer sequence
length does not improve the results. Nonetheless, the final accuracy is lower, but
the convergence is still faster. The convergence rates can be seen in Fig. 7.

Fig. 8. Classification output of the RNN facing altering class transitions.

240 P. Kuhlmann et al.

Finally, we investigated the behavior at class transitions, which is an impor-
tant aspect when using RNNs in a continuous classification scenario without
clear class boundaries. We found that in any case the RNNs were able to catch
the class transitions successfully. We think that this might run out-of-the-box
because of the applied regularization [8]. Figure 8 exemplary shows that the refer-
ence network is clearly able to detect the transitions between the altering classes
hands and pocket rapidly. Note that the ability of catching class transitions

5 Conclusion

We have shown that LSTM-based RNNs are a robust and easily implementable
way to reliably detect the carry mode of mobile devices. The results indicate
that this task is heavily impacted by the device model.

Compared to other possible (deep learning) approaches our specific network
architecture is relatively lightweight (≈13,000 parameters) but still achieved a
very high detection rate of nearly 99 % on our carry mode dataset with three
classes. We also proved that a step-by-step online detection is feasible for which
no large time-window (as e.g. for spectral transformation-based approaches) is
necessary.

Further work can explore a more diverse set of carry modes and try to sta-
bilize long input sequences, which are generally a weak point of generic LSTM
networks. Nonetheless our architecture kept stable even over 10,000 s time-steps
of continuous classification.

Additionally, the work can be extended to also estimate the actual movement
performed by the person carrying the devices with the help of the predicted carry
mode. It is also thinkable to randomly skip time-steps in order to further improve
the energy efficiency.

Acknowledgements. We would like to thank Denis Heid and Florian Grimm for
testing the dataset recording application and for their effort in collecting a diverse
dataset in many different real-life scenarios.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Hernandez, J., McDuff, D.J., Picard, R.W.: Biophone: physiology monitoring from
peripheral smartphone motions. In: 2015 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7180–7183.
IEEE (2015)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

4. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference for Learning Representations (2015)

https://www.tensorflow.org/
https://doi.org/10.1162/neco.1997.9.8.1735

Online Carry Mode Detection 241

5. Otte, S., Weiss, C., Scherer, T., Zell, A.: Recurrent neural networks for fast and
robust vibration-based ground classification on mobile robots. In: 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 5603–5608. IEEE
(2016)

6. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc.
IEEE 78(10), 1550–1560 (1990)

7. Wu, Y., et al.: Tensorpack (2016). https://github.com/tensorpack/
8. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.

arXiv preprint arXiv:1409.2329 (2014)

https://github.com/tensorpack/
http://arxiv.org/abs/1409.2329

Deep Learning

Deep CNN-ELM Hybrid Models for Fire
Detection in Images

Jivitesh Sharma(B), Ole-Christopher Granmo, and Morten Goodwin

Center for Artificial Intelligence Research, University of Agder, Jon Lilletuns vei 9,
4879 Grimstad, Norway

{jivitesh.sharma,ole.granmo,morten.goodwin}@uia.no

Abstract. In this paper, we propose a hybrid model consisting of a Deep
Convolutional feature extractor followed by a fast and accurate classi-
fier, the Extreme Learning Machine, for the purpose of fire detection in
images. The reason behind using such a model is that Deep CNNs used
for image classification take a very long time to train. Even with pre-
trained models, the fully connected layers need to be trained with back-
propagation, which can be very slow. In contrast, we propose to employ
the Extreme Learning Machine (ELM) as the final classifier trained on
pre-trained Deep CNN feature extractor. We apply this hybrid model on
the problem of fire detection in images. We use state of the art Deep
CNNs: VGG16 and Resnet50 and replace the softmax classifier with
the ELM classifier. For both the VGG16 and Resnet50, the number of
fully connected layers is also reduced. Especially in VGG16, which has 3
fully connected layers of 4096 neurons each followed by a softmax clas-
sifier, we replace two of these with an ELM classifier. The difference in
convergence rate between fine-tuning the fully connected layers of pre-
trained models and training an ELM classifier are enormous, around 20x
to 51x speed-up. Also, we show that using an ELM classifier increases
the accuracy of the system by 2.8% to 7.1% depending on the CNN fea-
ture extractor. We also compare our hybrid architecture with another
hybrid architecture, i.e. the CNN-SVM model. Using SVM as the classi-
fier does improve accuracy compared to state-of-the-art deep CNNs. But
our Deep CNN-ELM model is able to outperform the Deep CNN-SVM
models. (Preliminary version of some of the results of this paper appear
in “Deep Convolutional Neural Networks for Fire Detection in Images”,
Springer Proceedings Engineering Applications of Neural Networks 2017
(EANN’17), Athens, Greece, 25–27 August).

Keywords: Deep convolutional neural networks
Extreme learning machine · Image classification · Fire detection

1 Introduction

The problem of fire detection in images has received a lot of attention in the
past by researchers from computer vision, image processing and deep learning.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 245–259, 2018.
https://doi.org/10.1007/978-3-030-01424-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_25&domain=pdf

246 J. Sharma et al.

This is a problem that needs to be solved without any compromise. Fire can
cause massive and irrevocable damage to health, life and property. It has led to
over a 1000 deaths a year in the US alone, with property damage in access of
one billion dollars. Besides, the fire detectors currently in use require different
kinds of expensive hardware equipment for different types of fire [27].

What makes this problem even more interesting is the changing background
environment due to varying luminous intensity of the fire, fire of different shades,
different sizes etc. Also, the false alarms due to the environment resembling fire
pixels, like room with bright red/orange background and bright lights. Further-
more, the probability of occurrence of fire is quite low, so the system must be
trained to handle imbalance classification.

Various techniques have been used to classify between images that contain
fire and images that do not. The state-of-the-art vision-based techniques for fire
and smoke detection have been comprehensively evaluated and compared in [39].
The colour analysis technique has been widely used in the literature to detect and
analyse fire in images and videos [4,24,31,37]. On top of colour analysis, many
novel methods have been used to extract high level features from fire images
like texture analysis [4], dynamic temporal analysis with pixel-level filtering and
spatial analysis with envelope decomposition and object labelling [40], fire flicker
and irregular fire shape detection with wavelet transform [37], etc.

These techniques give adequate performance but are currently outperformed
by Machine Learning techniques. A comparative analysis between colour-based
models for extraction of rules and a Machine Learning algorithm is done for the
fire detection problem in [36]. The machine learning technique used in [36] is
Logistic Regression which is one of the simplest techniques in Machine Learning
and still outperforms the colour-based algorithms in almost all scenarios. These
scenarios consist of images containing different fire pixel colours of different
intensities, with and without smoke.

Instead of explicitly designing features by using image processing techniques,
deep neural networks can be used to extract and learn relevant features from
images. The Convolutional Neural Networks (CNNs) are the most suitable choice
for the task of image processing and classification.

In this paper, we employ state-of-the-art Deep CNNs for fire detection and
then propose to use hybrid CNN-ELM and CNN-SVM models to outperform
Deep CNNs. Such hybrid models have been used in the past for image classifi-
cation, but the novelty of our approach lies in using state-of-the-art Deep CNNs
like VGG16 and Resnet50 as feature extractors and then remove some/all fully
connected layers with an ELM classifier. This models outperform Deep CNNs
in terms of accuracy, training time and size of the network. We also compare
the CNN-ELM model with another hybrid model, CNN-SVM and show that the
CNN-ELM model gives the best performance.

The rest of the paper is organized in the following manner: Sect. 2 briefly
describes the related work with CNNs for fire detection and Hybrid models for
image classification. Section 3 explains our work in detail and Sect. 4 gives details
of our experiments and presents the results. Section 5 summarizes and concludes
our work.

Deep CNN-ELM Hybrid Models for Fire Detection in Images 247

2 Related Work

In this paper, we integrate state-of-the-art CNN hybrid models and apply it to
the problem of fire detection in images. To the best of our knowledge, hybrid
models have never been applied to fire detection. So, we present a brief overview
of previous research done in CNNs used for fire detection and hybrid models
separately in the next two sub-sections.

2.1 CNNs for Fire Detection

There have been many significant contributions from various researchers in devel-
oping a system that can accurately detect fire in the surrounding environment.
But, the most notable research in this field involves Deep Convolutional Neu-
ral Networks (Deep CNN). Deep CNN models are currently among the most
successful image classification models which makes them ideal for a task such
as Fire detection in images. This has been demonstrated by previous research
published in this area.

In [7], the authors use CNN for detection of fire and smoke in videos. A simple
sequential CNN architecture, similar to LeNet-5 [18], is used for classification.
The authors quote a testing accuracy of 97.9% with a satisfactory false positive
rate.

Whereas in [43], a very innovative cascaded CNN technique is used to detect
fire in an image, followed by fine-grained localisation of patches in the image that
contain the fire pixels. The cascaded CNN consists of AlexNet CNN architecture
[17] with pre-trained ImageNet weights [28] and another small network after the
final pooling layer which extracts patch features and labels the patches which
contain fire. Different patch classifiers are compared.

The AlexNet architecture is also used in [34] which is used to detect smoke
in images. It is trained on a fairly large dataset containing smoke and non-smoke
images for a considerably long time. The quoted accuracies for large and small
datasets are 96.88% and 99.4% respectively with relatively low false positive
rates.

Another paper that uses the AlexNet architecture is [23]. This paper builds
its own fire image and video dataset by simulating fire in images and videos using
Blender. It adds fire to frames by adding fire properties like shadow, fore-ground
fire, mask etc. separately. The animated fire and video frames are composited
using OpenCV [2]. The model is tested on real world images. The results show
reasonable accuracy with high false positive rate.

As opposed to CNNs which extract features directly from raw images, in some
methods image/video features are extracted using image processing techniques
and then given as input to a neural network. Such an approach has been used in
[6]. The fire regions from video frames are obtained by threshold values in the
HSV colour space. The general characteristics of fire are computed using these
values from five continuous frames and their mean and standard deviation is

248 J. Sharma et al.

given as input to a neural network which is trained using back propagation to
identify forest fire regions. This method performs segmentation of images very
accurately and the results show high accuracy and low false positive rates.

In [11], a neural network is used to extract fire features based on the HSI
colour model which gives the fire area in the image as output. The next step is
fire area segmentation where the fire areas are roughly segmented and spurious
fire areas like fire shadows and fire-like objects are removed by image difference.
After this the change in shape of fire is estimated by taking contour image
difference and white pixel ratio to estimate the burning degree of fire, i.e. no-
fire, small, medium and large. The experimental results show that the method
is able to detect different fire scenarios with relatively good accuracy.

2.2 Hybrid Models for Image Classification

The classifier part in a Deep CNN is a simple fully connected perceptron with
a softmax layer at the end to output probabilities for each class. This section
of the CNN has a high scope for improvement. Since it consists of three to four
fully connected layers containing thousands of neurons, it becomes harder and
slower to train it. Even with pre-trained models that require fine tuning of these
layers. This has led to the development of hybrid CNN models, which consist of
a specialist classifier at the end.

Some of the researchers have employed the Support Vector Machine (SVM) as
the final stage classifier [1,21,25,33,38]. In [25], the CNN-SVM hybrid model is
applied to many different problems like object classification, scene classification,
bird sub-categorization, flower recognition etc. A linear SVM is fed ‘off the shelf
convolutional features’ from the last layer of the CNN. This paper uses the
OverFeat network [30] which is a state-of-the-art object classification model. The
paper shows, with exhaustive experimentation, that extraction of convolutional
features by a deep CNN is the best way to obtain relevant characteristics that
distinguishes an entity from another.

The CNN-SVM model is used in [21] and successfully applied to visual learn-
ing and recognition for multi-robot systems and problems like human-swarm
interaction and gesture recognition. This hybrid model has also been applied to
gender recognition in [38]. The CNN used here is the AlexNet [17] pre-trained
with ImageNet weights. The features extracted from the entire AlexNet are fed
to an SVM classifier. A similar kind of research is done in [33], where the soft-
max layer and the cross-entropy loss are replaced by a linear SVM and margin
loss. This model is tested on some of the most well known benchmark datasets
like CIFAR-10, MNIST and Facial Expression Recognition challenge. The results
show that this model outperforms the conventional Deep CNNs.

In 2006, G.B. Huang introduced a new learning algorithm for a single hidden
layer feedforward neural network called the Extreme Learning Machine [13,14].
This technique was many times faster than backpropagation and SVM, and
outperformed them on various tasks. The ELM randomly initializes the input

Deep CNN-ELM Hybrid Models for Fire Detection in Images 249

weights and analytically determines the output weights. It produces a minimum
norm least squares solution which always achieves lowest training accuracy, if
there are enough number of hidden neurons. There have been many variants of
ELM depending upon a specific application, which have been summarised in [12].

This led to the advent of CNN-ELM hybrid models, which were able to
outperform the CNN-SVM models on various applications. The major advantage
of CNN-ELM models is the speed of convergence. In [29], the CNN-ELM model
is used for Wireless Capsule Endoscopy (WCE) image classification. The softmax
classifier of a CNN is replaced by an ELM classifier and trained on the feature
extracted by the CNN feature extractor. This model is able to outperform CNN-
based classifiers.

The CNN-ELM model has also been used for handwritten digit classifica-
tion [19,22]. In [19], a ‘shallow’ CNN is used for feature extraction and ELM
for classification. The shallow CNN together with ELM speeds up the training
process. Also, various weight initialization strategies have been tested for ELM
with different receptive fields. Finally, two strategies, namely the Constrained
ELM (C-ELM) [44] and Computed Input Weights ELM (CIW-ELM) [35] are
combined in a two layer ELM structure with receptive fields. This model was
tested on the MNIST dataset and achieved 0.83% testing error. In [22], a deep
CNN is used for the same application and tested on the USPS dataset.

A shallow CNN with ELM is tested on some benchmark datasets like MNIST,
NORB-small, CIFAR-10 and SVHN with various hyper parameter configurations
in [20]. Another similar hybrid model that uses CNN features and Kernel ELM
as classifier is used in [9] for age estimation using facial features. Another appli-
cation where a CNN-ELM hybrid model has been applied is the traffic sign
recognition [41].

A different strategy of combining CNN feature extraction and ELM learn-
ing is proposed in [15]. Here, an ELM with single hidden layer is inserted after
every convolution and pooling layer and at the end as classifier. The ELM is
trained by borrowing values from the next convolutional layer and each ELM
is updated after every iteration using backpropagation. This interesting archi-
tecture is applied to the application of lane detection and achieves excellent
performance.

A comparative analysis of the CNN-ELM and CNN-SVM hybrid models
for object recognition from ImageNet has been illustrated in [42]. Both these
models were tested for object recognition from different sources like Amazon,
Webcam, Caltech and DSLR. The final results show that the CNN-ELM model
outperforms the CNN-SVM model on all datasets and using Kernel ELM further
increases accuracy.

Using ELM as a final stage classifier does not end at image classification with
CNNs. They have also been used with DBNs for various applications [3,26].

3 The Fire Detector

In this paper, we propose to employ hybrid deep CNN models to perform fire
detection. The AlexNet has been used by researchers in the past for fire detection

250 J. Sharma et al.

which has produced satisfactory results. We propose to use two Deep CNN archi-
tectures that have outperformed the AlexNet on the ImageNet dataset, namely
VGG16 [32] and Resnet50 [10]. We use these models with pre-trained ImageNet
weights. This helps greatly when there is lack of training data. So, we fine-tune
the ELM classifier on our dataset, which is fed the features extracted by the
Deep CNNs.

3.1 Deep ConvNet Models

The Convolutional Neural Network was first introduced in 1980 by Kunihiko
Fukushima [8]. The CNN is designed to take advantage of two dimensional struc-
tures like 2D Images and capture local spatial patterns. This is achieved with
local connections and tied weights. It consists of one or more convolution layers
with pooling layers between them, followed by one or more fully connected lay-
ers, as in a standard multilayer perceptron. CNNs are easier to train compared to
Deep Neural Networks because they have fewer parameters and local receptive
fields.

In CNNs, kernels/filters are used to see where particular features are present
in an image by convolution with the image. The size of the filters gives rise to
locally connected structure which are each convolved with the image to produce
feature maps. The feature maps are usually sub-sampled using mean or max
pooling. The reduction in parameters is due to the fact that convolution layers
share weights.

The reason behind parameter sharing is that we make an assumption, that
the statistics of a patch of a natural image are the same as any other patch of the
image. This suggests that features learned at one location can also be learned
for other locations. So, we can apply this learned feature detector anywhere in
the image. This makes CNNs ideal feature extractors for images.

The CNNs with many layers have been used for various applications espe-
cially image classification. In this paper, we use two state-of-the-art Deep CNNs
that have achieved one of the lowest error rates in image classification tasks.

In this work, we use VGG16 and Resnet50, pre-trained on the ImageNet
dataset, along with a few modifications. We also compare our modified and
hybrid models with the original ones. The VGG16 architecture was proposed
by the Visual Geometry Group at the University of Oxford [32], which was
deep, simple, sequential network whereas the Resnet50, proposed by Microsoft
research [10], was an extremely deep graphical network with residual connections
(which avoids the vanishing gradients problem and residual functions are easier
to train).

We also test slightly modified versions of both these networks by adding a
fully-connected layer and fine-tuning on our dataset. We also tested with more
fully connected layers but the increase in accuracy was overshadowed by the
increase in training time.

Deep CNN-ELM Hybrid Models for Fire Detection in Images 251

3.2 The Hybrid Model

We propose to use a hybrid architecture for fire detection in images. In this paper,
instead of using a simple CNN as feature extractor, we employ state-of-the-art
Deep CNNs like the VGG16 and Resnet50.

Figure 1(a) and (b) show the architecture of the VGG16-ELM and Resnet50-
ELM hybrid models respectively. Usually, only the softmax classifier is replaced
by another classifier (ELM or SVM) in a CNN to create a hybrid model. But, we
go one step further by replacing the entire fully connected multi-layer perceptron
with a single hidden layer ELM. This decreases the complexity of the model even
further.

The Theory of Extreme Learning Machine: The Extreme Learning
Machine is a supervised learning algorithm [13]. The input to the ELM, in this
case, are the features extracted by the CNNs. Let it be represented as xi, ti, where
xi is the input feature instance and ti is the corresponding class of the image.
The inputs are connected to the hidden layer by randomly assigned weights w.
The product of the inputs and their corresponding weights act as inputs to the
hidden layer activation function. The hidden layer activation function is a non-
linear non-constant bounded continuous infinitely differentiable function that
maps the input data to the feature space. There is a catalogue of activation
functions from which we can choose according to the problem at hand. We ran
experiments for all activation functions and the best performance was achieved
with the multiquadratics function:

f(x) =
√

‖xi − μi‖2 + a2 (1)

The hidden layer and the output layer are connected via weights β, which are to
be analytically determined. The mapping from the feature space to the output
space is linear. Now, with the inputs, hidden neurons, their activation functions,
the weights connecting the inputs to the hidden layer and the output weights
produce the final output function:

L∑

i=1

βig(wi.xj + bi) = oj (2)

The output in Matrix form is:
Hβ = T (3)

The error function used in Extreme Learning Machine is the Mean Squared error
function, written as:

E =
N∑

j=1

(
L∑

i=1

βig(wi.xj + bi) − tj)2 (4)

To minimize the error, we need to get the least-squares solution of the above
linear system.

‖Hβ∗ − T‖ = minβ‖Hβ − T‖ (5)

252 J. Sharma et al.

The minimum norm least-squares solution to the above linear system is given
by:

β̂ = H†T (6)

Properties of the above solution:

1. Minimum Training Error: The following equation provides the least-squares
solution, which means the solution for ‖Hβ − T‖, i.e. the error is minimum.
‖Hβ∗ − T‖ = minβ‖Hβ − T‖

2. Smallest Norm of Weights: The minimum norm of least-squares solution is
given by the Moore-Penrose pseudo inverse of H.
β̂ = H†T

3. Unique Solution: The minimum norm least-squares solution of Hβ = T is
unique, which is:
β̂ = H†T

Detailed mathematical proofs of these properties and the ELM algorithm can
be found in [14]. Both the VGG16 and Resnet50 extract rich features from
the images. These features are fed to the ELM classifier which finds the mini-
mum norm least squares solution. With enough number of hidden neurons, the
ELM outperforms the original VGG16 and Resnet50 networks. Both VGG16 and
Resnet50 are pre-trained with ImageNet weights. So, only the ELM classifier is
trained on the features extracted by the CNNs.

Apart from fast training and accurate classification, there is another advan-
tage of this model. This hybrid model does not require large training data. In
fact, our dataset consists of just 651 images, out of which the ELM is trained on
60% of images only. This shows its robustness towards lack of training data. A
normal Deep CNN would require much higher amount of training data to fine-
tune its fully-connected layers and the softmax classifier. Even the pre-trained
VGG16 and Resnet50 models required at least 80% training data to fine-tune
their fully-connected layers.

And, as we will show in the next section, a hybrid CNN-ELM trained with
60% training data outperforms pre-trained VGG16 and Resnet50, fine-tuned on
80% training data.

3.3 Paper Contributions

1. The previous hybrid models have used simple CNNs for feature extraction. We
employ state-of-the-art Deep CNNs to make feature extraction more efficient
and obtain relevant features since the dataset is difficult to classify.

2. Other hybrid models simply replace the softmax classifier with SVM or some-
times ELM. We completely remove the fully connected layers to increase speed
of convergence since no fine-tuning is needed and also reduce the complexity
of the architecture. Since VGG16 and Resnet50 extract rich features and the
ELM is an accurate classifier, we do not need the fully-connected layers. This
decreases the number of layers by 2 in VGG16 and by 1 in Resnet50, which
is 8192 and 4096 neurons respectively.

Deep CNN-ELM Hybrid Models for Fire Detection in Images 253

3. The above point also justifies the use of complex features extractors like
VGG16 and Resnet50. If we used a simple CNN then, we might not be able
to remove the fully-connected layers since the features might not be rich
enough. Due to this, the fully-connected layers would have to be fine-tuned
on the dataset which would increase training time and network complexity.

4. Also, we see that the data required for training the ELM classifier is lower
than the data required for fine-tuning the fully-connected layers of a pre-
trained Deep CNN.

5. We apply our hybrid model on the problem of fire detection in images (on
our own dataset). And, to the best of our knowledge, this is the first time a
hybrid ELM model has been applied to this problem.

4 Experiments

We conducted our experiments to compare training and testing accuracies and
execution times of: the VGG16 and Resnet50 models including modifications,
Hybrid VGG16 and Resnet50 models with ELM classifier. We also compare
our hybrid VGG16-ELM and Resnet50-ELM models with VGG16-SVM and
Resnet50-SVM as well. We used pre-trained Keras [5] models and fine-tune the
fully-connected layers on our dataset. The training of the models was done on
the following hardware specifications: Intel i5 2.5 GHz, 8 GB RAM and Nvidia
Geforce GTX 820 2 GB GPU. Each model was trained on the dataset for 10
training epochs. The ADAM optimizer [16] with default parameters α = 0.001,
β1 = 0.9, β2 = 0.999 and ε = 10−8 was used to fine-tune the fully-connected
layers for VGG16 and Resnet50 and their modified versions. The details of the
dataset are given in the next subsection.

4.1 The Real World Fire Dataset

Since there is no benchmark dataset for fire detection in images, we created our
own dataset by handpicking images from the internet.1 This dataset consists of
651 images which is quite small in size but it enables us to test the generalization
capabilities and the effectiveness and efficiency of models to extract relevant
features from images when training data is scarce. The dataset is divided into
training and testing sets. The training set consists of 549 images: 59 fire images
and 490 non-fire images. The imbalance is deliberate to replicate real world
situations, as the probability of occurrence of fire hazards is quite small. The
datasets used in previous papers have been balanced which does not imitate the
real world environment. The testing set contains 102 images: 51 images each of
fire and non-fire classes. As the training set is highly unbalanced and the testing
set is exactly balanced, it makes a good test to see whether the models are
able to generalize well or not. For a model with good accuracy, it must be able
to extract the distinguishing features from the small amount of fire images. To
1 The dataset is available here: https://github.com/UIA-CAIR/Fire-Detection-

Image-Dataset.

https://github.com/UIA-CAIR/Fire-Detection-Image-Dataset
https://github.com/UIA-CAIR/Fire-Detection-Image-Dataset

254 J. Sharma et al.

Fig. 1. Examples of fire images

extract such features from small amount of data the model must be deep enough.
A poor model would just label all images as non-fire, which is exemplified in the
results.

Apart from being unbalanced, there are a few images that are very hard to
classify. The dataset contains images from all scenarios like fire in a house, room,
office, forest fire, with different illumination intensity and different shades of red,
yellow and orange, small and big fires, fire at night, fire in the morning. Non-fire
images contain a few images that are hard to distinguish from fire images like a
bright red room with high illumination, sunset, red coloured houses and vehicles,
bright lights with different shades of yellow and red etc.

The Figs. 1(a) to (f) show fire images in different environments: indoor, out-
door, daytime, nighttime, forest fire, big and small fire. And the Figs. 2(a) to (f)
show the non-fire images that are difficult to classify. Considering these charac-
teristics of our dataset, detecting fire can be a difficult task. We have made the
dataset available online so that it can be used for future research in this area.

4.2 Results

Our ELM hybrid models are tested on our dataset and compared with SVM
hybrid models and the original VGG16 and Resnet50 Deep CNN models. Tables 1
and 2 show the results of the experiments. The dataset was randomly split into
training and testing sets. Two cases were considered depending on the amount
of training data. The Deep CNN models (VGG16 and Resnet50) were trained
only on 80% training data, since 60% is too less for these models. All the hybrid
models have been trained on both 60% and 80% of training data.

Deep CNN-ELM Hybrid Models for Fire Detection in Images 255

Fig. 2. Examples of non-fire images that are difficult to classify

Table 1. Accuracy and execution time

Model DT Acctrain Ttrain TC
train Acctest Ttest

VGG16 (pre-trained) 80 100 7149 6089 90.19 121

VGG16 (modified) 80 100 7320 6260 91.176 122

Resnet50 (pre-trained) 80 100 15995 13916 91.176 105

Resnet50 (modified) 80 100 16098 13919 92.15 107

VGG16+SVM 60 99.6 2411 1352 87.4 89

VGG16+SVM 80 100 2843 1784 93.9 81

VGG16+ELM 60 100 1340 281 93.9 24

VGG16+ELM 80 100 1356 297 96.15 21

Resnet50+SVM 60 100 3524 1345 88.7 97

Resnet50+SVM 80 100 4039 1860 94.6 86

Resnet50+ELM 60 100 2430 251 98.9 32

Resnet50+ELM 80 100 2452 272 99.2 26

DT is the percentage of total data used for training the models.
Acctrain and Acctest are the training and testing accuracies respectively.
Ttrain and Ttest are the training and testing times for the models.
TC
train is the time required to train the classifier part of the models

256 J. Sharma et al.

One point to be noted here is that, the SVM hybrid models contain an addi-
tional fully-connected layer of 4096 neurons, while the ELM is directly connected
to the last pooling layer.

The results in Table 1 show that the ELM hybrid models outperform the
VGG16, Resnet50 and SVM hybrid models by achieving higher accuracy and
learning much faster. In general, we can see that the hybrid models outperform
the state-of-the-art Deep CNNs in terms of both accuracy and training time.

Apart from accuracy and training time, another important point drawn from
the results is the amount of training data required. As we already know, Deep
Neural Networks (DNN) require huge amount of training data. So, using pre-
trained models can be highly beneficial, as we only need to fine-tune the fully-
connected layers. But, with models like VGG16 and Resnet50 which have large
fully-connected layers, even fine-tuning requires large amount of training data.
We had to train the VGG16 and Resnet50 on at least 80% training data otherwise
they were overfitting on the majority class, resulting in 50% accuracy.

But in case of hybrid models, especially ELM hybrid models, the amount of
training data required is much less. Even after being trained on 60% training
data, the ELM models were able to outperform the original VGG16 and Resnet50
models which were trained on 80% training data. This shows that reducing the
fully-connected layers, or replacing them with a better classifier can reduce the
amount of training data required. Also, the ELM is more robust towards lack of
training data which adds to this advantage.

Among the hybrid models, the ELM hybrid models outperform the SVM
hybrid models both in terms of testing accuracy and training time. Also, we
can see that the hybrid models with Resnet50 as the feature extractor achieves
better results than the hybrid models with VGG16 as the feature extractor. This
is due to the depth and the residual connections in Resnet50 in contrast to the
simple, shallower (compared to Resnet50) and sequential nature of VGG16.

Table 2 compares results between different number of hidden neurons used
by ELM. The accuracy increases as the number of hidden neurons increase. The
models are tested for 212, 213 and 214 number of neurons. The testing accuracy
starts to decrease for 214 neurons, which means the model overfits. All the tests
in Table 2 were conducted with 60% training data.

Table 2. Number of hidden neurons in ELM

CNN features # Hidden neurons Testing accuracy

VGG16 feature extractor 4096 93.9

VGG16 feature extractor 8192 94.2

VGG16 feature extractor 16384 91.1 (Overfitting)

Resnet50 feature extractor 4096 98.9

Resnet50 feature extractor 8192 99.2

Resnet50 feature extractor 16384 96.9 (Overfitting)

Deep CNN-ELM Hybrid Models for Fire Detection in Images 257

5 Conclusion

In this paper, we have proposed a hybrid model for fire detection. The hybrid
model combines the feature extraction capabilities of Deep CNNs and the classi-
fication ability of ELM. The Deep CNNs used for creating the hybrid models are
the VGG16 and Resnet50 instead of a simple Deep CNN. The fully connected
layers are removed completely and replaced by a single hidden layer feedforward
neural network trained using the ELM algorithm. This decreases complexity
of the network and increases speed of convergence. We test our model on our
own dataset which has been created to replicate a realistic view of the envi-
ronment which includes different scenarios, imbalance due to lower likelihood of
occurrence of fire. The dataset is small in size to check the robustness of models
towards lack of training data, since deep networks require a considerable amount
of training data. Our hybrid model is compared with the original VGG16 and
Resnet50 models and also with SVM hybrid models. Our Deep CNN-ELM model
is able to outperform all other models in terms of accuracy by 2.8% to 7.1% and
training time by a speed up of 20x to 51x and requires less training data to
achieve higher accuracy for the problem of fire detection.

References

1. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: From generic to
specific deep representations for visual recognition. CoRR, abs/1406.5774 (2014)

2. Bradski, G.: OpenCV. Dr. Dobb’s J. Soft. Tools 25, 120–126 (2000)
3. Cao, L., Huang, W., Sun, F.: A deep and stable extreme learning approach for

classification and regression. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, K.-
A. (eds.) Proceedings of ELM-2014 Volume 1. PALO, vol. 3, pp. 141–150. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14063-6 13

4. Chino, D.Y.T., Avalhais, L.P.S., Rodrigues Jr., J.F., Traina, A.J.M.: BoWFire:
detection of fire in still images by integrating pixel color and texture analysis.
CoRR, abs/1506.03495 (2015)

5. Chollet, F.: Keras (2015)
6. Zhao, J., et al.: Image based forest fire detection using dynamic characteristics

with artificial neural networks. In: 2009 International Joint Conference on Artificial
Intelligence, pp. 290–293, April 2009

7. Frizzi, S., Kaabi, R., Bouchouicha, M., Ginoux, J.M., Moreau, E., Fnaiech, F.:
Convolutional neural network for video fire and smoke detection. In: IECON 2016–
42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 877–882,
October 2016

8. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4),
193–202 (1980)

9. Gürpinar, F., Kaya, H., Dibeklioglu, H., Salah, A.A.: Kernel ELM and CNN based
facial age estimation. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 785–791, June 2016

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016

https://doi.org/10.1007/978-3-319-14063-6_13

258 J. Sharma et al.

11. Horng, W.-B., Peng, J.-W.: Image-based fire detection using neural networks. In:
JCIS (2006)

12. Huang, G., Huang, G.-B., Song, S., You, K.: Trends in extreme learning machines:
a review. Neural Netw. 61, 32–48 (2015)

13. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: 2004 IEEE International Joint Confer-
ence on Neural Networks, Proceedings, vol. 2, pp. 985–990. IEEE (2004)

14. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

15. Kim, J., Kim, J., Jang, G.-J., Lee, M.: Fast learning method for convolutional neu-
ral networks using extreme learning machine and its application to lane detection.
Neural Netw. 87, 109–121 (2017)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR,
abs/1412.6980 (2014)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates Inc (2012)

18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

19. McDonnell, M.D., Tissera, M.D., van Schaik, A., Tapson, J.: Fast, simple and accu-
rate handwritten digit classification using extreme learning machines with shaped
input-weights. CoRR, abs/1412.8307 (2014)

20. McDonnell, M.D., Vladusich, T.: Enhanced image classification with a fast-learning
shallow convolutional neural network. CoRR, abs/1503.04596 (2015)

21. Nagi, J., Di Caro, G.A., Giusti, A., Nagi, F., Gambardella, L.M.: Convolutional
neural support vector machines: hybrid visual pattern classifiers for multi-robot
systems. In: ICMLA, no. 1, pp. 27–32. IEEE (2012)

22. Pang, S., Yang, X.: Deep convolutional extreme learning machine and its applica-
tion in handwritten digit classification. Intell. Neurosci. 2016 (2016)

23. Tomas Polednik, Bc.: Detection of fire in images and video using CNN. Excel@FIT
(2015)

24. Poobalan, K., Liew, S.C.: Fire detection algorithm using image processing tech-
niques. In: 3rd International Conference on Artificial Intelligence and Computer
Science (AICS2015), Ocotober 2015

25. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf:
an astounding baseline for recognition. CoRR, abs/1403.6382 (2014)

26. Ribeiro, B., Lopes, N.: Extreme learning classifier with deep concepts. In: Ruiz-
Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 182–
189. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41822-8 23

27. Custer, R.B.R.: Fire detection: the state of the art. NBS Technical Note, US
Department of Commerce (1974)

28. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. (IJCV) 115(3), 211–252 (2015)

29. Yu, J.S., Chen, J., Xiang, Z.Q., Zou, Y.X.: A hybrid convolutional neural net-
works with extreme learning machine for WCE image classification. In: 2015 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pp. 1822–1827,
December 2015

30. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat:
integrated recognition, localization and detection using convolutional networks.
CoRR, abs/1312.6229 (2013)

https://doi.org/10.1007/978-3-642-41822-8_23

Deep CNN-ELM Hybrid Models for Fire Detection in Images 259

31. Shao, J., Wang, G., Guo, W.: An image-based fire detection method using color
analysis. In: 2012 International Conference on Computer Science and Information
Processing (CSIP), pp. 1008–1011, August 2012

32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556 (2014)

33. Tang, Y.: Deep learning using support vector machines. CoRR, abs/1306.0239
(2013)

34. Tao, C., Zhang, J., Wang, P.: Smoke detection based on deep convolutional neural
networks. In: 2016 International Conference on Industrial Informatics - Computing
Technology, Intelligent Technology, Industrial Information Integration (ICIICII),
pp. 150–153, December 2016

35. Tapson, J., de Chazal, P., van Schaik, A.: Explicit computation of input weights
in extreme learning machines. CoRR, abs/1406.2889 (2014)

36. Toulouse, T., Rossi, L., Celik, T., Akhloufi, M.: Automatic fire pixel detection using
image processing: a comparative analysis of rule-based and machine learning-based
methods. Sig. Image Video Process. 10(4), 647–654 (2016)

37. Töreyin, B.U., Dedeoǧlu, Y., Güdükbay, U., Çetin, A.E.: Computer vision based
method for real-time fire and flame detection. Patt. Recogn. Lett. 27(1), 49–58
(2006)

38. Wolfshaar, J.V.D., Karaaba, M.F., Wiering, M.A.: Deep convolutional neural net-
works and support vector machines for gender recognition. In: 2015 IEEE Sympo-
sium Series on Computational Intelligence, pp. 188–195, December 2015

39. Verstockt, S., Lambert, P., Van de Walle, R., Merci, B., Sette, B.L State of the
art in vision-based fire and smoke dectection. In: Luck, H., Willms, I. (eds.) 14th
International Conference on Automatic Fire Detection, Proceedings, vol. 2, pp.
285–292. University of Duisburg-Essen. Department of Communication Systems
(2009)

40. Vicente, J., Guillemant, P.: An image processing technique for automatically
detecting forest fire. Int. J. Therm. Sci. 41(12), 1113–1120 (2002)

41. Zeng, Y., Xu, X., Fang, Y., Zhao, K.: Traffic sign recognition using deep convo-
lutional networks and extreme learning machine. In: He, X., et al. (eds.) IScIDE
2015. LNCS, vol. 9242, pp. 272–280. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23989-7 28

42. Zhang, L., Zhang, D.: SVM and ELM: who wins? object recognition with deep
convolutional features from imagenet. CoRR, abs/1506.02509 (2015)

43. Zhang, Q., Xu, J., Xu, L., Guo, H.: Deep convolutional neural networks for forest
fire detection, February 2016

44. Zhu, W., Miao, J., Qing, L.: Constrained extreme learning machine: a novel highly
discriminative random feedforward neural network. In: 2014 International Joint
Conference on Neural Networks (IJCNN), pp. 800–807, July 2014

https://doi.org/10.1007/978-3-319-23989-7_28
https://doi.org/10.1007/978-3-319-23989-7_28

Siamese Survival Analysis
with Competing Risks

Anton Nemchenko1(B), Trent Kyono1, and Mihaela Van Der Schaar1,2,3

1 University of California, Los Angeles, Los Angeles, CA 90095, USA
santon834@g.ucla.edu

2 University of Oxford, Oxford OX1 2JD, UK
3 Alan Turing Institute, 96 Euston Rd, Kings Cross, London NW1 2DB, UK

Abstract. Survival analysis in the presence of multiple possible adverse
events, i.e., competing risks, is a pervasive problem in many industries
(healthcare, finance, etc.). Since only one event is typically observed,
the incidence of an event of interest is often obscured by other related
competing events. This nonidentifiability, or inability to estimate true
cause-specific survival curves from empirical data, further complicates
competing risk survival analysis. We introduce Siamese Survival Prog-
nosis Network (SSPN), a novel deep learning architecture for estimating
personalized risk scores in the presence of competing risks. SSPN cir-
cumvents the nonidentifiability problem by avoiding the estimation of
cause-specific survival curves and instead determines pairwise concor-
dant time-dependent risks, where longer event times are assigned lower
risks. Furthermore, SSPN is able to directly optimize an approximation
to the C-discrimination index, rather than relying on well-known metrics
which are unable to capture the unique requirements of survival analysis
with competing risks.

Keywords: Survival analysis · Competing risks
Siamese neural networks · C-index

1 Introduction

1.1 Motivation

Survival analysis is a method for analyzing data where the outcome variable is
the time to the occurrence of an event (death, disease, stock liquidation, mechan-
ical failure, etc.) of interest. Competing risks are additional possible events or
outcomes that “compete” with and may preclude or interfere with the desired
event observation. Though survival analysis is practiced across many disciplines
(epidemiology, econometrics, manufacturing, etc.), this paper focuses on health-
care applications, where competing risk analysis has recently emerged as an
important analytical tool in medical prognosis [9,22,26]. With an increasing
aging population, the presence of multiple coexisting chronic diseases (multi-
morbidities) is on the rise, with more than two-thirds of people aged over 65
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 260–269, 2018.
https://doi.org/10.1007/978-3-030-01424-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_26&domain=pdf

Siamese Survival Analysis with Competing Risks 261

considered multimorbid. Developing optimal treatment plans for these patients
with multimorbidities is a challenging problem, where the best treatment or
intervention for a patient may depend upon the existence and susceptibility to
other competing risks. Consider oncology and cardiovascular medicine, where
the risk of a cardiac disease may alter the decision on whether a cancer patient
should undergo chemotherapy or surgery. Countless examples like this involving
competing risks are pervasive throughout the healthcare industry and insuffi-
ciently addressed in it’s current state.

1.2 Related Works

Previous work on classical survival analysis has demonstrated the advantages
of deep learning over statistical methods [14,18,27]. Cox proportional hazards
model [6] is the baseline statistical model for survival analysis, but is limited since
the dependent risk function is the product of a linear covariate function and a
time dependent function, which is insufficient for modeling complex non-linear
medical data. [14] replaced the linear covariate function with a feed-forward
neural network as input for the Cox PH model and demonstrated improved per-
formance. The current literature addresses competing risks based on statistical
methods (the Fine Gray model [8]), classical machine learning (Random Survival
Forest [12,13]), multi-task learning [1]) etc., with limited success. These exist-
ing competing risk models are challenged by computational scalability issues for
datasets with many patients and multiple covariates. To address this challenge,
we propose a deep learning architecture for survival analysis with competing
risks to optimize the time-dependent discrimination index. This is not trivial
and will be elaborated in the next section.

1.3 Contributions

In both machine learning and statistics, predictive models are compared in terms
of the area under the receiver operating characteristic (ROC) curve or the time-
dependent discrimination index (in the survival analysis literature). The equiva-
lence of the two metrics was established in [11]. Numerous works on supervised
learning [4,19,20,23] have shown that training the models to directly optimize
the AUC improves out-of-sample (generalization) performance (in terms of AUC)
rather than optimizing the error rate (or the accuracy). In this work, we adopt
and apply this idea to survival analysis with competing risks. We develop a novel
Siamese feed-forward neural network [3] designed to optimize concordance and
account for competing risks by specifically targeting the time-dependent dis-
crimination index [2]. This is achieved by estimating risks in a relative fashion
so that the risk for the “true” event of a patient (i.e. the event which actually
took place) must be higher than: all other risks for the same patient and the
risks for the same true event of other patients that experienced it at a later
time. Furthermore, the risks for all the causes are estimated jointly in an effort
to generate a unified representation capturing the latent structure of the data
and estimating cause-specific risks. Because our neural network issues a joint

262 A. Nemchenko et al.

risk for all competing events, it compares different risks for the different events
at different times and arranges them in a concordant fashion (earlier time means
higher risk for any pair of patients).

Unlike previous Siamese neural networks architectures [3,5,25] developed for
purposes such as learning the pairwise similarity between different inputs, our
architecture aims to maximize the distance between output risks for the dif-
ferent inputs. We overcome the discontinuity problem of the above metric by
introducing a continuous approximation of the time-dependent discrimination
function. This approximation is only evaluated at the survival times observed in
the dataset. However, training a neural network only over the observed survival
times will result in poor generalization and undesirable out-of-sample perfor-
mance (in terms of discrimination index computed at different times). In response
to this, we add a loss term (to the loss function) which for any pair of patients,
penalizes cases where the longer event time does not receive lower risk.

The nonidentifiability problem in competing risks arises from the inability
to estimate the true cause-specific survival curves from empirical data [24]. We
address this issue by bypassing and avoiding the estimation of the individual
cause-specific survival curves and utilize concordant risks instead. Our implemen-
tation is agnostic to any underlying causal assumptions and therefore immune
to nonidentifiability.

We report statistically significant improvements over state-of-the-art com-
peting risk survival analysis methods on both synthetic and real medical data.

2 Problem Formulation

We consider a dataset H comprising of time-to-event information about N sub-
jects who are followed up for a finite amount of time. Each subject (patient)
experiences an event D ∈ {0, 1, ..,M}, where D is the event type. D = 0 means
the subject is censored (lost in follow-up or study ended). If D ∈ {1, ..,M},
then the subject experiences one of the events of interest (for instance, sub-
ject develops cardiac disease). We assume that a subject can only experience
one of the above events and that the censorship times are independent of them
[7,8,10,17,22,24]. T is defined as the time-to-event, where we assume that time
is discrete T ∈ {t1, ..., tK} and t1 = 0 (ti denotes the elapsed time since t1).
Let H = {Ti,Di, xi}N

i=1, where Ti is the time-to-event for subject i, Di is the
event experienced by the subject i and xi ∈ R

S are the covariates of the subject
(the covariates are measured at baseline, which may include age, gender, genetic
information etc.).

The Cumulative Incidence Function (CIF) [8] computed at time t for a certain
event D is the probability of occurrence of a particular event D before time t
conditioned on the covariates of a subject x, and is given as F (t,D|x) = Pr(T ≤
t,D|x). The cumulative incidence function evaluated at a certain point can be
understood as the risk of experiencing a certain event before a specified time.

In this work, our goal is to develop a neural network that can learn the
complex interactions in the data specifically addressing competing risks survival

Siamese Survival Analysis with Competing Risks 263

analysis. In determining our loss function, we consider that the time-dependent
discrimination index is the most commonly used metric for evaluating models in
survival analysis [2]. Multiple publications in the supervised learning literature
demonstrate that approximating the area under the curve (AUC) directly and
training a classifier leads to better generalization performance in terms of the
AUC (see e.g. [4,19,20,23]). However, these ideas were not explored in the con-
text of survival analysis with competing risks. We will follow the same principles
to construct an approximation of the time-dependent discrimination index to
train our neural network. We first describe the time-dependent discrimination
index below.

Consider an ordered pair of two subjects (i, j) in the dataset. If the subject
i experiences event m, i.e., Di �= 0 and if subject j’s time-to-event exceeds the
time-to-event of subject i, i.e., Tj > Ti, then the pair (i, j) is a comparable pair.
The set of all such comparable pairs is defined as the comparable set for event
m, and is denoted as Xm.

A model outputs the risk of the subject x for experiencing the event m before
time t, which is given as Rm(t, x) = F (t,D = m|x). The time-dependent dis-
crimination index for a certain cause m is the probability that a model accurately
orders the risks of the comparable pairs of subjects in the comparable set for
event m. The time-dependent discrimination index [2] for cause m is defined as

Ct(m) =
∑K

k=1 AUCm(tk)wm(tk)
∑K

k=1 wm(tk)
. (1)

where

AUCm(tk) = Pr{Rm(tk, xi) > Rm(tk, xj)|Ti = tk, Tj > tk,Di = m} , (2)

wm(tk) = Pr{Ti = tk, Tj > tk,Di = m} . (3)

The discrimination index in (1) cannot be computed exactly since the distribu-
tion that generates the data is unknown. However, the discrimination index can
be estimated using a standard estimator, which takes as input the risk values
associated with subjects in the dataset. [2] defines the estimator for (1) as

Ĉt(m) =

∑N
i,j=1 1{Rm(Ti, xi) > Rm(Ti, xj)} · 1{Tj > Ti,Di = m}

∑N
i,j=1 1{Tj > Ti,Di = m}

. (4)

Note that in the above (4) only the numerator depends on the model. Henceforth,
we will only consider the quantity in the numerator and we write it as

C̄t(m) =
N∑

i,j=1

1{Rm(Ti, xi) > Rm(Ti, xj)} · 1{Tj > Ti,Di = m} . (5)

The above equation can be simplified as

C̄t(m) =
|Xm|∑

i=1

1{Rm(Ti(left),Xm
i (left)) > Rm(Ti(left),Xm

i (right))} . (6)

264 A. Nemchenko et al.

where 1(x) is the indicator function, Xm
i (left) (Xm

i (right)) is the left (right)
element of the ith comparable pair in the set Xm and Ti(left) (Ti(right)) is the
respective time-to-event. In the next section, we will use the above simplification
(6) to construct the loss function for the neural network.

3 Siamese Survival Prognosis Network

In this section, we will describe the architecture of the network and the loss
functions that we propose to train the network.

Denote H as a feed-forward neural network which is visualized in Fig. 1.
It is composed of a sequence of L fully connected hidden layers with “scaled
exponential linear units” (SELU) activation. The last hidden layer is fed to M
layers of width K. Each neuron in the latter M layers estimates the probability
that a subject x experiences cause m occurs in a time interval tk, which is given
as Prm(tk, x). For an input covariate x the output from all the neurons is a

vector of probabilities given as
{[

Prm(tk, x)
]K

k=1

}M

m=1
.

The estimate of cumulative incidence function computed for cause m at time
tk is given as R̃m(tk, x) =

∑k
i=1 Prm(ti, x). The final output of the neural net-

work for input x is vector of estimates of the cumulative incidence function given

as H(x) =
{[

R̃m(tk, x)
]K

k=1

}M

m=1
.

The loss function is composed of three terms: discrimination, accuracy, and
a loss term.

We cannot use the metric in (6) directly to train the network because it is a
discontinuous function (composed of indicators), which can impede training. We
overcome this problem by approximating the indicator function using a scaled
sigmoid function σ(αx) = 1

1+exp(−αx) . The approximated discrimination index
is given as

Fig. 1. Illustration of the architecture.

Siamese Survival Analysis with Competing Risks 265

ˆ̄Ct(m) =
|Xm|∑

i=1

σ
[
α
[
R̃m(Ti(left),Xm

i (left)) − R̃m(Ti(left),Xm
i (right))

]]
. (7)

The scaling parameter α determines the sensitivity of the loss function to dis-
crimination. If the value of α is high, then the penalty for error in discrimination
is also very high. Therefore, higher values of alpha guarantee that the subjects
in a comparable pair are assigned concordant risk values.

The discrimination part defined above captures a model’s ability to discrim-
inate subjects for each cause separately. We also need to ensure that the model
can predict the cause accurately. We define the accuracy of a model in terms of
a scaled sigmoid function with scaling parameter κ as follows

L1 =
|Xm|∑

i=1

σ
[
κ
(
R̃D(left)(Ti(left),Xm

i (left))−
∑

m �=D(left)
R̃m(Ti(left),Xm

i (left))
)]

.

(8)
The accuracy term penalizes the risk functions only at the event times of the left
subjects in comparable pairs. However, it is important that the neural network
is optimized to produce risk values that interpolate well to other time intervals
as well. Therefore, we introduce a loss term below

L2 = β

M∑

m=1

|Xm|∑

i=1

∑

tk<Ti(left)
Rm(tk,Xm

i (right))2 . (9)

The loss term ensures that the risk of each right subject is minimized for all the
times before time-to-event of the left subject in the respective comparable pair.
Intuitively, the loss term can be justified as follows. The right subjects do not
experience an event before the time Ti(left). Hence, the probability that they
experience an event before Ti(left) should take a small value.

The final loss function is the sum of the discrimination terms (described
above), the accuracy and the loss terms, and is given as

M∑

m=1

ˆ̄Ct(m) + L1 + L2 . (10)

Finally, we adjust for the event imbalance and the time interval imbalance caused
by the unequal number of pairs for each event and time interval with inverse
propensity weights. These weights are the frequency of the occurrence of the
various events at the various times and are multiplying the loss functions of the
corresponding comparable pairs.

We train the feed-forward network using the above loss function (10) and
regularize it using SELU dropout [16]. Since the loss function involves the dis-
crimination term, each term in the loss function involves a pairwise comparison.
This makes the network training similar to a Siamese network [3]. The back-
propagation terms now depend on each comparable pair.

266 A. Nemchenko et al.

4 Experiments

This section includes a discussion of hyper-parameter optimization followed by
competing risk and survival analysis experiments1. We compare against Fine-
Gray model (“cmprsk” R package), Competing Random Forest (CRF) (“ran-
domForestSRC” R package) and the cause-specific (cs) extension of two single
event (non-competing risks) methods, Cox PH model and [14]. In cause-specific
extension of single event models, we mark the occurrence of any event apart
from the event of interest as censorship and decouple the problem into separate
single event problem (one for each cause); this is a standard way of extending
single-event models to competing risk models. In the following results we refer
to our method with the acronym SSPN.

4.1 Hyper-Parameter Optimization

Optimization was performed using a 5-fold cross-validation with fixed censorship
rates in each fold. We choose 60-20-20 division for training, validation and test-
ing sets. A standard grid search was used to determine the batch size, number
of hidden layers, width of the hidden layers and the dropout rate. The optimal
values of α and β were consistently 500 and 0.01 for all datasets. As previously
mentioned, the sets are comprised of patient pairs. In each training iteration, a
batch size of pairs was sampled with replacement from the training set which
reduces convergence speed but doesn’t lower performance relative to regular
batches [21]. We note that the training sets are commonly in the tens of million
pairs with patients appearing multiple times in both sides of the pair. A stan-
dard definition of an epoch would compose of a single iteration over all patient.
However, in our case, we not only learn patient specific characteristics but also
patient comparison relationships, which means an epoch with a number of iter-
ations equal to the number of patients is not sufficient. On the other hand, an
epoch definition as an iteration over all pairs is impractical. Our best empirical
results were attained after 100 K iterations with Tensorflow on 8-core Xeon E3-
1240, Adam optimizer [15] and a decaying learning rate, LR−1(i) = 10−3 + i.
Table 1 summarizes the optimal hyper-parameters.

4.2 SEER

The Surveillance, Epidemiology, and End Results Program (SEER) dataset pro-
vides information on breast cancer patients during the years 1992–2007. A total

Table 1. Summary of hyper-parameters

Parameter Batch size # Hidden layers Hidden layers width Dropout rate

SEER 2048 3 50 0.4

Synthetic data 2048 2 40 0.35

1 Code available at https://github.com/santon834/Siamese-Competing-Risks

https://github.com/santon834/Siamese-Competing-Risks

Siamese Survival Analysis with Competing Risks 267

Table 2. Summary of competing Ct index on SEER.

Dataset CVD Breast cancer Other

cs-Cox PH 0.656 [0.629−0.682] 0.634 [0.626−0.642] 0.695 [0.675−0.714]

cs-[14] 0.645 [0.625−0.664] 0.697 [0.686−0.708] 0.675 [0.644−0.706]

Fine-Gray 0.659 [0.605−0.714] 0.636 [0.622−0.650] 0.691 [0.673−0.708]

CRF 0.601 [0.565−0.637] 0.705 [0.692−0.718] 0.636 [0.624−0.648]

SSPN 0.663 [0.625−0.701] 0.735 [0.678−0.793] 0.699 [0.681−0.716]

*p-value < 0.05

of 72,809 patients experienced breast cancer, cardiovascular disease (CVD), other
diseases, or were right-censored. The cohort consists of 23 features, including age,
race, gender, morphology information, diagnostic information, therapy informa-
tion, tumor size, tumor type, etc. Missing values were replaced by mean value
for real-valued features and by the mode for categorical features. 1.3% of the
patients experienced CVD and 15.6% experienced breast cancer. Table 2 displays
the results for this dataset. We notice that for the infrequent adverse event, CVD,
the performance gain is negligible while for the frequent breast cancer event, the
gain is significant. However, we wish to remind the reader that our focus is on
healthcare where even minor gains have the potential to save lives. Considering
there are 72,809 patients, a performance improvement even as low as 0.1% has
the potential to save multiple lives and should not be disregarded.

4.3 Synthetic Data

Due to the relative scarcity of competing risks datasets and methods, we have
created an additional synthetic dataset to further validate the performance of
our method. We have constructed two stochastic processes with parameters and
the event times as follows

x1
i , x

2
i , x

3
i ∼ N (0, I), T 1

i ∼ exp
(
(x3

i)
2 + x1

i

)
, T 2

i ∼ exp
(
(x3

i)
2 + x2

i

)
. (11)

where (x1
i , x

2
i , x

3
i) is the vector of features for patient i. For k = 1, 2, the features

xk only have an effect on the event time for event k, while x3 has an effect on the

Table 3. Summary of competing Ct index on synthetic data.

Method Cause 1 Cause 2

cs-Cox PH 0.571 [0.554−0.588] 0.581 [0.570−0.591]

cs-[14] 0.580 [0.556−0.603] 0.593 [0.576−0.611]

Fine-Gray 0.574 [0.559−0.590] 0.586 [0.577−0.594]

Competing random forest 0.591 [0.575−0.606] 0.573 [0.557−0.588]

SSPN 0.603 [0.593−0.613] 0.613 [0.598−0.627]

*p-value < 0.05

268 A. Nemchenko et al.

event times of both events. Note that we assume event times are exponentially
distributed with a mean parameter depending on both linear and non-linear
(quadratic) function of features. Given the parameters, we first produced 30, 000
patients; among those, we randomly selected 15, 000 patients (50%) to be right-
censored at a time randomly drawn from the uniform distribution on the interval
[0,min{T 1

i , T 2
i }]. (This censoring fraction was chosen to be roughly the same

censoring fraction as in the real datasets, and hence to present the same difficulty
as found in those datasets). Table 3 displays the results for the above dataset.
We demonstrate the same consistent performance gain as in the previous case.

5 Conclusion

Competing risks settings are pervasive in healthcare. They are encountered in
cardiovascular diseases, in cancer, and in the geriatric population suffering from
multiple diseases. To solve the challenging problem of learning the model param-
eters from time-to-event data while handling right censoring, we have developed
a novel deep learning architecture for estimating personalized risk scores in the
presence of competing risks based on the well-known Siamese network architec-
ture. Our method is able to capture complex non-linear representations missed
by classical machine learning and statistical models. Experimental results show
that our method is able to outperform existing competing risk methods by suc-
cessfully learning representations which flexibly describe non-proportional haz-
ard rates with complex interactions between covariates and survival times that
are common in many diseases with heterogeneous phenotypes.

References

1. Alaa, A.M., van der Schaar, M.: Deep multi-task Gaussian processes for survival
analysis with competing risks (2017)

2. Antolini, L., Boracchi, P., Biganzoli, E.: A time-dependent discrimination index
for survival data. Stat. Med. 24(24), 3927–3944 (2005)

3. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a “siamese” time delay neural network. In: Advances in Neural Information
Processing Systems, pp. 737–744 (1994)

4. Chen, Y., Jia, Z., Mercola, D., Xie, X.: A gradient boosting algorithm for survival
analysis via direct optimization of concordance index. Comput. Math. Methods
Med. 2013, 8 (2013). https://doi.org/10.1155/2013/873595. Article ID 873595

5. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 539–546.
IEEE (2005)

6. Cox, D.R.: Models and life-tables regression. JR Stat. Soc. Ser. B 34, 187–220
(1972)

7. Crowder, M.J.: Classical Competing Risks. CRC Press, London (2001)
8. Fine, J.P., Gray, R.J.: A proportional hazards model for the subdistribution of a

competing risk. J. Am. Stat. Assoc. 94(446), 496–509 (1999)

https://doi.org/10.1155/2013/873595

Siamese Survival Analysis with Competing Risks 269

9. Glynn, R.J., Rosner, B.: Comparison of risk factors for the competing risks of
coronary heart disease, stroke, and venous thromboembolism. Am. J. Epidemiol.
162(10), 975–982 (2005)

10. Gooley, T.A., Leisenring, W., Crowley, J., Storer, B.E.: Estimation of failure prob-
abilities in the presence of competing risks: new representations of old estimators.
Stat. Med. 18(6), 695–706 (1999)

11. Heagerty, P.J., Zheng, Y.: Survival model predictive accuracy and ROC curves.
Biometrics 61(1), 92–105 (2005)

12. Ishwaran, H., Gerds, T.A., Kogalur, U.B., Moore, R.D., Gange, S.J., Lau, B.M.:
Random survival forests for competing risks. Biostatistics 15(4), 757–773 (2014)

13. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival
forests. Ann. Appl. Stat. 2, 841–860 (2008)

14. Katzman, J., Shaham, U., Bates, J., Cloninger, A., Jiang, T., Kluger, Y.: Deep
survival: a deep cox proportional hazards network. arXiv preprint arXiv:1606.00931
(2016)

15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural
networks. arXiv preprint arXiv:1706.02515 (2017)

17. Lambert, P., Dickman, P., Nelson, C., Royston, P.: Estimating the crude proba-
bility of death due to cancer and other causes using relative survival models. Stat.
Med. 29(7–8), 885–895 (2010)

18. Luck, M., Sylvain, T., Cardinal, H., Lodi, A., Bengio, Y.: Deep learning for patient-
specific kidney graft survival analysis. arXiv preprint arXiv:1705.10245 (2017)

19. Mayr, A., Hofner, B., Schmid, M.: Boosting the discriminatory power of sparse
survival models via optimization of the concordance index and stability selection.
BMC Bioinform. 17(1), 288 (2016)

20. Mayr, A., Schmid, M.: Boosting the concordance index for survival data-a unified
framework to derive and evaluate biomarker combinations. PloS ONE 9(1), e84483
(2014)

21. Recht, B., Re, C.: Beneath the valley of the noncommutative arithmetic-geometric
mean inequality: conjectures, case-studies, and consequences (2012)

22. Satagopan, J., Ben-Porat, L., Berwick, M., Robson, M., Kutler, D., Auerbach, A.:
A note on competing risks in survival data analysis. Br. J. Cancer 91(7), 1229–1235
(2004)

23. Schmid, M., Wright, M.N., Ziegler, A.: On the use of harrell’s c for clinical risk
prediction via random survival forests. Exp. Syst. Appl. 63, 450–459 (2016)

24. Tsiatis, A.: A nonidentifiability aspect of the problem of competing risks. Proc.
Nat. Acad. Sci. 72(1), 20–22 (1975)

25. Wang, J., Fang, Z., Lang, N., Yuan, H., Su, M.Y., Baldi, P.: A multi-resolution app-
roach for spinal metastasis detection using deep siamese neural networks. Comput.
Biol. Med. 84, 137–146 (2017)

26. Wolbers, M., Koller, M.T., Witteman, J.C., Steyerberg, E.W.: Prognostic models
with competing risks: methods and application to coronary risk prediction. Epi-
demiology 20(4), 555–561 (2009)

27. Yousefi, S., et al.: Predicting clinical outcomes from large scale cancer genomic
profiles with deep survival models. bioRxiv, p. 131367 (2017)

http://arxiv.org/abs/1606.00931
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1705.10245

A Survey on Deep Transfer Learning

Chuanqi Tan(B), Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang,
and Chunfang Liu

State Key Laboratory of Intelligent Technology and Systems,
Tsinghua National Laboratory for Information Science and Technology (TNList),

Department of Computer Science and Technology,
Tsinghua University, Beijing, China

{tcq15,kt14,zhangwc14,yang-c15}@mails.tsinghua.edu.cn,
{fcsun,cfliu1985}@tsinghua.edu.cn

Abstract. As a new classification platform, deep learning has recently
received increasing attention from researchers and has been success-
fully applied to many domains. In some domains, like bioinformatics
and robotics, it is very difficult to construct a large-scale well-annotated
dataset due to the expense of data acquisition and costly annotation,
which limits its development. Transfer learning relaxes the hypothesis
that the training data must be independent and identically distributed
(i.i.d.) with the test data, which motivates us to use transfer learning
to solve the problem of insufficient training data. This survey focuses
on reviewing the current researches of transfer learning by using deep
neural network and its applications. We defined deep transfer learning,
category and review the recent research works based on the techniques
used in deep transfer learning.

Keywords: Deep transfer learning · Transfer learning · Survey

1 Introduction

Deep learning has recently received increasing attention from researchers and has
been successfully applied to numerous real-world applications. Deep learning
algorithms attempt to learn high-level features from mass data, which make
deep learning beyond traditional machine learning. It can automatic extract
data features by unsupervised or semi-supervised feature learning algorithm and
hierarchical feature extraction. In contrast, traditional machine learning methods
need to design features manually that seriously increases the burden on users.
It can be said that deep learning is an representation learning algorithm based
on large-scale data in machine learning.

Data dependence is one of the most serious problem in deep learning. Deep
learning has a very strong dependence on massive training data compared to
traditional machine learning methods, because it need a large amount of data
to understand the latent patterns of data. An interesting phenomenon can be

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 270–279, 2018.
https://doi.org/10.1007/978-3-030-01424-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_27&domain=pdf

A Survey on Deep Transfer Learning 271

found that the scale of the model and the size of the required amount of data has
a almost linear relationship. An acceptable explanation is that for a particular
problem, the expressive space of the model must be large enough to discover the
patterns under the data. The pre-order layers in the model can identify high-level
features of training data, and the subsequent layers can identify the information
needed to help make the final decision.

Insufficient training data is a inescapable problem in some special domains.
The collection of data is complex and expensive that make it is extremely difficult
to build a large-scale, high-quality annotated dataset. For example, each sample
in bioinformatics dataset often demonstration a clinical trial or a painful patient.
In addition, even we obtain training dataset by paid an expensive price, it is very
easy to get out of date and thus cannot be effectively applied in the new tasks.

Transfer learning relaxes the hypothesis that the training data must be inde-
pendent and identically distributed (i.i.d.) with the test data, which motivates
us to use transfer learning to against the problem of insufficient training data.
In transfer learning, the training data and test data are not required to be i.i.d.,
and the model in target domain is not need to trained from scratch, which can
significantly reduce the demand of training data and training time in the target
domain.

In the past, most studies of transfer learning were conducted in traditional
machine learning methods. Due to the dominance position of deep learning in
modern machine learning methods, a survey on deep transfer learning and its
applications is particularly important. The contributions of this survey paper
are as follows:

– We define the deep transfer learning and categorizing it into four categories
for the first time.

– We reviewing the current researchworks on each category of deep transfer learn-
ing, and given a standardized description and sketch map of every category.

2 Deep Transfer Learning

Transfer learning is an important tool in machine learning to solve the basic
problem of insufficient training data. It try to transfer the knowledge from the
source domain to the target domain by relaxing the assumption that the training
data and the test data must be i.i.d. This will leads to a great positive effect on
many domains that are difficult to improve because of insufficient training data.
The learning process of transfer learning illustrated in the Fig. 1.

Some notations used in this survey need to be clearly defined. First of all,
we give the definitions of a domain and a task respectively: A domain can be
represented by D = {χ, P (X)}, which contains two parts: the feature space χ
and the edge probability distribution P (X) where X = {x1, ..., xn} ∈ χ. A task
can be represented by T = {y, f(x)}. It consists of two parts: label space y
and target prediction function f(x). f(x) can also be regarded as a conditional
probability function P (y|x). Then, the transfer learning can be formal defined
as follows:

272 C. Tan et al.

Fig. 1. Learning process of transfer learning.

Definition 1 (Transfer Learning). Given a learning task Tt based on Dt,
and we can get the help from Ds for the learning task Ts. Transfer learning aims
to improve the performance of predictive function fT (·) for learning task Tt by
discover and transfer latent knowledge from Ds and Ts, where Ds �= Dt and/or
Ts �= Tt. In addition, in the most case, the size of Ds is much larger than the
size of Dt, Ns � Nt.

Surveys [19,25] divide the transfer learning methods into three major cate-
gories with the relationship between the source domain and the target domain,
which has been widely accepted. These surveys are good summary of the past
works on transfer learning, which introduced a number of classic transfer learn-
ing methods. Further more, many newer and better methods have been pro-
posed recently. In recent years, transfer learning research community are mainly
focused on the following two aspects: domain adaption and multi-source domains
transfer.

Nowadays, deep learning has achieved dominating situation in many research
fields in recent years. It is important to find how to effectively transfer knowledge
by deep neural network, which called deep transfer learning that defined as
follows:

Definition 2 (Deep Transfer Learning). Given a transfer learning task
defined by 〈Ds, Ts,Dt, Tt, fT (·)〉. It is a deep transfer learning task where fT (·)
is a non-linear function that reflected a deep neural network.

3 Categories

Deep transfer learning studies how to utilize knowledge from other fields by
deep neural networks. Since deep neural networks have become popular in var-
ious fields, a considerable amount of deep transfer learning methods have been
proposed that it is very important to classify and summarize them. Based on the
techniques used in deep transfer learning, this paper classifies deep transfer learn-
ing into four categories: instances-based deep transfer learning, mapping-based

A Survey on Deep Transfer Learning 273

Table 1. Categorizing of deep transfer learning.

Approach category Brief description Some related works

Instances-based Utilize instances in source domain by appropriate
weight

[4,10,11,20,24,26,27]

Mapping-based Mapping instances from two domains into a new data
space with better similarity

[2,8,12,14,23]

Network-based Reuse the partial of network pre-trained in the source
domain

[3,6,9,15,17,28,30]

Adversarial-based Use adversarial technology to find transferable
features that both suitable for two domains

[1,5,13,16,21,22]

deep transfer learning, network-based deep transfer learning, and adversarial-
based deep transfer learning, which are shown in Table 1.

3.1 Instances-Based Deep Transfer Learning

Instances-based deep transfer learning refers to use a specific weight adjust-
ment strategy, select partial instances from the source domain as supplements
to the training set in the target domain by assigning appropriate weight values
to these selected instances. It is based on the assumption that “Although there
are different between two domains, partial instances in the source domain can
be utilized by the target domain with appropriate weights”. The sketch map of
instances-based deep transfer learning are shown in Fig. 2.

TrAdaBoost proposed by [4] use AdaBoost-based technology to filter out
instances that are dissimilar to the target domain in source domains. Re-weighted
instances in source domain to compose a distribution similar to target domain.
Finally, training model by using the re-weighted instances from source domain
and origin instances from target domain. It can reduce the weighted train-
ing error on different distribution domains that preserving the properties of
AdaBoost. TaskTrAdaBoost proposed by [27] is a fast algorithm promote rapid
retraining over new targets. Unlike TrAdaBoost is designed for classification
problems, ExpBoost.R2 and TrAdaBoost.R2 were proposed by [20] to cover the

Source Domain Target Domain

Fig. 2. Sketch map of instances-based deep transfer learning. Instances with light blue
color in source domain meanings dissimilar with target domain are exclude from train-
ing dataset; Instances with dark blue color in source domain meanings similar with
target domain are include in training dataset with appropriate weight.

274 C. Tan et al.

regression problem. Bi-weighting domain adaptation (BIW) proposed [24] can
aligns the feature spaces of two domains into the common coordinate system,
and then assign an appropriate weight of the instances from source domain. [10]
propose a enhanced TrAdaBoost to handle the problem of interregional sand-
stone microscopic image classification. [26] propose a metric transfer learning
framework to learn instance weights and a distance of two different domains in
a parallel framework to make knowledge transfer across domains more effective.
[11] introduce an ensemble transfer learning to deep neural network that can
utilize instances from source domain.

3.2 Mapping-Based Deep Transfer Learning

Mapping-based deep transfer learning refers to mapping instances from the
source domain and target domain into a new data space. In this new data space,
instances from two domains are similarly and suitable for a union deep neural
network. It is based on the assumption that “Although there are different between
two origin domains, they can be more similarly in an elaborate new data space.”.
The sketch map of instances-based deep transfer learning are shown in Fig. 3.

Transfer component analysis (TCA) introduced by [18] and TCA-based
methods [29] had been widely used in many applications of traditional trans-
fer learning. A natural idea is extend the TCA method to deep neural network.
[23] extend MMD to comparing distributions in a deep neural network, by intro-
duces an adaptation layer and an additional domain confusion loss to learn a
representation that is both semantically meaningful and domain invariant. The
MMD distance used in this work is defined as

DMMD(XS ,XT) =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1
|XS |

∑

xs∈XS

φ(xs) − 1
|XT |

∑

xt∈XT

φ(xt)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(1)

Source Domain

Target Domain

Mapping

New Data Space

Fig. 3. Sketch map of mapping-based deep transfer learning. Simultaneously, instances
from source domain and target domain are mapping to a new data space with more
similarly. Consider all instances in the new data space as the training set of the neural
network.

A Survey on Deep Transfer Learning 275

and the loss function is defined as

L = LC(XL, y) + λD2
MMD(XS ,XT). (2)

[12] improved previous work by replace MMD distance with multiple kernel vari-
ant MMD (MK-MMD) distance proposed by [8]. The hidden layer related with
the learning task in the convolutional neural networks (CNN) is mapped into
the reproducing kernel Hilbert space (RKHS), and the distance between different
domains is minimized by the multi-core optimization method. [14] propose joint
maximum mean discrepancy (JMMD) to measurement the relationship of joint
distribution. JMMD was used to generalize the transfer learning ability of the
deep neural networks (DNN) to adapt the data distribution in different domain
and improved the previous works. Wasserstein distance proposed by [2] can be
used as a new distance measurement of domains to find better mapping.

3.3 Network-Based Deep Transfer Learning

Network-based deep transfer learning refers to the reuse the partial network that
pre-trained in the source domain, including its network structure and connection
parameters, transfer it to be a part of deep neural network which used in target
domain. It is based on the assumption that “Neural network is similar to the
processing mechanism of the human brain, and it is an iterative and continuous
abstraction process. The front-layers of the network can be treated as a feature
extractor, and the extracted features are versatile”. The sketch map of network-
based deep transfer learning are shown in Fig. 4.

Source Domain

Target Domain

Transfer

Fig. 4. Sketch map of network-based deep transfer learning. First, network was trained
in source domain with large-scale training dataset. Second, partial of network pre-
trained for source domain are transfer to be a part of new network designed for target
domain. Finally, the transfered sub-network may be updated in fine-tune strategy.

[9] divide the network into two parts, the former part is the language-
independent feature transform and the last layer is the language-relative classi-
fier. The language-independent feature transform can be transfer between multi

276 C. Tan et al.

languages. [17] reuse front-layers trained by CNN on the ImageNet dataset to
compute intermediate image representation for images in other datasets, CNN
are trained to learning image representations that can be efficiently transferred
to other visual recognition tasks with limited amount of training data. [15] pro-
posed a approach to jointly learn adaptive classifiers and transferable features
from labeled data in the source domain and unlabeled data in the target domain,
which explicitly learn the residual function with reference to the target classifier
by plugging several layers into deep network. [30] learning domain adaptation
and deep hash features simultaneously in a DNN. [3] proposed a novel multi-
scale convolutional sparse coding method. This method can automatically learns
filter banks at different scales in a joint fashion with enforced scale-specificity of
learned patterns, and provides an unsupervised solution for learning transferable
base knowledge and fine-tuning it towards target tasks. [6] apply deep transfer
learning to transfer knowledge from real-world object recognition tasks to glitch
classifier for the detector of multiple gravitational wave signals. It demonstrate
that DNN can be used as excellent feature extractors for unsupervised clustering
methods to identify new classes based on their morphology, without any labeled
examples.

Another very noteworthy result is that [28] point out the relationship between
network structure and transferability. It demonstrated that some modules may
not influence in-domain accuracy but influence the transferability. It point out
what features are transferable in deep networks and which type of networks
are more suitable for transfer. Given an conclusion that LeNet, AlexNet, VGG,
Inception, ResNet are good chooses in network-based deep transfer learning.

3.4 Adversarial-Based Deep Transfer Learning

Adversarial-based deep transfer learning refers to introduce adversarial technol-
ogy inspired by generative adversarial nets (GAN) [7] to find transferable repre-
sentations that is applicable to both the source domain and the target domain.
It is based on the assumption that “For effective transfer, good representation
should be discriminative for the main learning task and indiscriminate between
the source domain and target domain”. The sketch map of adversarial-based
deep transfer learning are shown in Fig. 5.

The adversarial-based deep transfer learning has obtained the flourishing
development in recent years due to its good effect and strong practicality. [1]
introduce adversarial technology to transfer learning for domain adaption, by
using a domain adaptation regularization term in the loss function. [5] proposed
an adversarial training method that suitable for most any feed-forward neural
model by augmenting it with few standard layers and a simple new gradient
reversal layer. [21] proposed a approach transfer knowledge cross-domain and
cross-task simultaneity for sparsely labeled target domain data. A special joint
loss function was used in this work to force CNN to optimize both the distance
between domains which defined as LD = Lc +λLadver, where Lc is classification
loss, Ladver is domain adversarial loss. Because the two losses stand in direct
opposition to one another, an iterative optimize algorithm are introduced to

A Survey on Deep Transfer Learning 277

Source label

Target label

Domain label

Adversarial Layer

Source Domain

Target Domain

Fig. 5. Sketch map of adversarial-based deep transfer learning. In the training process
on large-scale dataset in the source domain, the front-layers of network is regarded as
a feature extractor. It extracting features from two domains and sent them to adver-
sarial layer. The adversarial layer try to discriminates the origin of the features. If the
adversarial network achieves worse performance, it means a small difference between
the two types of feature and better transferability, and vice versa. In the following
training process, the performance of the adversarial layer will be considered to force
the transfer network discover general features with more transferability.

update one loss when fixed another. [22] proposed a new GAN loss and com-
bine with discriminative modeling to a new domain adaptation method. [13]
proposed a randomized multi-linear adversarial networks to exploit multiple fea-
ture layers and the classifier layer based on a randomized multi-linear adversary
to enable both deep and discriminative adversarial adaptation. [16] utilize a
domain adversarial loss, and generalizes the embedding to novel task using a
metric learning-based approach to find more tractable features in deep transfer
learning.

4 Conclusion

In this survey paper, we have review and category current researches of deep
transfer learning. Deep transfer learning is classified into four categories for the
first time: instances-based deep transfer learning, mapping-based deep trans-
fer learning, network-based deep transfer learning, and adversarial-based deep
transfer learning. In most practical applications, the above multiple technologies
are often used in combination to achieve better results. Most current researches
focuses on supervised learning, how to transfer knowledge in unsupervised or
semi-supervised learning by deep neural network may attract more and more
attention in the future. Negative transfer and transferability measures are impor-
tant issues in traditional transfer learning. The impact of these two issues in
deep transfer learning also requires us to conduct further research. In addition,
a very attractive research area is to find a stronger physical support for transfer
knowledge in deep neural network, which requires the cooperation of physicists,
neuroscientists and computer scientists. It can be predicted that deep transfer

278 C. Tan et al.

learning will be widely applied to solve many challenging problems with the
development of deep neural network.

References

1. Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.: Domain-
adversarial neural networks. arXiv preprint arXiv:1412.4446 (2014)

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

3. Chang, H., Han, J., Zhong, C., Snijders, A., Mao, J.H.: Unsupervised transfer
learning via multi-scale convolutional sparse coding for biomedical applications.
IEEE Trans. Patt. Anal. Mach. Intell. 40(5), 1182–1194 (2017)

4. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Proceed-
ings of the 24th International Conference on Machine Learning, pp. 193–200. ACM
(2007)

5. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
arXiv preprint arXiv:1409.7495 (2014)

6. George, D., Shen, H., Huerta, E.: Deep transfer learning: a new deep learning glitch
classification method for advanced LIGO. arXiv preprint arXiv:1706.07446 (2017)

7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

8. Gretton, A., et al.: Optimal kernel choice for large-scale two-sample tests. In:
Advances in Neural Information Processing Systems, pp. 1205–1213 (2012)

9. Huang, J.T., Li, J., Yu, D., Deng, L., Gong, Y.: Cross-language knowledge transfer
using multilingual deep neural network with shared hidden layers. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 7304–7308. IEEE (2013)

10. Li, N., Hao, H., Gu, Q., Wang, D., Hu, X.: A transfer learning method for auto-
matic identification of sandstone microscopic images. Comput. Geosci. 103, 111–
121 (2017)

11. Liu, X., Liu, Z., Wang, G., Cai, Z., Zhang, H.: Ensemble transfer learning algo-
rithm. IEEE Access 6, 2389–2396 (2018)

12. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep
adaptation networks. In: International Conference on Machine Learning, pp. 97–
105 (2015)

13. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Domain adaptation with randomized
multilinear adversarial networks. arXiv preprint arXiv:1705.10667 (2017)

14. Long, M., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation
networks. arXiv preprint arXiv:1605.06636 (2016)

15. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with
residual transfer networks. In: Advances in Neural Information Processing Systems,
pp. 136–144 (2016)

16. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.F.: Label efficient learning of transferable
representations acrosss domains and tasks. In: Advances in Neural Information
Processing Systems, pp. 164–176 (2017)

17. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 1717–1724. IEEE
(2014)

http://arxiv.org/abs/1412.4446
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1409.7495
http://arxiv.org/abs/1706.07446
http://arxiv.org/abs/1705.10667
http://arxiv.org/abs/1605.06636

A Survey on Deep Transfer Learning 279

18. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer
component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

20. Pardoe, D., Stone, P.: Boosting for regression transfer. In: Proceedings of the 27th
International Conference on International Conference on Machine Learning, pp.
863–870. Omnipress (2010)

21. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across
domains and tasks. In: 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 4068–4076. IEEE (2015)

22. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 4
(2017)

23. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

24. Wan, C., Pan, R., Li, J.: Bi-weighting domain adaptation for cross-language text
classification. In: IJCAI Proceedings of International Joint Conference on Artificial
Intelligence, vol. 22, p. 1535 (2011)

25. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big
Data 3(1), 9 (2016)

26. Xu, Y., et al.: A unified framework for metric transfer learning. IEEE Trans. Knowl.
Data Eng. 29(6), 1158–1171 (2017)

27. Yao, Y., Doretto, G.: Boosting for transfer learning with multiple sources. In:
2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1855–1862. IEEE (2010)

28. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
pp. 3320–3328 (2014)

29. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for
visual domain adaptation. In: CVPR (2017)

30. Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity
retrieval. In: AAAI, pp. 2415–2421 (2016)

http://arxiv.org/abs/1412.3474

Cloud Detection in High-Resolution
Multispectral Satellite Imagery

Using Deep Learning

Giorgio Morales(B), Samuel G. Huamán, and Joel Telles

National Institute of Research and Training in Telecommunications (INICTEL-UNI),
National University of Engineering, San Luis 1771, 15021 Lima, Peru

{gmorales,shuaman,jtelles}@inictel.edu.pe

Abstract. Cloud detection in high-resolution satellite images is a crit-
ical step for many remote sensing applications, but also a challenge, as
such images have limited spectral bands. The contribution of this paper is
twofold: We present a dataset called CloudPeru as well as a methodology
for cloud detection in multispectral satellite images (approximately 2.8
meters per pixel) using deep learning. We prove that an agile Convolu-
tional Neural Network (CNN) is able to distinguish between non-clouds
and different types of clouds, including thin and very small ones, and
achieve a classification accuracy of 99.94%. Each image is subdivided into
superpixels by the SLICO algorithm, which are then processed by the
trained CNN. Finally, we obtain the cloud mask by applying a threshold
of 0.5 on the probability map. The results are compared with manually
annotated images, showing a Kappa coefficient of 0.944, which is higher
than that of compared methods.

Keywords: Cloud detection · High-resolution
Convolutional neural networks · Deep learning

1 Introduction

Today, there are many operational high-resolution satellites, and they have mul-
tiple applications in agriculture, surveillance and environmental monitoring. The
images acquired by these satellites require common procedures such as geometric
and atmospheric corrections and cloud detection.

Previous works have addressed cloud detection from different perspectives.
The simplest are the threshold-based methods [1–3], which tend to ignore addi-
tional features such as object texture and shape and, consequently, show prob-
lems in highly reflective non-cloud regions with little detail.

Other methods attempt to explicitly extract and combine local features such
as reflectance and texture descriptors that allow the differentiation of cloud and
non-cloud regions through intelligent classifiers such as support vector machines
or neural networks [4–7]. These methods work well for some types of clouds and

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 280–288, 2018.
https://doi.org/10.1007/978-3-030-01424-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_28&domain=pdf

Cloud Detection in High-Resolution Multispectral Satellite Imagery 281

certain types of territories; however, they usually fail to identify thin or semi-
transparent clouds. Given that previously used features are manually selected,
some of them prove not to be sufficient for the detection of a wide range of cloud
types, which is why methods such as [8,9] propose the use of Convolutional Neu-
ral Networks (CNN), an efficient end-to-end deep hierarchical feature learning
model that can capture the intrinsic features of high-resolution satellite images.

In this paper, we propose a new efficient method to detect clouds in high-
resolution multispectral satellite images from PERUSAT-1, a Peruvian satel-
lite managed and supervised by the Space Agency of Peru (CONIDA). This
and other agencies, such as the Peruvian Ministry of Environment (MINAM),
require to develop tools for this kind of tasks that work properly in the many
Peruvian geographies (e.g. coast, mountains, rainforest, dry forest). As a first
step, we used the SLICO algorithm [10] to divide the image into small homoge-
nous regions called superpixels. Then, we generated 27×27-pixel patches around
the center of each superpixel and process them in the CNN, as previously trained
in the CloudPeru dataset. We take previous works on cloud detection with deep
learning as main reference, but extend them to the use of multispectral images
and smaller image patches for the CNN input, thus expecting to improve the
classification accuracy and the final Kappa coefficient.

2 Proposed Method

2.1 CloudPeru Dataset

A PERUSAT-1 scene has four spectral bands: red (0.63–0.7 m), green (0.53–
0.59 m), blue (0.45–0.50 m) and NIR (0.752–0.885 m). The spatial resolution of
the multispectral bands is 2.8 m per pixel and that of the panchromatic band is
0.7 m per pixel. We used 15 PERUSAT-1 scenes of different area and from dif-
ferent geographies to create the training, validation and test set in order to train
and select the optimal Convolutional Neural Network (CNN), and 15 additional
scenes to extract 30 test images of 1000 × 1000 pixels to validate the proposed
method and compare it with others.

Each of the 15 selected images was adjusted to reflectance values. An image
labeling tool developed as part of this study was used to manually extract and
label cloud and non-cloud patches. Firstly, each scene was divided into homo-
geneous regions called superpixels with the SLICO algorithm using only the
RGB channels, setting the size to approximately 150 pixels and the compact-
ness to 0.1. This is done because some cloud regions, especially thin clouds,
have very irregular shape, and a low compactness value encourages the SLICO
algorithm to create more irregular superpixels. Then, after choosing a labeling
option (cloud or non-cloud), the user selects multiple superpixels, thus creating
a patch for each one and taking a 27×27 - pixel window around its center. Using
this method, we created the CloudPeru dataset1, conformed by 476,422 image
patches, of which 207,963 are clouds and 268,459 are non-clouds. We split 95%

1 The CloudPeru dataset is available at the web link [11].

282 G. Morales et al.

Fig. 1. Color corrected sample images from CloudPeru dataset for visualization.

of the data to create the training set, 2.5% to create the validation set and 2.5%
to create the test set. A sample of images from the dataset is shown in Fig. 1.

2.2 Neural Network Training

Figure 2 shows the architecture of our CNN model. It consists of four convo-
lutional and two fully-connected layers, similar to the one presented in [8]. All
the convolutional blocks, denoted as “CONV”, use 3 × 3 filters with a stride
of “s”. Blocks marked with “V” are valid padded, which means that the input
patch is reduced accordingly to the filter and stride sizes; if they are marked
with “S”, it means that the output is the same size as the input. “MAXPOOL”
represents a max pooling layer and “BN” a batch normalization layer. The first
fully-connected layer has 128 units with a PRelu activation function [12] and
the second one has one unit with a sigmoid activation function. The CNN was
trained using an Adam optimizer [13] with a learning rate of 0.0001, a momen-
tum term β1 of 0.9, a momentum term β2 of 0.999 and a mini-batch size of 512.
Figures 3 and 4 show the evolution of the accuracy and the loss, respectively,
over training time.

Additionally, to select the optimal window size, we created two more
databases: the first with 493,460 four-channel image patches of 21 × 21 pix-
els and the second with 288,478 three-channel image patches (RGB) of 55 × 55
pixels, as used in [8,9]. We split the data in the same proportions as we previ-
ously did and use the same architecture to train a new CNN for each dataset.

Fig. 2. The proposed CNN model architecture.

Cloud Detection in High-Resolution Multispectral Satellite Imagery 283

Fig. 3. Epochs vs. Accuracy for training in the CloudPeru dataset.

Fig. 4. Epochs vs. Loss for training in the CloudPeru dataset.

The evaluation consists of comparison of metrics between the results obtained
with each validation set, as shown in Table 1, proving that the optimal patch size
is 27 × 27 pixels, which is why it was selected to create the CloudPeru dataset.

In addition, Table 2 compares the selected network, CNN1 (Fig. 3), with two
other networks. The first one, CNN2, has only three convolutional blocks and
can be described as CONV 1(27×27×48) → BN1 → MAXP1 → CONV 2(13×
13×96) → CONV 3(6×6×128) → FC4(128) → FC5(1), while the second one,
CNN3, is more complex and has five convolutional blocks, which can be described
as CONV 1(27 × 27 × 32) → BN1 → MAXP1 → CONV 2(13 × 13 × 64) →
BN2 → MAXP2 → CONV 3(6 × 6 × 128) → BN3 → CONV 4(6 × 6 × 256) →
CONV 5(2 × 2 × 512) → FC6(128) → FC7(1). Each model is trained for 200
epochs approximately, using an early stopping criteria considering 1e − 05 as
the minimum change in loss quantity (binary cross-entropy) to qualify as an
improvement. Therefore, Table 2 proves that the selected network CNN1 has

284 G. Morales et al.

Table 1. Comparison of metrics beteen the results obtained with the three datasets.

Patch size Accuracy (%) Precision (%) Recall (%) Specificity (%)

21 × 21 99.508 99.357 99.451 99.548

27 × 27 99.990 99.837 99.942 99.873

55 × 55 99.823 99.801 99.843 99.810

Table 2. Comparison of metrics beteen different architectures.

Network Accuracy (%) Precision (%) Recall (%) Specificity (%)

CNN1 99.990 99.837 99.942 99.873

CNN2 99.714 99.423 99.924 99.550

CNN3 99.874 99.810 99.905 99.850

the best performance. When evaluating on the test set, it shows an accuracy of
99.945%, a precision of 99.952%, a recall of 99.923% and a specificity of 99.962%.

3 Results

The proposed algorithm was implemented using Python 3.6 on a PC with Intel
CPU i7-7000 at 3.6 GHz and a NVIDIA GeForce GTX 1070 GPU. As explained
in Sect. 2.1, we use 30 test images of 1000 × 1000 pixels extracted from 15
PERUSAT-1 scenes of different geographies, such as coast, tropical forest, desert,
urban areas and agricultural areas.

We first apply the SLICO algorithm for each test image using the same
previously mentioned parameters (Fig. 5b). Then, we generated a four-channel
patch of 27 × 27 pixels around the center of each super pixel, which is processed
by the trained CNN, whose output is taken as the probability of said super pixel
to be considered as a cloud, so that we are able to create a probability map as
shown in Fig. 5c. After that, we apply a threshold of 0.5 over the probability
map in order to create the final cloud mask (Fig. 5d).

To assess the performance of our method, we compared the results with
hand-drawn ground truth images. In addition, we compared the ground truth
with other four cloud detection methods. The first method uses a CNN and
three-channel 55 × 55 image patches [8]; the second method uses texture and
spectral descriptors processed by an artificial neural network and a false posi-
tive discard method based on Hough descriptors over a panchromatic fusion [7];
the third method uses a progressive refinement scheme [2] and, finally, there is
the segmentation method of K-means [14]. The visual comparison of all men-
tioned methods is shown in Fig. 6. In addition, in Table 3 we included the results
reported in [9], which consist on using two CNNs in order to perform multilevel
cloud detection extracting patches of 55 × 55 and 111 × 111.

Cloud Detection in High-Resolution Multispectral Satellite Imagery 285

Likewise, we quantitatively compare all methods with respect to the ground
truth using five metrics: accuracy (ACC), precision (PREC), recall/sensitivity
(SN), specificity (SP) and Kappa coefficient, as shown in Table 3. The ACC
ratio indicates the correctly predicted observations against total observations;
the PREC ratio indicates the correctly predicted positive observations against
the total predicted positive observations; the SN ratio indicates the correctly
predicted positive observations against the total actual positive observations,
and the SP ratio indicates the correctly predicted negative observations against
the total actual negative observations. Meanwhile, the Kappa coefficient yields
the numerical rating of the degree of agreement between a detection result and
the ground truth.

In Table 3 we note that the Kappa coefficient of our method (94.4%) is greater
than its successor (88.2%) by more than 6 % points, which demonstrates its out-
standing advantage and means that our results are more similar to the ground
truth masks. Besides, the accuracy of the other four methods is around 95%,
while ours is greater than 97%. On the other hand, while the precision and speci-
ficity of the method in [7] is superior to ours by approximately one percentage
value, which is not concluding, the sensitivity of our method is greater than that
of the method in [7] by approximately ten percentage points, i.e., our approach
has greater capacity to avoid false positives, like the ones made by [7], mainly in

Fig. 5. Cloud detection using our trained CNN. (a) Original image (b) Result of SLICO
(c) Probability map (d) Cloud mask.

Table 3. Comparison of performance metrics from different cloud detection methods.

Method Metric

ACC (%) PREC (%) SN (%) SP (%) Kappa (%)

K-means 95.133 84.538 66.702 95.019 81.671

Progressive refinement 95.227 80.973 71.447 92.799 82.848

ANN [7] 94.862 98.165 85.709 99.234 87.855

CNN RGB [8] 95.283 93.475 91.818 96.938 88.169

Multilevel CNN RGB [9] - 90.39 94.54 - -

Proposed method 97.569 96.999 95.431 98.589 94.419

286 G. Morales et al.

Fig. 6. Cloud detection using different methods. Green color represents False Negatives
and red color, False Positives. (a) Original image (b) Ground truth (c) Our proposed
method (d) Method of [8] (e) Method of [7] (f) Progressive refinement [2] (g) K-means.

urban areas, as shown in the second picture of Fig. 6e. This is important because
misclassifying an area as a cloud involves losing useful information.

Moreover, the CNN trained with three-channel patches of 55 × 55 pixels, as
in [8,9], shows a poorer performance due to two facts: First, the patch size is too
big to detect very small and thin clouds and it presents errors in some patches
corresponding to the semitransparent borders of some clouds (as can be seen in
the first, fourth and fifth pictures of Fig. 6d) and, secondly, it lacks the additional
spectral information of the NIR channel. Nevertheless, the precision obtained for
this CNN is superior to the one presented in [9] by more than 6 % points, which
demonstrates that the changes made to the architecture, such as changing the
Local Response Normalization layers for Batch Normalization layers, changing
the Relu activations for PRelu activations and using the Adam optimizer instead
of the Stochastic Gradient Descent, were of great significance.

Cloud Detection in High-Resolution Multispectral Satellite Imagery 287

4 Conclusions

The inclusion of the NIR band and an optimal patch size for superpixels improved
the performance of the CNN model used. The comparison of metrics showed
that the proposed method presents a high percentage of accuracy and Kappa
coefficient. Likewise, such percentages are higher than those of the other three
methods used for performance comparison. Consequently, we can conclude that
the proposed method is very efficient for cloud detection in high-resolution mul-
tispectral satellite images.

Acknowledgements. The authors would like to thank the National Commission
for Aerospace Research and Development (CONIDA) and the National Institute of
Research and Training in Telecommunications of the National University of Engineer-
ing (INICTEL-UNI) for the support provided.

References

1. Marais, I.V.Z., Du Preez, J.A., Steyn, W.H.: An optimal image transform for
threshold-based cloud detection. Int. J. Remote Sens. 32(6), 1713–1729 (2011)

2. Zhang, Q., Xiao, C.: Cloud detection of RGB color aerial photographs by pro-
gressive refinement scheme. IEEE Trans. Geosci. Remote Sens. 52(11), 7264–7275
(2014)

3. Hang, Y., Kim, B., Kim, Y., Lee, W.H.: Automatic cloud detection for high spatial
resolution multi-temporal. Remote Sens. Lett. 5(7), 601–608 (2014)

4. Li, P., Dong, L., Xiao, H., Xu, M.: A cloud image detection method based on SVM
vector machine. Neurocomputing 169, 34–42 (2015)

5. Yuan, Y., Hu, X.: Bag-of-words and object-based classification for cloud extraction
from satellite imagery. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens.
8(8), 4197–4205 (2015)

6. Bai, T., Deren, L., Sun, K., Chen, Y., Wenzhuo, L.: Cloud detection for high-
resolution satellite imagery using machine learning and multi-feature fusion.
Remote Sens. 8(9), 715 (2016)

7. Morales, G., Huamán, S., Telles, J.: Cloud detection for PERUSAT-1 imagery using
spectral and texture descriptors, ANN and panchromatic fusion. In: Proceedings
of the 3rd Brazilian Technology Symposium - Emerging Trends and Challenges in
Technology (BTSym). Springer, Campinas (2018, in press)

8. Shi, M., Xie, F., Zi, Y., Yin, J.: Cloud detection of remote sensing images by deep
learning. In: 2016 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 701–704. IEEE Press, Beijing (2016)

9. Xie, F., Shi, M., Shi, Z.: Multilevel cloud detection in remote sensing images based
on deep learning. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens.
10(8), 3631–3640 (2017)

10. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunck, S.: SLIC super-
pixels compared to state-of-the-art superpixel methods. IEEE Trans. Patt. Anal.
Mach. Intell. 34(11), 2274–2282 (2012)

11. CloudPeru Dataset. http://didt.inictel-uni.edu.pe/dataset/CloudPeru.hdf5
12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-

level performance on ImageNet classification. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 1026–1034. IEEE Press,
Vancouver (2015)

http://didt.inictel-uni.edu.pe/dataset/CloudPeru.hdf5

288 G. Morales et al.

13. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference on Learning Representations (ICLR), San Diego (2015)

14. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation.
IEEE Trans. Patt. Anal. Mach. Intell. 24(7), 881–892 (2002)

Metric Embedding Autoencoders
for Unsupervised Cross-Dataset

Transfer Learning

Alexey Potapov1,3(B), Sergey Rodionov1,2, Hugo Latapie4, and Enzo Fenoglio4

1 SingularityNET Foundation, Amsterdam, Netherlands
pas.aicv@gmail.com, astroseger@gmail.com

2 Novamente LLC, Rockville, USA
3 ITMO University, St. Petersburg, Russia

4 Chief Technology and Architecture Office, Cisco, San Jose, USA
{hlatapie,efenogli}@cisco.com

Abstract. Cross-dataset transfer learning is an important problem in
person re-identification (Re-ID). Unfortunately, not too many deep trans-
fer Re-ID models exist for realistic settings of practical Re-ID systems.
We propose a purely deep transfer Re-ID model consisting of a deep
convolutional neural network and an autoencoder. The latent code is
divided into metric embedding and nuisance variables. We then utilize
an unsupervised training method that does not rely on co-training with
non-deep models. Our experiments show improvements over both the
baseline and competitors’ transfer learning models.

Keywords: Transfer learning · DCNN · Autoencoder · Triplet loss

1 Introduction

Transfer learning is essential to most applications of deep learning in com-
puter vision because of the scarcity of data available to train large networks in
many tasks. The common practice is to take deep convolutional neural networks
(DCNNs) such as ResNet-50 [8] or MobileNet [11] pre-trained on ImageNet [4]
and fine-tune for the specific task by supervised learning on a subset of anno-
tated samples. Actually, this practice can be considered as transferring features
learned on a broad class of images from ImageNet to a more restricted domain.

However, it may be necessary to transfer a model, pre-trained via unsu-
pervised learning, to a domain for which no labels are available. Person re-
identification (Re-ID) can be considered as a motivating example as it consists
of matching humans across cameras with non-overlapping fields of view. This
task is challenging because of high variations in background, illumination, human
poses, etc., and the absence of tight space-time constraints on candidate IDs such
as in tracking, in addiction to re-identify persons absent in the training set. Even
worse, it is usually necessary to deploy a person Re-ID system to a new camera
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 289–299, 2018.
https://doi.org/10.1007/978-3-030-01424-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_29&domain=pdf

290 A. Potapov et al.

Fig. 1. Pairs of images of same IDs from different cameras from different datasets:
Market-1501 [21], CUHK03 [14], Duke [22], VIPeR [7], WARD [16].

set for which a large labeled training set is expensive or impossible to acquire,
thus further motivating the use of pre-trained models for real-world applications.
Unfortunately, if a model is trained on one dataset and tested on another, per-
formances drop significantly below the level of hand-crafted features [5], since
variations between datasets are too large (see Fig. 1). For example, Rank-1 score
can decrease from 0.762 to 0.361 on Market-1501 [21] test set if the training is
performed on DukeMTMC-reID [22] training set instead of Market-1501 training
set. Thus, it is essential to perform online unsupervised fine-tuning of pre-trained
models. Generative models can provide a nice theoretical solution to the prob-
lem of unsupervised learning and transfer learning by constructing a generative
model with the latent code containing different parts. The generative model can
be fine-tuned in an unsupervised manner by marginalizing over unknown factors
of variation.

State-of-the-art results in different tasks are usually achieved with discrimi-
native models. Metric embedding learning [9] or Siamese DCNNs [19] are suc-
cessfully used in the Re-ID task, although without any capabilities of transfer-
ring to new camera sets. Generative models are not as deep as discriminative
models, and are not pre-trained on large datasets. Actually, they are tested on
simple domains, such as MNIST, [2,15] with limited practical applicability. More-
over, these models can utilize additional simplifications such as explicit one-hot

Metric Embedding for Unsupervised Transfer Learning 291

coding of IDs [15], which are not applicable in the Re-ID task. As a result,
heuristic methods for unsupervised fine-tuning of the state-of-the-art discrimi-
native models, such as the Progressive Unsupervised Learning (PUL) method
applied to classification features [5]), are still beneficial.

2 Related Work

2.1 Deep Re-ID Methods

Success of DCNNs in different applications of computer vision did not achieve
acceptable performance on the task of person Re-ID, and a number of deep Re-
ID models based on DCNNs have been proposed in recent years [1,14,20]. The
most popular approach is a deep metric learning with pairwise verification loss.
In particular, Siamese DCNNs initially proposed in [20] for Re-ID are frequently
used [1,18,19] for this purpose. This approach requires executing a model on
each pair of a query and an image gallery. A more scalable approach is to learn
a metric embedding (using triplet loss) which maps each image in the feature
space where semantic similarity between images can be calculated using simple
metrics. A number of models has been developed, [3,12], but cannot compare
well with the models trained with classification and verification losses. However,
Hermans et al. [9] achieve state-of-the-art results using metric embedding which
we have also chosen for practical reasons. Many original Re-ID models exist, but
they are out of scope since the focus of our work is on the problem of transferring
models to new domains.

2.2 Deep Transfer Learning for Re-ID

There are different approaches to cross-dataset transfer learning for Re-ID. Some
utilize dictionary learning methods [17] and l1 graph learning [13], which are not
deep. In these papers, the results are usually demonstrated on cases of transfer-
ring models to small datasets to show their advantages in comparison to deep
learning models, which usually require large datasets. However, the work of Geng
et al. [6] which uses co-training of a DCNN model and a graph regularised sub-
space learning model for unsupervised transfer learning, shows the potential to
fine-tune DCNNs on the same small datasets (e.g. VIPeR [7] or PRID [10])
in order to achieve better performance. Real Re-ID systems can gather a large
unlabeled amount of data quickly. A recent work by Fan et al. [5] describes
a PUL method consisting of simultaneous improvement of the DCNN model
and person clustering, and conducted experimental validations on larger mod-
ern datasets including Market-1501 [21] and Duke [22]. We consider Fan et al.
[5] more practical and realistic for our purposes, while assuming PUL a baseline
for our comparison. The contributions of our work are as follows:

– A new, purely deep neural architecture is developed for cross-dataset transfer
learning, consisting of a DCNN and an autoencoder, which latent code is
divided into embedding and nuisance variables.

292 A. Potapov et al.

– A method for training the proposed model is described, which preserves the
properties of metric embedding during autoencoder unsupervised pre-training
and fine-tuning.

– Experiments are conducted showing considerable improvements over the base-
line method.

3 Metric Embedding Learning

3.1 Loss Function

For person Re-ID, it is usually assumed that bounding boxes (BBs) around
humans are already extracted. BBs are usually resized to a fixed size. Each
BB yields a pattern (image) in an initial space of raw features x ∈ R

N . BBs
containing certain IDs can be tracked by each camera, forming tracklets, and in
practice, it is better to compare tracklets instead of separate BBs. Each image
x corresponds to a certain ID y , and the task is to identify which images from
different cameras have the same ID. The IDs can be considered surrogate of
classes, where the number of classes is large and unknown while the number of
images in each class is small. Therefore, it is inefficient to cast the Re-ID task as
a traditional pattern recognition problem. One way to solve this problem is to
train a model with a Siamese network that accepts two images as input and infers
whether the two have the same ID. In this approach, the model is run for one
query image for each gallery image. Another option is to train a classification
model with an DCNNs for a fixed set of IDs known for a training set, cut
off the fully connected (classification) layers, and compare images using high-
level convolutional features which were useful for the classification. Similarity
between images can be calculated directly as distance between latent features
with acceptable performance in the practical cases. However, in the non-linear
space of features useful for classification, images with the same ID will not be
necessarily closer together than images with different ID. An additional step
of metric learning is mandatory to improve the overall performance. Actually,
what we want to learn is a metric embedding, i.e. a mapping f(x|θ) : RN→R

M

that transforms semantically similar images onto metrically close points in R
M ,

and semantically dissimilar images onto metrically distant points, i.e. Di,j =
D(f(xi|θ), f(xj |θ)) is small if yi = yj and large otherwise, where D is some
metric distance measure (e.g. Euclidean [9]). One can try to learn this mapping
directly without learning the surrogate classification model, if an appropriate
loss function is specified. In this case, the following triplet loss function can be
used [9]:

Ltri=
∑

a,p,n
ya=yp �=yn

[m + Da,p − Da,n]+ (1)

where m is some margin by which positive and negative examples should be
separated. That is, different triplets of images are considered – one is the anchor
image with index a, the other is a positive example yp = ya with index p, and the

Metric Embedding for Unsupervised Transfer Learning 293

last one is a negative example yn �= ya with index n. We want the distance Da,p

to be smaller than the distance Da,n by m. Softplus ln(1+exp(x)) is proposed in
place of the hinge function [m+•]+ in [9], since in Re-ID we want to pull images
with the same ID, even after the margin m is reached. Hard positive samples and
hard negative samples shall be selected to make embedding learning with the
triplet loss successful. Computationally efficient selection of hard samples can be
done with the use of Batch Hard loss function [9]. The idea is to form batches
using P randomly selected classes (IDs) with randomly sampled K images per
class, and to select the hardest positive and negative samples within the batch
to form the triplets for the loss function [9].

3.2 Network Architecture

We implemented the same network architecture as in [9] with a few differences.
Instead of ResNet-50, we used MobileNet [11], since we found that the perfor-
mance is very similar, while MobileNet is much faster. We also discarded the
last classification layer and added two fully connected layers to map high-level
convolutional features to the embedding space. Similarly, see Hermans et al. [9],
we used the first dense layer with 1024 units with ReLU activation function,
while the second (output) layer had 128 units corresponding to the embedding
dimension. We also used batch normalization between layers.

3.3 Embedding Training

For the metric embedding training, we used ADAM optimizer with default
parameters (β1 = 0.9, β2 = 0.999). The learning rate was set to 10−4 during
the first 100 epochs, and during the next 300 epochs we exponentially decayed
the learning rate to 10−7. The number of steps per epoch was somewhat arbi-
trarily defined as Ntotal/Nbatch, where Ntotal is the total number of images in the
datasets used, and Nbatch = K∗P is the batch size. We used K = 4 and P = 18
in all experiments. We also applied embedding training on multiple datasets.
Instead of simply merging the datasets together, we trained an embedding in
such a way that the network never sees images from different datasets simul-
taneously. We achieved this by forming each batch with images from only one
dataset, and we continuously switched between them during training. This was
done to prevent the model from simply pushing images from different datasets
apart. Instead, this approach forced the model to search for invariant features,
which will generalize to other datasets as well.

4 Unsupervised Transfer Learning of Embedding

The problem with purely discriminative models to transfer learning is that
we do not have a criterion for fine-tuning unlabeled datasets. That is why a
method such as PUL [5] uses a pre-trained model or some additional inputs
to guess the reliability of positive and negative samples to use them with the

294 A. Potapov et al.

same loss of supervised pre-training. To enable unsupervised transfer learning,
we introduce a generative model describing the joint probability distribution
p(x, zid, znui, zcam|θ), where zid is the part of the latent code describing a spe-
cific person, zcam describes a specific camera, znui is the vector of the rest
nuisance variables (person pose and appearance, illumination conditions, etc.),
and θ is the parameter of the model. Since only few cameras are available and we
do not have sufficient data to train this generative model, we consider a model
with camera-dependent parameters, i.e. p(x, zid, znui|θ(cam)). We want to train
this model marginalizing over latent variables on several datasets to get the
parameters θ(cam), which will be applicable (non-optimally) to different cam-
eras, and then fine-tune (specialize) for a specific camera without labeled data.
Using a generative model for Re-ID, we want the latent code zid for IDs to be
a metric embedding. One option is to train a generative model, e.g. Adversarial
Autoencoders (AAE) [15], using an additional update for zid with the triplet
loss. Unfortunately, the quality of embedding drops because the updates for the
adversarial and reconstruction losses spoil it. If we take the embedding trained
independently, we will not know the corresponding priors p(zid), and we cannot
directly use this embedding within a generative model. Therefore, we performed
an unsupervised fine-tuning of the embedding without knowing or enforcing the
corresponding priors p(zid) and p(znui).

4.1 Our Solution

For practical considerations, we show improvements on the state-of-the-art Re-
ID model. The first step of our method is to train the embedding model
zid = femb(x|θemb) as described in Sect. 3. We supplement this mapping with
the mappings znui = fnui(x|θnui) and x = fdec(zid, znui|θdec). Here, (femb, fnui)
is an encoder with the latent code consisting of two parts – zid and znui, and
fdec is a decoder constituting together an autoencoder. In the second step of our
method we train the autoencoder using the same available labeled datasets, on
which the embedding was trained. Here, weights θemb are kept frozen, and θnui

and θdec are optimized to minimize the reconstruction loss. This gives the pre-
trained autoencoder, i.e. one part of the latent code to which corresponds the
state-of-the-art embedding mapping. We will call this model EmbAE. However,
the parameters of the autoencoder are not optimized for the target cameras,
for which only unlabeled data is available. Thus, the third step should be the
unsupervised fine-tuning. We can try to learn the parameters of all parts of the
model, including θemb, θnui and, θdec. Even such straightforward fine-tuning of
the whole autoencoder improves scores of the model on new datasets, but it is
not the best approach since nothing prevents zid and znui from mixing within
it. A layman approach to prevent this, is to freeze θnui on the unsupervised
fine-tuning step. This method works in practice even though θnui should also
depend on the dataset. We call this model EmbAE-fixθnui. It is possible to
prevent zid and znui from mixing by optimizing θemb and θnui separately. We
developed the following two-step fine-tuning procedure: first, discard pre-trained
θnui and optimize it with reconstruction loss with fixed θemb and θdec. Second,

Metric Embedding for Unsupervised Transfer Learning 295

we optimize θemb and θdec using fixed new θnui. We call this model EmbAE-
newθnui. It appears that the mapping parameters θnui are considerably different
for different datasets. We also considered a model which has its own mapping
fnui(x|θnui) for each dataset. It is fine-tuned similarly to EmbAE-newθnui, but
during pre-training on multiple datasets it also maintains different values of θnui

for each of them. However, this model is outperformed by the model, in which
different θnui is learned for each camera and each dataset. We call this model
EmbAE-camθnui. The method consists in the following steps:

– Offline training of the embedding with the triplet loss on one or several labeled
datasets.

– Offline training of the EmbAE with common or individual (for each camera)
encoder part fnui(x|θnui).

– Unsupervised fine-tuning with frozen or re-trained θnui.

4.2 Model Details

The architecture for fnui(x|θnui) is the same as for femb(x|θemb). Moreover,
they share the same convolutional features of MobileNet. Only dense layers are
independent, but with the same structure: dense layer with 1024 units and ReLU
activations followed by batch normalization followed by dense layer with 128
units with linear activations. The decoder consists of the dense layer with 1024
units with ReLU activation followed by one more dense layer with the number
of units corresponding to the number of highest-level convolutional features in
MobileNet, the reconstruction loss is calculated for the MobileNet features. Our
model network architecture (see Fig. 2) can be treated as an autoencoder with a
truncated decoder, or in other words, that EmbAE is built on top of MobileNet:
it accepts convolutional features from MobileNet, and reconstructs these features
– not the original images.

Fig. 2. Deep Re-ID network architecture with unsupervised fine-tuning.

5 Experiments

We tested our approach using standard datasets CUHK03 [14], Duke [22],
VIPeR [7], WARD [16] for training and Market-1501 [21] for evaluation.

296 A. Potapov et al.

Pre-training on a single dataset was used for comparison. Training on multiple
datasets also helped to achieve higher scores. In our base architecture, we used
one encoder for all images. In some cases, we used different encoders for images
from different cameras of each dataset as described above. In all cases, we used
only one embedding and one decoder.

5.1 Score Computation

To evaluate the models, we used Rank-1 and mAP scores. For each image from
the query set we searched the corresponding images in the test set. We let IDq

and Cq respectively be the image identity and the camera for a given query image
q . Then, all images with IDq from camera Cq are ignored and only images of IDq

on cameras different from Cq are assumed positive examples. Images with IDs

different from IDq are assumed negative samples, including images from camera
Cq. In addition to the usual metrics, we consider scores calculated ignoring all
the images from camera Cq. We refer to these scores as Rank-1-nd and mAP-
nd. We use this score, because in real situations we will search only for images
on other cameras, so negative examples from the same camera Cq will not be
considered. In our experiments, we used test-time data augmentation (see [9]
for details) in the score calculation. All networks were trained and tuned on
data augmented by horizontal flip. We also used embedding normalization, i.e.
we normalize zid by its length: zid/|zid| to increase the quality of models after
unsupervised fine-tuning, because optimizing the reconstruction loss can distort
the embedding space. The normalization was used only for score calculation.

5.2 Single Dataset Pre-training

Our first experiment was carried out for the models pre-trained on Duke dataset
[22]. Tests were performed on a different non-overlapping dataset, namely,
Market-1501 [21]. Table 1 shows the results of the evaluation of different proposed
architectures in comparison with the baseline model. The model with different
encoders for different cameras provided the best results, and the improvement
is rather large. EmbAE-newθnui is no better than EmbAE-fixθnui. Thus, the
better performance of EmbAE-camθnui is not simply resulting from the opti-
mization of θnui for the specific dataset, but also to the increase of invariance of
embedding w.r.t. cameras that helped to move all camera-variant features into
fnui(x|θnui).

5.3 Multiple Dataset Pre-training

We pre-trained our models using four datasets: Duke [22], CUHK03 [14], VIPeR
[7], WARD [16]. Table 2 shows the results of evaluation of these models in com-
parison with the baseline model. The model with different θnui for each camera
has the best scores. Although the improvements due to unsupervised fine-tuning
became smaller, the final scores were much higher because the models properly
pre-trained on several datasets were already considerably better.

Metric Embedding for Unsupervised Transfer Learning 297

Table 1. Re-ID accuracy of EmbAE trained on one dataset.

Model Rank-1 Rank-1-nd mAP mAP-nd

Baseline 0.421 0.485 0.177 0.211

EmbAE-fixθnui 0.553 (+0.132) 0.661 (+0.176) 0.275 (+0.098) 0.339 (+0.128)

EmbAE-newθnui 0.556 (+0.135) 0.650 (+0.165) 0.280 (+0.103) 0.337 (+0.126)

EmbAE-camθnui 0.585 (+0.164) 0.669 (+0.184) 0.294 (+0.117) 0.345 (+0.134)

Table 2. Re-ID accuracy of EmbAE trained on one dataset.

Model Rank-1 Rank-1-nd mAP mAP-nd

Baseline 0.528 0.607 0.273 0.322

EmbAE-fixθnui 0.596 (+0.068) 0.712 (+0.105) 0.329 (+0.056) 0.399 (+0.077)

EmbAE-newθnui 0.606 (+0.078) 0.707 (+0.1) 0.342 (+0.069) 0.404 (+0.082)

EmbAE-camθnui 0.643 (+0.115) 0.729 (+0.122) 0.357 (+0.084) 0.414 (+0.092)

5.4 Comparison with PUL

We are interested in training our model on a large high-quality dataset like Duke
[22] and also evaluating on other large datasets. We compare the scores achieved
by our model with PUL method [5], for which the results of transferring from
both Duke and multiple datasets to Market-1501 [21] are available. Tables 3 and
4 show the results of this comparison, including the results obtained with the
baseline models without transfer learning and improvements over these models
from fine-tuning. Despite that PUL uses an additional parameter (number of
IDs in the new dataset), and that it was applied to improve the worse model,

Table 3. Re-ID accuracy of PUL and EmbAE methods pre-trained on Duke.

Model Rank-1 mAP

Baseline PUL 0.361 0.142

Fine-Tuned PUL 0.447 (+0.086) 0.201 (+0.059)

Baseline embedding 0.421 0.273

EmbAE-camθnui 0.585 (+0.164) 0.294 (+0.117)

Table 4. Re-ID accuracy of PUL/EmbAE pre-trained on multiple datasets.

Model Rank-1 mAP

Baseline PUL 0.400 0.170

Fine-Tuned PUL 0.455 (+0.055) 0.205 (+0.035)

Baseline embedding 0.528 0.273

EmbAE-camθnui 0.643 (+0.115) 0.357 (+0.084)

298 A. Potapov et al.

both the final scores and the improvements over the baseline models are better
for our model, although still less than the models trained in supervised manner
and tested on Market-1501, which Rank-1 score can exceed 85%.

6 Conclusion

We have proposed a deep architecture for unsupervised cross-dataset transfer
learning for person re-ID. This architecture is based on metric embedding learn-
ing with triplet loss function, which achieves state-of-the-art results [9]. For
transfer learning, metric embedding is incorporated into autoencoders. Special
methods for pre-training and fine-tuning of autoencoders, which have a part of
the latent code corresponding to metric embedding, have been proposed. These
methods preserve embedding and prevent it from mixing with nuisance vari-
ables during unsupervised fine-tuning. Our experiments show improvements over
competitors’ transfer learning models using the recent Progressive Unsupervised
Learning method [5], both in absolute scores and over the baseline models.

References

1. Ahmed, E., Jones, M.J., Marks, T.K.: An improved deep learning architecture for
person re-identification. In: CVPR (2015)

2. Chen, X., et al.: InfoGAN: interpretable representation learning by information
maximizing generative adversarial nets. CoRR abs/1606.03657 (2016)

3. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by
multi-channel parts-based CNN with improved triplet loss function. In: CVPR
(2016)

4. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale
hierarchical image database. In: CVPR (2009)

5. Fan, H., Zheng, L., Yang, Y.: Unsupervised person re-identification: clustering and
fine-tuning. CoRR abs/1705.10444 (2017)

6. Geng, M., Wang, Y., Xiang, T., Tian, Y.: Deep transfer learning for person re-
identification. CoRR abs/1611.05244 (2016)

7. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble
of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008.
LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88682-2 21

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015)

9. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. CoRR abs/1703.07737 (2017)

10. Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by
descriptive and discriminative classification. In: Heyden, A., Kahl, F. (eds.) SCIA
2011. LNCS, vol. 6688, pp. 91–102. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21227-7 9

11. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. CoRR abs/1704.04861 (2017)

https://doi.org/10.1007/978-3-540-88682-2_21
https://doi.org/10.1007/978-3-540-88682-2_21
https://doi.org/10.1007/978-3-642-21227-7_9
https://doi.org/10.1007/978-3-642-21227-7_9

Metric Embedding for Unsupervised Transfer Learning 299

12. Khamis, S., Kuo, C.-H., Singh, V.K., Shet, V.D., Davis, L.S.: Joint learning for
attribute-consistent person re-identification. In: Agapito, L., Bronstein, M.M.,
Rother, C. (eds.) ECCV 2014. LNCS, vol. 8927, pp. 134–146. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16199-0 10

13. Kodirov, E., Xiang, T., Fu, Z., Gong, S.: Person re-identification by unsupervised
�1 graph learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9905, pp. 178–195. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46448-0 11

14. Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: deep filter pairing neural network
for person re-identification. In: CVPR (2014)

15. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.J.: Adversarial autoencoders.
CoRR abs/1511.05644 (2015)

16. Martinel, N., Micheloni, C.: Re-identify people in wide area camera network. In:
CVPR (2012)

17. Peng, P., et al.: Unsupervised cross-dataset transfer learning for person re-
identification. In: CVPR (2016)

18. Shi, H., et al.: Embedding deep metric for person re-identification: a study against
large variations. In: Leibe, Bastian, Matas, Jiri, Sebe, Nicu, Welling, Max (eds.)
ECCV 2016. LNCS, vol. 9905, pp. 732–748. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46448-0 44

19. Varior, R.R., Haloi, M., Wang, G.: Gated siamese convolutional neural network
architecture for human re-identification. CoRR abs/1607.08378

20. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification.
In: 22nd International Conference on Pattern Recognition, ICPR (2014)

21. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-
identification: a benchmark. In: ICCV (2015)

22. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the
person re-identification baseline in vitro. CoRR abs/1701.07717 (2017)

https://doi.org/10.1007/978-3-319-16199-0_10
https://doi.org/10.1007/978-3-319-46448-0_11
https://doi.org/10.1007/978-3-319-46448-0_11
https://doi.org/10.1007/978-3-319-46448-0_44
https://doi.org/10.1007/978-3-319-46448-0_44

Classification of MRI Migraine Medical
Data Using 3D Convolutional Neural

Network

Hwei Geok Ng1(B), Matthias Kerzel1(B), Jan Mehnert2(B),
Arne May2(B), and Stefan Wermter1(B)

1 Department of Informatics, Knowledge Technology, Universität Hamburg,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{5ng,kerzel,wermter}@informatik.uni-hamburg.de
2 Institut für Systemische Neurowissenschaften,

Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52,
20246 Hamburg, Germany
{j.mehnert,a.may}@uke.de

Abstract. While statistical approaches are being implemented in med-
ical data analyses because of their high accuracy and efficiency, the
use of deep learning computations can potentially provide out-of-the-
box insights, especially when statistical approaches did not yield a good
result. In this paper we classify migraine and non-migraine magnetic res-
onance imaging (MRI) data, using a deep learning method named con-
volutional neural network (CNN). 198 MRI scans, which were obtained
equally from both data groups, resulted in the maximum classification
test accuracy of 85% (validation accuracy: x̄ = 0.69, σ = 0.06), compared
to the baseline statistical accuracy of 50%. We then used class activation
mapping (CAM) method to visualize brain regions that the CNN model
took to distinguish one data group from the other and the visualization
pointed at the parietal lobe, corpus callosum, brain stem and anterior
cingulate cortex, of which the brain stem was mentioned in the medical
findings for white matter abnormalities. Our findings suggest that CNN
and CAM combined can be a useful image-based data analysis tool to
add inspiration or discussion in the medical problem-solving process.

Keywords: Convolutional neural network
Class activation mapping · Migraine · Magnetic resonance imaging

1 Introduction

Statistical approaches are used in medical data analyses because they are efficient
to be implemented and return precise results. Nevertheless, given sufficient mean-
ingful data and computational power, deep learning approaches can also assist in

The authors from Universität Hamburg gratefully acknowledge partial support from
the German Research Foundation DFG under project CML (TRR 169).

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 300–309, 2018.
https://doi.org/10.1007/978-3-030-01424-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_30&domain=pdf

Classification of MRI Migraine Data Using 3D CNN 301

the data analytics process. Convolutional neural networks (CNNs) are a useful
deep learning approach, known for their high accuracy in learning relevant fea-
tures for arbitrary classification tasks, especially for image classification. CNNs
have been utilized in solving numerous medical data problems, such as multiple
sclerosis lesion detection [9], Alzheimer’s disease recognition [4] and neuronal
structure segmentation [3]. Given a balanced dataset, deep learning approaches
provide insights that are unbiased to the medical domain knowledge and poten-
tially suggest out-of-the-box findings. Besides, in situations where conventional
statistical analyses did not yield good results, deep learning approaches can be a
helpful alternative in getting suggestions and inspiration in the problem-solving
process.

A trained CNN classification model can be further combined with the class
activation mapping (CAM) approach to visualize discriminative regions, which
contributed to the classification of the given data. CAM utilizes the learned
spatial information of the CNN model and displays discriminative regions of a
given image with respect to a chosen class label. The resulted map shows the
locations of discriminative features of the image, which the model used to make
the classification decision. For an example, a small part of an image showing a
toothbrush can be identified as having the strongest contribution to the image
being classified as ‘brushing teeth’ [10]. Applying CNN for classification means
that we get to know ‘what’ is in the image and applying CAM for feature local-
isation means that we get to know ‘where’ in the image are the relevant parts
that contributed to the classification.

CNN and CAM combined as a medical data analysis tool can be applied to
any image-based data. In this paper, we evaluated the classification performance
of a CNN specifically on migraine magnetic resonance imaging (MRI) data and
used CAM to point out respective discriminative regions. Migraine is a com-
mon headache disorder that originates in the trigeminal nervous system which
influences 12–14% of the world’s human population [6]. Nevertheless there is
no clear evidence which cortical structures are causing the disorder. MRI image
analysis of migraineurs might give a hint of which structures are involved in the
development of a migraine as well as providing insights into long-term structural
changes caused by migraine.

198 white matter MRIs were obtained equally from migraine and non-
migraine participants and preprocessed by the authors from the medical domain.
The data was then analyzed using CNN and CAM by the authors from the com-
puter science domain. The CNN classification result was evaluated by executing
the best-performing model ten times with random data shuffling. The frequently-
occurred and sample-based CAMs were reported. We aim to explore whether an
outcome that is free from medical knowledge bias could bring insight to the cur-
rent medical research as well as to foster scientific exchange and collaborations
between medical and computer science domains.

Section 2 explains the experimental setup and methodologies used. Section 3
reports the classification and feature localisation results of the best model.

302 H. G. Ng et al.

Section 4 discusses the experiment outcome and concludes the study with sug-
gestions for future work.

2 Experimental Setup and Neural Network Architecture

The experimental setup was divided into three stages: (1) dataset acquisition and
data preprocessing, (2) CNN training, optimising and testing, and (3) CAM visu-
alization of discriminative regions. The raw MRI images were preprocessed by
isolating only white matter regions and discarding all other parts of the images.
A three-dimensional CNN architecture was implemented and hyperparameters
were modified to get the most optimised validation and test accuracies. The best
CNN model was executed ten times with random data shuffling and its accuracy
was evaluated. The weights from the best trial were further used for activation
maps generation. The regions of activation maps were reported and discussed.

2.1 Dataset Acquisition and Data Preprocessing

The MRI dataset is provided by the authors from the Headache and Pain
Research Group at the University Medical Center Hamburg-Eppendorf (UKE).
All migraineurs were categorized by a team of trained physicians at the Headache
Ambulance of the UKE, while healthy controls reported neither psychiatric
nor neurological disorder and no headache disorder in first degree relatives.
Raw structural (MPRAGE) images were preprocessed using the Computational
Anatomy Toolbox (CAT121) for SPM12 which was implemented in MATLAB.
Hereby, each image was segmented into its compartments (grey matter, white
matter and cerebrospinal fluid) and normalized to a standardized template space
(Montreal Neurological Institute space), as shown in Fig. 1. The images were
modulated to keep the volumetric information during this non-linear transfor-
mation. The chosen ‘mwc2’ dataset consisted of 99 white matter MRIs respec-
tively from different migraine patients and the same number from non-migraine
people, making a total of 198 images in NIfTI2 format. Each sample was warped
to the same dimensions of (x:121, y:145, z:121).

The preprocessed dataset was handed over to the authors from the Knowl-
edge Technology Group, University of Hamburg, for CNN and CAM implementa-
tion. An initial visual inspection showed that every sample looked different from
each other, yet there was no obvious feature to distinguish the dataset into the
migraine and non-migraine categories, as shown in Fig. 2. A preliminary statisti-
cal t-processing done by the medical authors has found no discriminant feature
from the dataset, therefore we assumed a baseline accuracy of 50% from the t-
test. That means any result from this study that yielded a higher-than-random
baseline accuracy can be seen as an improvement to the statistical approach.

1 http://www.neuro.uni-jena.de/cat/.
2 https://nifti.nimh.nih.gov/.

http://www.neuro.uni-jena.de/cat/
https://nifti.nimh.nih.gov/

Classification of MRI Migraine Data Using 3D CNN 303

Fig. 1. An example of MRI data: (left) original image sample, (middle) white matter
segment and (right) modulated and normalized white matter compartment.

Fig. 2. Four different MRI samples sliced at X: 66/121, Y: 73/145, Z:59/121. Two MRIs
from the left are of non-migraineurs and two MRIs from the right are of migraineurs.
From visual inspection, all images have different structures but there is no obvious
feature to categorise them into migraine and non-migraine groups.

The Nibabel3 Python library was used to load the NIfTI dataset as multidi-
mensional arrays. The arrays from both the migraine and non-migraine classes
were assigned to their respective labels. The arrays were then shuffled within
their own classes, before being assigned to the train, validation and test sets.
An approximation of 80%, 10% and 10% data proportion were assigned: 158
images to the train set, 20 images to the validation set and 20 images to the test
set, with equal data proportion from both the classes to achieve an unbiased
outcome. The arrays were then shuffled again, separately within each set.

2.2 Network Architecture

A CNN was implemented in Keras4 with Tensorflow5 as backend, trained with
two 8GB Nvidia GeForce GTX 1080 GPUs. Figure 3 shows the final network
architecture and hyperparameter configuration for the CNN after extensive test-
ing and principled grid search for hyperparameters.

3 http://nipy.org/nibabel/.
4 https://keras.io/.
5 https://www.tensorflow.org/install/.

http://nipy.org/nibabel/
https://keras.io/
https://www.tensorflow.org/install/

304 H. G. Ng et al.

The search range for the best hyperparameters started by taking the mini-
mum values that made the network converge, up until the maximum values that
could be allocated by the GPU memory. A batch size of two was assigned to cope
with the limited GPU memory. A larger batch size with a smaller network did
not yield good accuracies from empirical analyses. The CNN training phase was
set to 50 epochs with categorical cross-entropy as the model loss function, Adam
[2] with 0.0001 learning rate as the optimizing function and categorical accuracy
as the accuracy measure. The input shape for the first convolutional layer was
(2, 121, 145, 121). All convolutional layers have a filter size of (3,3,3) with zero
padding, rectified linear units as the activation function and glorot uniform as
the kernel initializer. The small filter size was used to retain many low-level fea-
tures from the input. The number of filters differs in each convolutional layer:
20, 10 and 5 in ascending layer order. Max-pooling layers were only applied to
the second and third convolutional layer. The reason not to pool the first layer
was to retain as much information as possible from the input to the first feature
maps. Each max-pooling layer has the same pool size and pool stride of (2,2,2)
to decrease the size of network parameters. The dense layers have rectified lin-
ear units as the activation function, with the first and the second dense layers
having 300 and 100 units respectively. The output layer has two units indicating
a two-classes classification and softmax was used as the non-linearity function.

2.3 Discriminative Regions Visualization

The CNN model that achieved the best validation and testing accuracies was
further examined with CAM. The steps to generate discriminative activation
maps from the original approach by Zhou et al. [10] are: (1) pass an input
image to a CNN, which has no dense layers, (2) the feature maps of the final
convolutional layer are global-average-pooled (GAP) and influence the output
layer prediction, (3) get a classification prediction, (4) the weights between the
GAP and the output layer are multiplied with their respective feature maps to
identify important regions, (5) sum all the feature maps into one class activation
map, and (6) transform the map into heatmaps. The reason to replace the dense
layers with a GAP was that the learned spatial information in a CNN will be
lost in the dense layers.

A slight modification was done to the CAM approach that we apply in this
paper to preserve the dense layers in our network architecture: feature maps
from the final convolutional layer were obtained, summed, normalized and trans-
formed into heatmaps, as shown in Fig. 3. This implied that we did not use the
weights between the GAP and the output layer. The reason why the modification
did not affect the discriminative region accuracy was because of the binary-class
CNN classification. Without relying on the weights, the discriminative regions
shown from activation maps were class-invariant. It might be problematic for a
multi-classes type classification as each class has different features to prioritize.
However, for a binary migraine/non-migraine classification, the discriminative
regions showed in any activation map separate one class from another: the same
region distinguishes migraine from non-migraine class and vice versa.

Classification of MRI Migraine Data Using 3D CNN 305

Fig. 3. The three-dimensional CNN architecture and hyperparameter configuration:
three convolutional layers, two max-pooling layers, two dense layers and one output
layer. Step A: the normal network architecture with dense layers producing a classi-
fication prediction. Step B: a modified version of class activation maps. At the final
convolutional layer, the feature maps were obtained, summed and normalized to form
a class-invariant activation map out of a binary classification.

The final convolutional layer was chosen for CAM visualisation as its acti-
vations contain the most detailed features compared to the earlier convolutional
layers. For each test sample and each activation unit of a convolutional layer, a
three-dimensional activation map was generated by summing and normalizing
the activations across activation units. Each map was sliced at the x-axis (sagit-
tal brain section) to obtain 60 slices of two-dimensional activation maps. Each
slice was resized to five times its current dimensions for better visual inspection.
Overall, the total number of generated activation maps was 20 test samples x
60 slices = 1,200 activation maps. The maps visualized how much a given voxel
contributed to the classification result: the blue regions indicate a low contribu-
tion while the red regions indicate a high contribution. For an example, Fig. 5
shows discriminative features marked in red colour.

3 Experimental Results

The experimental setup in Sect. 2.2 was evaluated for its CNN classification
performance and the best performing model was used to display discriminative
regions using CAM.

3.1 Classification Result of CNN

The CNN configuration was validated ten times with random data shuffling and
the result is shown in Table 1. The highest test accuracy was 85% (validation
accuracy: x̄ = 0.69, σ = 0.06) and the lowest test accuracy was 40% (validation
accuracy: x̄ = 0.60, σ = 0.07). In contrast with established CNN architectures
from vision processing, which usually have an ascending number of convolutional
filters [7], the number of convolutional filters of this study was descending over
the layers (20-10-5 convolutional units). Through extensive empirical testing,
we found the model that has an ascending number of filters performed better
than the model that has a descending number of filters (5-10-20 convolutional

306 H. G. Ng et al.

Table 1. Ten evaluations of the best configuration with random data shuffling. From
left: trials, test loss, test accuracy, mean (x̄) and standard deviation (σ) of validation
loss, mean (x̄) and standard deviation (σ) of validation accuracy. Run 7 achieved the
best mean validation accuracy of 69% (σ = 0.06), which led itself to have the best test
accuracy of 85%.

Run Test loss Test accuracy Val loss (x̄, σ) Val accuracy (x̄, σ)

1 1.06 0.55 1.61, 0.42 0.36, 0.06

2 0.87 0.70 1.16, 0.19 0.49, 0.05

3 0.91 0.65 1.14, 0.21 0.38, 0.05

4 1.31 0.55 0.98, 0.13 0.47, 0.04

5 1.89 0.45 1.36, 0.34 0.46, 0.04

6 1.79 0.40 0.85, 0.08 0.60, 0.05

7 0.68 0.85 0.68, 0.04 0.69, 0.06

8 0.77 0.60 0.92, 0.13 0.59, 0.04

9 2.00 0.55 0.91, 0.10 0.53, 0.04

10 1.66 0.40 1.15, 0.20 0.60, 0.07

units). The latter yielded only 35% test accuracy. Understanding that the first
convolutional layer needed some minimum amount of units in order to extract
useful low-level features for good classification accuracy, the 20-10-5 architecture
was used to optimally utilize the limited GPU memory. Three layers achieved
the best result compared to other numbers of convolutional layers.

Figure 4 shows the losses and accuracies from the best model, Run 7, which
achieved 85% test accuracy (validation accuracy: x̄ = 0.69, σ = 0.06). From
the twelfth epoch onwards, the training loss decreased to 0.0 while the valida-
tion loss slowly increased to 0.75 over time. From the ninth epoch onwards, the
training accuracy increased to 1.0 while the validation accuracy slowly increased
to 0.75 over time. The losses indicated overfitting of the model as the training
loss decreased while the validation loss increased over time. There were further
attempts to alter the network architecture to decrease overfitting. Nevertheless,
this was the best result with the available data size. Although the validation
loss increased over time, the increased validation accuracy indicated that the
network did learn relevant features for the classification.

3.2 Visualisation Result of CAM

The best model from the CNN classification (Run 7) was further analysed with
CAM to visualize relevant areas that contributed to the classification. The model
with the highest test accuracy was used because the features it has learned were
the most accurate to separate the data into two classes. 1,200 two-dimensional
activation maps were generated from 20 test samples and each map was visually
inspected and analyzed. The most common regions that appeared in all test
samples are the parietal lobe and the corpus callosum, as shown in Fig. 5 (top).

Classification of MRI Migraine Data Using 3D CNN 307

Fig. 4. (Top) The training and validation losses of Run 7: the training loss decreased
while the validation loss increased over time, indicating an expected network overfitting
because of the small dataset and large data dimensions. (Bottom) The training and val-
idation accuracies of Run 7: both the training and validation accuracies increased over
time. Although the validation accuracy was not as good as the training accuracy, the
increased accuracies indicated that useful features were learned for the classification.

Although the extent of distinction (red areas) was different for each test sample,
these three regions were highly discriminative in every test sample, indicating
that the model regarded these areas as important in classifying migraine and non-
migraine MRIs. The discriminative regions that appeared specifically in certain
test samples were also visualised at the bottom of the same figure, which highlight
the brain stem, the corpus callosum and the anterior cingulate cortex.

There are many medical research methods that aim to identify the differences
of migraine and non-migraine brains, such as using functional, grey matter and
white matter MRI data. These studies report different brain regions which were
distinct in showing the differences between migraine and non-migraine brains,
such as activation in the brainstem [8], decrease of grey matter in the cingulate
cortex [5] and white matter abnormalities in the brain stem and other areas
[1]. As we used white matter MRI data for CNN and CAM computations, the
CAMs which pointed as discriminative areas at the brainstem showed that these
regions were also regarded as important for CNN classification and the other
regions suggested by CAMs might be worth further exploration for migraine
study.

308 H. G. Ng et al.

Fig. 5. (Top) Three highly discriminative regions (marked in red) appeared in every
test data. From left: left parietal lobe, right parietal lobe and corpus callosum. (Bottom)
Four CAMs detected from certain test samples. From left: brain stem (area 1), brain
stem (area 2), corpus callosum and anterior cingulate cortex. (Color figure online)

4 Discussion, Conclusion and Future Work

This paper described the classification of migraine MRI data using a CNN and
the discriminative areas visualization using CAM. The challenge for the chosen
dataset was that the preliminary statistical t-processing returned no discrimi-
native feature. Compared to thousands or millions of images used for general
CNN visual recognition tasks, we were dealing with a small dataset (198 sam-
ples) with high-dimensional data (x:121, y:145, z:121), which made the neural
network prone to overfitting. Slicing dimensions and adding noise variants to
increase the data size did not seem appropriate since without professional med-
ical knowledge we might introduce errors. Nevertheless, one main contribution
of the paper is the classification performance, which yielded 85% maximum test
accuracy (validation accuracy: x̄ = 0.69, σ = 0.06), higher than the 50% baseline
statistical result and the approach suggested areas that the deep learning model
made a distinction for data classification. Some areas such as the brain stem was
mentioned in the medical literature fro white matter abnormalities [1], while
some areas such as the parietal lobe and the corpus callosum are not mentioned.

Migraine MRI data is challenging to be analysed because the differences
between migraine and non-migraine classes are subtle, unlike other MRI data
such as Alzheimer’s disease, which displays distinguishable structural change
between MRIs of patients and the control group [4]. From the medical perspec-
tive, the classification and localisation accuracies are yet to be improved, never-
theless, this is a good milestone with the limited number of samples available.
Our intention is to provide a useful pipeline to assist in medical discussions as
a recommender system from the point of view of a computation system - which

Classification of MRI Migraine Data Using 3D CNN 309

feature the CNN used to make the classification decision. For future work, we
look forward to improving results even further when more data and more pow-
erful GPUs become available.

There are many challenges in the medical domain to which neural network
approaches can potentially contribute. It is important for researchers to gain
interdisciplinary knowledge and to design efficient data acquisition processes
that help in the performance of neural networks. Fostering collaboration between
experts from both computer science and medical domains, more medical-related
problems could potentially be solved by combining expertise from both sides.

References

1. Bashir, A., Lipton, R.B., Ashina, S., Ashina, M.: Migraine and structural changes
in the brain: a systematic review and meta-analysis. Neurology 81(14), 1260–1268
(2013)

2. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

4. Sarraf, S., Tofighi, G.: Deep learning-based pipeline to recognize Alzheimer’s dis-
ease using fMRI data. In: Future Technologies Conference (FTC), pp. 816–820.
IEEE (2016)

5. Schmidt-Wilcke, T., Gänßbauer, S., Neuner, T., Bogdahn, U., May, A.: Subtle grey
matter changes between migraine patients and healthy controls. Cephalalgia 28(1),
1–4 (2007). https://doi.org/10.1111/j.1468-2982.2007.01428.x

6. Schulte, L.H., May, A.: The migraine generator revisited: continuous scanning of
the migraine cycle over 30 days and three spontaneous attacks. Brain 139(7),
1987–1993 (2016). https://doi.org/10.1093/brain/aww097

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

8. Sprenger, T., May, A.: Advanced neuroimaging for the study of migraine
pathophysiology. Pain Clin. Updates 20(6), 1–7 (2012). https://www.iasp-pain.
org/files/Content/ContentFolders/Publications2/PainClinicalUpdates/Archives/
PCU 20-6 web.pdf. Accessed 14 July 2018

9. Valverde, S., et al.: Improving automated multiple sclerosis lesion segmentation
with a cascaded 3D convolutional neural network approach. NeuroImage 155, 159–
168 (2017)

10. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1111/j.1468-2982.2007.01428.x
https://doi.org/10.1093/brain/aww097
http://arxiv.org/abs/1409.1556
https://www.iasp-pain.org/files/Content/ContentFolders/Publications2/PainClinicalUpdates/Archives/PCU_20-6_web.pdf
https://www.iasp-pain.org/files/Content/ContentFolders/Publications2/PainClinicalUpdates/Archives/PCU_20-6_web.pdf
https://www.iasp-pain.org/files/Content/ContentFolders/Publications2/PainClinicalUpdates/Archives/PCU_20-6_web.pdf

Deep 3D Pose Dictionary: 3D Human Pose
Estimation from Single RGB Image Using

Deep Convolutional Neural Network

Reda Elbasiony1,2,4(&) , Walid Gomaa1,3 , and Tetsuya Ogata4

1 Cyber-Physical Systems Lab, Egypt-Japan University of Science and
Technology, New Borg El Arab, Egypt
walid.gomaa@ejust.edu.eg

2 Faculty of Engineering, Tanta University, Tanta, Egypt
Reda@f-eng.tanta.edu.eg

3 Faculty of Engineering, Alexandria University, Alexandria, Egypt
4 Graduate School of Fundamental Science and Engineering,

Waseda University, Tokyo, Japan
ogata@waseda.jp

Abstract. In this work, we propose a new approach for 3D human pose esti-
mation from a single monocular RGB image based on a deep convolutional
neural network (CNN). The proposed method depends on reducing the huge
search space of the continuous-valued 3D human poses by discretizing and
approximating these continuous poses into many discrete key-poses. These
key-poses constitute more restricted search space and then can be considered as
multiple-class candidates of 3D human poses.
Thus, a suitable classification technique is trained using a set of 3D key-poses

and their corresponding RGB images to build a model to predict the 3D pose
class of an input monocular RGB image. We use deep CNN as a suitable
classifier because it is proven to be the most accurate technique for RGB image
classification. Our approach is proven to achieve good accuracy which is
comparable to the state-of-the-art methods.

Keywords: 3D pose estimation � CNN � Deep learning � Human3.6m

1 Introduction

3D human pose estimation has gained a lot of research interest in the last few years.
The more challenging and worthy problem is the estimation of the 3D human pose
from a monocular RGB image. It is mainly challenging because of the absence of depth
information in RGB images which makes it difficult to predict the 3D information of
human joints. However, this confusion can be relieved by considering two factors. The
first is the natural anatomy of the human skeleton which restricts the ranges of motion
and the relative positions of body joints. The second is that the structure of human

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 310–320, 2018.
https://doi.org/10.1007/978-3-030-01424-7_31

http://orcid.org/0000-0002-8820-7131
http://orcid.org/0000-0002-8518-8908
http://orcid.org/0000-0001-7015-0379
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_31&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_31

skeleton is the same for all people, which leads to a high degree of similarity between
poses of different adult people.

In the last three years, there are two types of methods that are used: (1) optimization-
based methods and (2) regression-based methods. The first approach deals with the 3D
human pose estimation issue as an optimization problem, i.e. trying to find the optimal
parameters for a scoring function which is responsible for finding the most suitable 3D
pose for an input image [1]. However, the most appropriate 3D pose is found by
searching all the possible poses in the pose space, which is a computationally intensive
process and consumes a lot of computational time.

The second approach depends on learning a regression model which represents a
mapping between the input RGB image and the output 3D human pose such as [2].
However, this method ignores the natural anatomy and joint constraints of the human
body. Some other researchers tried to consider the body structure by mapping both the
input and the output to higher dimensional spaces and then learning a mapping between
these spaces such as [3]. Although this modification solves the problem of not con-
sidering the body structure, regression-based methods still suffer from the problem of
predicting only a single output. However, multiple outputs might be valid for the input
image because of the ambiguity resulted from the absence of depth data and the
occlusion of the input RGB images.

In this paper, we propose a simple yet efficient approach which overcomes many
drawbacks of the previous approaches and outperforms their accuracy. Our approach
exploits the structure of AlexNet [4], a well-known deep CNN [5], to build a classi-
fication model which is trained to classify a single RGB image into a predefined 3D
key-pose. In the training phase, a training set consists of multiple records of human
pose images with the corresponding 3D key-poses, i.e. classes, is provided to AlexNet
to train a classification model. The key-poses are chosen from a dataset containing
many records of RGB images for multiple poses and their corresponding exact 3D
poses using a clustering technique. The resulted cluster centers are used as the key-
poses for the main CNN-based classification process.

Thus, the contribution of this paper is to show that, for 3D human pose estimation
from RGB images, using CNN in classification is more accurate than regression. The
usage of classification solves two main problems appearing in regression based
methods. The first problem is the negligence of the natural structure of the body and the
relationship between joints. In our classification-based method, the relationship
between body joints are taken into consideration implicitly because the output 3D key-
poses are already selected among a pool of real 3D human poses. The second problem
in regression-based solutions is the inability to suggest multiple outputs for the same
RGB image to consider the ambiguity in pose images, while classification predicts all
the recommended classes and their probabilities. Then, we can select top-n classes to
represent the pose image which can lead to higher estimation accuracy.

The rest of this paper is organized as follows. Section 2 discusses some of the
relevant previous work. In Sect. 3 we explain the proposed approach in more details.
Section 4 shows the experimental results. Finally, Sect. 5 concludes the paper and
shows some trends to be researched in the future.

Deep 3D Pose Dictionary 311

2 Related Work

3D human pose estimation from monocular images has been studied several years ago.
Recently, Deep Learning has been widely used for 3D human pose estimation. In [2],
the authors used CNNs to predict 3D human pose directly from monocular RGB
images through regression. They proved the efficiency of using CNNs in 3D human
pose estimation by achieving a very high estimation accuracy compared with the old
methods. The authors did not take the correlation between human body parts into
consideration explicitly and claimed that the network learned them automatically.

However, authors in [1]. focused more on the dependencies between joint locations.
They made an integration between maximum-margin structured learning and CNNs by
taking both RGB image and a 3D pose as inputs and learning a score function to output
a score value representing the degree of matching between the inputs (an RGB image
and a 3D pose). Yet, to estimate the best 3D pose for an image, a computationally
expensive optimization problem is required.

In [6], the authors proposed an approach which depends on dual-data-source. The
first data source is a set of images with defined 2D joint locations, and the second
source is a set of 3D motion capture data. Then the two sources are integrated together
by learning a regression model to estimate 2D pose from the image data. Then, the
nearest 3D pose is retrieved to finally estimate a mapping between 3D poses and image
data through 2D poses.

In [3], a method which considers the correlation between joints in a more efficient
way is proposed. Authors proposed an integration between CNNs and auto-encoders,
where the auto-encoder is mainly used to account for human body structure by pro-
jecting joint positions to a high-dimensional space. However, the overall method is still
suffering from the drawback of the regression based methods as discussed above.

Many researchers have been attracted by the big success achieved by CNNs in
solving the problem of 2D human pose estimation from a single RGB Image. So, a new
trend depending on 2-step based methods has arisen. The first step is using a CNN to
detect the 2D positions of the body joints from a single RGB image, and the second
step depends on using the predicted 2D information to infer 3D joint locations. The
methods proposed in [7–10] are considered as examples on these 2-step based methods.

Another method which combines localization, classification, and regression tech-
niques using CNN has been proposed in [11]. The probable regions in the image where
human exists are first estimated, then, some predefined anchor poses are placed into the
estimated regions, finally, the placed anchor poses are scored using a classification
based method and refined using a regression based method. In [12], the authors
improved the end-to-end learning paradigm by proposing two main contributions. First,
they proposed a fine discretization method of the 3D pose by forming the problem as a
3D keypoint localization problem. Second, they employed a coarse-to-fine prediction
method based on multiple convolutional components to gradually refine the initial
estimates. Using this method, they succeeded to achieve state-of-the-art estimation
accuracy.

312 R. Elbasiony et al.

3 Proposed Approach

In this work, we propose a new approach for estimating 3D human pose directly from a
single monocular RGB image. The proposed approach exploits both the K-Medoids
[13] clustering method and the CNN in the training process in order to learn a CNN-
based classifier. The predicted 3D pose is represented by the 3D locations of 31 human
body joints which are measured relative to the Hips joint. To the best of our knowledge,
none of the previous methods used direct classification to solve the problem of 3D
human pose estimation due to the enormous search space; instead they use regression.
However, direct regression alone does not produce high detection accuracy due to the
problem of the ignorance of human body structure. This issue is required to be treated
using additional methods such as in [1, 3]. Also, the issue of being unable to address
self-occlusion affects the estimation accuracy highly. This problem is solved in our
method by giving multiple probable solutions for the same input image as discussed
above.

In our method, we solve the problem of continuous and enormous search space by
exploiting a simple discretization method using the K-Medoids clustering algorithm,
which produces a set of key-poses which substitute the continuous search space effi-
ciently and at the same time, considers the dependencies between body joints
implicitly. Then, the problem can be treated as a classification problem by training a
CNN to learn a mapping between the input images and the corresponding key-poses
which represent the output classes. Figure 1 shows the steps of the proposed method.

3.1 Building the 3D Pose Dictionary

The first step in the proposed method is to prepare the training dataset to be suitable for
the classification process. All the available datasets which can be used in the training
process consist of multiple pairs of RGB pose image and its corresponding 3D joints
positions. The dataset on this form cannot be used for classification because joint
positions are continuous values. A proposed method for discretization is to replace the
continuous 3D poses by a set of key-poses selected from the same continuous data by
applying a clustering process.

Fig. 1. Training process of the proposed approach.

Deep 3D Pose Dictionary 313

Thus, the clustering process divides the set of 3D poses into many clusters, where
the number of clusters is determined empirically according to the overall clustering
accuracy. So, the 3D pose which is selected as the center of the cluster can approximate
the whole cluster as a key-pose. The K-Medoids algorithm is selected to perform the
clustering task because it uses the data points themselves as cluster centers, this means
that the selected key-pose will be a real 3D pose from the dataset, not just a calculated
mean such as K-Means, which may not be a real nor an available human pose. The
output of this step is a 3D pose-image dictionary. The dictionary contains a predefined
number of sets; each set contains multiple RGB pose images resulted from the clus-
tering process and is represented by a single 3D key-pose (the cluster center). Thus, we
can build a classification model to map between each set of images and the corre-
sponding 3D key-pose using CNN.

3.2 Preprocessing and Augmentation

A necessary preprocessing step has to be applied before training the CNN. The image
background is removed with the help of the background subtraction mask provided
with the dataset. Then, the subject is centered in the image, and it is cropped around the
subject. Finally, the image is resized to fixed dimensions.

Data augmentation is also an essential step. We used two methods to perform data
augmentation: color jittering and noise addition. Color jittering is mainly used to make
the method robust against color hue and saturation changes. The noise addition process
is important to make the system robust against noise existence. The detailed aug-
mentation process will be explained later in the experimental results section.

3.3 Training AlexNet for Classification

The structure of the CNN used in this method is the same structure as AlexNet [4]. The
size of the last fully connected layer is set to be the same as the number of clusters
selected in the previous clustering step K. We formulate the 3D pose estimation as a
classification problem. Thus, the 3D pose-image dictionary resulted from the clustering
process is used in this step for training the CNN classifier where the input is the pose
RGB images and the output is the corresponding key-pose, which is dealt with as a
discrete class not a set of continuous values of 3D joint locations. So, the job of the
trained model is to map between a pose RGB image and a certain key-pose from the set
of the predefined classes. This mapping guarantees that the predicted 3D joint locations
will formulate a valid 3D human pose preserving the proper human body structure and
relations between joints.

The role of the output softmax layer in the CNN is to calculate the probabilities of
the all possible classes of the input RGB image. So, the probability-based descending-
ordered classes can be considered as multiple candidates for the estimated 3D pose.
The most accurate solution can be selected from the highest probability n classes,
where n <<K. This assumption can be used to enhance the estimation accuracy later.

314 R. Elbasiony et al.

4 Experimental Results

We used the Human3.6m dataset [14] to evaluate our method. Human3.6m contains
3.6 million images and the corresponding 3D poses. The data is organized as 50
frames/sec videos for 15 motions (Eating, Walking, Sitting, …) acted by 11 actors. The
original resolution of each frame is 1000 � 1000 pixels. It formulates the 3D pose as a
skeleton of 32 joints. The dataset creators also provide accurate mask for background
subtraction and persons bounding boxes.

MPJPE ¼ 1
F
1
N

XF
f¼1

XN
n¼1

J fð Þ
n � J fð Þ

Hips

� �
� ĵ fð Þ

n � ĵ fð Þ
Hips

� ���� ���
2

ð1Þ

where J fð Þ
n and ĵ fð Þ

n are the real and the predicted joint 3D positions in frame f respec-

tively, J fð Þ
Hips and ĵ fð Þ

Hips are the 3D positions of the real and the predicted root joints in the
frame f.

To compare our results with the previous work we use the same training and testing
procedures. So, we trained and tested each action separately. We used five subjects for
training (S1, S5, S6, S7, S8) and two other subjects for testing (S9, S11). We formulate
the 3D pose as a skeleton of 17 joints like previous works. We trained and tested CNNs
for all the 15 actions of the dataset using the two sub-actions of each action available in
the original dataset.

We used the K-Medoids clustering algorithm implemented by MATLAB® to
construct the 3D deep-pose dictionary. We chose the number of clusters K based on the
“Elbow method” [15] by calculating the sum of squared errors (SSE) inside each
cluster between the cluster center and the associated poses for different values of
K ranging from 100 to 1000 clusters. A number of 500 clusters was a good candidate
for the value of K.

In the Image preprocessing step, the RGB images are background-subtracted and
cropped using bound boxes provided with the dataset. Then, the images are resized to
256 � 256 pixels. Then, six augmentation processes are performed on the data. Five
processes for color augmentation after converting the images from RGB to HSV, and
one noise augmentation is performed by adding noise of the form of a random number
of square shapes (between 150 and 200) of random sizes (between 1 and 5 pixels) and
random RGB colors. Thus, the number of the training images is multiplied by 7
(original data plus six augmentation sets). Table 1 describes the augmentation process.

To evaluate our proposed method against the previous methods, we use the metric of
mean per joint position error (MPJPE) [14]. For a set of frames F; each frame contains
an N-joints’ skeleton, the relative MPJPE is calculated as follows: For the training CNN
process, the Caffe framework is used to implement and train the network [18]. We used
the ADAM optimization method [19] with a learning rate of 1e−6 and a batch size of
128. Training is stopped after about 25 epochs. The training and testing processes are
carried out on a workstation with an NVIDIA Quadro K4200 GPU under Windows® 10
platform. The training procedure takes from 50 to 60 h for one action. Figure 2 shows
the effect of considering the top-5 solutions on MPJPE. As illustrated in the figure, just

Deep 3D Pose Dictionary 315

considering the top-2 candidates reduces the error by about 15% which can be exploited
by additional selection method to reduce the final estimation error.

Table 2 shows a comparison between our proposed method and the similar pre-
vious methods based on MPJPE in millimeters for the tested actions. We calculated the
MPJPEs for two cases, the first case is when considering that the solution is the
predicted top-1 scores. The second case is when selecting the best class within the
predicted top-5 scores (top 1% predicted classes). As shown in the table, we achieve a
top-1 average accuracy better than the first 8 methods in the table ([14], [2], [1], [3],
[16], [17], [7], and [8]). The next 3 methods ([10], [11], and [9]) achieved higher
average accuracy than our top-1 average accuracy, however, our top-5 average accu-
racy is higher than these 3 methods. Finally, regarding the method proposed by
Pavlakos et al. [12] which achieved the state-of-the-art results till now, our achieved
top-5 accuracy of individual actions is better than them in 6 actions, and the average
top-5 accuracy achieved by our method occupies the second stage after their method

Table 1. Details of data augmentation and its effect on a sample image.

Data Modifications Description

Aug
#1

SAug1 = SIm
0.4

VAug1 = VIm
0.4

Raising Saturation and Value of the original image to a
power of 0.4

Aug
#2

SAug2 = SIm
2

VAug2 = VIm
2

Raising Saturation and Value of the original image to a
power of 2

Aug
#3

SAug3 = SAug1*1.5 + 0.1
VAug3 = VAug1*1.5 + 0.1

Multiplying Aug1 Saturation and Value by a factor of
1.5 and adding 0.1

Aug
#4

HAug4 = HIm + 0.1 Adding 0.1 to the Hue of original image

Aug
#5

HAug5 = HIm − 0.02 Subtracting 0.02 from Hue of original image

Aug
#6

Adding random number between 150 and 200 square shapes of random color and
random sizes between 1 and 5 pixels

Fig. 2. Top-5 MPJPEs achieved by our proposed method for all actions.

316 R. Elbasiony et al.

with only a very small difference (1.3 mm). Figure 3 shows some selected results for
both subjects 9 and 11 while acting different actions.

4.1 Discussion

The strength of our method lies in its ability to identify and select 3D poses from the
training dataset which have the highest similarity to the test 3D pose. However, the
estimation accuracy of individual actions depends on the degree of similarity between

Table 2. A comparison between MPJPE of our method and previous methods using the same
test procedure on the Human3.6m dataset

Direct. Discuss. Eating Greeting Phoning Posing Purchase Sitting

LinKDE [14] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57

Li and Chan [2] - 148.79 104.01 127.17 - - - -

Li et al. [1] - 136.88 96.94 124.74 - - - -

Tekin et al. [3] - 129.06 91.43 121.68 - - - -

Tekin et al. [16] 102.41 147.72 88.83 125.28 118.02 112.38 129.17 138.89

Zhou et al. [17] 87.36 109.31 87.05 103.16 116.18 106.88 99.78 124.52

Park et al. [7] 100.34 116.19 89.96 116.49 115.34 117.57 106.94 137.21

Chen and Ramanan
[8]

89.87 97.57 89.98 107.87 107.31 93.56 136.09 133.14

Tome et al. [10] 64.98 73.47 76.82 86.43 86.28 68.93 74.79 110.19

Rogez et al. [11] 76.2 80.2 75.8 83.3 92.2 79 71.7 105.9

Moreno [9] 67.48 79.01 76.48 83.12 97.43 74.58 71.96 102.4

Pavlakos et al. [12] 67.38(2) 71.95(1) 66.7(2) 69.07(1) 71.95(1) 65.03(1) 68.3(2) 83.66(2)

Our Method
(Top 1)

80.12 95.5 69 104.3 96.04 96.4 81.57 103.9

Our Method
(Top 5)

58.68(1) 73.32(2) 52.1(1) 77.5(2) 73.4(2) 68.8(2) 57.08(1) 73.1(1)

Sit. Down Smoke photo Wait Walk W. Dog W. Together Avg

LinKDE [14] 243.03 162.14 205.94 170 96.6 177.13 127.88 162.14

Li and Chan [2] - - 189.08 - 77.6 146.59 - -

Li et al. [1] - - 168.68 - 69.97 132.17 - -

Tekin et al. [3] - - 162.17 - 65.75 130.53 - -

Tekin et al. [16] 224.9 118.42 182.73 138.75 55.07 126.29 65.76 124.97

Zhou et al. [17] 199.23 107.42 143.32 118.09 79.39 114.23 97.7 113.01

Park et al. [7] 190.82 105.78 149.55 125.12 62.64 131.9 96.18 117.34

Chen and Ramanan
[8]

240.12 106.65 139.17 106.21 87.03 114.05 90.55 114.18

Tome et al. [10] 173.91 84.95 110.67 85.78 71.36 86.26 73.14 88.39

Rogez et al. [11] 127.1 88 105.7 83.7(2) 64.9 86.6 84 87.7

Moreno [9] 116.68 87.7 100.37 94.57 75.21 82.72(2) 74.92 85.64

Pavlakos et al. [12] 96.51(1) 71.74(1) 76.97(1) 65.83(1) 59.11(2) 74.89(1) 63.24(2) 71.9(1)

Our Method
(Top 1)

172.6 101.7 124.9 119.12 66.5 142.3 83.6 102.5

Our Method
(Top 5)

101.3(2) 74.5(2) 94.8(2) 89.81 50.5(1) 92.4 60.9(1) 73.24(2)

Deep 3D Pose Dictionary 317

the training and the test 3D poses of the action itself. This truth is almost tangible for
our achieved results stated in Table 2 where the estimation accuracy for actions
(Directions, Eating, Purchases, Walking, and Walking Together) are relatively high
compared to the estimation accuracy for the other actions.

To prove this assumption, we measured the similarity between all test and training
3D poses for all actions through calculating the average of the minimum 3D pose
distances between each test frame and all training frames for every single action by
applying the following equation to the ground truth 3D poses.

D ¼ 1
S

XS
s¼1

minRr¼1

XN
n¼1

J sð Þ
n � J sð Þ

Hips

� �
� J rð Þ

n � J rð Þ
Hips

� ���� ���
2

" #
ð2Þ

Fig. 3. Samples of the ground truth and all the Top-5 predicted 3D poses.

Fig. 4. The relationship between test and training frames dissimilarity and the estimated MPJPE

318 R. Elbasiony et al.

Where D is the average distance which represents the dissimilarity between test and
training data for the selected action, S is the number of test frames, and R is the number
of training frames. Figure 4 shows the relationship between the dissimilarity measure
and the estimated top-1 MPJPE where the MPJPE is directly proportional with the
dissimilarity measure.

5 Conclusions

We have introduced a novel approach for 3D human pose estimation from a single
RGB image. The proposed method formulates the 3D pose estimation as a classifi-
cation problem which classifies the input RGB images into corresponding pre-defined
3D key-poses. The target key-poses are extracted from the training dataset using
K-Medoids clustering algorithm as a discretization method. Although the search space
for 3D human poses is huge, the proposed method exploits the power of convolutional
neural networks (CNN) to classify RGB images into a significant number of classes
efficiently. The proposed method achieved a prediction accuracy which is comparable
to the state-of-the-art methods.

Acknowledgments. The corresponding author would like to thank Intelligent Dynamics Rep-
resentation Laboratory (Prof. Ogata’s Laboratory), School of Fundamental Science and Engi-
neering, Waseda University, Japan for providing technical support for this research work.

References

1. Li, S., Zhang, W., Chan, A.B.: Maximum-margin structured learning with deep networks for
3d human pose estimation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2848–2856 (2015)

2. Li, S., Chan, Antoni B.: 3D human pose estimation from monocular images with deep
convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV
2014. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16808-1_23

3. Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., Fua, P.: Structured prediction of 3d
human pose with deep neural networks. In: Proceedings of the British Machine Vision
Conference (BMVC), pp. 130.1–130.11, September 2016

4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

5. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet,
D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

6. Yasin, H., Iqbal, U., Kruger, B., Weber, A., Gall, J.: A dual-source approach for 3d pose
estimation from a single image. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4948–4956 (2016)

7. Park, S., Hwang, J., Kwak, N.: 3D human pose estimation using convolutional neural
networks with 2D pose information. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol.
9915, pp. 156–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_15

Deep 3D Pose Dictionary 319

http://dx.doi.org/10.1007/978-3-319-16808-1_23
http://dx.doi.org/10.1007/978-3-319-16808-1_23
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1007/978-3-319-49409-8_15

8. Chen, C.H., Ramanan, D.: 3d human pose estimation = 2d pose estimation + matching. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5759–
5767, July 2017

9. Moreno-Noguer, F.: 3d human pose estimation from a single image via distance matrix
regression. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1561–1570, July 2017

10. Tome, D., Russell, C., Agapito, L.: Lifting from the deep: convolutional 3d pose estimation
from a single image. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5689–5698, July 2017

11. Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-Net: localization-classification-regression for
human pose. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1216–1224, July 2017

12. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-Fine volumetric prediction
for single-image 3d human pose. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1263–1272, July 2017

13. Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids. North-Holland, Amsterdam
(1987)

14. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale datasets and
predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal.
Mach. Intell. 36(7), 1325–1339 (2014)

15. Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953)
16. Tekin, B., Rozantsev, A., Lepetit, V., Fua, P.: Direct prediction of 3d body poses from

motion compensated sequences. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 991–1000 (2016)

17. Zhou, X., Zhu, M., Leonardos, S., Derpanis, K.G., Daniilidis, K.: Sparseness meets
deepness: 3d human pose estimation from monocular video. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4966–4975 (2016)

18. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of
the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.
6980 (2014)

320 R. Elbasiony et al.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

FiLayer: A Novel Fine-Grained
Layer-Wise Parallelism Strategy for Deep

Neural Networks

Wenbin Jiang(B), Yangsong Zhang, Pai Liu, Geyan Ye, and Hai Jin

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
Big Data Technology and System Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China
{wenbinjiang,zhangyangsong,liunxpaisley,gyye,hjin}@hust.edu.cn

Abstract. Data parallelism and model parallelism are regarded as two
major parallelism strategies for deep neural networks (DNNs). How-
ever, the two methodologies achieve acceleration mainly by applying
coarse-grained network-model-based parallelization. Neither methodol-
ogy can fully tap into the potentials of the parallelism of network models
and many-core systems (such as GPUs). In this work, we propose a
novel fine-grained parallelism strategy based on layer-wise paralleliza-
tion (named FiLayer), which includes inter-layer parallelism and intra-
layer parallelism. The former allows several adjacent layers in a network
model to be processed in a pipelined manner. The latter divides the
operations in one layer into several parts and processes them in parallel.
CUDA streams are applied to realize the above fine-grained parallelisms.
FiLayer is implemented by extending Caffe. Several typical datasets are
used for the performance evaluation. The experimental results indicate
that FiLayer can help Caffe achieve speedups of 1.58×–2.19×.

Keywords: Deep learning · Fined-grained parallelism · CUDA stream

1 Introduction

In recent years, deep learning [11] (also known as deep neural networks (DNNs))
has made various breakthroughs in numerous areas such as speech recognition,
text processing, and image processing. A variety of open-source projects, includ-
ing Caffe [7], MXNet [3], and TensorFlow [1], have continuously been presented.
Various deep learning network models, such as AlexNet [10], GoogLeNet [14],
and ResNet-50 [5], are also springing up.

To train a good deep learning network model, large amounts of time and
energy are necessary (e.g. [10,14]). If we can parallelize the training process of
network models, substantial time and energy savings can be achieved. This is
a matter worth investigating further. Currently, there are two main strategies
for parallelizing DNNs: data parallelism (e.g. [3]) and model parallelism (e.g.
[1]). Both data parallelism and model parallelism can be sped up by increasing
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 321–330, 2018.
https://doi.org/10.1007/978-3-030-01424-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_32&domain=pdf

322 W. Jiang et al.

the number of training workers. This coarse-grained parallelism strategy signifi-
cantly accelerates the training of network models, but certain flaws remain. First,
communications for synchronizing between multiple training workers represent
a large part of the time required during the training process. Therefore, it is
difficult to achieve linear acceleration. Actually, the training speed of a single
training worker is decreased instead of being increased. Second, GPUs are not
fully utilized, especially for smaller datasets. A large amount of GPU computa-
tion and memory resources are often left idle. Additionally, this coarse-grained
parallelism strategy is difficult to extend for many researchers who want to use
deep learning systems. The main reasons include the expensive GPUs and the
technical difficulties in extending the systems.

To address the above problems facing the two parallelism strategies and
exploit the potential of a single GPU fully, we propose a new fine-grained layer-
wise parallelism strategy (named FiLayer), which includes inter-layer and intra-
layer parallelisms. Both of them aim to parallelize the training of network models
at the layer level inside a GPU-based training worker. The benefit of FiLayer is
twofold. First, instead of adding more hardware resources such as more training
workers that speed up the model training through data and model parallelisms, it
fully exploits the parallelism potential within network and improves the training
speed in a single GPU. Second, it has good compatibility with other parallelism
methods. In other words, FiLayer can be used in situations characterized by data
parallelism and model parallelism with minimal modification and achieve further
speedups. CUDA stream technology is used here to implement the parallelism
strategies. We design and implement FiLayer by extending Caffe, and name the
FiLayer-based system as LP-Caffe. The experimental results show that speedups
of 1.58×–2.19× are achieved by FiLayer compared with Caffe. The contributions
of this study can be summarized as follows.

– A fine-grained layer-wise concept for DNN parallelism, which is a meaningful
extension of data and model parallelism. CUDA streams are applied to realize
the concept.

– An inter-layer parallelism strategy for adjacent layers of deep neural network
models. The mini-batch for a model is split into several fragments so that
different fragments from different mini-batches can be processed by different
adjacent layers in a pipeline manner.

– An intra-layer parallelism strategy for convolution layers. The strategy divides
the operations in one convolution layer into several parts and runs them in
parallel.

2 Related Works

Numerous works on training neural network models in parallel have been con-
ducted by researchers. Most of them achieve their acceleration by coarse-grained
data and model parallelism strategies and by more acceleration hardwares. The
following are some representative works.

FiLayer: A Novel Fine-grained Layer-wise Parallelism Strategy for DNNs 323

FireCaffe [6] trains GoogLeNet and Network-in-Network (NIN) [8] on Ima-
geNet [13] on a cluster of 128 GPUs, and achieves a speedup of 47× and 39×
respectively, compared with the original Caffe. Ammar et al. design S-Caffe sys-
tem [2] that uses data parallelism to train GoogLeNet on a GPU cluster. It
achieves a speedup of 2.5× when increasing the number of GPUs from 32 to
160.

The above works have a similarity in that they obtain their speedups by lever-
aging more acceleration hardwares. They have difficulties realizing the ideal lin-
ear acceleration based on this coarse-grained parallelism strategy. Some research
works have paid their attention to lower parallelism granularity level of DNNs.
MXNet proposes an idea of dividing LSTM network model into several GPUs by
layer. Inter-GPU can perform the computation of layers in a pipelined manner.
However, layers in the same GPU still cannot be processed in parallel.

CuDNN [4] is library for optimizing computational functions (e.g. convo-
lution, pooling, and sigmod) for deep learning, which focuses on refining the
process inside each layers of neural networks. According to [4], the majority of
functions in cuDNN have a straightforward implementation, however, the convo-
lution implementation related to matrix multiplication is not obvious. Since it is
not open-source, we can not get more details about its low-level implementation.
It is also worth noting that, cuDNN only concerns intra-layer optimization, with-
out considering any optimization approach for inter-layer issue, which is exactly
what we want to do in this paper.

Generally, few researches have been done for fine-grained layer-wise paral-
lelism for DNNs by considering both inter-layer and intra-layer issues.

3 Inter-layer Parallelism

3.1 Problem Analysis of Mini-batch Gradient Descent

Mini-batch gradient descent (MBGD) is regarded as one of the main optimiza-
tion algorithms used in deep learning systems, it consumes less memory and
has a high convergence speed. However, limited by the inherent sequentiality of
MBGD caused by the data dependency between layers, it is difficult to parallelize
the computations between multiple layers.

3.2 Data Pipeline Algorithm

Inspired by the concept of instruction pipeline algorithms, we propose a new
algorithm for the processes between multiple layers of neural network models:
Data P ipeline Algorithm (DPA). The aim of the DPA is to overcome the limi-
tation of the inherent order of MBGD and enables the computations of layers to
be executed in parallel. Therefore, more resources can be used for the training
process, which can speed up the training process of models. The main ideas of
this algorithm are described in the remaining parts. See Fig. 1 for a depiction of
the DPA, and see Algorithm 1 for its detailed procedure.

324 W. Jiang et al.

Fig. 1. Depiction of Data Pipeline Algorithm. Li devotes a part of a model, Ti denotes
a thread, Qi denotes a message queue, Bi, Bj denotes a fragment, Si denotes a CUDA
stream.

First, we divide a neural network model with N layers into N parts by layer
(Line 2 in Algorithm 1). Each part consists of one layer, and is controlled by
one CPU thread, which maintains a message queue to exchange messages with
other threads. During the algorithm’s operation, each thread monitors its own
message queue and performs different computation operations according to dif-
ferent messages (Lines 11–18). These messages include the forward propagation
message (FM), the backward propagation message (BM), and the exit message
(EM). Figure 1 shows a schematic diagram of the algorithm.

Second, we split each mini-batch into F fragments to reduce the data depen-
dency between layers (Line 4). Each fragment has the same size, and the data
dependency is reduced from a mini-batch to a fragment. At a given moment,
each fragment is processed by only one layer. However, different layers can pro-
cess different fragments concurrently. The former can ensure the correctness of
the network model training, whereas the latter is designed to reduce the training
time of the network model. Specifically, in the ith iteration process, the first task
is to divide one mini-batch into F fragments: Bi,1, Bi,2, ..., Bi,F . Next, during
the process of forward propagation of the network model, after Li finishes com-
puting Bi,f , Li immediately informs Li+1 to enable the latter to compute the
fragment Bi,f at once. Simultaneously, Li starts to compute Bi,f+1, allowing Li

and Li+1 to compute different fragments in parallel. The process of the back-
ward propagation of the network model is also done the same as the style of the
forward propagation, but inversely.

Third, we create N CUDA streams for each thread and issue different opera-
tions into different CUDA streams to ensure different operations can be executed
in parallel (Lines 15–16). A stream in CUDA is a sequence of operations that
execute on the device in the order in which they are issued by the host code.
While operations within a stream are guaranteed to be executed in the prescribed
order, operations in different streams can be interleaved, and when possible, they
can even run concurrently. Considering the computation operations in different
streams are executed asynchronously, CUDA API cudaStreamSynchronize is
called to synchronize Si to ensure the logic correctness of the algorithm after Li

finishes the computation operation in Si, and before it notifies the next layer
Li+1 to continue.

Based on the above ideas, the DPA can be performed on a GPU in parallel.

FiLayer: A Novel Fine-grained Layer-wise Parallelism Strategy for DNNs 325

Algorithm 1. Data Pipeline Algorithm
Input: mini batch
Output: network params

1: function TrainModel
2: create T1, T2, ... ,TN threads, Ti runs Pipeline(i);
3: for iteration i = 1 → ITER do
4: Bi → Bi,1, Bi,2, ..., Bi,F ;
5: Q1.push(FM1, FM2, ... ,FMF), then wait();
6: QN .push(BM1, BM2, ... ,BMF), then wait();
7: update(network params);

8: for layer j = 1 → N do
9: Qj .push(EM);

10: return network params
11: function Pipeline(i)
12: flag=true; // the controller of while statement
13: while flag do
14: msg ← Qi.pop(); Bi,f ← Bi;
15: if (msg = FM), Li.forward(Bi,f , Si);
16: if (msg = BM), Li.backward(Bi,f , Si);
17: if (msg = EM), flag=false, and Li.exit();
18: notify TrainModel thread();

4 Intra-layer Parallelism

DPA only realizes the inter-layer parallelism of a DNN. Actually, inside certain
special layers, there is still great parallelism potential to be exploited. The con-
volution layer that is realized based on matrix multiplication is such a type of
layer. In this section, we present a fine-grained intra-layer parallelism strategy
by parallelizing the processing of the convolution layer.

4.1 Analysis of Convolution Operation

Figure 2(a) shows the forward propagation of a convolution layer in Caffe, where
the size of the mini-batch of input data is six. Because all the input images are
submitted to the default CUDA stream, the algorithm eventually is performed in
a completely serialized form for all the input data. There is also a similar problem
in the backward propagation of the convolution layer. Obviously, this type of
realization leads to a serious waste of the computational resources of the GPU
even if it can support massive parallel computations. Inevitably, the training
time of the entire network model increases. In the following subsection, we show
how to optimize this algorithm by parallelizing the convolution operations based
on CUDA streams.

326 W. Jiang et al.

4.2 Parallelization of Convolution Layer

Figure 2(b) shows the parallelization of the forward propagation of the convolu-
tion layer under an ideal situation, where we assume that operations in different
streams can be performed concurrently and where the process time of each image
is equal. However, in practical situations, operations in different streams cannot
completely run concurrently, and the computation times of each image may
be unequal. Figure 2(c) shows such a situation, and Algorithm 2 presents more
details.

Fig. 2. The forward propagation of a convolution layer. Here, for convenience of dis-
cussion, the batch size of the input data is set to 6, and the number of CUDA streams
used in (b) and (c) is set to 3. Ii denotes the forward propagation of the ith image of
one mini-batch. Ss denotes the sth CUDA stream created by users.

Algorithm 2. The parallelization forward propagation of the convolution layer
Input: Btm, Top,W// Btm, Top, and W denote the bottom data, the top data, and
the weight of the neural network model, respectively.
Output: Top

1: function Parallelization Forward
2: get S CUDA streams Streams;
3: for batch size n = 1 → BS do
4: i ← n · TopDim; //get the offset of the nth image in Top.
5: j ← n · BtmDim; //get the offset of the nth image in Btm.
6: s ← n mod S; //get the index of the sth stream.
7: //convert the nth image into a matrix(bfs).
8: Input2Matrix(Btmj , bfs, Streamss);
9: //execute convolution operation in Streamss.

10: Conv(bfs, T opi,W, Streamss);

11: for stream s = 1 → S do
12: Sync(Streamss); //synchronize the sth stream.

13: return Top

The main idea of Algorithm 2 is to assign different images to different CUDA
streams, and to process these images in parallel by utilizing the concurrency of
the streams. Specifically, we first get S CUDA streams created in advance (Line

FiLayer: A Novel Fine-grained Layer-wise Parallelism Strategy for DNNs 327

2 in Algorithm 2). Second, during the forward propagation, we need to calculate
the offset of the nth image stored in the top data, and the offset of the nth image
stored in the bottom data (Lines 4–6). Then, we convert the nth image into a
matrix and submit its convolution operation to the sth stream (Lines 7–10). To
ensure the correctness of the process, we need to perform the following two steps.
First, to guarantee the data for different streams to be independent, we allocate
a buffer(bf) used to convert an image into a matrix for each stream. Second,
because multiple streams run concurrently (Fig. 2(b)), we need to synchronize
all the streams before starting the next operation (Lines 11–12). In the back
propagation of the convolution layer, we take a similar strategy to parallelize
the convolution operations. Due to space constraints, it will not be shown here.

5 Experimental Results

5.1 Datasets and Environments

We use four typical image classification datasets and three different hardware
environments for the performance evaluation. The datasets include MNIST
[12],CIFAR10 [9], CIFAR100 [9], and ImageNet [13]. The specific experimen-
tal environment is shown in Table 1.

Table 1. Experimental environment

Machine/OS CPUs/machine GPUs/machine GPU Memory CUDA Version

M1/Ubuntu 14.04 1 × (i7 920) 1 × Titan Z (only one

GPU used)

12GB (6GB used) CUDA7.5

M2/Ubuntu 14.04 1 × (Xeon E5-2620) 1 × Tesla K40m 12GB CUDA7.5

M3/Ubuntu 14.04 1 × (Xeon E5-2680) 1 × Tesla P100 16GB CUDA7.5

5.2 Evaluating Inter-layer Parallelism

In this subsection, we evaluate the inter-layer parallelism strategy. Specifically,
for different datasets, we analyze the effects of different F on the convergence
speed of the network model in different hardware environments. We choose the
result of the original Caffe as the benchmark. We take the experimental results of
CIFAR10 trained on M1 as an example. The more detailed experimental results
are given in Table 2.

From Table 2, we notice that different F values have different effects on the
convergence speed of the network model. When F is 1, which means that the
mini-batch is not split into fragments, the model training time is greater than
that of the benchmark because of the additional scheduling overhead associated
with the DPA. When F is 6, the network model achieves the highest convergence
speed, and the speedup SP is 1.51. The convergence speed begins to decrease
when F increases further. When F increases to 10, the convergence speed of the

328 W. Jiang et al.

Table 2. The experimental results of the inter-layer parallelism

M CIFAR10 MNIST CIFAR100 ImageNet

M1 F Images/S (I/S) Speedup (SP) F I/S SP F I/S SP F I/S SP

- 1224 1.00× - 2425 1.00× - 1150 1.00× - 129 1.00×
1 1194 0.98× 1 2341 0.97× 1 1095 0.95× 1 121 0.94×
2 1571 1.28× 2 2853 1.18× 2 1517 1.32× 2 153 1.19×
4 1760 1.44× 4 2990 1.23× 4 1815 1.58× 4 140 1.09×
6 1851 1.51× 6 2998 1.24× 6 1808 1.57× 6 123 0.96×
8 1831 1.50× 8 2942 1.21× 8 1739 1.51× 8 115 0.89×
10 1763 1.44× 10 2857 1.18× 10 1674 1.46× 10 103 0.80×

M denotes machines. F denotes the number of fragments. Rows where F equals ‘-’ denote
the experimental results for the original Caffe, and its speedup SP is set to one.

network model becomes lower than that with F6, and the speedup SP decreases
to 1.44. The following reasons can account for the above result. First, GPUs
are more suitable for handling larger mini-batches, and when a mini-batch is
divided into F fragments, the number of iterations of each mini-batch becomes
F . Therefore, the total time for the GPU to compute the F fragments is more
than the time for the integral mini-batch. Second, whether the operation can
be actually executed in parallel is also decided by the amount of computation
resources on the GPU. When the value of F reaches a certain threshold, all
the computational resources of the GPU are allocated. Then, even if the value
of F is further increased, the time for the training process cannot be reduced
further. Conversely, because of the increase of the border overheads, the time
will deteriorate as F further increases.

The experimental results of other datasets are also given in Table 2. Due to
limited space, experimental data for M2 and M3 are not shown in details here.
We can draw similar conclusion from the experimental results on M2 and M3.

5.3 Evaluating Intra-layer Parallelism

In this subsection, we evaluate the performance of the proposed intra-layer par-
allelism strategy based on inter-layer parallelism. Specifically, when the values
of F are optimal, we analyze the effects of different S on the convergence speed
of the network model in different hardware environments. A detailed overview of
the experimental results is given in Table 3. Here, we also take the experimental
results of CIFAR10 trained on M1 as an example for detailed explanation.

From Table 3, we can see that the convergence speed of the network model
firstly increases and then decreases with increasing S. When S is 6, the speedup
SP achieves the maximum value of 2.19. With further increases in S, the value
of SP begins to decrease. The major reason for the above result is that the
GPU cannot support too many CUDA streams in parallel because of its lim-
ited resources. The second factor is the GPU resources (memory, registers, and
blocks) assigned to a single stream. When the value of S reaches a certain thresh-
old, the GPU resources are completely consumed. At this time, even if the value

FiLayer: A Novel Fine-grained Layer-wise Parallelism Strategy for DNNs 329

Table 3. The experimental results of the intra-layer parallelism

M CIFAR10 MNIST CIFAR100 ImageNet

M1 S Images/s (I/S) Speedup (SP) S I/S SP S I/S SP S I/S SP

F6 F6 F4 F6

- 1224 1.00× - 2429 1.00× - 1150 1.00× - 129 1.00×
2 2435 1.99× 2 3999 1.65× 2 2022 1.76× 2 161 1.19×
4 2646 2.16× 4 4211 1.73× 4 2048 1.78× 4 164 1.26×
6 2677 2.19× 6 4194 1.73× 6 2046 1.78× 6 172 1.33×
8 2643 2.16× 8 4223 1.74× 8 2038 1.77× 8 167 1.29×
10 2612 2.13× 10 4147 1.71× 10 2021 1.76× 10 160 1.24×
12 2586 2.11× 12 4104 1.69× 12 2011 1.75× 12 159 1.23×

S denotes the number of CUDA streams. Rows where S equals ‘-’ denote the experimental
results for the original Caffe, and the speedup (SP) is set to one.

of S is increased further, the processing time cannot be further reduced. The
above two factors show that more CUDA streams do not mean gaining further
higher speedups. We also can draw similar conclusion from the experimental
results on M2 and M3.

6 Conclusions and Future Works

In this work, we propose FiLayer, a fine-grained layer-wise parallelism strategy
for deep neural networks, including inter-layer parallelism and intra-layer par-
allelism. FiLayer is implemented by extending Caffe. We call the FiLayer-based
system LP-Caffe. To realize inter-layer parallelism, we propose a fine-grained
pipeline algorithm, DPA, which allows several adjacent layers in a network model
to be processed in a pipelined manner. For the intra-layer parallelism, we focus
on the convolution process. CUDA stream technology is applied to realize the
above two fine-grained parallelism strategies. However, we cannot deploy FiLayer
over cuDNN yet, because of some confliction between the CUDA stream mecha-
nism of cuDNN and that of the inter-layer parallelism strategy of FiLayer. Since
cuDNN is not open-source, we cannot overcome the conflict yet. Therefore, in our
experiments, we choose the original Caffe as the benchmark. The experimental
results indicate that our proposed FiLayer-based LP-Caffe achieves 1.58×–2.19×
speedups compared with the benchmark. In the future, we will focus on com-
bining FiLayer and cuDNN work together, as well as pushing FiLayer to the
situations of multiple GPUs and multiple training workers.

Acknowledgments. This work is supported by National Natural Science Foundation
of China under grant No. 61672250.

330 W. Jiang et al.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Pro-
ceedings of 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), pp. 265–283. USENIX, Berkeley (2016)

2. Awan, A.A., Hamidouche, K., Hashmi, J.M., Panda, D.K.: S-Caffe: co-designing
MPI runtimes and Caffe for scalable deep learning on modern GPU clusters. In:
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pp. 193–205. ACM, New York (2017)

3. Chen, T., et al.: MXNet: a flexible and efficient machine learning library for het-
erogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

4. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778. IEEE, Piscataway (2016)

6. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Keutzer, K.: FireCaffe: near-linear
acceleration of deep neural network training on compute clusters. In: Proceedings of
the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2592–2600. IEEE, Piscataway (2016)

7. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Pro-
ceedings of the 22nd ACM International Conference on Multimedia (ACM MM),
pp. 675–678. ACM, New York (2014)

8. Jiang, H., Ruan, J.: The application of genetic neural network in network intrusion
detection. J. Comput. 4, 1276–1283 (2009)

9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, University of Toronto (2009)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of the 26th Annual Conference on
Neural Information Processing Systems (NIPS), pp. 1097–1105. Curran Associates
Inc., New York (2012)

11. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521, 436–444 (2015)
12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86, 2278–2324 (1998)
13. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.

Comput. Vis. 115, 211–252 (2015)
14. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the 28th

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9.
IEEE, Piscataway (2015)

http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1410.0759

DeepVol: Deep Fruit Volume Estimation

Hongyu Li(B) and Tianqi Han(B)

AI Lab, ZhongAn Information Technology Service Co., Ltd., Shanghai, China
{lihongyu,hantianqi}@zhongan.io

Abstract. Due to the variety of fruit, fruit volume estimation is quite
challenging. In this paper, we present a deep neural network based app-
roach, DeepVol, to joint detection and volume estimation in a framework.
The proposed architecture consists two independent parts: SSD-based
fruit detector and ResNet-based volume regressor. To train the network
models, a fruit dataset involving fruit volume and images is collected as
a benchmark to verify the volume estimation framework. This method
is simple and convenient in practical applications, owing to its requir-
ing no conventional camera calibration and only single image as input.
Experimental results demonstrate that our approach is robust to differ-
ent surroundings, and promising in calorie measurement and unmanned
stores.

Keywords: Fruit volume estimation · Fruit detection · DeepVol
Deep neural network

1 Introduction

Mobile applications in calorie counting and diet are increasingly popular these
years. To accurately count food calorie, it is crucial to measure food volume based
on input food images [17]. Visual food volume measurement is extremely difficult
and challenging since many foods have large variations in shape and appearance.
Compared to other types of food, fruits deserve more concern for common con-
sumers due to their stable shape. In addition, with the rapid development of
unmanned stores, fruit volume estimation is urgently needed to compute the
corresponding price.

To improve the accuracy of volume estimation, deep neural network (DNN)
starts to be used in food volume measurement [10], which generally requires a
large amount of images to train an estimation model. However, the available
datasets for food volume estimation are in shortage due to the difficulty of col-
lecting the ground truth of food volume. Fruits are relatively popular and easy
to collect and measure the volume. Therefore, a fruit dataset involving fruit vol-
ume and images is collected as a benchmark to verify fruit volume estimation
methods, which is publicly available from the website in [9].

Meanwhile, we propose a deep neural network based approach, named Deep-
Vol, to predict the fruit volume after fruit detection. Inspired by dense multi-view
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 331–341, 2018.
https://doi.org/10.1007/978-3-030-01424-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_33&domain=pdf

332 H. Li and T. Han

stereo methods [1] for uncalibrated images, it is assumed that implicit features
for camera calibration can be effectively extracted with deep learning techniques
from large scale images. Based on this assumption, the proposed method needs
no reference for calibration, but requires a large number of fruit images for the
DNN model training. In essence, the volume estimation in our approach is imple-
mented through modifying deep residual net (ResNet [6]) as a regression model,
where only single image is required as input for prediction. To reduce the effects
of surroundings on estimation accuracy, and predict multiple fruits in an image,
each fruit is first detected and only effective fruit regions are fed to the volume
estimation model.

In contrast to the state-of-the-art methods, the proposed approach is simple
and flexible in practical applications, owing to its requiring no conventional cam-
era calibration and only single image as input. Experimental results demonstrate
that our approach is robust to different surroundings, and promising in calorie
measurement and unmanned stores.

2 Related Work

In recent ten years, some vision based methods emerged for food volume estima-
tion. According to the difference of inputs, they can be grouped into two classes:
single-view [7,14,18] or multi-view [2,5,15].

The single-view technique requires only single image and estimates food vol-
ume by using a reference for camera calibration after food portion segmentation
and identification. In this case, a circular object (e.g., a dining plate or a bowl) is
often used as a physical reference for calibration [18]. In addition, checkerboard
[7], thumb [14], block [8] or card [12] is alternative to simplify calibration in food
calorie measurement. However, the use of reference objects is inconvenient in
real applications due to the difficulty of fetching them.

For multi-view volume estimation, at least two images are necessary for recon-
structing three-dimensional (3D) models of food and calculating food portion
size. In [2], the estimation approach requires a pair of stereo images to be cap-
tured from which a 3D model is built. The 3D model serves to estimate the
volume of the different items. In [5], six images with different viewpoints are
first selected from an input short video, and a point cloud is generated to model
food after an interactive segmentation. In multi-view cases, either a checker-
board [5,15] or card [2] is used as ground reference for camera calibration in
3D reconstruction. Both multiple input images and reference objects seem too
complicated for users in practical applications.

As an emerging and powerful technique in feature learning, deep learning
has been widely used in the area of computer vision. To identify food portions
more accurately, it is also adopted to increase the accuracy of food classification
[8,13] and detection [10]. Food volume estimation, however, is not well studied
with deep features due to the shortage of usable datasets.

To the best of our knowledge, there is only a study in [10] involving fruit
volume estimation, where fruits are extracted through Faster R-CNN [16] and

DeepVol: Deep Fruit Volume Estimation 333

volume is calculated with a coin as a reference. In addition, [10] provides a fruit
dataset with the ground truth volume, but there are only two views captured
from side and top for each fruit, which makes this dataset unsuitable for training
deep network models.

The main contribution of this work is to propose an efficient and effective
framework, DeepVol, to jointly reason about fruit location, and fruit volume.
Under this framework, it is feasible to avoid the fore-mentioned inconveniences,
multiple input images and reference objects. The proposed framework can also
be extended to other food types, provided that the related dataset is collected
for the model training.

Fig. 1. Overview of the proposed framework: (a) fruit detection, (b) volume estimation.
Given an image with multiple fruits, the DeepVol framework first finds each fruit and
then estimates its volume separately.

3 DeepVol for Volume Estimation

The DeepVol approach is composed of two independent deep neural networks:
detection and estimation, as illustrated in Fig. 1. The input image is first fed
to the detection network for locating and extracting each fruit. The extracted
subimages regarding fruits are then delivered to the estimation network respec-
tively for predicting the volume of each fruit.

3.1 Fruit Detection

During fruit detection, we aim to separate an image with multiple fruits into
subimages, each containing only one fruit. In this work, we make use of the

334 H. Li and T. Han

Fig. 2. The estimation network architecture composed of 12 convolutional layers and
a regression layer.

deep neural network to generate a fruit detector. As a fast object detector for
multiple categories, the single shot multibox detector (SSD) is simple and easy
to train, and has competitive accuracy, as shown in [11]. Our detection model
is finetuned on the pre-trained SSD network on VOC2012 [3], which uses the
VGG-16 network as a base and adds auxiliary feature layers to the end of the
base network.

Once a fruit is found with our detector from the input image, the corre-
sponding subimage can be cropped out with its bounding box as the input of
the subsequent volume estimation network. In this way, the disturbance of sur-
roundings can be effectively removed and the eventual estimation accuracy will
increase.

3.2 Volume Estimation

To predict food volume, it is straightforward to cast volume estimation as a
regression problem since the estimation is essentially to predict a scalar. Moti-
vated by the fact that deep features are effective in food classification [4], we
utilize deep neural network to extract significant features for volume estimation.

In the estimation network, the early layers are based on a standard architec-
ture truncated before the classification layers, where the extracted deep features
are of 512 dimensions. An auxiliary regression layer, whose output is a neuron, is
added after the early layers for estimation. In our method, the ResNet network
[6] is adopted as a base due to its better performance in feature representation,
but other networks should also produce good results. As shown in Fig. 2, the
estimation network contains a total of 12 convolutional layers and a regression
layer.

In practice, to prevent the overfitting of the estimation model, we need to
collect a large amount of fruit images with volume for training large scale param-
eters. However, the number of training data is generally small, therefore we select
for volume estimation a customized ResNet and pretrain it on ImageNet with a
tiny number of parameters.

DeepVol: Deep Fruit Volume Estimation 335

4 Training Details

In this section we describe the loss functions we employ as well as other details
of our training procedure.

4.1 Loss Functions

In the detection network, the loss function is defined as the sum of two losses
for detection: Softmax loss for the confidences and L1 loss on the bounding box
coordinates. In the context of the detection, we solely need to determine whether
the object is a fruit. As a result there are only two classes, fruit and background,
to take into account in the confidence loss.

To predict fruit volume, the estimation loss adopts Euclidean loss for volume
regression, which is stacked with the customized ResNet. Specifically, the loss is
defined as

Lest = ‖V − V‖22, (1)

where V and V are respectively the predicted and ground truth volumes.

4.2 Training Strategy

As shown in Fig. 1, the detection and estimation networks are sequentially con-
catenated and are thus two separate models in our framework. This allows us to
independently train each network with its own set of training parameters.

We first train the detection model using the annotated images with bound-
ing boxes. The detection model is initialized using the pre-trained SSD weights
on VOC2012, and then finetuned with a tiny amount of annotated images. We
observed that thousands iterations are generally enough for training the detec-
tion network.

The estimation network is optimized with cropped images labeled with
ground truth volumes. The convolutional layers of the estimation network are
initialized using the ResNet weights pre-trained on ImageNet. The weights for
the regression layer are randomly initialized under a uniform distribution in the
range (−0.1, 0.1).

4.3 Optimizer and Regularization

We use the SGD optimizer with a learning rate of 1e−3 to train the detection
network. A weight decay of 5e−4 is applied to all layers in the detection network.

For the optimization of the estimation network, the Adam optimizer is uti-
lized with a learning rate 1e−5. A weight decay of 2e−4 is applied to all layers
and the dropout with probability 0.5 is used after global pooling in the estima-
tion network.

336 H. Li and T. Han

5 Experimental Results

To train the estimation network, the annotated volume is required for a dataset
of fruit images. So far, however, there are hardly any available fruit dataset
providing volume labels except in [10]. Unfortunately, only several pairs of images
from the side and top views of a fruit are taken in the dataset of [10], which
does not make for deep neural network generally requiring a big amount of
training data. Moreover, the background of fruit images is relatively simple and
thus results in the small intra-class variations in this dataset, tending to overfit
deep neural network. With these considerations, we collected a new dataset of
fruit images with varied backgrounds and views. In addition, we performed our
experimental evaluation on the collected and available datasets in this section.

Table 1. Dataset description

Type Count Volume Image Detected Recall

Apple 17 160–750 5366 5170 96.3%

Pear 7 180–550 2100 2048 97.5%

Orange 2 240–270 627 591 94.3%

Mango 1 300 313 311 99.4%

Granate 1 250 275 267 97.1%

Total 28 160–750 8681 8387 96.6%

5.1 Dataset Collection

To validate the feasibility of the proposed framework, we collected a dataset
containing 28 different fruits, as listed in Table 1, where the volume is manu-
ally measured with a counting cup. There are 8681 fruit images in total, each
containing individual fruit, and around 300 images collected on average for each
fruit.

To prevent the overfitting of the evaluation model, on the one hand, each
fruit is captured with 10 diverse backgrounds, e.g., kitchen, office, street and
park. On the other hand, some fruit models made of plastics are also used for
collection to ensure the variety of albedo and reflection. To alleviate the effect
of uncalibration on the evaluation and take advantage of deep features among
multi-view images, for each background, about 30 different views are varied for
shooting through rotating fruits or moving the camera. To decrease the effect of
surroundings on the evaluation, we crop the subimage of each fruit from the raw
images as the input for training.

It is worth noting that the collected dataset is not large enough to cover all
types of fruits due to the difficulty of measuring the volume of each fruit. But
it is effective for us to check the performance of the proposed framework. The
framework is scalable and extensible to large-scale fruit data.

DeepVol: Deep Fruit Volume Estimation 337

5.2 Performance Evaluation

Detection. For the detection network training, fruit images must be labelled
with bounding boxes. In this work, we randomly picked and manually annotated
500 fruit images from the collected dataset, and then finetuned the detection
network with these data. The finetuned detection network is used to test all the
images in the collected data.

In the proposed framework, the objective of detection is to extract each fruit
and obtain the corresponding bounding box from an input image. In this regard,
we are mainly concerned with the recall capability of the detection network, i.e.,
the success rate of finding fruits from test images. The number of detected fruits
and the detection recall are respectively listed in the last two columns of Table 1.

It is observed that the overall recall rate is over 96%, which is basically
satisfactory to the framework. Note that the more the annotated images for
training, the better the detection performance.

Table 2. Estimation error of different fruits on average

Type Ground Truth Estimation Error

Apple model 368.75 333.05 −9.68%

Apple 225.56 230.15 2.04%

Pear 324.29 314.28 −3.09%

Orange 255 272.18 6.74%

Mango 300 257.17 −14.3%

Granate 250 282.97 13.2%

Volume Estimation. In the following experiments, we divided the collected
dataset into 6 groups, each of which contains 4 or 5 different fruits. Each group
is respectively picked out as the test data, and all the left groups are kept for
training. In this way, the test fruits are unknown to the training data and are able
to check the ability of generalization and robustness of the estimation network.
In summary, 6 round experiments will be conducted to make sure that each fruit
image is estimated at least once.

To evaluate the performance of the estimation network, we define an average
relative error of estimated volumes for N images as,

E =
1
N

N∑

k=1

Vk − V k

V k

, (2)

where Vk and V k are the estimated and ground truth volumes respectively.
In this test, we computed an average volume of the images under different

views for each background in the test data. It is observed from Table 2 that

338 H. Li and T. Han

the estimation network has the good robustness to the variation of background,
with all the relative errors less than 15%. Two worst cases, −14.3% for Mango
and 13.2% for Granate, happen to be due to the shortage of training data.
Experimental results in Fig. 3, show that the volumes predicted with the pro-
posed framework are stable and robust once the shooting distance is greater than
15 cm, even if the surroundings are complex.

In fact, if we enlarged the training data in a way of uniform sampling in
the volume range, the estimation error will be greatly decreased, even for the
fruits with extremely large or small volumes. Unfortunately, however, since the
extreme large and small fruits are scarce, we ddi not collect enough for training
in the current dataset.

It is worth to note that fruit volume can be predicted in a good way although
it is still unclear how deep features contribute to volume estimation. In our view,
those intrinsic and extrinsic parameters for building geometric model of digital
camera are well learned with deep neural network, so that the proposed method
is effective even if the scale, translation or rotation transform comes up in the
collected fruit images.

Fig. 3. Volume estimation under different shooting distances and background
complexity

Comparison. There is only an available fruit dataset, the ECUSTFD data in
[10], with labeled volume. We also tested the proposed DeepVol method on the
ECUSTFD data and compare it with the method in [10]. The ECUSTFD data
is completely different from ours in such factors as fruit types, backgrounds, and
shooting conditions. Moreover, only two views are captured from side and top in
the ECUSTFD data, which makes this dataset more challenging to the proposed
method.

DeepVol: Deep Fruit Volume Estimation 339

In this test, our method only requires a single-view image as the input and
thus has more test images after detection while [10] needs two images from
different views. As shown in Table 3, the estimation network performs well on
new unknown data and shows the good capability of generalization. Specifically,
the relative error of estimated volumes with the DeepVol method is 1.33% on
apple images, lower than the result 3.65 % in [10]. The DeepVol method performs
in a poor way on pear with a higher error as a result of the minor amount of
training samples involving pear.

Table 3. Comparison between DeepVol and [10]

Type Method Ground truth Estimation Error

Apple [10] 332.78 320.65 −3.65%

DeepVol 318.95 323.20 1.33%

Pear [10] 266.86 265.57 −0.48%

DeepVol 250.00 268.62 7.45%

Multiple Fruits. To test the proposed method in dealing with images with
multiple fruits, we randomly shot some pictures of two fruits under different
views and backgrounds, as shown in Fig. 4(a). For example, the granate in Image
#3 and the small apple in Image #4 are brandly new to the training data, and
the cartoon background in Image #4 is unusual as well. Moreover, the shooting
devices and conditions are completely changed to check the robustness of the
learned detection and estimation models.

The volume estimation results in Fig. 4(b) demonstrate that the estimation
error is not more than 15% even in the worst case where a strange granate
appears in Image #3. In fact, the estimation accuracy can be further improved
by simply increasing the training data.

Mobile Application. We also developed an application on a mobile device,
which is based on a SaaS framework. In this application, the mobile end user
first takes a photo of fruits with the mobile camera, and then transmits it to the
server with NVIDIA GeForce GTX 1080Ti on which fruit detection and volume
estimation are run. The proposed method spends, on average, about 53 ms in
detecting multiple fruits and 7 ms in volume estimation of each fruit. In sum, the
whole computational process usually requires less than 100 ms for an image with
multiple fruits, which is acceptable and feasible in practical applications. The
video demo involving the mobile application can be found in the supplemental
material in [9], where the fruit samples did not appear in the collected dataset.

340 H. Li and T. Han

Fig. 4. (a) detection results for multiple fruits. Each fruit is surrounded with a bound-
ing box colored in red or blue. (b) volume estimation results for the above images.
(Color figure online)

6 Conclusion

This paper proposes a deep neural network based approach for fruit volume esti-
mation. In contrast to the state-of-the-art methods, the proposed approach is
simple and flexible for practical applications, owing to its requiring no conven-
tional camera calibration and only single image as input. It is easy to extend to
other food types once the dataset with volume is collected for training.

References

1. Cui, P., Liu, Y., Wu, P., Li, J., Yi, S.: An effective multiview stereo method for
uncalibrated images. In: Zha, H., Chen, X., Wang, L., Miao, Q. (eds.) CCCV 2015.
CCIS, vol. 546, pp. 124–133. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48558-3 13

2. Dehais, J., Anthimopoulos, M., Shevchik, S., Mougiakakou, S.: Two-view 3d recon-
struction for food volume estimation. IEEE Trans. Multimed. 19(5), 1090–1099
(2017)

3. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisser-
man, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput.
Vis. 111(1), 98–136 (2015)

4. Fu, Z., Chen, D., Li, H.: ChinFood1000: a large benchmark dataset for Chinese food
recognition. In: Huang, D.-S., Bevilacqua, V., Premaratne, P., Gupta, P. (eds.)
ICIC 2017. LNCS, vol. 10361, pp. 273–281. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63309-1 25

5. Hassannejad, H., Matrella, G., Ciampolini, P., Munari, I.D., Mordonini, M.,
Cagnoni, S.: A new approach to image-based estimation of food volume. Algo-
rithms 10(2), 66 (2017)

https://doi.org/10.1007/978-3-662-48558-3_13
https://doi.org/10.1007/978-3-662-48558-3_13
https://doi.org/10.1007/978-3-319-63309-1_25
https://doi.org/10.1007/978-3-319-63309-1_25

DeepVol: Deep Fruit Volume Estimation 341

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, June 2016

7. He, Y., Xu, C., Khanna, N., Boushey, C.J., Delp, E.J.: Food image analysis: seg-
mentation, identification and weight estimation. In: 2013 IEEE International Con-
ference on Multimedia and Expo (ICME), pp. 1–6, July 2013

8. Kuhad, P., Yassine, A., Shimohammadi, S.: Using distance estimation and deep
learning to simplify calibration in food calorie measurement. In: 2015 IEEE Inter-
national Conference on Computational Intelligence and Virtual Environments for
Measurement Systems and Applications (CIVEMSA), pp. 1–6, June 2015

9. Li, H., Han, T.: ZA-Fruit Dataset and Video Demo (2018). https://pan.baidu.com/
s/1tezw9Ok8-byNyTy6giSQqg#list/path=%2FDeepVol

10. Liang, Y., Li, J.: Computer vision-based food calorie estimation: dataset, method,
and experiment. CoRR abs/1705.07632, http://arxiv.org/abs/1705.07632 (2017)

11. Liu, W., et al.: SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

12. Okamoto, K., Yanai, K.: An automatic calorie estimation system of food images
on a smartphone. In: Proceedings of MADiMa 2016, pp. 63–70 (2016)

13. Pouladzadeh, P., Kuhad, P., Peddi, S.V.B., Yassine, A., Shirmohammadi, S.: Food
calorie measurement using deep learning neural network. In: 2016 IEEE Interna-
tional Instrumentation and Measurement Technology Conference Proceedings, pp.
1–6, May 2016

14. Pouladzadeh, P., Shirmohammadi, S., Al-Maghrabi, R.: Measuring calorie and
nutrition from food image. IEEE Trans. Instrum. Meas. 63(8), 1947–1956 (2014)

15. Rahman, M.H., et al.: Food volume estimation in a mobile phone based dietary
assessment system. In: 2012 Eighth International Conference on Signal Image Tech-
nology and Internet Based Systems, pp. 988–995, November 2012

16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2015)

17. Xu, C., He, Y., Khannan, N., Parra, A., Boushey, C., Delp, E.: Image-based food
volume estimation. In: Proceedings of the 5th International Workshop on Multi-
media for Cooking and Eating Activities, CEA 2013, pp. 75–80 (2013)

18. Yue, Y., et al.: Food volume estimation using a circular reference in image-based
dietary studies. In: Proceedings of the 2010 IEEE 36th Annual Northeast Bioengi-
neering Conference (NEBEC), pp. 1–2, March 2010

https://pan.baidu.com/s/1tezw9Ok8-byNyTy6giSQqg#list/path=%2FDeepVol
https://pan.baidu.com/s/1tezw9Ok8-byNyTy6giSQqg#list/path=%2FDeepVol
http://arxiv.org/abs/1705.07632
https://doi.org/10.1007/978-3-319-46448-0_2

Graph Matching and Pseudo-Label
Guided Deep Unsupervised Domain

Adaptation

Debasmit Das(B) and C. S. George Lee

School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN, USA

{das35,csglee}@purdue.edu

Abstract. The goal of domain adaptation is to train a high-performance
predictive model on the target domain data by using knowledge from
the source domain data, which has different but related data distribu-
tion. In this paper, we consider unsupervised domain adaptation where
we have labelled source domain data but unlabelled target domain data.
Our solution to unsupervised domain adaptation is to learn a domain-
invariant representation that is also category discriminative. Domain-
invariant representations are realized by minimizing the domain discrep-
ancy. To minimize the domain discrepancy, we propose a novel graph-
matching metric between the source and target domain representations.
Minimizing this metric allows the source and target representations to be
in support of each other. We further exploit confident unlabelled target
domain samples and their pseudo-labels to refine our proposed model.
We expect the refining step to improve the performance further. This
is validated by performing experiments on standard image classification
adaptation datasets. Results showed our proposed approach out-perform
previous domain-invariant representation learning approaches.

Keywords: Unsupervised domain adaptation · Transfer learning
Graph matching · Pseudo-labels

1 Introduction

Unsupervised Domain Adaptation (UDA) defines the problem when the target
domain is unlabelled and the source domain is fully labelled and these domains
have different marginal distributions [15]. UDA tries to transfer knowledge from
a source domain to help learning in a target domain. The assumption in UDA for
the classification problem is that the source and target categories are the same.
Because of shifting distributions and the lack of annotations, machine learning
models trained in the source domain will fail to perform well in the target domain
and hence UDA is necessary.

Most popular domain-adaptation methods involve feature transformation.
Among these methods, asymmetric feature-based methods transform the fea-
tures of one domain to more closely match another domain [3,10]. Symmetric
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 342–352, 2018.
https://doi.org/10.1007/978-3-030-01424-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_34&domain=pdf

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 343

methods on the other hand transform the source and target domains to a com-
mon latent space where the distribution discrepancy is minimized. Deep-learning-
based domain adaptation methods allow symmetric feature-based methods to be
included in the form of learning a domain-invariant representation [7,13]. Among
these methods, minimizing the maximum mean discrepancy (MMD) [9] is com-
mon. MMD is a non-parametric metric that measures the distribution divergence
between the mean embeddings of two distributions in reproducing kernel Hilbert
space (RKHS), and MMD has been used as a domain discrepancy metric between
the deep activations of the source and target domains [13,20]. On the other hand,
the correlation alignment (CORAL) method [17] aligns the covariances of the
source and target distributions. They also extended their work to learn repre-
sentations that align correlations of features extracted from the deep neural net-
work [18]. A different class of symmetric feature-based methods uses an adversar-
ial objective to reduce domain discrepancy. Domain adversarial neural network
(DANN) [7] was proposed for learning domain-invariant representations by forc-
ing a minimax game between the domain discriminator and the feature extractor.
Tzeng et al. [19] generalized the idea of adversarial adaptation by choosing adver-
sarial loss for the domain classifier and also proposed a weight sharing strategy.
Shen et al. [16] also considers an adversarial adaptation method where it mini-
mizes the empirical Wasserstein distance between source and target features. Pre-
vious work on using graph-matching on hand-crafted features for unsupervised
domain adaptation was also proposed [4,5].

Our proposed method is a symmetric feature transformation method where
both the source and target samples are transformed to a common space using
the feature extractor of a deep neural network. This is done by carrying out
domain-invariant representation learning that uses graph-matching (GM) loss
as the domain discrepancy metric. The graph-matching loss considers the cost
of matching the source and target graphs constructed from the corresponding
representations. The matching consists of both node-to-node matching and edge-
to-edge matching between the source and target representation graphs. This
second-order matching of edges provides additional structural and geometric
information about the representations that are absent on just using the first-
order information [16]. The feature extraction network is iteratively optimized
to minimize this graph matching loss along with minimizing the mis-classification
loss using the source domain labelled data. Our proposed method adopts an iter-
ative adversarial training scheme where the adversarial loss is a combination of
first-order and second-order graph-based matchings between the source and tar-
get domain features. It is important to note that our matching approach is local
and it considers matching between each instance of the source and target domain
representations. On the other hand, methods like CORAL [18] and those based
on MMD [13,20] are global moment-matching methods that match statistics of
the source and target feature distributions.

After the learning has converged and the source and target representations
lie in support of each other, we perform an additional refinement of the model.
The pseudo-labels (PL) of the confident unlabelled target domain data are used
to make sure that target samples lie further from the softmax decision boundary.

344 D. Das and C. S. G. Lee

This allows better generalization to unseen target samples. Finally, to validate
our approach, we perform experiments on standard domain adaptation datasets
for image classification.

2 Proposed Approach

2.1 Problem Definition

For the unsupervised domain adaptation problem, we have ns labelled samples,
Xs = {(xs

i , y
s
i)}ns

i=1 from the source domain Ds. We also have nt unlabelled sam-
ples Xt = {xt

i}nt

i=1 from the target domain Dt. We assume that the domains share
the same feature and label space but follow different marginal data distributions;
that is, P (Xs) �= P (Xt). The goal is to learn a transferable classifier K(·) and a
representation φ(·) to minimize the target risk εt = P(x,y)∼Dt

[K(φ(x)) �= y].

2.2 Minimizing Domain Discrepancy with Graph Matching

Our goal is to learn domain-invariant representations by minimizing a graph
matching loss between the source and target representations. In our case, we
realize feature extraction using a neural network. We force the feature extractor
to learn domain-invariant representations. Given an input sample x ∈ R

n from
a domain, the feature extractor learns a function φ : Rn → R

d that maps an
instance to a d-dimensional feature space. The parameters of the feature extrac-
tor can be represented by ΘF . In order to minimize the discrepancy between the
source and target domains, we minimize the graph matching loss between the
source and target representations. To encounter excess discrepancy between the
source and target domains, we allow an additional affine transformation on the
source domain representations. Thus, we have a modified source domain repre-
sentation φ′(·) such that φ′T (xs) = φT (xs)Wmap + bT

map, where Wmap ∈ R
d×d

and bmap ∈ R
d are scaling matrix and bias, respectively. Superscript T indi-

cates the transpose operation. The graph-matching loss considers minimizing a
combination of first and second-order matching cost between graphs constructed
from the source and target domains. So, if a mini-batch contains ns

b, nt
b source

and target samples respectively, we represent the matching between the source
and target representations through a matching matrix C ∈ R

ns
b×nt

b . An element
[C]ij is a measure of matching between mini-batch source sample i and mini-
batch target sample j. The source mini-batch features can be stacked to form
a matrix Φs ∈ R

ns
b×d. Similarly, the target mini-batch features are stacked to

form Φt ∈ R
nt
b×d. Accordingly, for the first-order matching we want the corre-

sponding target representation to be close to the corresponding mapped source
representation. Mathematically, this implies minimizing ||CΦt − Φ′s||2F where
Φ′s is the modified source domain feature matrix after affine transformation on
Φs and || · ||F is the Frobenius norm. For the second-order matching, we try to
minimize the discrepancy between the adjacency matrix of graphs constructed
using the source and target mini-batches. Mathematically, this implies minimiz-
ing ||CDt − rDsC||2F , where Dt ∈ R

nt
b×nt

b and Ds ∈ R
ns
b×ns

b are adjacency

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 345

matrices constructed from Φt and Φs, respectively. We use the dot product for
the similarity measure of the adjacency matrices and consequently Dt = ΦtΦtT

and Ds = ΦsΦsT , with diagonals set to 0. r = nt
b

ns
b

is a correction factor to account
for the difference in the size of the source and target mini-batches. In addition,
the constraints on C are as follows: C ≥ 0, C1nt

b
= 1ns

b
and CT1ns

b
= (ns

b

nt
b
)1nt

b
.

The equality constraint C1nt
b

= 1ns
b

implies that the sum of the correspondences
of all target samples to each source sample is one. The second equality constraint
CT1ns

b
= (ns

b

nt
b
)1nt

b
implies that the sum of correspondences of all source samples

to each target sample should increase proportionately by ns
b

nt
b

to allow for multiple
correspondences. Accordingly the optimization problem becomes

min
C,Wmap,bmap

L0GM =
1

(nsd)
||CΦt − Φ′s||2F + λs||CDt − rDsC||2F

s.t. C ≥ 0, C1nt
b

= 1ns
b
, CT1ns

b
= (

1
r
)1nt

b
(1)

In the context of training neural networks, the above optimization problem can
be solved using the projected gradient descent, where each iterate is projected
onto the constraint set. Training neural networks generally requires a lot of
time and further projection might increase the time complexity. As a result, we
propose to reformulate the equality constraints as penalties in addition to the
cost function. Thus our optimization problem becomes

min
C,Wmap,bmap

LGM =
1

(nsd)
||CΦt − Φ′s||2F + λs||CDt − rDsC||2F

+λp(||C1nt
b
− 1ns

b
||22 + ||CT1ns

b
− (

1
r
)1nt

b
||22) s.t. C ≥ 0, (2)

where λp weighs the penalty terms. As a result, we can carry out gradient descent
on LGM and project it onto the set of positive matrices after each iteration.

In addition, we can exploit the labels of the source domain data to build a
classifier on top of the feature extractor. We can add several layers as the classifier
on top of the feature extraction network. Since the graph-matching loss ensures
transferability of the learned representations, the shared classifier can be directly
applied to the target domain. The objective of the classifier K(·) : Rd → R

l is
to compute softmax prediction for the l classes. Let us denote the parameters of
the classifier as ΘK . The classifier loss function is the cross-entropy between the
predicted probabilistic distribution and one-hot encoding of the class labels:

Lc(xs, ys) = − 1
ns

b

ns
b∑

i=1

l∑

k=1

1(ys
i = k)log(K(φ′(xs

i))k) (3)

where 1(ys
i = k) is a 0-1 indicator function and K(φ′(xs

i))k corresponds to the kth

dimension value of the softmax output. Thus, the classification loss is combined
with the graph matching loss to obtain the following objective function

min
ΘF ,ΘK

{Lc + λ min
C≥0,Wmap,bmap

[LGM]} (4)

346 D. Das and C. S. G. Lee

where λ is the coefficient controlling the balance between classification and graph
matching loss. Note that the minimization is carried out using mini-batch gradi-
ent descent. As described in Algorithm 1, using a mini-batch containing labelled
source data and unlabelled target data, LGM is optimized with respect to C
and after that iteratively projecting onto positive matrices. After the optimized
matching matrix C∗ is obtained, we solve for Wmap,bmap, for which a closed
form solution exists. The solution for Wmap, bmap can be obtained as follows:
[
Wmap

bT
map

]
=

[
1

ns
bd

[
ΦsT

1T

]
[Φs 1] +

λw

d2

[
I 0
0T 0

]]−1 [
1

ns
bd

[
ΦsT

1T

]
C∗Φt +

λw

d2

[
I
0T

]]
.(5)

Here λw regularizer is introduced to allow for a smooth mapping transforma-
tion. Subsequently, we optimize for the total loss as in Eq. (4) with respect to
the parameters of the feature extractor and the classifier. The learned represen-
tations are domain invariant as well as target discriminative since the feature
extractor parameter ΘF receives gradients from both the graph matching and
classification loss. The overall framework of our method is given in Fig. 1(a). The
detailed algorithm of the training procedure is illustrated in Algorithm 1.

Fig. 1. The overall neural network framework for training using (a) Graph Matching
(GM) Loss and (b) Pseudo-label (PL) Loss. On the right of (a) and (b), we see the
model we should use for inference.

Algorithm 1. Graph-Matching-Guided Deep Domain Adaptation
Given : Source Labelled Data Xs, Ys, Target Unlabelled Data Xt

Parameters : λs, λp, λ,m, Ti and learning rates
Randomly Initialize ΘF , ΘK ,C,Wmap,bmap

Repeat
Sample mini-batch {xs

i , y
s
i }m

i=1, {xt
i}m

i=1 from Xs and Xt

Use mini-batch to form Φt and Φs

for ti = 1, 2, ...Ti

C ← C − α1∇CLGM (Φt, Φs)
C ← max(C,0)

end for
Use Eq. (5) to obtain Wmap, bmap

ΘK ← ΘK − α2∇ΘK
Lc(xs, ys)

ΘF ← ΘF − α3∇ΘF
[Lc(xs, ys) + λLGM (Φt, Φs)]

Until Convergence

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 347

2.3 Refinement with Pseudo-labels

This is the second stage of our proposed unsupervised domain adaptation app-
roach. Till now, we have the mapped source domain representations in support
of the target domain representations. Since the domain discrepancy has been
minimized, we can think of all the source and target representations belonging
to a single domain. This single domain consists of labelled and unlabelled data.
This is a semi-supervised learning setting that has been explored from a low-
density separation, manifold regularization point of view [2]. In this paper, we
propose a novel approach to exploit the confident unlabelled target domain data
to further refine the classification decision boundary.

Initially, we select a subset of a mini-batch of the unlabelled target data
that provide highly-confident labels as output. In other words, we select those
samples whose maximum softmax probability output is greater than a threshold
(th). Mathematically, we select those xt

i for which max{K(φ(xt
i))k} ≥ th over

all classes k ∈ {1, 2, ...l} and we repeat this for all unlabelled target domain
samples in the mini-batch i ∈ {1, 2,m}. The pseudo-labels for those selected
samples would be argmax

k
{K(φ(xt

i))k}. After that, we use the original labelled

data {xs
i , y

s
i }m

i=1 and the selected unlabelled samples as {xt
i}m′

i=1, where m′ ≤ m
to further refine our model. The intuition for our method is that we want the
unlabelled samples to be as far as possible from the decision boundaries. This
would make it possible for unseen examples in the target domain to not be
misclassified easily. As a result, we expect performance in the target domain to
increase significantly.

In our model, we have a softmax classifier that returns probabilities of each
class that the sample belongs to. Also pairwise relations between the probabil-
ities give a measure of how far a sample is from a decision boundary between
the corresponding pair of classes. For example, if the softmax classifier returns
(p1, p2, ...pl) as outputs to input sample x, |pi − pj | is a measure of how far the
sample x is from the decision boundary between class i and class j. If pi = pj ,
then the sample lies on the decision boundary between class i and class j. The
general expression for maximizing the distance to the decision boundaries for all
selected unlabelled samples and all classes is as follows:

Lp(xt, ŷs) =
1
m′

m′∑

i=1

∑

j,k

1(ŷt
i = j OR ŷt

i = k)(pj − pk)2. (6)

Here, pj = K(φ(xt
i))j , and ŷt

i is the pseudo-label corresponding to the input
sample xt

i as obtained using thresholding. When ŷt
i = j or ŷt

i = k is true, we
have 1(ŷt

i = j OR ŷt
i = k) = 1, and 0 otherwise. We call Lp as the Pseudo-Label

(PL) loss. We also use the classification loss Lc introduced in Eq. (3) to regularize
Lp. Hence, we need to solve the following optimization problem,

min
ΘF ,ΘK

{−Lp + γLc}, (7)

348 D. Das and C. S. G. Lee

where γ weighs the classification cost term. In Fig. 1(b), we show the overall
neural network framework for using the Pseudo-Label (PL) loss. Algorithm 2
outlines the detailed approach of the training procedure.

Algorithm 2. Pseudo-label-guided Deep Domain Adaptation
Given : Source Labelled Data Xs, Ys, Target Unlabelled Data Xt

Parameters : γ, th,m and learning rates
Restart ΘF , ΘK ,Wmap,bmap obtained from Algorithm 1
Repeat

Sample mini-batch {xs
i , y

s
i }m

i=1, {xt
i}m

i=1 from Xs and Xt

Obtain high-confidence samples and pseudo-labels {xt
i, ŷ

t
i}m′

i=1 using th
criterion and use those samples for parameter update as follows

ΘK ← ΘK − α2∇ΘK
[−Lp(xt, ŷt) + γLc(xs, ys)]

ΘF ← ΘF − α3∇ΘF
[−Lp(xt, ŷt) + γLc(xs, ys)]

Until Convergence

3 Experiments and Results

To evaluate the effectiveness of our proposed approach on standard domain adap-
tation datasets for image classification, we utilized the Office-Caltech dataset, a
small-scale domain adaptation benchmark dataset, initially released by [8]. The
dataset is composed of 10 common categories across 4 domains - Amazon (A),
Webcam (W), DSLR (D) and Caltech (C). Each of these domains varies in terms
of image quality, viewpoints, presence/absence of backgrounds, etc. For domain
adaptation, we would have 12 tasks, where each task consists of a source domain
and a target domain picked from the 4 domains. For our experiments, we use
Decaf features as the input. These deep features [6] are 4096-dimensional FC7
hidden activations of the deep convolutional neural network AlexNet [12].

We compared our method to recent approaches in learning domain-invariant
representations. As a lower bound on recognition accuracy, we also compare
against the no-adaptation (NA) baseline which includes training the model using
only the source data and directly testing on the target data. The methods that
we compared against include: (a) DANN [7], (b) MMD [9], (c) CORAL [18] and
(d) WDGRL [16]. These approaches have been described in the Introduction
section. We have implemented our approach in Tensorflow [1] and the training
was carried out using Adam [11] optimizer. We followed the standard protocol
used in previous method as in [16]. Since hyper-parameter selection is not possi-
ble using deep unsupervised domain-adaptation methods, we reported the best
results of each approach after carrying out grid search on their respective hyper-
parameters. For training, we have used a batch size of 64 samples with 32 samples
from each domain. The feature extractor is a 2-layer neural network with 500
and 100 nodes and a ReLU activation. We used this same feature extractor in all
the methods for fair comparisons. For our method, we used the following values
of the penalty parameter λp = 10, threshold th = 0.8, and mapping regulariza-
tion λw = 0.1. We set λs, λ and γ as the tunable hyper-parameters over which

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 349

we reported the best results averaged over 10 trials in Table 1. From Table 1,
we see that in almost all cases our proposed graph-matching method (GM) is
close to the previous best method. However, with the additional pseudo-labelling
stage (PL), our proposed method produces better recognition accuracy in almost
all the domain-adaptation tasks. Also, in almost all cases, the improvement of
GM+PL over GM is 2–3%. This justifies the exploitation of labelled and unla-
belled data after minimizing domain discrepancy, leading to an improvement in
performance. For the task D→C, GM and eventually GM+PL do not produce
the best result. This is possibly because the datasets D and C do not have enough
structurally similar regions to be matched appropriately.

Table 1. Domain-adaptation results for object recognition using Office-Caltech
datasets using Decaf features for a pair of source → target domain.

Task NA MMD DANN CORAL WDGRL GM GM+PL

A→C 83.93 86.72 87.12 86.24 87.84 87.99 89.48

A→D 82.23 89.96 83.27 90.36 91.67 92.82 95.73

A→W 76.69 90.68 80.13 89.61 89.34 92.63 94.23

W→A 80.23 89.34 81.36 83.42 92.34 90.64 94.68

W→D 96.49 100 100 100 100 100 100

W→C 78.65 88.64 80.11 86.27 89.42 88.78 91.31

D→A 82.91 90.24 84.72 84.1 91.34 89.24 92.34

D→W 96.86 97.68 98.34 96.93 97.24 97.84 99.83

D→C 78.61 86.58 83.69 80.49 90.24 85.68 88.87

C→A 89.97 91.6 90.84 92.49 93.57 93.68 95.83

C→W 86.47 90.36 88.74 91.62 91.23 92.68 94.21

C→D 87.79 90.64 89.41 88.71 92.68 92.83 94.51

We chose a particular task A→W and studied the effect of varying hyper-
parameters on recognition performance. In Fig. 2(a), we see that the performance
reaches a peak at λs = 10. The red-dotted line is the base-line performance for
λs = 0. So, the presence of the second-order matching term increases the per-
formance over when it is not. Also, for λs = 100, the performance dips by a
large amount, suggesting that putting excess weight on second-order term is not
recommended. We saw a similar trend for the hyper-parameter λ in Fig. 2(b).
λ weighs the graph-matching loss with respect to the classification loss. As
expected, putting too much weight (λ = 10) ignores the classification loss in
domain adaptation and produces a dip in performance. Recognition performance
is comparatively less sensitive to γ as seen in Fig. 2(c). This is because domain
discrepancy has already been minimized and the presence of classification loss on
the source data does not affect target domain recognition rate much. Figure 2(d)
shows the convergence of source and target error. We used GM stage for the first
2000 iterations followed by the PL stage in the next 2000 iterations. We noticed

350 D. Das and C. S. G. Lee

Fig. 2. Accuracy results on the A→W task due to change in (a) λs, (b) λ, (c) γ and
(d) convergence results.

the drop in error rate when the PL stage was introduced after 2000 iterations.
We also visualized the learned features using t-SNE [14] in Fig. 3. The clusters
in the figure correspond to 10 classes. The blue and red points correspond to
the source and target data respectively. For the un-adapted data in Fig. 3(a),
the target domain classes do not form compact clusters. Also, there is a lot of
discrepancy between the corresponding source and target clusters, causing a lot
of mis-classification. For UDA, using only the GM procedure as in Fig. 3(b), the
target domain classes form clusters but there are still some divergence between
some of the corresponding source and target classes, which are reduced further
using the PL stage as shown in Fig. 3(c).

Fig. 3. Feature visualization for the A→W task for (a) no adaptation, (b) UDA with
only Graph Matching and (c) UDA with Graph Matching and Pseudo-labelling. (Color
figure online)

4 Conclusions

In this paper, we proposed a two-stage approach to learning domain-invariant-
feature representations for unsupervised domain adaptation. In the first stage, we
considered minimizing graph matching (GM) loss to minimize the discrepancy
between source and target domains. The graph matching loss includes a second-
order structural similarity term that allows us to consider structural similarity
between two domains. For the second stage, we refined the feature/classifier using
the confident pseudo-labels (PL) of the target domain data. Empirical results on
image classification datasets demonstrated that our proposed GM+PL method
outperforms previous domain-invariant representation learning approaches.

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 351

Acknowledgments. This work was supported in part by the National Science Foun-
dation under Grant IIS-1813935. Any opinion, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI,
pp. 265–283 (2016)

2. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. The MIT
Press, Cambridge (2010)

3. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for
domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865
(2017)

4. Das, D., Lee, C.S.G.: Sample-to-sample correspondence for unsupervised domain
adaptation. Eng. Appl. Artif. Intell. 73, 80–91 (2018)

5. Das, D., Lee, C.S.G.: Unsupervised domain adaptation using regularized hyper-
graph matching. In: Proceedings of IEEE International Conference on Image Pro-
cessing (2018, to appear)

6. Donahue, J., et al.: DECAF: a deep convolutional activation feature for generic
visual recognition. In: International Conference on Machine Learning, pp. 647–655
(2014)

7. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(59), 1–35 (2016)

8. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised
domain adaptation. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2066–2073 (2012)

9. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.:
Covariate shift by kernel mean matching. Dataset Shift Mach. Learn. 3(4), 5 (2009)

10. Hoffman, J., Rodner, E., Donahue, J., Kulis, B., Saenko, K.: Asymmetric and
category invariant feature transformations for domain adaptation. Int. J. Comput.
Vis. 109(1–2), 28–41 (2014)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

13. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with
deep adaptation networks. In: International Conference on Machine Learning, pp.
97–105 (2015)

14. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Engg.
22(10), 1345–1359 (2010)

16. Shen, J., Qu, Y., Zhang, W., Yong, Y.: Wasserstein distance guided representation
learning for domain adaptation. In: AAAI, pp. 3–9 (2018)

17. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In:
Thirtieth AAAI Conference on Artificial Intelligence (2016)

352 D. Das and C. S. G. Lee

18. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adap-
tation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8 35

19. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. arXiv preprint arXiv:1702.05464 (2017)

20. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

https://doi.org/10.1007/978-3-319-49409-8_35
http://arxiv.org/abs/1702.05464
http://arxiv.org/abs/1412.3474

fNIRS-Based Brain–Computer Interface
Using Deep Neural Networks

for Classifying the Mental State
of Drivers

Gauvain Huve1, Kazuhiko Takahashi2(B), and Masafumi Hashimoto2

1 Graduate School of Doshisha University, Kyoto, Japan
2 Doshisha University, Kyoto, Japan

{katakaha,mhashimo}@mail.doshisha.ac.jp, duq3103@mail4.doshisha.ac.jp

Abstract. Accidents on the road mostly occur because of human error.
Understanding and predicting the manner in which the brain functions
when driving can help in reduce fatalities. Particularly, with the recent
development of auto-driving cars, it is important to ensure that the driver
is ready to retake the control of the vehicle at all times in the event of
a system failure. This study attempts to create a brain–computer inter-
face (BCI) using signals obtained through functional near-infrared spec-
troscopy (fNIRS) to evaluate the impact of different external conditions
on the driver’s mental state: weather condition, type of road, including
manual driving versus auto-pilot. A deep neural network (DNN) and a
recurrent neural network (RNN) are employed for their ability of pattern
recognition in the processing of fNIRS signals and are compared to other
common classification methods. The results of the study demonstrated
that both DNN and RNN offer the same performance. Furthermore, brain
activity under different weather conditions cannot be classified by any of
the proposed methods. Nevertheless, DNN and RNN have proven their
effectiveness in the road type classification with 63% accuracy.

Keywords: Brain computer interface · fNIRS · Deep neural network
Recurrent neural network · Drive simulator

1 Introduction

According to a recent study by the National Highway Traffic Safety Adminis-
tration, 94% of crashes are caused by human error [1]. While recent advances
in automation should have an impact on this number, there will always be sit-
uations where the auto-pilot will be inadequate and a human would have to
manually drive the car. A way of decreasing the number of accidents when a
human is driving would be to develop brain–computer interfaces (BCIs) that
can analyse the brain activity of the driver and help them in maintaining con-
sistent attention.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 353–362, 2018.
https://doi.org/10.1007/978-3-030-01424-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_35&domain=pdf

354 G. Huve et al.

The idea of a BCI is to transmit the user’s intentions to an external device
without any intervention from the user himself. This type of interface has been
the focus of research for the past twenty years [2–4]. Depending on the area of
the brain that the interface is linked to, it can be used in many different ways.
For example, with the proper equipment, a BCI linked to the motor cortex of
paraplegic patients could help them regain control of their limbs. To analyse
the driver’s mental state, the area of interest is the pre-frontal cortex, which
is implicated in the thought process. There exist several methods of measur-
ing brain activity for BCIs. Invasive methods have the highest quality signals
but require surgery to implant captors. The most commonly used non-invasive
method is electroencephalography (EEG), which directly measures the electrical
activity of the brain. However, the focus has recently shifted towards functional
near-infrared spectroscopy (fNIRS), a non-direct method [5]. fNIRS measures the
concentration of two molecules in the blood (oxygenated haemoglobin (OxyHb)
and deoxygenated haemoglobin (DeoxyHb)) by using differences in their absorp-
tion spectrum. It is then possible to deduce the variations in brain activity from
the variations of the blood flow. For processing data obtained through fNRIS,
various studies have tested different approaches, including linear discriminant
analysis [6–9], support vector machines (SVMs) [10,11] and neural networks
[10,12–15]. However, none of them has been found to be strictly better than the
others when classifying diverse mental tasks.

fNIRS has various applications in the domain of driving. For instance, fNIRS
could allow the activation/deactivation of the auto-pilot based functionality on
the current driving ability of the driver or detect emergency braking before
the driver even begins to move his foot towards the brake pedal. To analyse the
driver’s mental state, studies have been performed using different tasks [16]. Ref-
erence [17] used an n-back task to induce different workloads on patients while
driving and presents a way of reliably using brain activity to quantify workload.
In [18], researchers demonstrated the effectiveness of using fNIRS for detecting
drowsiness in the patient, with a detection rate of almost 85%. Reference [19]
analysed the effects of three modes of control during lane change on brain activ-
ity. Other tasks, such as overtaking and following [20], were also shown to have
an impact on the activity in the pre-frontal cortex.

In this study, the brain activity in the pre-frontal cortex is recorded while
using a drive simulator. Several experiments of specific external conditions are
conducted. This study then attempts to determine which of those experiments
generated any given brain activity signal. The chosen conditions include the
weather conditions (clear weather versus rainy weather) and the type of roads
(city driving versus highway driving). In light of the recent advancements in
automated cars, this study also examines the differences in brain activity of the
driver when driving manually compared with when the vehicle is on auto-pilot.
For processing the fNIRS signals, this study uses both a deep neural network
(DNN) and a recurrent neural network (RNN), and compares their accuracy to
several other common methods.

fNIRS-Based Brain–Computer Interface Using Deep Neural Networks 355

Fig. 1. Drive simulator.

2 Methods

2.1 Equipment

The brain activity of patients was recorded in real time by an fNIRS-based head-
set (WOT-220, Hitachi, Ltd.) linked to a personal computer. The setup measures
the blood flow in the prefrontal cortex, which is involved in the thinking pro-
cess and recorded at 5 Hz. Equipped with eight transmitters and eight receptors,
it evaluates the concentration of oxygenated haemoglobin (oxyHb) and deoxy-
genated haemoglobin (deoxyHb) in the blood flow at 22 different locations (chan-
nels) on the forehead. Because the device is sensitive to sudden movements, the
patient is asked to refrain from making any head movements during the entire
duration of the experiment.

To record brain activity during driving, a full-fledged Forum-8 drive simula-
tor [21] shown in Fig. 1 was used. It features fully customisable roads, weather,
traffic, and landscape. The simulator also provides access to real-time informa-
tion, including vehicle speed, lateral position, pedals angle, and wheel angle.
It enables external control of the vehicle through its API, which led to a fully
functional auto-pilot system that can be turned on and off at will. The drive
simulator uses automatic transmission.

2.2 Data Capture

The objective is to classify brain activity of the driver under various external
conditions. The chosen categories include: weather (clear versus rainy), type of
roads (city versus highway), and type of driving (manual versus auto-pilot). To
ensure that other parameters are exactly identical, the data in all cases (except
city driving) were recorded on a highway scenario with light traffic and clear
weather (except for the rainy driving). The city driving scenario featured clear
weather with heavier traffic.

The protocol consisted of driving the whole scenario under chosen external
conditions. The duration of the drive was between 3 min and 20 s to 3 min and
50 s depending on the driving speed. The signals were then truncated at the

356 G. Huve et al.

3 min mark to ensure that all signals were of the same length. In the manual
versus auto-pilot case, two different protocols were used:

– In the first protocol, the car started in auto-pilot and switched to manual at
a random moment between 30 s and 2 min and 30 s after the initiation of the
drive. The driver then had to complete the scenario in manual mode.

– In the second protocol (denoted by “alt.” afterwards), the car started in auto-
pilot and alternated between the two modes every 20 s.

Once again, the duration of the drive lasted 3 min and 20 s to 3 min and 50 s
and the obtained signals were truncated at the 3 min mark.

For each of the chosen category, both types of scenario were driven the same
number of times every day the experiment was conducted to limit the effect of
the variance in brain activity from one day to the other. During the data capture
session, the scenarios were presented in random order to ensure that the effect
of variations, resulting from fatigue, on the classification is at a minimum.

2.3 Pre-processing

The signals recorded for both the concentration of oxyHb and deoxyHb for each
channel are then pre-processed to remove noise from biological sources (such
as heartbeat) and noise from equipment, which are not representative of brain
activity of the patient while driving. Two different types of pre-processing are
used.

Filters [13]: The signals are passed through a Butterworth high-pass filter with a
cut-off frequency of 0.01 Hz, and the fast variations are then removed by smooth-
ing the signals using the least-square method.

Wavelet Reconstruction [22]: Using multi-resolution analysis, it is possible
to decompose a signal into an approximation signal (low frequency) and sev-
eral detailed signals (high frequency). In such a decomposition, the Daubechies
wavelet with eight taps is used as the mother wavelet. The denoised signal is
then reconstructed by adding the 4th, 5th and 6th detailed components.

Pre-processing is then followed by a calculation of the variations using the
least-square method. The signals obtained after the first pre-processing steps
and their variations are then standardised and used for classification, resulting
in four signals for each channel in each experiment (concentration of oxyHb,
concentration of deoxyHb and their variations).

2.4 Feature Extraction

The signals obtained after pre-processing are then cut into segments of 2 s and
labeled by the type of driving at the corresponding time. For the case of manual
versus auto-pilot (alt.), the first and last 2 s of each 20 s periods are removed
because of a spike in activity arising from the sudden change in driving. Various
inputs are created from the pre-processed signals and are classified separately.

fNIRS-Based Brain–Computer Interface Using Deep Neural Networks 357

Time Series: Each segment is directly placed in a one-dimensional vector of
880 points (22 channels of oxyHb, deoxyHb, and their variations, for 2 s at 5 Hz)
and used as input for the classifier.

Pearson Correlation Coefficient: For every 2-s segment, the correlation coef-
ficients between the signals of each channels are used as inputs. The correlation
between the different oxyHb signals, between the different deoxyHb signals and
the correlation between oxyHb and deoxyHb signals are calculated. The varia-
tion signals are not used. This results in a vector of

(
22+22

2

)
= 946 data points,

which is used as an input for the classifier.

Spearman Rank Correlation Coefficient: In the same way, the Spearman
rank correlation coefficients for the same signals are used, resulting in a vector
of 946 data points.

2.5 Classifiers

This study attempts at evaluating the performance of DNNs and RNNs com-
pared with other common classifiers. The objective of an RNN is to account for
the temporal dimension of the input, and it does not make sense to use an RNN
when the input is not a time series. As such, the RNN will only be used for
time series inputs and not the correlation coefficients. For the RNN, the data
structure of the inputs will be changed from a one-dimensional vector of 880 ele-
ments to a 10 × 88 points. After optimisation, the structure chosen for the DNN
consists of 880 inputs, two layers of 300 neurons with a rectified linear unit acti-
vation function and a dropout probability of 50% and two output neurons. The
structure used for the RNN includes 88 inputs, two layers of 70 long short-term
memory units with a dropout probability of 50% and two output neurons.

Fig. 2. Overview of the classification process.

358 G. Huve et al.

These neural networks will be compared with the nearest neighbour algorithm
(NNA), a simple feed-forward network (FFNN) with 300 hidden neurons, a linear
support vector machine (LSVM), a non-linear support vector machine (NLSVM)
with a radial basis function kernel, and a random algorithm. Because the amount
of data available is not infinite, the accuracy of the random algorithm is not at
50%. To evaluate this accuracy, a binomial cumulative distribution model with
a significance level of 5% was used [23].

An overview of classification process is depicted in Fig. 2.

3 Experimental Results

3.1 Comparison of DNN and RNN

The first results, obtained using time series inputs with filter pre-processing, is
shown in Fig. 3(a) for the DNN, the RNN and the random algorithm in each clas-
sification. What appears immediately is that for both the DNN and the RNN,
the average accuracy of the first two classifications is not significantly above the
random algorithm, which implies that the neural networks cannot determine pat-
terns characteristics of each class in the signals and cannot differentiate between
the classes in the current setup. This is however not true for the classification
of manual driving versus auto-pilot. When considering all cases, neither network
appears to significantly outperform the other.

One possible origin of the errors in the weather and road type classifica-
tion could be pre-processing. The chosen pre-processing procedures might be
removing features of the signals that are characteristic of the task. To test this
hypothesis, the pre-processing was changed to replace the filters with wavelet
reconstruction, resulting in the average accuracies presented in Fig. 3(b). With
this new pre-processing, the classification for city versus highway driving went
from 49% up to 63% for both the DNN and the RNN, which is significantly

Fig. 3. Average accuracy of the DNN and the RNN for each type of pre-processing.

fNIRS-Based Brain–Computer Interface Using Deep Neural Networks 359

higher than the 53.8% of the random algorithm. However, the weather classi-
fication still performs poorly and the accuracy in both types of manual versus
auto-pilot reduced, reaching accuracies that are not significantly better than the
chance level. Nevertheless, just as in the previous case, both DNN and RNN
offer the same performance. Only for manual versus auto-pilot (alt.) the RNN
outperforms the DNN by a small margin, although still close to the chance level.

Given the difference when changing the pre-processing, the classification was
performed without any kind of pre-processing in order to examine its effect.
Directly using the signals themselves produces the results presented in Fig. 3(c).
In every situation, the accuracy remains on the same level or even below the
chance level.

3.2 Comparison with Common Classifiers

The previous results demonstrated that the pre-processing using filters was
better suited for the classification of auto-pilot while the pre-processing using
wavelet reconstruction increased the recognition rate for road type classification.
In the case of weather recognition, however, the accuracy remained poor for both
types of pre-processing. For that reason, classification with other methods is
performed using the filter pre-processing, except for the road type classification
where wavelet reconstruction is used.

The recognition rate of the DNN and the RNN are compared with that of
FFNN, NNA, LSVM, and NLSVM. The values for each case are presented in
Fig. 4. The first thing to notice is how none of the classifiers can differentiate
between brain activity of the patient while driving under clear weather versus
driving under rainy weather. The two tasks are possibly too close to each other.
It does not really feel any different to drive under rain in the drive simulator
compared with clear weather. In particular, after completing the scenario a few
times the driver starts remembering the route, which reduces the effect of the
reduced visibility because the driver already knows what comes next. In the

Fig. 4. Average accuracy of each classifier for each scenario.

360 G. Huve et al.

road type classification, all classifiers except linear SVM outperform the random
algorithm, with DNN having the highest accuracy among them. However, the
NLSVM seems to outperform every other classifier when it comes to both sce-
narios of manual driving versus auto-pilot. In both types, the FFNN is unable to
differentiate between the two classes, while the NNA can only make a distinction
when the two tasks are not alternating.

3.3 Changing the Inputs

A way to improve the results would be to change the nature of the inputs to some
statistical representation. This study attempts to use the Pearson’s correlation
coefficients and the Spearman rank correlation coefficients. The results for both
are shown in Fig. 5(a) and (b) for the DNN and the NLSVM, which present
better results than the DNN in some cases. Using the RNN for this type of
input would not make sense because the time component was removed. For
the Pearson’s coefficient and the Spearman rank, the obtained average accuracy
is not significantly better than the chance level in three of the four scenarios.
For the road type scenario, the performance of both inputs is similar, with a
prediction rate of about 60%, but remains below the accuracy in the case when
time series inputs are used.

Fig. 5. Average accuracy of the DNN and the NLSVM when using correlation coeffi-
cients for inputs.

4 Conclusions

This paper investigated the use of DNNs and RNNs for recognising patterns in
brain activity of drivers under various conditions. In none of the attempts, could
the networks differentiate between driving under clear weather versus driving

fNIRS-Based Brain–Computer Interface Using Deep Neural Networks 361

under rainy weather. A possible cause could be the similarity between the two
tasks. One effect of rainy weather is reduced visibility, forcing the driver to drive
at lower speeds. However, once the driver becomes accustomed to the scenario,
this effect is greatly reduced. This results in a driving experience that is very close
to driving under fair weather. For a comparison of driving in the city compared
with driving on a highway, changing the pre-processing from using filters to using
wavelet reconstruction increases the average accuracy from 50% to over 63% for
both the DNN and the RNN when time series inputs are used. However, the
same pre-processing reduces the accuracy in the case of the differences in manual
driving versus auto-pilot. Using the better of the two types of pre-processing,
the accuracy reaches 62% when the two tasks are separated, and 58% when they
alternate. A possible cause of the difference could be that the concentration
levels are limited by the insufficient time to return to a normal state when
the tasks alternate. In any case, both the DNN and the RNN provide similar
results. When compared with other common classification methods, the neural
networks are outperformed by the NLSVM when it comes to classifying manual
driving versus auto-pilot. Nevertheless, their average accuracy for the road type
classification is among the highest for all tested classifiers.

Changing the inputs from time series data to correlation coefficients does
not improve the results. However, this study uses 2 s of signal at 5 Hz, which
comprises of only 10 data points. This low number might be insufficient for
reliable correlation calculation. Using correlation coefficients with longer signals
might result in higher accuracy. Given the significant differences when chang-
ing the pre-processing, a way to improve the results would be to optimise the
pre-processing step. Changing the input from time series to a statistical repre-
sentation such as the mean, peak, or variance, could also have an impact on
classification accuracy.

Acknowledgement. This study was partially supported by the MEXT-Supported
Program for the Strategic Research Foundation at Private Universities, 2014–2018,
Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

1. National Highway Traffic Safety Administration: Critical Reasons for Crashes
Investigated in the National Motor Vehicle Crash Causation Survey. US Depart-
ment of Transportation, Washington, DC (2015)

2. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors
12, 1211–1279 (2012)

3. He, B., Gao, S., Yuan, H., Wolpaw, J.R.: Brain-computer interface. In: He, B. (ed.)
Neural Engineering, pp. 87–151. Springer, Boston (2013). https://doi.org/10.1007/
978-1-4614-5227-0

4. Ramadan, R.A., Vasilakos, A.V.: Brain computer interface: control signals review.
Neurocomputing 223, 26–44 (2017)

5. Ferrari, M., Quaresima, V.: A brief review on the history of human functional near-
infrared spectroscopy (fNIRS) development and fields of application. NeuroImage
63, 921–935 (2012)

https://doi.org/10.1007/978-1-4614-5227-0
https://doi.org/10.1007/978-1-4614-5227-0

362 G. Huve et al.

6. Herff, C., Heger, D., Putze, F., Hennrich, J., Fortman, O., Schultz, T.: Classification
of mental tasks in the prefrontal cortex using fNIRS. In: Proceedings of 35th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
pp. 2160–2163 (2013)

7. Hong, K., Naseer, N., Kim, Y.: Classification of pre-frontal and motor cortex signals
for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92 (2015)

8. Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., Schultz, T.: Mental
workload during n-back task - quantified in the pre-frontal cortex using fNIRS.
Hum. Neurosci. 7, 935 (2014). https://doi.org/10.3389/fnhum.2013.00935

9. Naseer, N., Noori, F.M., Qureshi, N.K., Hong, K.: Determining optimal feature-
combination for LDA classification of functional near-infrared spectroscopy signals
in brain-computer interface application. Front. Hum. Neurosci. 10, 237 (2016).
https://doi.org/10.3389/fnhum.2016.00237

10. Kazuki, Y., Tsunashima, H.: Development of portable brain-computer interface
using NIRS. In: Proceedings of IEEE International Conference on Control, pp.
702–707 (2014)

11. Hu, X., Hong, K., Ge, S.S.: fNIRS-based online deception decoding. J. Neural Eng.
9(2), 026012 (2012)

12. Huve, G., Takahashi, K., Hashimoto, M.: Brain activity recognition with a wearable
fNIRS using neural networks. In: Proceedings of IEEE International Conference
on Mechatronics and Automation, pp. 1573–1578 (2017)

13. Huve, G., Takahashi, K., Hashimoto, M.: Brain-computer interface using deep
neural network and its application to mobile robot control. In: Proceedings of
IEEE International Workshop on Advanced Motion Control, pp. 169–174 (2018)

14. Hennrich, J., Herff, C., Heger, D., Schultz, T.: Investigating Deep Learning for
fNIRS based BCI. In: Proceedings of 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pp. 2844–2847 (2015)

15. Lu, N., Ki, T., Ren, X., Miao, H.: A deep learning scheme for motor imagery
classification based on restricted Boltzmann machines. IEEE Trans. Neural Syst.
Rehabil. Eng. 25(6), 566–576 (2017)

16. Liu, T., Pelowski, M., Pang, C., Zhou, Y., Cai, J.: Near-infrared spectroscopy as a
tool for driving research. Ergonomics 59(3), 368–379 (2016)

17. Unni, A., et al.: Brain activity measured with fNIRS for the prediction of cog-
nitive workload. In: Proceedings of IEEE International Conference on Cognitive
Infocommunications, pp. 349–354 (2015)

18. Khan, J., Hong, K.: Passive BCI based on drowsiness detection: an fNIRS study.
Biomed. Opt. Express 6(10), 4063–4078 (2015)

19. Sibi, S., Baiters, S., Mok, B., Steiner, M., Ju, W.: Assessing driver cortical activity
under varying levels of automation with functional near infrared spectroscopy. In:
Proceedings of IEEE Intelligent Vehicles Symposium, pp. 1509–1516 (2017)

20. Foy, H.J., Runham, P., Chapman, P.: Prefrontal cortex activation and young driver
behaviour: a fNIRS study. PLoS ONE 11(5), e0156512, 18 pages (2016). https://
doi.org/10.1371/journal.pone.0156512

21. FORUM 8. http://www.forum8.co.jp/english/uc-win/road-drive-e.htm
22. Tsunashima, H., Yanagisawa, K.: Measurement of brain function of car driver using

functional near-infrared spectroscopy (fNIRS). Comput. Intell. Neurosci. 2009, 12
pages (2009). Article ID 164958. https://doi.org/10.1155/2009/164958

23. Combrisson, E., Jerbi, K.: Exceeding chance level by chance: the caveat of the-
oretical chance levels in brain signal classification and statistical assessment of
decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015). https://doi.org/10.
1016/j.jneumeth.2015.01.010

https://doi.org/10.3389/fnhum.2013.00935
https://doi.org/10.3389/fnhum.2016.00237
https://doi.org/10.1371/journal.pone.0156512
https://doi.org/10.1371/journal.pone.0156512
http://www.forum8.co.jp/english/uc-win/road-drive-e.htm
https://doi.org/10.1155/2009/164958
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.1016/j.jneumeth.2015.01.010

Research on Fight the Landlords’ Single Card
Guessing Based on Deep Learning

Saisai Li1,2, Shuqin Li1,2(&), Meng Ding1,2, and Kun Meng1,2

1 Computer Academy, Beijing Information Science & Technology University,
Beijing, China

lishuqin_de@126.com
2 Perception and Computation Intelligence Joint Lab, No. 35,
North Fourth Ring Road, Chaoyang District, Beijing, China

Abstract. In the real world, most of the information is non-accurate and non-
complete. The model which guesses the number of the cards is a predictive
model based on incomplete information. Players need to know a relatively small
amount of information on the card to make accurate predictions. Based on the
deep learning method, this paper studies single card speculation method on
Fight the landlords game. Located in the perspective of the landlord, the model
based on a certain amount of historical card information extracts the dominant
features, and makes a reasonable prediction for peasant players’ hands. The
algorithm uses the CNN model to design the game turn-based body, single
player’s history and the brand-out process of three players simultaneously in the
model input matrix. It extracts the characteristics of the landlord playing cards,
and predicts the situation of the hand of two peasant players up and down. The
experimental results show that the result of single card guess basically accords
with the habit of human playing cards.

Keywords: Deep learning � Fight the landlords � Guess cards
Incomplete � Information � Game

1 Introduction

AI has made some breakthroughs in recent years, and games are often taken as
important milestones. Games can be further divided into complete information games
(such as Go, Chess and Checkers) and incomplete information games (such as poker).
The state information of non-complete information games is hidden behind one or more
players and requires more complex reasoning than their perfect information. [1]

There is less research on Landlords in the world, usually the most incomplete
information game research carrier for Texas Hold’em. In 2017, CMU-designed
Libratus used endgame solving which is a more optimized sub-tree solution based on
CFR, to refine the state space and strategy space and reach a higher level of intelligence
in continuous self-improvement [2, 3]. In the incomplete information game, human lost
to the AI. This paper mainly adopts the Convolutional neural network (CNN) model,
based on landlord status, through the analysis of a small amount of players’ information

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 363–372, 2018.
https://doi.org/10.1007/978-3-030-01424-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_36&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_36

on the cards, the number of single cards in the peasant’s hand is guessed, and then the
game under the incomplete information is studied.

2 Fight the Landlords Games Introduction

Fight the Landlord is a card game for three players. In each hand one player, the
“landlord”, plays alone and the others peasants a team. The landlord’s aim is to be the
first to play out all his cards in valid combinations, and the team wins if any one of
them manages to play all their cards before the landlord.

A complete deck consists of 52 standard cards plus 2 jokers, red and black. The
cards rank from high to low: R (Red Joker), B (Black joker), 2, A, K, Q, J, T(10), 9, 8,
7, 6, 5, 4, 3. Each rank of standard card has 4 cards. At the beginning of each round, the
landlord has 20 cards and the others each get 17 cards. The landlord plays first, and
may play a single card or any legal combination. Each subsequent player in anti-
clockwise order must either pass (play no card) or beat the previous play by playing a
higher combination of the same number of cards and same type. There are just two
exceptions to this: a rocket can beat any combination, and a bomb can beat any
combination except a higher bomb or rocket - see definitions below.

In this game, there are thirteen types of combination that can be played:

Single card: ranking from 3 (low) up to red joker (high) as explained above.
Pair: two cards of the same rank, from 3 (low) up to 2 (high), for example 3-3, A-A.
Triplet: three cards of the same rank, for example 9-9-9.
Triplet with an attached card: a triplet with a single card added, the single card
must be different from the triplet, for example 6-6-6-8. These rank according to the
rank of the triplet - so for example 9-9-9-3 beats 8-8-8-A.
Triplet with an attached pair: a triplet with a pair added, the ranking being
determined by the rank of the triplet - for example Q-Q-Q-6-6 beats 10-10-10-K-K.
Sequence: at least five cards of consecutive rank, from 3 up to ace - for example 8-
9-10-J-Q. 2 and jokers cannot be used.
Sequence of pairs: at least three pairs of consecutive ranks, from 3 up to A. 2 and
jokers cannot be used. For example 10-10-J-J-Q-Q-K-K.
Sequence of triplets: at least two triplets of consecutive ranks from 3 up to A.
2 cannot be used. For example 4-4-4-5-5-5.
Sequence of triplets with attached cards: an extra card is added to each triplet.
Only the triplets have to be in sequence, for example 7-7-7-8-8-8-3-6. The attached
cards must be different from all the triplets and from each other.
Sequence of triplets with attached pairs: an extra pair is attached to each triplet.
Only the triplets have to be in sequence - for example 8-8-8-9-9-9-4-4-J-J. The pairs
must be different in rank from each other and from all the triplets. Although triplets
of 2 cannot be included in the triplets sequence.
Bomb: four cards of the same rank. A bomb can beat everything except a rocket or a
bomb with higher rank.
Rocket: a pair of jokers. It is the highest combination and beats anything else,
including bombs.

364 S. Li et al.

Quadplex set: there are two types: a quad (four same cards) with two single cards of
different ranks attached, such as 6-6-6-6-8-9, or a quad with two pairs of different
ranks attached, such as J-J-J-J-9-9-Q-Q.

3 Model Overall Frame Design

Convolutional neural network (CNN) [4] is an important supervised learning method
that proved to be a powerful model, and has made great progress in game AI. Since
game participants all have private information, they cannot obtain all the status
information of the current situation. Therefore, it is impossible to make a reasonable
assessment of the game situation through artificial extraction of features, and it is
difficult to determine the opponent’s availability. The range of operations and the game
tree of incomplete information games are extremely large. Among them, convolutional
neural network occupies an important part in machine learning. As long as the design is
reasonable, it will often produce unexpected results. Fight the landlord game players
operate in sequence to form serialized game data. The combination of playing cards is a
reasonable combination to fully reflect the characteristics of the game. Therefore, the
player’s hand can be predicted and the player’s winning probability can be improved
by setting reasonable parameters.

This paper uses a standard CNN network. First of all, we clean the original data of a
large number of actual platforms, eliminate the noise data, and get the behavior data of
all stages of the players. Secondly, we designed the structure of CNN, and the original
data are combined into the input data of the model in a proper way. After the data is
extracted through the network, the probability distribution of the number of single
cards in the opponent’s hand is obtained. Thus, the type of cards can be effectively
predicted. Finally, a detailed evaluation method is used to evaluate the quality of the
model. The overall framework is shown in Fig. 1.

3.1 Data Cleaning

Data cleaning is to clean dirty data, improve data quality. The game logs come from
Lianzhong (Beijing Lianzhong interactive Network Inc, http://www.ourgame.com/)
platform. The raw data is not perfect. In order to maximize the interest of the players,

Fig. 1. The overall framework of model. Where [9 � 15 � 3] is the input data dimension and
[15] is the output prediction result dimension.

Research on Fight the Landlords’ Single Card Guessing 365

http://www.ourgame.com/

there are often phenomena such as excessive power in one player’s initial cards. At this
time, the player plays all the cards within a very short turn, and there is no meaning for
guessing cards.

In this paper, we rejects too few rounds of data. We randomly selected 240,000
innings data, after the first step of cleaning the game data. The number of rounds spent
per game statistics and found that the majority of rounds concentrated in 6 to 12
rounds. As shown in Fig. 2. In Fight the landlords, the landlord first comes out as the
start of the game. The order of the landlord, pa and pb is in turn for a round. Generally,
if the game is over in six rounds, a player card is relatively large. The player will be
able to play cards continuously but the other players cannot play cards. At this point, it
is not possible to perform effective hand predictions for the players, and it is of no
practical significance to make predictions on such situations because the purpose of this
paper is to make hand predictions for opponents at the similar player levels and
increase their own winning ratio. When the hand is too strong, players can easily win
without predicting. So we remove the data that the game is over within six steps.

3.2 CNN Network Input and Output

Input. It is very important and also the focus of this article that how to transform the
game data of Fight the Landlords into data format suitable for CNN model. The
speculation model designed in this paper predicts the peasant player’s brand from the
perspective of the landlord. Three channels are set to represent three players in the
game. Each channel draws a single player all the cards features, including the total
card, the landlord card, the remaining cards out of the landlord, the total card each
round, multiple rounds of card data. We here only consider the first five rounds of the
situation, a total of 9 features. As shown in Fig. 3.

Regardless of the card type, poker cards face a total of 13 cards from “A” to “K”
and two jokers, for which purpose the dimensions of each card are set to 15, as shown
in Fig. 4. We directly use the corresponding number to indicate the number of cards. In
the round of card data, the data is combined in the same way as the card, the cards that
have not been played are set to “0” as shown in Fig. 5.

Fig. 2. The number of game data ending in a different number of rounds (240,000 data). If the
player has a good hand, the game will end quickly.

366 S. Li et al.

In the Fig. 4, the card type “10” is indicated by “T”, the card type “Black joker” is
indicated by “B”, and the card type “Red joker” is indicated by “R”.

In summary, the designed CNN input dimension is [9 � 15 � 3]. “3” represents
three players, “9” represents all data information that the landlords can recognize, and
“15” represents the digital representation dimension of each kind of data information.

Output. In the model output, it uses the classification method. The combination of the
number of two peasant players (pa and pb) is set to 15 categories, as shown in Fig. 6.
In the figure, “12” means that the number of the player pb is 1 and 2 for the player pa.
The output of the fully connected layer on the last layer, through the Softmax activation
function [5], obtains the probability distribution of the number of the 15 types of
corresponding brand types. The most probable class is taken from the output as the
model’s prediction.

Fig. 3. Model input design. The right side is the input matrix, the dimension is [9 � 15 � 3],
and the left side is the game situation information contained in each dimension.

Fig. 4. Each dimension card type meaning. It represents the number of each type of card

Fig. 5. Every round of playing cards. The total number of “A” to “K” is 4, while the number of
the jokers is one. The figure shows the player playing the four cards with a “4445”.

Fig. 6. Model output. The picture shows the predicted distribution of the number of one card
type in the other two players.

Research on Fight the Landlords’ Single Card Guessing 367

Figure 6 shows the card combination of “13” and “31” of the player pb and the
player pa belong to two cases. The player’s combination must be completely guessed.

The network’s input is as a landlord player’s private hand, and as a public record of
round cards. Round cards are recorded by a special combination of encoding. It not
only includes the overall situation of the game, including its own hand, other players’
total hand, etc., it also reflects the player’s confrontational relationship on the input
depth, and has a better description of the game.

3.3 The Use of CNN Model

Each round of playing cards will reduce the amount of private information, increase the
amount of common information, and increase the accuracy of model predictions to a
certain extent. This article only considers the 5 rounds of data model construction,
corresponding to five convolutional layers. The first convolutional layer selects the
convolution kernel of [9 � 5], in which “9” corresponds to the round data entered in
the input data, the purpose of which is to consider a collective effect of all information.
The 5-round data at all the same locations is convoluted together. Fight the Landlords
consider the number of cards to play generally less than or equal to 5 accounted for the
majority, that three belts (Triplet, Triplet with an attached card and Triplet with an
attached pair) and 5 cards of Sequence will be included. Convolutional layer performs
feature abstraction on game data in different dimensions. The remaining convolutional
layers are all convolution kernels [5 � 5]. The adjustment of the output of the con-
volution kernel through the activation function of the Relu activation function can
greatly speed up the convergence rate, as in

f(x) ¼ max 0; xð Þ ð1Þ

It connects three fully connected layers after Convolution layer. To prevent the
model from overfitting, a layer of BN [6] (Batch Normalization) is added after the
second fully connected layer. The first two fully connected layers have 256 nodes; the
last layer has 15 nodes. The weighted output passes through the softmax activation
function and normalizes the output to the constraint of adding a value of 1 to output the
probability of predicting the number of cards. The calculation trained throughout
Gradient descent.

3.4 The Use of CNN Model Evaluation Program

Under a large number of game data, there will be some rules for players to play cards.
However, when the status of data branches is huge, the data is complicated and there is
some noise (In the face of similar game states, the player may make a difference, or
even a long way to go, although this may be due to player level differences, but still
affect the model’s performance) in the data, we cannot evaluate whether the network is
the same as the real label or not. The paper uses a more complex evaluation method.

In this paper, the model compared predicts result from the input data with the real
result, and calculates the percentage of the correct data in the total data, which is called
acc (the correct rate). In order to more intuitively and accurately reflect the intelligence

368 S. Li et al.

level of the proposed method, this paper not only calculates the prediction accuracy of
the whole data, but also divides the original data into more detailed ones to understand
the excellent performance of the model in different situations. Specific refinement
assessment method, the real card round data, some cards played a small number, while
some may never appear. If the predicted card type all appears, it must be able to know
which player in the hands of the card, the correct rate is 1, so the numbers of cards
appear to refine the performance evaluation model separately is necessary. The specific
refinement method will be described below.

4 Model Overall Frame Design Experimental Results
and Analysis

The original data is the real playing record of the Lianzhong Fight the landlords
platform. It gets 5 million appropriate game data, including each player’s private hand
situation and all round of the card record of the deal after cleaning the data. We can use
this data to make neural network input data and tag data using the above method. Use
these Fight the landlords’ data to train the card network. A single-core Titan GPU can
be used during model training. The training time is 8 h and it can converge to better
results. The training Batchsize [7] is 100, the learning rate is 0.001, and the optimizer
uses Adam [8]. Loss is the cross-entropy of the real data and the prediction result, as in

loss ¼ � 1
n

X
x
y ln aþ 1� yð Þ ln 1� að Þ½ � ð2Þ

The y represents the expected output, the a represents the actual output of the
neuron, the x represents the sample, and the n represents the total number of samples in
(2). The optimization goal is to minimize the loss. In training, a batchsize size data is
entered each time, and it is recorded as an epoch. When the model training is to a
certain extent, the model gradually fitted, the correct rate is no longer significantly
improved. The following are the prediction experiments on single brand “8” and all
single cards.

4.1 Single Card Prediction and Refinement Assessment Method

In all the cards of the Landlords, the “8” card is in the middle of the card power, and in
the first experiment the paper set the tag data as the true result of the “8” card. In the
overall accuracy rate, the correct rate of the training set is 97% and 83% on the test set.
As shown in Figs. 7 and 8.

The ordinate in the diagram is the correct rate of the model and the abscissa is
epoch. In the final stage of network training, the correct rate of guessing the number of
‘8’ cards reached 83%.

In the thinning aspect, the status of each card is different when it reaches the 5
round. For example, in the landlord’s position, for the card “8”, it may not appear at the
time when the model is predicted; and it is also possible that the peasant players play
out one, and so on. In the absence of “8” in a case, it is the most difficult to predict the

Research on Fight the Landlords’ Single Card Guessing 369

number of the cards. With the increase of the number of “8”, the degree of difficulty is
gradually decreasing. Because the model considers the landlord’s perspective to guess
the hand of the peasant player, the landlord player has ‘8’ in his hand, and even if it’s
not hit, he thinks “8” appears. The following tables are derived from the scale of the
test set of 10000 bureaus, and the following results are generated.

In Table 1, the number of “8” cards is 4 which is not appear, that means there is no
“8” in his hand and the opponent did not play out card “8”.

In the case of landlord guessing cards under incomplete information, the deep
learning model can also show some good results. In the guess of the number of
remaining cards 1 and 0, the correct rates were 81% and 99%. It shows that the model

Fig. 7. Training process acc and loss. As the training progresses, the model gradually tends to fit
in the training set. The number of forecasts cards is gradually accurate.

Fig. 8. Test process acc. Show better predictions in the test set.

Table 1. The correctness of the individual card ‘8’.

The number of rounds
of entering test data
(the first few rounds)

The number of cards that do not
show up (remove the card the
landlords hand and the Peasants
played out)

The number of
appeared game
data (10000
data)

Acc (the
correct
rate)
(%)

5 rounds 4 879 51.64
3 1946 53.54
2 2675 66.65
1 2728 81.19
0 1770 99.88

370 S. Li et al.

has learned some rules of Fight the landlords, such as the number of cards for each type
is 4. When the number of “8” cards remains 4, two peasants have more combinations of
cards, and their combination reaches five of “04”, “40”, “13”, “31” and “22”. When the
model gets less information, the combination of ‘04’ and ‘40’ has greatly increased the
difficulty of speculation, and it is more difficult to guess the player’s hand.

4.2 All Card Prediction

In the single-card speculation, the effect of guessing cards is good, and this paper has
trained 13 types of cards separately, as shown in Fig. 9.

In Fig. 9, the card type is 13 kinds of cards in poker (excluding jokers), and the
correct rate is “acc” of the first evaluation method mentioned in the previous article.
The result shows that the model has quite different predictions for different types of
cards because the different types of cards have different probability of being played for
the players and the resulting amount of information is different. It has a certain impact
on the outcome of the game. In the equal card power (the size of the card) of the card
type, the difficulty is different according to their different purposes. For example, “3”
and “5” are usually combined into one sequence, but when the sequence does not hold
and they become separate hands, “3” has a higher probability of being shot, so the
accuracy of the prediction is a little different. In the cards “K” and “A”, the power of
the card is similar and the probability is close. When they are played out, they may be
defeated by the card “2”, so the accuracy of the cards is close. For the card ‘8’, which is
in the middle of the entire card type, When players played out various kinds of cards
before and after the power of this card, such as sequence and triplet, it may bring more
information about the card “8”. For the model which be used to guesses its number, it
can get a broader perspective.

In view of the lack of research on the game of Fight the landlord by computer
games, this paper proposes the above two indicators that can evaluate the performance

Fig. 9. Each card type correct rate. We tested the predictions for each card type, and only the
‘5’, ‘7’, and ‘10’ cards predicted a correct rate of less than 50%. Other card type predictions can
effectively estimate teammates’ cards after a certain round of games.

Research on Fight the Landlords’ Single Card Guessing 371

of the model, and provides a standard that can be weighed and compared to the next
researchers in this field.

In summary, the different of card power will bring different information on the type
of guessing, and also produced a different correct rate of the card. When the numbers of
cards are predicted, it is still important for the player to have a total card number limit
of 17 private hands and may have an impact on the end result. In the next experiment,
we will try to use a regression method to show all the number combinations of the cards
all at once.

5 Conclusion

In order to solve the AI problem of incomplete information game, the deep neural
network is used to analyze the historical game records, extract features, and get the
probability distribution of the player’s private information combination. In the early
stage of the game data multidimensional analysis, the data is scheduled to the appro-
priate format; In order to make the game data suitable for the model input, and to a
certain extent, it is helpful for the extraction of the model features. In the testing
process, a variety of data combinations are used to compare and select the most
effective data arrangement. In the model evaluation, based on the situation of the cards
which was played, we count the correct rates of different types of cards, which based on
the number of non-appearing. This model can be used as a game AI module, in order to
make a strong support for the subsequent AI’s playing behavior.

Acknowledgment. This work is Supported by National Natural Science Foundation of China
(No. 61502039), Supported by the special bidding project of teaching & education reform
(2017JGZB08), and Supported by 2018 Beijing Information Science and Technology University
Graduate Student Science and Technology Innovation Project.

References

1. Gilpin, A., Sandholm, T.: Lossless abstraction of imperfect information games. ACM (2007)
2. Moravčík, M., Schmid, M., Burch, N., et al.: DeepStack: expert-level artificial intelligence in

heads-up no-limit poker. Science 356(6337), 508 (2017)
3. Brown, N., Sandholm, T.: Libratus: the Superhuman AI for no-limit poker. In: Twenty-Sixth

International Joint Conference on Artificial Intelligence, pp. 5226–5228 (2017)
4. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
5. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics.

Springer, New York (2006). 049901
6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing

internal covariate shift, pp. 448–456 (2015)
7. Ruder, S.: An overview of gradient descent optimization algorithms (2016)
8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Computer Science (2014)

372 S. Li et al.

Short-Term Precipitation Prediction
with Skip-Connected PredNet

Ryoma Sato(&), Hisashi Kashima, and Takehiro Yamamoto

Kyoto University, Kyoto, Japan
r.sato@ml.ist.i.kyoto-u.ac.jp,

kashima@i.kyoto-u.ac.jp,

tyamamot@dl.kuis.kyoto-u.ac.jp

Abstract. Short-term forecasting of rainfall in a local area is called precipita-
tion nowcasting, and it has been traditionally addressed using rule-based or
numerical approaches. Recently, deep neural network models have started to be
used for precipitation nowcasting; however, their utility has not been extensively
explored yet. Especially, the existing efforts focus only on the choice of their
building blocks and pay little attention to the design of the whole network
structure. In this paper, we propose a new precipitation nowcasting model based
on the PredNet network architecture, which was originally proposed for short-
term video prediction tasks. The proposed model outperforms the state-of-the-art
models in the MovingMNIST++ dataset in terms of MSE, and it also shows a
good predictive performance on a real dataset of precipitation in Kyoto City.

Keywords: Nowcasting � Precipitation prediction � Deep neural network

1 Introduction

Precipitation nowcasting is the problem of predicting rainfall intensity in a local area
(e.g., a city) in a very short period of time (e.g., several minutes to a few hours). It is
quite beneficial not only for our daily decision making but also for companies and
governments to plan safer flight schedules, to predict the number of customers of a
store, and to warn people for evacuation in the area where a heavy rainfall is expected
in the near future.

Over the years, many researchers have tackled the precipitation nowcasting prob-
lem. Traditional approaches are based on optical flows [1] and numerical simulation
[8]; they are deterministic algorithms and only use the current rainfall information.
Recently, data-driven approaches using Deep Neural Network (DNN) have started to
be applied on precipitation nowcasting. These approaches utilize a large amount of past
rainfall data to learn a prediction model. Such data-driven approaches include Con-
volutional LSTM (ConvLSTM) [9], Convolutional GRU (ConvGRU), and Trajec-
tory GRU (TrajGRU) [10].

Their utility, however, has not been extensively explored yet. Especially, the
existing approaches have only focused on designing new building blocks in the net-
works and paid little attention to designing the whole network structure such as the
depth of the network and the connection between the blocks.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 373–382, 2018.
https://doi.org/10.1007/978-3-030-01424-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_37&domain=pdf

In this work, we propose a new precipitation nowcasting model based on the
PredNet architecture. PredNet was originally proposed for the short-term video pre-
diction, inspired by neuroscientific predictive coding concept, and is one of the state-of-
the-art approaches in the field.

We investigate the effectiveness of our proposed model with the synthetic Mov-
ingMNIST++ benchmark [10] and a real precipitation dataset in Kyoto City. The
experimental results demonstrate that our proposed model outperforms the state-of-the-
art model in the MovingMNIST++ benchmark in terms of MSE and it also shows a
good predictive performance on the real precipitation data, while our proposed model
requires less GPU memory.

The rest of the paper is organized as follows: after the review of the existing work
in Sects. 2 and 3 gives the definition of the precipitation nowcasting task and describe
our proposed model. We then show its effectiveness with experiments in Sect. 4.
Finally, we conclude our work and mention future work in the last section.

2 Related Work

2.1 Video Generation with DNN

Video generation is highly related to precipitation nowcasting because we can regard a
rainfall map as a grayscale image and a sequence of rainfall maps as a video.

Video generation is a challenging task because videos are high dimensional and we
need to extract the movement of each component correctly. It is, however, an essential
task for robotics [3] and self-driving cars [2]. Many DNN models have been proposed
and also achieved state-of-the-art performance in this task. The encoder-decoder model
[11] is the most basic but powerful model. This kind of models is used in precipitation
nowcasting task as well [9, 10]. The adversarial network model also performs well in
video generation [13].

2.2 Network Architecture of DNN

Various network architectures have been proposed to train deeper networks efficiently
and to reduce the number of parameters for image recognition tasks. These techniques
help us design our model. ResNet [4] uses shortcut connections, which enable to train
far deeper models and is applied to many other fields such as machine translation [15]
and speech synthesis [14]. We also adopt a variant of skip connection in our model.
Dilated Convolution [16] employs sparse connections in the convolutional layer which
expands the receptive field with a small number of parameters, which is successfully
applied in Wavenet [7]. We use this operation to reduce the number of parameters and
expand the receptive field.

374 R. Sato et al.

3 Model

In this section, we introduce the problem setting and propose our model. We also
describe the building block and the loss functions for our model.

3.1 Problem Setting

Precipitation nowcasting can be regarded as an unsupervised video prediction task.
Figure 1 illustrates an example of inputs and outputs of the precipitation nowcasting.

Formally, the input is previous precipitation matrices x1; x2; . . .; xI 2 R
H�W , where

the ði; jÞ-th value of xt is the amount of rainfall at location ði; jÞ at time t. The output is
the estimated values of subsequent matrices x̂Iþ 1; x̂Iþ 2; . . .; x̂IþO 2 R

H�W . We fix the
number of input frames I and output frames O as I ¼ O ¼ 10, and the height of the
matrices H and the width W as H ¼ W ¼ 64 throughout this paper.

3.2 Convolutional GRU

While PredNet consists of ConvLSTM in its original form, we adopt ConvGRU as the
unit. The main advantage is its simplicity. ConvGRU is given as the equations:

Zt ¼ r Wxz � Xt þWhz � Ht�1ð Þ ð1Þ

Rt ¼ r Wxr � Xt þWhr � Ht�1ð Þ ð2Þ

H
0
t ¼ LReLU Wxh � Xt þRt � Whh � Ht�1ð Þð Þ ð3Þ

Ht ¼ 1� Zð Þ � H
0
t þ Z � Ht�1 ð4Þ

where r is a sigmoid function, LReLU is the Leaky ReLU with slope rate 0:2, * is the
convolution operation with a bias term and � is element-wise multiplication. We use
the dilated convolution [16] where kernel size as 3; 3ð Þ and the dilation as 2; 2ð Þ
throughout this paper.

Fig. 1. Inputs and outputs of the precipitation nowcasting.

Short-Term Precipitation Prediction with Skip-Connected PredNet 375

3.3 Our Model

We make several modifications to the original PredNet for precipitation nowcasting.
First, we add the skip connection in the error representation layer. The original idea of
the skip connection is introduced by ResNet [4], although we used concatenation rather
than addition. This connection helps deep networks stabilize their learning process.
Next, we make the network deeper. While the original PredNet model has four or five
blocks, we stack up to nine blocks. Such deep structure improves the performance as
shown in the experiments. In addition, we change the input layer At

0 to feedback the
prediction Ât

0 when t[I. This is because the original model predicts only the next
frame, while our model predicts the next O frames.1Finally, we change the loss
function, which we will describe in the next subsection.

Our modified PredNet is summarized as the following equations:

At
l ¼

xt
Ât
l

MaxPool ReLU Conv Et
l

� �� �� �

ðl ¼ 1; t� IÞ
ðl ¼ 1; t[IÞ

l[1ð Þ

8
<

:
ð5Þ

Ât
l ¼

Clip Conv Rt
l

� �� �
l ¼ 1ð Þ

ReLU Conv Rt
l

� �� �
l[1ð Þ

�
ð6Þ

Et
l ¼ ReLU At

l � Ât
l

� �
;ReLU Ât

l � At
l

� �
;At

l

� � ð7Þ

Rt
l ¼

ConvGRU Et�1
l ;Rt�1

l ; Upsample Rt
lþ 1

� �� �� �
l\Lð Þ

ConvGRU Et�1
l ;Rt�1

l

� �� �
l ¼ Lð Þ

�
ð8Þ

where Clip is the function to clip the input in 0; 1½ �. Al;Rl; Âl;El are the input con-
volution layer, the recurrent representation layer, the prediction layer and the error
representation layer, respectively. El and Rl are initialized to zero. Figure 2 shows the
diagram of the building block used in our model, which is stacked up to nine times in
our model.

3.4 Loss Functions

In the original PredNet model, the loss function is the sum of the error representation
layer with some fixed weights. It uses not only the error values of output phase (t[I),
but also during input phase (t� I); however, this loss function turned out not to work
well in our problem setting. Instead, we mainly use the B-MSE [10] of the output
frames, namely,

L ¼ 1
OHW

XIþO

t¼Iþ 1

XH

i¼1

XW

j¼1
w xtij
� � � Ât

1ij � xtij
� �2

; ð9Þ

1 Actually, this modification is suggested in the appendix of the original paper [6].

376 R. Sato et al.

where w : R ! R is a weight function to adjust imbalance. We use w xð Þ ¼ 1
(MSE) in MovingMNIST++ experiments (Sect. 4.1), and

w xð Þ ¼

1
2
5
10
30

x\2ð Þ
2� x\5ð Þ

5� x\10ð Þ
10� x\30ð Þ

30� xð Þ

8
>>>><

>>>>:

ð10Þ

in the Kyoto dataset (Sect. 4.2), following the existing paper [10].

4 Experiments

We carried out experiments on two datasets, the MovingMNIST++ dataset and the real
precipitation data in Kyoto City. We first show the effectiveness of our model with the
MovingMNIST++ dataset, and we then report the results with the real precipitation
data, which shows the prediction performance in a more practical situation.

Fig. 2. The diagram of a building block in our model. The incoming and outgoing arrows stand
for the inputs and output of the function, respectively. The dotted arrow means to use the
previous value. For example, the ConvGRU unit on the lower left side corresponds to the Eq. (8).
We stack this up to nine times.

Short-Term Precipitation Prediction with Skip-Connected PredNet 377

4.1 MovingMNIST++

MovingMNIST [11], which consists of parallel movement and reection of MNIST, is
one of the most popular datasets in the video prediction field. MovingMNIST++ [10],
which is an extension of MovingMNIST by allowing random rotations, scale changes,
and illumination changes, has recently been proposed by Shi et al. for evaluating
precipitation nowcasting models. Our model (SDPredNet) contains nine blocks, where
the numbers of channels are 1; 32; 32; 64; 64; 128; 128; 256; 256, respectively. We
remove pooling and unpooling layers in the even-numbered blocks because pooling
operation halves the image size and full pooling operation results in 1px � 1px image
size in the 7th layer. The TrajGRU model [10] is the state-of-the-art model on pre-
cipitation nowcasting tasks. We set the number of links to L ¼ 17; 17; 17. Also, we set
the numbers of the channels of the encoder and the decoder as 1; 16; 64; 64; 96; 96; 96
and 96; 96; 96; 96; 96; 64; 16; 1, respectively, following the parameters reported in the
original paper [10] that achieved the best MSE on the MovingMNIST++ dataset.

We also carried out ablation analysis. SPredNet is a five-blocks shallow model
where the number of channels are 1; 32; 64; 128; 256, respectively. NPredNet is
SPredNet variant without skip connection.

We implemented these models with Chainer [12] and trained them with Adam [5].
We used the learning rate as 10�4, b1 as 0:5 and b2 as 0:999. The minibatch size was
set to 32 for NPredNet, SPredNet, SDPredNet, and 4 for TrajGRU.

Table 1 summarizes the MSE of the models on the MovingMNIST++ dataset. Note
that the values reported in the table were obtained after the 150 k-th iteration due to the
limitation of computational resources, whereas the value reported in the table as [10]
trained the model with 200 k iterations.

From the table, we observe that deep model helps improve the accuracy, and skip
connection is also effective.

The generated images with these models are shown in Fig. 3. Our model predicts
more clearly and more accurately than TrajGRU, which also shows the effectiveness of
our model.

4.2 Kyoto Dataset

We prepared the real precipitation data in Kyoto City to investigate the model effi-
ciency in a more practical situation. The center of the observation point is Yoshida-
honmachi, Sakyo-Ku, Kyoto, Japan. We collected the rainfall data ranging from 2013
to 2017 by using the Yahoo! Static Map API. The rainfall data (i.e., frames) are
recorded in every five minutes, and one pixel in a frame corresponds to 1 km2. There
are many data where all the input values are zero (e.g., in a sunny day) in the raw data.
We removed such data from the dataset since they contain no useful information. We
used the 154; 098 data from 2013 to 2015 for training, the 50; 244 data in 2016 for
validation, and the 57; 403 data in 2017 for testing.

One of the large difference of this dataset from the MovingMNIST++ dataset is the
imbalanced frequency of data. Thus we use the B-MSE described in Sect. 3.4 as the
loss functions for the SDPredNet and TrajGRU models.

378 R. Sato et al.

We trained the SDPredNet and TrajGRU models on this dataset. For the
SDPredNet model, the number of channels is set to 1; 32; 32; 64; 64; 128; 128; 256; 256.
For the TrajGRU model, the number of links is set to L ¼ 7; 5; 3, and the numbers of
channels of encoder and the decoder are set to 1; 8; 16; 16; 32; 32; 32 and
32; 32; 32; 32; 32; 16; 8; 1, respectively.

In addition to SDPredNet and TrajGRU, we trained classification variant of
SDPredNet (SDPredNet-class) in this dataset. In this model, we split the data into 9
classes 0; 1½ Þ; 1; 2½ Þ; 2; 4½ Þ; 4; 8½ Þ; 8; 12½ Þ; 12; 16½ Þ; 16; 24½ Þ; 24; 32½ Þ; 32;1½ Þ in mm/h.
We used weighted cross entropy loss function, and set weights to w(lowest value in the
class). (e.g., the weights of class 4; 8½ Þ is w 4ð Þ ¼ 2.)

We trained the SDPredNet, SDPredNet-class and TrajGRU models with Adam,
using the same learning rates as in the previous experiment. The minibatch size was set
to 32, and we iterated 24; 078 mini batches in the training. In this setting, SDPredNet,

Table 1. Results of different models on MovingMNIST++ dataset (Lowest value among
models is in bold). Values are obtained at the 150 k-th iteration. Since we reimplemented the
TrajGRU model with Chainer, we also provide the original MSE of TrajGRU on MovingMNIST
++ dataset reported in the original paper [10].

Baselines Proposed
[10] TrajGRU NPredNet SPredNet SDPredNet

MSE �10�2 1.138 1.151 0.9308 0.8949 0.7745

Fig. 3. Inputs, ground truth, and outputs of each model on MovingMNIST++ dataset.

Short-Term Precipitation Prediction with Skip-Connected PredNet 379

SDPredNet-class, and TrajGRU model consume 7; 858, 9; 524, and 12; 658 MiB of
GPU memory respectively. It shows GPU memory efficiency of our model. We con-
sider this is because we adopt simple building blocks such as convGRU and dilated
convolution with small kernel.

As for the evaluation metrics, we used CSI and Heidke Skill Score (HSS), fol-
lowing the existing paper [10]. CSI and HSS are calculated as follows:

CSI ¼ TP
TPþFN þFP

ð11Þ

HSS ¼ TP � TNð Þ � FP � FNð Þ
TPþFNð Þ FNþ TNð Þþ TPþFPð Þ FPþ TNð Þ ð12Þ

Table 2 shows the results of CSI and HSS of the different models on the Kyoto
dataset. We can see that the performances between our models and the baseline are
comparable. For the thresholds of 2, 4, 8, 12, 16, and 24 mm/h, SDPredNet outper-
formed TrajGRU in terms of CSI and HSS, whereas TrajGRU achieved higher per-
formances than SDPredNet in the thresholds of 1 and 32 mm/h. When we compare the
results of SDPredNet and SDPredNet-class, we can see that the SDPredNet-class model
achieved much higher CSI and HSS where the rain rates are small. This indicates that
the classification model is beneficial when we want to roughly know the rainfall
amount. Recalling that our model requires less GPU memory, our proposed model
shows the usefulness of precipitation nowcasting tasks. The generated images of each
model are shown Fig. 4.

Table 2. CSI and HSI of different models on Kyoto Dataset. Highest values among models are
in bold, and second highest values are underlined.

Rain
rate
(mm/h)

CSI HSI

Proposed Baseline Proposed Baseline
SDPredNet SDPredNet-

class
TrajGRU SDPredNet SDPredNet-

class
TrajGRU

	 1 0.4950 0.6316 0.5037 0.2999 0.3694 0.3005
	 2 0.4800 0.5613 0.4680 0.3033 0.3446 0.2949
	 4 0.4444 0.4950 0.4344 0.2942 0.3215 0.2882
	 8 0.3900 0.4217 0.3886 0.2733 0.2893 0.2725
	 12 0.3026 0.3321 0.2999 0.2283 0.2462 0.2268
	 16 0.2445 0.2307 0.2435 0.1941 0.1854 0.1935
	 24 0.1896 0.1940 0.1889 0.1581 0.1609 0.1577
	 32 0.1498 0.1154 0.1561 0.1297 0.1025 0.1345

380 R. Sato et al.

5 Conclusion

In this work, we proposed a new model for precipitation nowcasting based on the
PredNet architecture. Our proposed model shows the state-of-the-art performance in the
MovingMNIST++ benchmark in terms of MSE and a good predictive performance in
the real precipitation dataset in Kyoto City. Our model consumes less GPU memory
than the Trajectory GRU model, and this feature is beneficial especially in training with
a large dataset.

In our experiment with the Kyoto dataset, the training data is limited to three years
due to a restriction of the data provider. Recalling that our model greatly reduced the
MSE from the current state-of-the-art in the MovingMNIST++ benchmark, we expect
that our model would show better prediction performance on the real precipitation
dataset when it uses more training data, which is an interesting future direction.

Finally, our model is general and can be applicable to other prediction tasks than
precipitation nowcasting. We also plan to apply our model to other video prediction
tasks.

Fig. 4. Output frames predicted by each model on Kyoto dataset.

Short-Term Precipitation Prediction with Skip-Connected PredNet 381

Acknowledgment. This research was supported by JSPS KAKENHI Grant Numbers 15H01704,
18H03243.

References

1. Cheung, P., Yeung, H.Y.: Application of optical-flow technique to significant convection
nowcast for terminal areas in Hong Kong. In: WSN, pp. 6–10 (2012)

2. Eder, S., George, H.: Learning a driving simulator. CoRR abs/1409.0473 (2016)
3. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through

video prediction. In: NIPS, pp. 64–72 (2016)
4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR.

pp. 770–778 (2016)
5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
6. Lotter, W., Kreiman, G., Cox, D.D.: Deep predictive coding networks for video prediction

and unsupervised learning. In: ICLR (2017)
7. van den Oord, A., et al.: Wavenet: a generative model for raw audio. CoRR abs/1609.03499

(2016)
8. Sharif, H.O., Yates, D., Roberts, R., Mueller, C.: The use of an automated nowcasting

system to forecast flash floods in an urban watershed. J. Hydrometeorol. 7(1), 190–202
(2006)

9. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM
network: a machine learning approach for precipitation nowcasting. In: NIPS, pp. 802–810
(2015)

10. Shi, X., et al.: Deep learning for precipitation nowcasting: a benchmark and a new model. In:
NIPS, pp. 5622–5632 (2017)

11. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video
representations using LSTMS. In: ICML. pp. 843–852 (2015)

12. Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source
framework for deep learning. In: Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing
Systems (NIPS) (2015)

13. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In:
NIPS, pp. 613–621 (2016)

14. Wang, Y., et al.: Tacotron: towards end-to-end speech synthesis. In: Proceedings of
Interspeech, pp. 4006–4010 (2017)

15. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human
and machine translation. CoRR abs/1609.08144 (2016)

16. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

382 R. Sato et al.

An End-to-End Deep Learning
Architecture for Classification
of Malware’s Binary Content

Daniel Gibert(B) , Carles Mateu , and Jordi Planes

University of Lleida, Jaume II, 69, Lleida, Spain
{daniel.gibert, carlesm, jplanes}@diei.udl.cat

Abstract. In traditional machine learning techniques for malware
detection and classification, significant efforts are expended on manually
designing features based on expertise and domain-specific knowledge.
These solutions perform feature engineering in order to extract features
that provide an abstract view of the software program. Thus, the useful-
ness of the classifier is roughly dependent on the ability of the domain
experts to extract a set of descriptive features. Instead, we introduce a
file agnostic end-to-end deep learning approach for malware classifica-
tion from raw byte sequences without extracting hand-crafted features.
It consists of two key components: (1) a denoising autoencoder that
learns a hidden representation of the malware’s binary content; and (2)
a dilated residual network as classifier. The experiments show an impres-
sive performance, achieving almost 99% of accuracy classifying malware
into families.

Keywords: Malware classification · Deep learning
Denoising autoencoders · Dilated residual networks

1 Introduction

During the last decade, there has been a lot of research and deployment of
machine learning techniques to address the problem of malware detection and
classification. Machine learning is an attractive signaturless approach to mal-
ware detection because of its ability to recognize never-before-seen malware by
summarizing complex relationships among the input features and making deci-
sions about it. In traditional machine learning approaches, efforts are spent on
manually designing features based on expertise and domain-specific knowledge.
These solutions perform feature engineering to extract features that provide an
abstract view of malware that a classifier, e.g. neural network, decision tree, sup-
port vector machine, etc., use to make a decision. The most effective approaches
in the literature are based on N-Gram analysis and entropy analysis. On the
one hand, byte N-grams [7] and opcode N-grams [11] are continuous sequences
of N items from a given sequence of bytes or opcodes, respectively. The main

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 383–391, 2018.
https://doi.org/10.1007/978-3-030-01424-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_38&domain=pdf
http://orcid.org/0000-0002-2448-1297
http://orcid.org/0000-0002-4864-0328
http://orcid.org/0000-0003-1861-9736

384 D. Gibert et al.

drawback of N-gram based methods is that they are dependent on N and the
number of possible combinations increases exponentially with N. To solve this
limitation, Gibert et al. [3] proposed a convolutional neural network to auto-
matically learn N-gram like patterns from raw sequences of opcodes, removing
the need to exhausivelly enumerate a large number of N-grams. On the other
hand, entropy analysis [8] has been used effectively to detect encrypted and
compressed executables as they tend to have higher entropy. This characteristic
has been exploited by Gibert [4] to group malware into families based on their
structural entropy. However, these solutions depend almost entirely on the ability
and knowledge of domain experts to extract a set of descriptive and discriminant
features into which represent malware.

Instead, the approach presented in this paper neither relies on feature engi-
neering nor on experts’ knowledge of the domain. The main contribution of
our work is the development of a file agnostic end-to-end deep learning sys-
tem for malware classification from raw byte sequences. This is accomplished
by using denoising autoencoders to learn an encoded representation of the mal-
ware’s binary content that captures the main factors of variation in the bytes
sequences. Afterwards, decisions about the input are made by a dilated resid-
ual network classifier that given the encoded representation of the malware’s
binary content it outputs the family it belongs. The suitability of our approach
has been evaluated on a public benchmark provided by Microsoft for the Big-
Data Innovators Gathering (BIG 2015) Anti-Malware Prediction Challenge [10].
Experiments demonstrate the greater predictive generalization performance of
our approach with respect to the binary-based methods in the literature.

The rest of the paper is organized as follows. Section 2 presents our approach
for malware classification. Section 3 describes the experiments and compares our
approach with state-of-the-art methods in the literature. Lastly, Sect. 4 contains
the concluding remarks and our future line of research.

2 Deep Learning for Malware Classification

In the present paper we describe a file agnostic deep learning system to suc-
cessfully process and classify malware from raw byte inputs. The system can be
summarized in two phases:

Step 1 Chunk Encoding. A given malware binary is divided into contiguous,
non-overlapping chunks of fixed size. Afterwards, a denoising autoencoder takes
as input every chunk of bytes values and projects it into a hidden representation
of only on value that captures the main factors of variation in the data. The
resulting output is a time series m = {m1,m2, ...,mn}, where mi corresponds to
the encoding of the i-th chunk and n is the number of chunks into which a binary
executable has been divided. The activation function of the encoding layer is the
hyperbolic tangent. Figure 1 displays the encoded version of samples belonging
to the Simda and Obfuscator.ACY malware families. You can observe that the
encodings of samples belonging to the same family are similar while distinct from
the encoding of samples belonging to a different family. This visual similarity

Deep Learning for Classification of Malware’s Binary Content 385

is perhaps the result of reusing code to create new variants and the result of
common obfuscation techniques. In consequence, by encoding an executable we
can detect this local changes while retaining the global structure of the file.

Fig. 1. Bytes encoding representation. Figures from the first and second row belong to
the Simda and Obfuscator.ACY families, respectively

Step 2 Feature Extraction and Classification. The resulting time series is
fed into a dilated residual network which learns descriptive patterns from the
encoding of a bytes sequence and classifies a given malware binary into their
corresponding family.

The overall architecture of the network is illustrated in Fig. 2. This architec-
ture corresponds to the network that achieved a higher cross validation accuracy
during evaluation. The hyperparameters of the network were selected using a
grid search. The input is an univariate time series m = m1,m2, ...,mn, where mi

corresponds to the encoding of the i-th chunk. The core of the network consists
of 4 custom residual blocks [6] followed by one fully-connected layer and the
output layer. The residual blocks perform feature learning while the later fully-
connected layer combines the features learned. In particular, each residual block
consists of a few stacked convolutional layers whose formulation is as follows:

h(x) = σ(W2σ(W1x + b1) + b2) + σ(W3x + b3) (1)

where x and h(x) are the input and output of the residual block, Wi and bi are
the weights and biases of the i-th convolutional layer and σ is the activation
function.

The input of each convolutional layer goes through a 3-stage feature extractor
which learns hierarchical features through convolution, activation and pooling

386 D. Gibert et al.

Fig. 2. Overall architecture of the dilated residual network.

layers. More specifically, in the place of the convolution operation, we calculated
a dilated convolution [12]. The activation function adopted in all layers the
Exponential Linear Unit. Lastly, the pooling operation of our choice has been
the MAX operation.

Afterwards, the feature maps extracted by the residual blocks are combined
and fed as the input of the subsequent fully-connected layer plus a softmax layer
for classification. Additionally, Xavier’s initialization [5] has been used to make
sure weights are neither too small or big to propagate accurately the signals.
To prevent overfitting we employed dropout, a regularization mechanism that
randomly drops a proportion of p units during forward propagation and prevents
the co-adaptation between neurons.

3 Evaluation

3.1 Microsoft Malware Classification Challenge

The system has been evaluated on the dataset released by Microsoft for the Big
Data Innovators Gathering Anti-Malware Prediction Challenge [10]. The dataset
consists of 10868 samples for training and 10873 samples for testing of 9 malware
families. For each sample, it is provided a file containing the hexadecimal’s repre-
sentation of the binary content and its corresponding disassembled file generated
with IDA Pro.

3.2 Experimental Setup

The generalization performance of our approach has been estimated using 10-
fold cross validation. Additionally, the best model has been selected according

Deep Learning for Classification of Malware’s Binary Content 387

to the macro-averaged F1 score, which is the average of the individual F1 scores
obtained for each class.

macro F1 =
1
q

q∑

i=1

F i
1 (2)

where q is the number of classes in the dataset and F i
1 is the F1 score of class i.

Furthermore, the model has been evaluated on the test set using the multi-class
logarithmic loss.

logloss = − 1
N

N∑

i=1

M∑

j=1

(yi,j log(pi,j) + (1 − yi,j)log(1 − pi,j)) (3)

where N is the number of observations, M is the number of class labels, log is
the natural logarithm, yi,j is 1 if the observation i is in class j and 0 otherwise,
and pi,j is the predicted probability that observation i is in class j.

3.3 State-of-the-art Comparison

To assess the generalization performance of our approach, we compared our
model with state-of-the-art methods in the literature that are based on fea-
tures extracted from the hexadecimal representation of malware on the Microsoft
benchmark. These methods can be divided into two groups, depending on how
they represent the information of binary executables.

1. Entropy-based approaches. This group includes approaches that are based on
the representation of executable files as a stream of entropy values or their
structural entropy. Concretely, Gibert et al. [4] evaluated the performance of
both convolutional neural networks and the K-nearest neighbor algorithm.

2. IMG-based approaches. This group includes approaches that represent the
binary content of an executable as a gray scale image. Such images are gen-
erally constructed by treating each byte of the binary as a gray-scale pixel
value. In particular, Ahmadi et al. [1] and Narayanan et al. [9] extracted Har-
alick and Local Binary Pattern (LBP) features, and Principal Component
Analysis (PCA) features, respectively.

Table 1. 10-fold cross validation confusion matrix

388 D. Gibert et al.

Table 2. Performance comparison of state-of-the-art approaches based on the binary’s
content of an executable. The approach presented in this article is denoted “AE+DRN”.
“DTW+K-NN” refers to the K-nearest neighbor algorithm plus the dynamic time
warping. “Haar approximation + DTW + K-NN” refers to the aforementioned method
trained using the approximation time series obtained after applying the Haar Wavelet
Transform to the entropy time series. “CNN entropy” and “CNN haar approximation &
details” refer to the convolutional neural networks trained with the structural entropy
of executables and the approximation and details coefficients obtained after applying
the Haar Wavelet Transform to the structural entropy, respectively. “Haralick features
+ XGBoost” and “LBP features + XGBoost” refer to the models of Ahmadi et al. [1],
which extracted Haralick and Local Binary Pattern features and trained boosted trees
for classification. Moreover, Narayanan et al. [9] extracted PCA features and trained
different models. “CNN IMG” refers to a convolutional neural network model trained
on images of size 128× 128 pixels. Those approaches that their authors have not tested
their performance on the test set or didn’t make public the training confusion matrix
appear with a ‘-’ mark. Approaches with a ‘*’ mark indicate that they performed 5-fold
cross validation instead of 10-fold cross validation.

10-Fold accuracy F1 score Test logloss

Entropy-based approaches

DTW + K-NN [4] 0.9894 0.9813 0.367724

Haar approximation + DTW + K-NN [4] 0.9870 0.9710 0.458191

CNN entropy [4] 0.9708 0.9314 0.134624

CNN haar approximation & details [4] 0.9828 0.9636 0.124431

IMG-based approaches

Haralick features + XGBoost [1]* 0.955 - -

LBP features + XGBoost [1]* 0.951 - -

12 PCA features + 1-NN [9] 0.966 0.910 -

10 PCA features + SVM [9] 0.946 0.864 -

52 PCA features + SFN1 [9] 0.956 0.864 -

52 PCA features + SFN2 [9] 0.942 0.849 -

52 PCA features + DFN [9] 0.955 0.889 -

CNN IMG 0.975 0.940 0.184483

AE + DRN 0.9861 0.9719 0.106343

Table 1 presents the 10-fold cross validation accuracy and F1 score obtained
on the training data. The major contributor to errors is the Obfuscator.ACY
family which comprises malware that can have any purpose, whose code has
been obfuscated and they couldn’t be detected using their respective signatures
and heuristics. This is produced because of the similarity in the encoding of
some samples of the Obfuscator.ACY family and the rest. This issue affects the

Deep Learning for Classification of Malware’s Binary Content 389

methods in the literature that are based on the hexadecimal representation of
the binary content. Consequently, to correctly classify the remaining samples it
might be necessary to use other type of features such as the assembly language
instructions or the Windows API functions invoked.

Table 2 presents a comparison of the performance of state-of-the-art
approaches based on the binary’s content of an executable. The methods that are
performing worse are those that represent the binary content of an executable as
a gray scale image. This is because this kind of representation is counterintuitive.
Binaries are not images and by constructing them you enforce non-existent 2D
spatial correlations. Nevertheless, following recent trends in machine learning,
it can be seen that deep learning aproaches outperform those that rely on the
use of hand-designed feature extractors such as Haralick and LBP. On the other
hand, the entropy-based convolutional neural network models outmatched the
K-NN approaches on the test set and demonstrated a clear superior predictive
power. Last but not least, our approach outperformed all the other methods on
the test set and only the K-NN method achieved a greater macro-averaged F1
score on the training data, which as already mentioned, it failed to generalize to
unseen data.

4 Conclusions

In this work we have described an end-to-end deep learning system for malware
classification from raw byte sequences. This has been accomplished by learn-
ing an encoded representation of the malware’s binary content using denoising
autoencoders. Afterwards, a dilated residual network classifies the resulting mal-
ware’s encoding into their corresponding family.

The proposed approach in this paper exhibits strong classification perfor-
mance compared with the binary-based state-of-the-art methods in the litera-
ture. This is due to the exploitation of the visual similarity between malware
samples belonging to the same family as the result of reusing code and using
common obfuscation techniques to generate new samples. Therefore, the classi-
fier learns descriptive and robust features through stacking various convolutional
layers which are later used for classification purposes.

As far as we know, it is the first approach that applies deep learning for
encoding malware’s binary content. The main idea behind the encoding is to
reduce the dimensionality of the input bytes sequence while being able to cap-
ture the main factors of variation in the data. The proposed solution has two
major advantages with respect traditional machine learning approaches. First,
it is file agnostic. That is, even that the solution has been evaluated on mal-
ware executables in Portable Executable format, it could be easily deployed for
classifying malware in any other file format or targeting any other operative
system. Second, it neither relies on costly feature engineering nor on expertise
and domain-specific knowledge and thus, the extraction and prediction time are
minimal.

390 D. Gibert et al.

4.1 Future Work

Even though machine learning solutions are a promising tool for detecting and
classifying malware, they have their limitations. Specifically, they are suscepti-
ble to adversarial attacks that try to poison the training procedure or manipu-
late the binaries to bypass detection [2]. Due to the limitations of binary-based
approaches, a future line of research might be studying how to transfer the fea-
tures learned by the classifier as a subset of input features for M.L. models
attempting to classify malware based on distinct types of file features.

Acknowledgments. This research has been partially funded by the Spanish MICINN
Projects TIN2014-53234-C2-2-R, TIN2015-71799-C2-2-P, ENE2015-64117-C5-1-R, and
is supported by the University of Lleida.

References

1. Ahmadi, M., Giacinto, G., Ulyanov, D., Semenov, S., Trofimov, M.: Novel feature
extraction, selection and fusion for effective malware family classification. CoRR
abs/1511.04317 (2015)

2. Anderson, H.S., Kharkar, A., Filar, B., Evans, D., Roth, P.: Learning to evade
static PE machine learning malware models via reinforcement learning. CoRR
abs/1801.08917 (2018), http://arxiv.org/abs/1801.08917

3. Gibert, D., Bejar, J., Mateu, C., Planes, J., Solis, D., Vicens, R.: Convolu-
tional neural networks for classification of malware assembly code. In: Interna-
tional Conference of the Catalan Association for Artificial Intelligence, pp. 221–
226, October 2017. https://doi.org/10.3233/978-1-61499-806-8-221, http://www.
ebooks.iospress.com/volumearticle/47742

4. Gibert, D., Mateu, C., Planes, J., Vicens, R.: Classification of malware by using
structural entropy on convolutional neural networks. In: Proceedings of the Inno-
vative Applications of Artificial Intelligence Conference (IAAI 2018). Association
for the Advancement of Artificial Intelligence (2018)

5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the International Conference on Artificial Intel-
ligence and Statistics (AISTATS 2010). Society for Artificial Intelligence and Statis-
tics (2010)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

7. Jain, S., Meena, Y.K.: Byte level n–gram analysis for malware detection. In: Venu-
gopal, K.R., Patnaik, L.M. (eds.) ICIP 2011. CCIS, vol. 157, pp. 51–59. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22786-8 6

8. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed mal-
ware. IEEE Secur. Anal. 5, 40–45 (2007)

9. Narayanan, B.N., Djaneye-Boundjou, O., Kebede, T.M.: Performance analysis of
machine learning and pattern recognition algorithms for malware classification. In:
2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio
Innovation Summit (OIS), pp. 338–342. IEEE (2016)

http://arxiv.org/abs/1801.08917
https://doi.org/10.3233/978-1-61499-806-8-221
http://www.ebooks.iospress.com/volumearticle/47742
http://www.ebooks.iospress.com/volumearticle/47742
http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/978-3-642-22786-8_6

Deep Learning for Classification of Malware’s Binary Content 391

10. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M.: Microsoft Malware
Classification Challenge. ArXiv e-prints, February 2018)

11. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as rep-
resentation of executables for data-mining-based unknown malware detection. Inf.
Sci. 231, 64–82 (2013). https://doi.org/10.1016/j.ins.2011.08.020. data Mining for
Information Security

12. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR
abs/1511.07122 (2015). http://arxiv.org/abs/1511.07122

https://doi.org/10.1016/j.ins.2011.08.020
http://arxiv.org/abs/1511.07122

Width of Minima Reached by Stochastic
Gradient Descent is Influenced by
Learning Rate to Batch Size Ratio

Stanislaw Jastrz ↪ebski1,2,3(B), Zachary Kenton1,2, Devansh Arpit2,
Nicolas Ballas3, Asja Fischer4, Yoshua Bengio2,5, and Amos Storkey6

1 Jagiellonian University, Kraków, Poland
2 MILA, Université de Montréal, Montreal, Canada

staszek.jastrzebski@gmail.com
3 Facebook AI Research, Paris, France

4 Faculty of Mathematics, Ruhr-University Bochum, Bochum, Germany
5 CIFAR Senior Fellow, Toronto, Canada

6 School of Informatics, University of Edinburgh, Edinburgh, Scotland

Abstract. We show that the dynamics and convergence properties of
SGD are set by the ratio of learning rate to batch size. We observe
that this ratio is a key determinant of the generalization error, which we
suggest is mediated by controlling the width of the final minima found
by SGD. We verify our analysis experimentally on a range of deep neural
networks and datasets.

1 Introduction

Deep neural networks (DNNs) have demonstrated good generalization ability
and achieved state-of-the-art performances in many application domains despite
being massively over-parameterized, and despite the fact that modern neural
networks are capable of getting an error close to zero on the training data [20].
What is the reason for their good generalization performance, remains an open
question.

The standard way of training DNNs involves minimizing a loss function using
stochastic gradient descent (SGD) and its variants [3]. Since the loss functions
of DNNs are typically non-convex functions of the parameters, with complex
structure and potentially multiple minima and saddle points, SGD generally
converges to different regions of the parameter space, with different geometric
and generalization properties, depending on optimization hyper-parameters and
initialization.

Recently, several works [1,2,15] have investigated how SGD impacts the gen-
eralization of DNNs. It has been argued that wide minima tend to generalize
better than sharp ones [6,15]. One paper [15] empirically showed that a larger
batch size correlates with sharper minima and worse generalization performance.

S. Jastrz ↪ebski and Z. Kenton—Equally contributed.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 392–402, 2018.
https://doi.org/10.1007/978-3-030-01424-7_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_39&domain=pdf

Width of Minima in SGD: Learning Ratio to Batch Size Ratio 393

In this paper we find that the critical control parameter for SGD is not the
batch size alone, but the ratio of the learning rate (LR) to batch size (BS),
i.e. LR/BS. SGD performs similarly for different batch sizes but a constant
LR/BS. On the other hand higher values for LR/BS result in convergence to
wider minima, which indeed seem to result in better generalization.

Our main contributions are as follows:

– We note that any SGD processes with the same LR/BS value is a discretiza-
tion of the same stochastic differential equation (SDE).

– We derive a relation between LR/BS and the width of the minimum found
by SGD.

– We verify experimentally that the SGD dynamics are similar when rescaling
the LR and BS by the same amount.

– We demonstrate experimentally that a larger LR/BS correlates with a wider
endpoint of SGD and better generalization.

2 Theory

Let us consider a model parameterized by θ where the components are θi for
i ∈ {1, . . . , q}. For N training examples xn, n ∈ {1, ..., N}, the loss function,
L(θ) = 1

N

∑N
n=1 l(θ,xn), and the corresponding gradient g(θ) = ∂L

∂θ , are defined
based on the sum over the loss values for all training examples.

Stochastic gradients g(S)(θ) arise when we consider a minibatch B of size S <
N of random indices drawn uniformly from {1, ..., N} and form an (unbiased)
estimate of the gradient based on the corresponding subset of training examples
g(S)(θ) = 1

S

∑
n∈B

∂
∂θ l(θ,xn).

We consider SGD with learning rate η, as defined by the update rule

θk+1 = θk − ηg (S)(θk), (1)

where the index k enumerate the discrete update steps.

2.1 Learning Rate to Batch Size Ratio Determines SGD Dynamics

In this section we derive SGD as a discretization of an SDE in which the learning
rate and batch size only enter in their ratio. Other SDEs which discretize to SGD
have been considered in earlier work [11,12].

Stochastic Gradient Descent: We focus on SGD in the context of large
datasets. Consider the loss gradient for a randomly chosen data point,

gn(θ) =
∂

∂θ
l(θ,xn). (2)

Viewed as a random variable induced by the random sampling of the data items,
gn(θ) is an unbiased estimator of the gradient g(θ). For typical loss functions
this estimator has finite covariance which we denote by C(θ).

394 S. Jastrz ↪ebski et al.

The batch estimate g (S)(θ) is the arithmetic mean of the components gn(θ).
By the central limit theorem, for sufficient large batch size g (S)(θ) is approxi-
mately Gaussian distributed with mean g(θ) and variance Σ(θ) = (1/S)C(θ).

Stochastic gradient descent (1) can be written as

θk+1 = θk − ηg(θk) + η(g (S)(θk) − g(θk)), (3)

where we have established that (g (S)(θk) − g(θk)) is an additive zero mean
Gaussian random noise with variance Σ(θ) = (1/S)C(θ). Hence we can rewrite
(3) as

θk+1 = θk − ηg(θk) +
η√
S

ε, (4)

where ε is a zero mean Gaussian random variable with covariance C(θ).
Stochastic Differential Equation: Consider now a stochastic differential

equation1 of the form

dθ = −g(θ)dt +
√

η

S
R(θ)dW (t), (5)

where R(θ)R(θ)T = C(θ), R(θ) = U(θ)Λ(θ)
1
2 , and the eigendecomposition of

C(θ) is given by C(θ) = U(θ)Λ(θ)U(θ)T , with diagonal matrix Λ(θ) containing
the eigenvalues and orthonormal matrix U(θ) containing the eigenvectors of
C(θ).

This SDE can be discretized using the Euler-Maruyama (EuM) method2 with
stepsize η to obtain precisely the same equation as (4).

Hence we can say that SGD implements an EuM approximation3 to the SDE
(5). As much as the discretized approximation is valid, the SGD optimization
process must inherit all the properties4 of the underlying SDE. Specifically we
note that in the underlying SDE the learning rate and batch size only appear
in the ratio η/S, which we also refer to as the stochastic noise. This implies
that these are not independent variables in SGD. Rather it is only their ratio
that affects the path properties of the optimization process. The only indepen-
dent effect of the learning rate η is to control the stepsize of the EuM method
approximation, affecting only the per batch speed at which the discrete process
follows the dynamics of the SDE. There are, however, more batches in an epoch
for smaller batch sizes, so the per data-point speed is the same.

2.2 LR/BS Ratio Controls Trace of Hessian at a Minimum

We argue in this paper that there is a theoretical relationship between the
expected loss value, the level of stochastic noise η/S in SGD and the width
1 See [12] for a different SDE which also has a discretization equivalent to SGD.
2 See e.g. [9].
3 For a more formal analysis, not requiring central limit arguments, see an alternative

approach [11] which also considers SGD as a discretization of an SDE. Note that the
batch size is not present there.

4 Including the paths of the dynamics, the equilibria, the shape of the learning curves.

Width of Minima in SGD: Learning Ratio to Batch Size Ratio 395

of the minimum explored at this final stage of training. We derive that relation-
ship in this section. We then go on to show in the next section that, empirically,
SGD finds regions of equivalent expected loss for different values of the stochas-
tic noise. Hence the stochastic noise must control the width of the minimum.
Further experiments demonstrate that this is indeed the case and furthermore,
this does indeed affect generalisation performance.

In talking about the width of a minimum, we will define it in terms of
Tr(H(θ)), the trace of the Hessian at the minimum: the lower the Tr(H(θ)),
the wider the minima. For notational convenience, in the rest of this section we
drop dependence of H(θ) and C(θ) on θ.

In order to derive the required relationship, we will make the following
assumptions in the final phase of training:

Assumption 1. As we expect the training to have arrived in a local minima, the
loss surface can be approximated by a quadratic bowl, with minimum at zero
loss (reflecting the ability of networks to fully fit the training data). Given
this the training can be approximated by an Ornstein-Unhlenbeck process.
This is a similar assumption to previous papers [12,13].

Assumption 2. The covariance of the gradients and the Hessian of the loss
approximation are approximately equal, i.e. we can sufficiently assume C =
H. A closeness of the Hessian and the covariance of the gradients in practical
training of DNNs has been argued before [14,21].

Based on Assumptions 1 and 2, the Hessian is positive definite, and matches
the covariance C. Hence its eigendecomposition is H = C = VΛVT , with
Λ being the diagonal matrix of positive eigenvalues, and V an orthonormal
matrix. We can reparameterize the model in terms of a new variable z defined
by z ≡ VT (θ − θ∗) where θ∗ are the parameters at the minimum.

Starting from the SDE (5), and making the quadratic approximation of the
loss L(θ) ≈ (θ − θ∗)T H(θ − θ∗) and the change of variables, results in an
Ornstein-Unhlenbeck (OU) process for z

dz = −Λzdt +
√

η

S
Λ1/2dW(t) . (6)

It is a standard result that the stationary distribution of an OU process of the
form (6) is Gaussian with zero mean and covariance cov(z) = E(zzT) = η

2S I.
Moreover, in terms of the new parameters z , the expected loss can be written

as

E(L) =
1
2

q∑

i=1

λiE(z2i) =
η

4S
Tr(Λ) =

η

4S
Tr(H) (7)

where the second equality follows from the expression for the OU covariance.
We see from Eq. (7) that the learning rate to batch size ratio controls the

trade-off between width and expected loss associated with SGD dynamics within
a minimum centred at a point of zero loss, with E(L)

Tr(H) ∝ η
S . In the experiments

396 S. Jastrz ↪ebski et al.

which follow, we compare geometrical properties of minima with the same loss
value (but different generalization properties) to empirically analyze this rela-
tionship between Tr(H) and η

S .
As a special case, we note that if two runs of SGD, with different LR/BS

ratios that have the same final average loss, E(L), then the SGD processes with
the higher (η/S) ratio, must have had a smaller Tr(H), and hence must have
found a different minima, and indeed one that is wider.

3 Experiments

We now present an empirical analysis motivated by the theory discussed in the
previous section. In all experiments all models are initialized from the same
distribution.

Learning Dynamics of SGD Depend on LR/BS. In this section we
look experimentally at the approximation of SGD as an SDE given in Eq. (5),
investigating how the dynamics are affected by the learning rate to batch size
ratio.

Fig. 1. VGG11 on CIFAR10. Left: cyclic schedules. Right: constant η, S. Red and blue
curves match implies dynamics set by ratio of learning rate to batch size. (Color figure
online)

We first look at the results of four experiments involving the VGG11 archi-
tecture5 [16] on the CIFAR10 dataset, shown in Fig. 16. The left plot compares
two experimental settings: a cyclic batch size (CBS) schedule (blue) oscillating
between 128 and 640 at fixed learning rate η = 0.005, compared to a cyclic
learning rate (CLR) schedule (red) oscillating between 0.001 to 0.005 with a
fixed batch size of S = 128. The right plot compares the results for two other
experimental settings: a constant learning rate to batch size ratio of η

S = 0.001
128

(blue) versus η
S = 0.005

640 (red). We emphasize the similarity of the curves for

5 We have adapted the final layers to be compatible with the CIFAR10 dataset.
6 Each experiment was repeated for 5 different random initializations.

Width of Minima in SGD: Learning Ratio to Batch Size Ratio 397

Fig. 2. ResNet (left) and VGG11 (right) on CIFAR10. Different learning rates trying
to match learning curve of a small batch size (blue). Rescaling learning rate exactly
with batch size (left, brown; right red) gives closest match to small-batch. (Color figure
online)

each pair of experiments, demonstrating that the learning dynamics are approx-
imately invariant under changes in learning rate or batch size that keep the ratio
η/S constant.

We next ran experiments with other rescalings of the learning rate when
going from a small batch size to a large one, to compare them against rescaling
the learning rate exactly with the batch size. In Fig. 2 we show the results from
two experiments on ResNet56 and VGG11, both trained with SGD and batch
normalization on CIFAR10. In both settings the blue line corresponds to training
with a small batch size of 50 and a small starting learning rate7. The other lines
correspond to models trained with different learning rates and a larger batch
size. It becomes visible that when rescaling η by the same amount as S (brown
curve for ResNet, red for VGG11) the learning curve matches fairly closely the
blue curve. Explaining the small difference is left for future work. Other rescaling
strategies such as keeping the ratio η/

√
S constant, as suggested by [7], (green

curve for ResNet, orange for VGG) lead to larger differences in the learning
curves.

Geometry and Generalization Depend on LR/BS. In this section we
investigate experimentally the impact of learning rate to batch size ratio on the
geometry of the region that SGD ends in. We trained a series of 4-layer batch-
normalized ReLU MLPs on Fashion-MNIST [19] with different η, S8. To access
the loss curvature at the end of training, we computed the largest eigenvalue
and we approximated the Frobenius norm of the Hessian (higher values imply
a sharper minimum) using the finite difference method. Figure 3a and b show
the values of these quantities for minima obtained by SGD for different η

S , with
η ∈ [5e−3, 1e−1] and S ∈ [25, 1000]. As η

S grows, the norm of the Hessian at the

7 We used a adaptive learning rate schedule with η dropping by a factor of 10 on
epochs 60, 100, 140, 180 for ResNet56 and by a factor of 2 every 25 epochs for
VGG11.

8 Each experiment was run for 200 epochs in which most models reached an accuracy
of almost 100% on the training set.

398 S. Jastrz ↪ebski et al.

Fig. 3. Ratio of learning rate to batch size, η/S, for a grid of η, S for 4 layer ReLU
MLP on FashionMNIST. Higher η/S correlates with lower Hessian maximum eigen-
value, lower Hessian Frobenius norm, i.e. wider minima, and better generalization. The
validation accuracy is consistent for different batch sizes, and different learning rates,
so long as the ratio is constant.

minimum decreases, suggesting that higher values of η
S push the optimization

towards flatter regions. Figure 3c shows the results from exploring the impact
of η

S on the final validation performance, which confirms that better generaliza-
tion correlates with higher values of η

S . Taken together, Fig. 3a, b and c imply
that as η

S increases, SGD finds wider regions which correlate well with better
generalization9.

In Fig. 4 we qualitatively illustrate the behavior of SGD with different η
S .

We follow [15] by investigating the loss on the line interpolating between the
parameters of two models with interpolation coefficicent α. In Fig. 4(a,b) we
consider Resnet56 models on CIFAR10 for different η

S . We see sharper regions
on the right of each, for the lower η

S . In Fig. 4(c,d) we consider VGG-11 models
on CIFAR10 for the same ratio, but different β, where η=0.1×β

S=50×β . We see the same
sharpness for the same ratio. Experiments were repeated several times with
different random initializations and qualitatively similar plots were achieved.

Breakdown of η/S Scaling. We expect discretization errors to become
important when the learning rate gets large. We also expect our central limit
theorem to break down for a large batch size and smaller dataset size.

We show this experimentally in Fig. 5, where similar learning dynamics and
final performance can be observed when simultaneously multiplying the learning
rate and batch size by a factor β up to a certain limit10. This is done for a smaller
training set size in Fig. 5 (a) than in (b). The curves don’t match when β gets
too large as expected from our approximations.

9 Assuming the network has enough capacity.
10 Experiments are repeated 5 times with different random seeds. The graphs denote

the mean validation accuracies and the numbers in the brackets denote the mean
and standard deviation of the maximum validation accuracy across different runs.
The * denotes at least one seed diverged.

Width of Minima in SGD: Learning Ratio to Batch Size Ratio 399

(a)
[

η=0.1
S=128

, η=0.1
S=1024

]
(b)

[
η=0.1
S=128

, η=0.01
S=128

]

(c)
[

η=0.1
S=50

, η=0.1×4
S=50×4

]
(d)

[
η=0.1
S=50

, η=0.1×0.25
S=50×0.25

]

Fig. 4. Interpolations between models with α interpolation coefficient. At α = 0 there
is one trained model (1st element of subcaption), at α = 1 there is another (2nd
element of subcaption). (a), (b): Resnet56 with different ratio η

S
. (c), (d): VGG11 with

the same ratio, but different η, S. Higher ratios give wider minima (a,b) as seen by the
great width of the basin around α = 0, whilst the same ratio gives the same width
minima (c,d), despite differences in batch size and learning rate.

Fig. 5. Validation accuracy for different dataset sizes and different β values for fixed
ratio β×(η=0.1)

β×(S=50)
. The curves diverging from the blue shows the approximation of the

SDE discretized to SGD breaking down for large β, which is magnified for smaller
dataset size. (Color figure online)

400 S. Jastrz ↪ebski et al.

4 Related Work

The analysis of SGD as an SDE is well established in the stochastic approxima-
tion literature, see e.g. [10]. It was shown by [11] that SGD can be approximated
by an SDE in an order-one weak approximation. However, batch size does not
enter their analysis. In contrast, our analysis makes the role of batch size evident
and shows the dynamics are set by the ratio of learning rate to batch size. The
work of [8] reproduce the SDE result of [11] and further show that the covari-
ance matrix of the minibatch-gradient scales inversely with the batch size11 and
proportionally to the sample covariance matrix over all examples in the training
set. The authors of [12] approximate SGD by a different SDE and show that
SGD can be used as an approximate Bayesian posterior inference algorithm. In
contrast, we show the ratio of learning rate over batch influences the width of
the minima found by SGD. We then explore each of these experimentally linking
also to generalization.

Many works have used stochastic gradients to sample from a posterior, see
e.g. [18], using a decreasing learning rate to correctly sample from the actual
posterior. In contrast, we consider SGD with a fixed learning rate and our focus
is not on applying SGD to sample from the actual posterior.

Our work is closely related to the ongoing discussion about how batch size
affects sharpness and generalization. Our work extends this by investigating the
impact of both batch size and learning rate on sharpness and generalization. In
[15] it’s shown empirically that SGD ends up in a sharp minimum when using
a large batch size. In [7] the learning rate is rescaled with the square root of
the batch size, and more epochs are trained for to reach the same generalization
with a large batch size. The empirical analysis of [5] demonstrated that rescaling
the learning rate linearly with batch size can result in same generalization. Our
work theoretically explains this empirical finding, and extends the experimental
results on this.

Anisotropic noise in SGD was studied in [21]. It was found that the gradient
covariance matrix is approximately the same as the Hessian, late on in training.
In the work of [14], the Hessian is also related to the gradient covariance matrix,
and both are found to be highly anisotropic. In contrast, our focus is on the
importance of the scale of the noise, set by the learning rate to batch size ratio.

Concurrent with this work, [17] derive an analytical expression for the
stochastic noise scale and – based on the trade-off between depth and width
in the Bayesian evidence – find an optimal noise scale for optimizing the test
accuracy. The work of [4] explores the stationary non-equilibrium solution for
the SDE for non-isotropic gradient noise.

5 Conclusion

By approximating SGD as an SDE, we found that the learning rate to batch size
ratio controls the dynamics. This ratio is a key determinant of generalization via
11 This holds approximately, in the limit of small batch size compared to training set

size.

Width of Minima in SGD: Learning Ratio to Batch Size Ratio 401

the width of minima found by SGD. We experimentally explored this using a
range of DNN models and datasets, confirming approximate invariance under
rescaling of learning rate and batch size, and that the ratio of learning rate to
batch size correlates with width and generalization with a higher ratio leading
to wider minima and better generalization.

Acknowledgements. We thank NSERC, Canada Research Chairs, IVADO and
CIFAR for funding. SJ was in part supported by Grant No. DI 2014/016644 and
ETIUDA stipend No. 2017/24/T/ST6/00487. This project has received funding from
the European Union’s Horizon 2020 programme under grant agreement No 732204
and Swiss State Secretariat for Education,Research and Innovation under contract
No. 16.0159.

References

1. Advani, M.S., Saxe, A.M.: High-dimensional dynamics of generalization error in
neural networks. arXiv preprint arXiv:1710.03667 (2017)

2. Arpit, D., et al.: A closer look at memorization in deep networks. In: ICML (2017)
3. Bottou, L.: Online learning and stochastic approximations. On-line Learn. Neural

netw. 17(9), 142 (1998)
4. Chaudhari, P., Soatto, S.: Stochastic gradient descent performs variational infer-

ence, converges to limit cycles for deep networks. arXiv:1710.11029 (2017)
5. Goyal, P., et al.: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.

ArXiv e-prints (2017)
6. Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Comput. 9(1), 1–42 (1997)
7. Hoffer, E., et al.: Train longer, generalize better: closing the generalization gap in

large batch training of neural networks. ArXiv e-prints, arxiv:1705.08741
8. Junchi Li, C., et al.: Batch Size Matters: A Diffusion Approximation Framework

on Nonconvex Stochastic Gradient Descent. ArXiv e-prints (2017)
9. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations.

Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-662-12616-5
10. Kushner, H., Yin, G.: Stochastic Approximation and Recursive Algorithms and

Applications (Stochastic Modelling and Applied Probability) (v. 35), 2nd edn.
Springer (2003). http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0387008942

11. Li, Q., Tai, C., E., W.: Stochastic modified equations and adaptive stochastic
gradient algorithms. In: Proceedings of the 34th ICML (2017)

12. Mandt, S., Hoffman, M.D., Blei, D.M.: Stochastic gradient descent as approximate
Bayesian inference. J. Mach. Learn. Res. 18, 134:1–134:35 (2017)

13. Poggio, T., et al.: Theory of Deep Learning III: explaining the non-overfitting
puzzle. ArXiv e-prints, ArXiv e-prints, arxiv:1801.00173 (2018)

14. Sagun, L., Evci, U., Ugur Guney, V., Dauphin, Y., Bottou, L.: Empirical Analysis
Of The Hessian Of Over-parametrized Neural Networks. ArXiv e-prints (2017)

15. Shirish Keskar, N., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On
Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.
ArXiv e-prints (2016)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint, arXiv:1409.1556 (2014)

http://arxiv.org/abs/1710.03667
http://arxiv.org/abs/1710.11029
http://arxiv.org/abs/1705.08741
https://doi.org/10.1007/978-3-662-12616-5
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0387008942
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0387008942
http://arxiv.org/abs/1801.00173
http://arxiv.org/abs/1409.1556

402 S. Jastrz ↪ebski et al.

17. Smith, S., Le, Q.: Understanding generalization and stochastic gradient descent.
arXiv preprint, arXiv:1710.06451 (2017)

18. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynam-
ics. In: Proceedings of the 28th ICML, pp. 681–688 (2011)

19. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. ArXiv e-prints (2017)

20. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learn-
ing requires rethinking generalization. arXiv preprint, arXiv:1611.03530 (2016)

21. Zhu, Z., Wu, J., Yu, B., Wu, L., Ma, J.: The Regularization Effects of Anisotropic
Noise in Stochastic Gradient Descent. ArXiv e-prints (2018)

http://arxiv.org/abs/1710.06451
http://arxiv.org/abs/1611.03530

Data Correction by a Generative Model
with an Encoder and its Application

to Structure Design

Takaya Ueda, Masataka Seo, and Ikuko Nishikawa(B)

College of Information Science and Engineering, Ritsumeikan University,
Kusatsu, Shiga 525-8577, Japan

nishi@ci.ritsumei.ac.jp

Abstract. An alternative training model is proposed for adversarial net-
works to correct a slightly defective data. Generator is first acquired
by classical Generative Adversarial Networks, where the discriminator
is trained only by feasible data. Then, both an encoder as the inverse
mapping of the generator and a classifier which judges a feasibility of a
generated data, are trained to lead the generator to correct an infeasi-
ble data by the minimum modification. The proposed method is applied
to a housing member placement problem to satisfy every constraint for
earthquake resistance, and evaluated by a rigorous structural calculation.

Keywords: Deep generative model · Encoder · Classifier
Data correction · Structural constraint

1 Introduction

Convolutional neural networks (CNN) have been effectively used for various
tasks in pattern recognition and data generation. Among the generative models
by deep CNNs, most notable models are Generative Adversarial Nets (GAN) pro-
posed by Goodfellow et al. [1] and Variational Auto-Encoder (VAE) by Kingma
et al. [2]. Generator in GAN implemented by a CNN is a mapping from an
unknown latent space onto a high-dimensional data space. It learns not each
data but a whole data distribution through the mutual and adversarial train-
ing with a discriminator, which learns to discriminate each given data whether
it is sampled from a real data distribution or output from a generator. Auto-
encoder in VAE also acquires a distribution of a given data set on its coding
space, or its latent space, through the training of each data with a probability
distribution. After the training, the decoder part becomes a generator which is
a mapping from a latent space onto a high-dimensional data space. The nature
of the encoder sometimes enable us to interpret the meaning of several latent
variables and the partial structure of the obtained latent space.

This paper proposes to use the generator as an auto-corrector of the input
data, together with an encoder which learns the local structure of the latent space
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 403–413, 2018.
https://doi.org/10.1007/978-3-030-01424-7_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_40&domain=pdf

404 T. Ueda et al.

of the generator. Generator is first trained via GAN to generate the acceptable
data by the discriminator. Then, encoder is trained to search the optimal point
in the latent space of the generator. If the input data to the encoder is acceptable
and be able to be generated, then the encoder is trained to be an inverse mapping
of the generator. On the other hand, if the input data to the encoder is not
acceptable and therefore not be able to be generated, then the encoder is trained
to find the point in the latent space which is mapped to the nearest data in the
acceptable data set. In other words, when the latent space is trained to be a
manifold which corresponds to the entire set of the acceptable data, then the
encoder is trained to be the mapping onto the manifold. A point in the neighbor
of the manifold is mapped onto the manifold through the encoder and generator,
to be corrected to a similar but acceptable data.

In the followings, Sect. 2 briefly reviews the training in GAN and VAE, as the
basis of our framework. Then, Sect. 3 explains our method to train the genera-
tor and encoder for the auto-correction of the slightly infeasible data. Section 4
shows the computer experiments of the proposed models. The first experiment
is a toy example on simple two-dimensional data using the handwritten MNIST
data. The second experiment is on complicated three-dimensional data to satisfy
multiple physical constraints on a building structure design.

2 Generative Models by Neural Networks

This section introduces two representative models of the generator implemented
by CNN, that is, GAN and VAE, as the basis of our proposed method.

2.1 Generative Adversarial Nets

GAN [1] is composed of two CNNs; a generator (hereinafter referred to as G) and
a discriminator (referred to as D). G(z) is a mapping from a low-dimensional
latent space z to a data space x, and D(x) classifies an input data x whether
it is sampled from a real data distribution pdata(x) or generated by G, i.e.
x = G(z). Objective function of both learning is given as:

V (G,D) = Ex∼pdata(x)[log D(x)] + Ez∼p(z)[log(1 − D(G(z))], (1)

where E[·] is an expectation under a given distribution. Equation (1) should be
minimized by G and maximized by D, therefore this simultaneous learning pro-
cess is called adversarial. D measures Jensen-Shannon (JS) divergence between
real data distribution pdata(x) and generated ‘fake’ data distribution by the
maximization of V . On the other hand, G acquires the real data distribution by
the minimization of V .

2.2 Wasserstein GAN

Wasserstein GAN (WGAN) proposed by Arjovsky et al. [3] uses a different dis-
tance than the previous JS divergence as a measure for the distribution. D in

Data Correction by a Generative Model with an Encoder 405

WGAN uses Earth Mover’s Distance (or Wasserstein distance) between the dis-
tribution pdata(x) and another distribution pg(x), a data distribution generated
by G in the present case. Its definition is equivalently expressed in the following
form as the upper limit:

W (pdata, pg) = sup
||fw ||L≤1

(
Ex∼pdata(x)[fw (x)] − Ex∼pg(x)[fw (x)]

)
, (2)

where fw is an arbitrary function which is Lipschitz continuous with Lipschitz
constant 1. Equation (2) leads to the following form of the objective function to
be maximized by D:

Ex∼pdata(x)[D(x)] − Ez∼p(z)[D(G(z))] . (3)

Here D corresponds to function fw in the original definition by Eq. (2), with
the parameter w of CNN, and the training is expressed by the maximization to
attain the upper limit, which is purely Wasserstein distance.

Lipschitz continuity constraint on fw now becomes a constraint on D. Gul-
rajani et al. [4] add the following penalty term by the gradient of D for the
continuity of the mapping:

Ex̂∼p(x̂)

[
(||∇x̂D(x̂)||2 − 1)2

]
, (4)

where x̂ = εx + (1 − ε)x̃ with x ∼ pdata, x̃ ∼ pg, ε ∼ U [0, 1]. This improved
version with the gradient penalty (WGAN-GP) is used in the experiments in
Sect. 4.

2.3 Variational Auto-Encoder

Auto-encoder is trained to output the same data as input with a smaller number
of units in the middle layer. It is used for the dimension reduction of original
data x to lower dimension z in the middle layer. Encoder part is a mapping from
x to z, while a decoder part is an inverse mapping from z to x. In other words,
two mappings correspond to recognition and generation, individually. Variational
Auto-encoder proposed by Kingma et al. [2] considers a probability distribution
p(z) on z space. Encoder maps original data x to a certain distribution p(z)
as a normal distribution N(μ,σ2). Whole network with encoder and decoder is
trained to minimize both a reconstruction error to be an auto-encoder, and a
regularization loss which is given by Kulback-Leibler divergence with a simple
distribution on z.

In general, the training of VAE is more stable compared with GAN where
the mode collapse is often observed, while the generated data is less refine and
rather blurred. Combined approaches to take the advantage of both VAE and
GAN are found in VAE/GAN by Larsen et al. [5] and α-GAN by Rosca et al.
[6], which use the reconstruction error in the generator training.

Besides the auto-encoder, there are several studies to obtain the inverse map-
ping of the generative network, from data x to a latent vector z, as proposed by

406 T. Ueda et al.

Donahue et al. [7] and by Dumoulin et al. [8]. Metz et al. [9] and Lipton et al.
[10] also propose a gradient-based method to obtain z from x. We also propose
to train an encoder as an inverse mapping of a generator, but not simply as an
inverse mapping but also as a corrector for a defective data.

3 Proposed Model of GAN with an Encoder

The main idea of the present paper is to utilize the acquired low dimensional
manifold z as an auto-corrector of defective data, which is slightly out of the
manifold, by mapping onto the manifold. Encoder (referred to as E) is attached
to the generator as shown in Fig. 1 to infer the latent space z. G,D,E, and also
a classifier (referred to as C), if any, are all implemented by CNNs with multiple
layers. E is a variational version which outputs a probability distribution on
z as described in Subsect. 2.3. The details will be explained in the following
subsections for each model.

3.1 Basic Model of GAN with an Encoder

Generator G is first trained by GAN framework, where discriminator D is trained
by a set of correct data xok under a certain criteria (Fig. 1 left). Obtained latent
space z is expected to become a lower dimensional manifold expressing a whole
set of correct data {xok}. Next, an encoder E : x → z (shown in Fig. 1 right)
is trained by an error minimization of the reconstruction through G(z). When
input x to E is a correct data, then E should be an inverse mapping G−1 to
generate the original input x. If input x to E is not a correct data, then E
should find z which generates a correct data G(z) with minimal difference with
original x. Here we assume a continuity of mapping G−1 out of but within a
certain neighbor of manifold G({z}) in x space.

Fig. 1. Generator G is trained by GAN with correct data x fed to D in the first stage
(left). Then, an encoder E is attached to G (right), as a mapping from data x to latent
variable z. In the second stage, E is trained to be an inverse mapping G−1 for a correct
data x, while to be an auto-corrector for a defective data x.

E outputs the mean μ and variance σ2 of a normal distribution in z as in
VAE. Then, the reconstruction error is given by the following L2 norm:

Ez∼qφ(z |x) [||G(z) − x||2] , (5)

where qφ expresses encoder E as CNN with parameter φ.

Data Correction by a Generative Model with an Encoder 407

3.2 Fine-Tuning with a Classifier on Data Space: Model 1

Basic model described in the previous subsection assumes that every data gen-
erated by G is correct after GAN training. Unfortunately, this is not always the
case, as in the second example in Sect. 4, where correct data xok should satisfy a
large number of physical constraints. To ensure G to generate only correct data,
further fine-tuning stage is proposed by adding C as shown in Fig. 2.

Fig. 2. Generator G is trained by GAN at the first stage. At the same time, classifier
C is trained to discriminate whether data x is correct or not with the labeled data sets
{xok} and {xng}. In the second stage, both encoder E and C are attached to G, and
E is trained to reconstruct an appropriate correct data, regardless of the correctness
of the input, under the supervision of C.

Generator G is trained as in the previous model by GAN. Classifier C is
acquired by the ordinary supervised training with labeled data sets {xok} and
{xng}. Then C is used in the second stage for the training of E. Loss function
is modified from a single reconstruction error Eq. (5), to following Eq. (6) with
an additional penalty term:

Ez∼qφ(z |x) [||G(z) − x||2] + αExg∼G(z),z∼qφ(z |x) [max(T − C(xg), 0)] , (6)

where T is a threshold of classifier, under which a generated data xg is classified
as incorrect xng, and thus E is penalized. α is a coefficient of the penalty term.
Equation (6) forces E to find z which reconstructs a correct data, even G may
generate an incorrect data.

Alternately with Eq. (6) during an iterative training, following loss is also
used with a certain frequency to ensure E to be an inverse mapping G−1 on z:

Ez∼p(z) [||E(G(z)) − z||2] , (7)

where p(z) = N(z|0, I) .

3.3 Fine-Tuning with a Classifier on Latent Space: Model 2

Another variant of the classifier is the classifier on z, to train E to reconstruct
only a correct data. The framework is mostly the same as the previous model,
but C classifies z, therefore it is trained with labeled data sets {zok} and {zng}.

408 T. Ueda et al.

4 Computer Experiments Using Real Building Data

Computer experiments of the proposed models are shown in this section. First
Subsect. 4.1 shows a preliminary experiment using MNIST handwritten charac-
ter. Trained G generates only correct data, where the correctness is judged by
human recognition, and CNNs are also able to recognize and generate a char-
acter successfully. The second experiment is on real world problem in a housing
construction. Given a three dimensional structure of a building, various kind of
building members, such as pillar, beams and so on, should be placed to satisfy
multiple legal criteria for earthquake resistance while reducing the amount of
material as less as possible. Now, it becomes hard for G to generate only feasible
data, where the feasibility is not trivial even for an expert architect but should
be computed by a rigorous structural calculation with dynamical simulations.

4.1 MNIST Handwritten Digits

Handwritten digits dataset MNIST is widely used for the benchmark training in
recognition and generation. Each data is 28 × 28 pixel gray scale image with a
label of either digit from ‘0’ to ‘9’. In the following, data with label ‘9’ is used
as correct xok, while data with label ‘7’ is used as incorrect xng.

Fig. 3. 100 example pairs of an input ‘7’ (left) and its corrected data (right). The
position in 10 rows and 10 columns indicates a corresponding pair of input and output

Basic model without classifier
5000 data of ‘9’ are used as {xok} for training of WGAN-GP. Dimension of the
latent space z is set 16. 5000 data of ‘7’ are used as {xng} for training of E. E is
trained by the L2 norm given by Eq. (5). After the training of 400 epoch with
the batch of size 100, reconstruction error is successfully reduced. ‘Correction’
from ‘7’ to ‘9’ is shown in Fig. 3, for 100 randomly chosen examples. These
data are not included in the training dataset.

Model 1 with classifier Cx

Same ‘9’ and ‘7’ datasets are used for {xok} and {xng} as in the above model.
Here, both are used for the training of WGAN-GP, to make G generate both.
At the same time, classifier Cx is trained by the same datasets, to learn the
classification of {xok} and {xng}. Then E is trained in such a way so as to

Data Correction by a Generative Model with an Encoder 409

minimize the loss functions given in Eq. (6) with α = 0.05, T = 0.5 and in Eq.
(7). Figure 4 for 25 randomly chosen examples shows that E becomes inverse
mapping G−1 for correct data ‘9’, while modifying to be ‘9’ for an incorrect
input ‘7’ with minimal correction.

Fig. 4. Left: 100 example pairs for an input ‘9’ and its identical output. Right: 100
example pairs for an input ‘7’ and its corrected output

E in both models successfully corrects an input data, judging by a human
recognition and classifier C obtained by a supervised training with labeled data.
Thus CNNs is effective in this simple recognition and generation task. Next
example has multiple physical criteria beyond a human recognition.

4.2 Building Members Placement

Target Problem. Construction of an ordinary house is considered. First, three
dimensional structure of a building outline is given. Then, structural members,
such as pillar, girder, beams and bearing wall, are placed in each horizontal and
vertical frame of the building (Fig. 5).

Fig. 5. Example of structural members placement for a two story house (from [11])

410 T. Ueda et al.

Planning of how many, which members, to place where, can be considered a
combinatorial problem, especially for an industrialized housing with standard-
ized members [11]. It is obligatory to satisfy earthquake resistance standards,
which are described by hundreds of physical inequality constraints. Placement
of more member in number and thickness may lead to stronger resistance in
general, while a construction cost is reduced by lesser amount of total materi-
als of members. Therefore, it is important to obtain a feasible and appropriate
placement. Expert architect designs the placement plan based on the experience
, and its feasibility is computed by a rigorous structural calculation.

Member placement plan for a given building outline is expressed as three
dimensional data x. Each data is easily switched from feasible xok to infeasible
xng, and vice versa, by a small shift or a small change in the thickness of one
member. Therefore, it is hard for G to generate only feasible data. Moreover, it
is not trivial for C to classify xok and xng without any structural calculation.
Following subsections describe how each proposed model is applied to correct a
placement design from xng to xok.

Voxel Dataset for Each Model. Three dimensional data x used in the follow-
ing experiments is a voxel data with size 15×15×15 [cm3]. Members placement
for a three story house is expressed by voxels of 25(W) × 81(D) × 6(H), where
the vertical data is compressed considering the vertical symmetry. Then, six ver-
tical layers correspond to vertical and horizontal frames for three stories. The
value of each voxel is the volume occupation ratio of member material, i.e. steel,
normalized into [0,1]. Training data are prepared for each model as follows.

Basic model without classifier
15000 feasible placements are used as {xok} for training of WGAN-GP. 15000
infeasible placements are used as {xng} for training of E. All feasible and
infeasible data are obtained through the evolutionary search processes for the
placement optimization [11], and the rigorous feasibility is obtained by the
structural calculation. All infeasible data are close to the feasible boundary,
which slightly break few constraints. However, how to correct them is not
trivial in most cases.
Stack GAN proposed by Zhang et al. [12] is used in WGAN-GP, where two
pairs of G and D are trained in two steps. In the first stage, only partial place-
ment is generated, then a whole placement is generated in the second stage.
Dimension of the latent space z is set 100. Adam is used for the optimization,
and Batch Normalization is used for each layer.

Model 1 with classifier Cx

Same datasets {xok} and {xng} are used as the above , for GAN and E,
respectively. At the same time, classifier Cx is trained by both datasets, to
learn the classification of feasibility. Then E is trained in such a way so as to
minimize the loss function given in Eq. (6) with the penalty term replaced
by softmax function.

Model 2 with classifier Cz

Instead of using {xok} and {xng} for the training of a classifier, dataset

Data Correction by a Generative Model with an Encoder 411

of latent variable z are prepared for Cz with the feasibility label. zok is a
feasible data which generates a feasible placement G(zok), while zng is an
infeasible data which generates an infeasible placement G(zng), by the struc-
tural calculation.
As the structural calculation requires a considerable computational cost, it
is not effective to randomly chose the training data from 100 dimensional z
space. Instead, for the effective training of E, trained E0 by the basic model is
used to generate the training data. To be more precise, same 15000 infeasible
placements {xng} as used in the above models are input to trained E0, to
obtain 15000 data {z}. Those are then input to G which has been trained in
the first stage. Finally, the structural calculation are executed on the 15000
outputs G(E0({xng})) to give the feasibility label to each z. Obtained labeled
datasets are rather imbalanced with more {zng} compared with {zok}, which
could obstruct the training of C, and then E.
Therefore, the additional loop for the training of C, together with E, is iter-
ated. That is, after C, and then E using C, are trained, the output from
E is examined by the structural calculation to give the correct label. Those
labeled z are added to the training dataset, and the training of C and E is
iterated in the next loop with newly added training data.

Results. After the training, 100 infeasible data xng are input to E as test data.
Each resultant data generated by G(E(xng)) is classified by Cx or Cz ,in model
1 or 2, respectively. As the result, all 100 data are classified as feasible in both
models. In this sense, the correction results are successful.

However, the real judgment by a structural computation differs from the
classifiers, as is shown in Table 1. For the computation, corrected data in a
voxel format is transformed into the member placement format which is readable
for the calculation algorithm. Data denoted uncomputable in the table does
not possess the required format for the calculation (for example, there is no
corresponding member.).

Table 1. Number of feasible and infeasible data by structural calculation for 100
infeasible input as the test data for each model after the training

Correction model Corrected Still infeasible Incomputable

Basic model 38 53 9

Model 1 53 40 7

Model 2 57 28 15

The discrepancy between the trained classifier and the structural calculation
simply means the imperfect accuracy of the classifier. This additional training for
C and E is also applied in model 1. However, it does not work well for model 1,
where the number of feasible data increases to 90, while the reconstruction error

412 T. Ueda et al.

gets worse. Visualization by t-Distributed Stochastic Neighbor Embedding (t-
SNE) [13] on z space indicates the generated data tends to converge to a similar
xok after the additional training. On the other hand, the result is improved in
model 2 by the iterative loop, where the number of successfully corrected data
is increased to 57 with keeping a low reconstruction error.

The obtained result indicates the limit of learning ability of the classifier
in this target problem. Even if the voxel data possesses almost all information
of the member placement, it is not trivial to learn which shape is earthquake-
resistant against various kinds of loads from multiple directions. Moreover, the
feasible solution set may not form a simply connected manifold. In addition, the
mapping onto the manifold may need further information on the dynamics near
the feasibility boundary.

An example of typical correction is shown in Fig. 6. A shift of a bearing wall, a
removal, addition or shift of a beam are observed in each floor, and corresponding
constraints become satisfied after the correction.

Fig. 6. An example of a infeasible placement (left) corrected by Models 1 (upper)
and 2 (lower) to be feasible (right), which is verified by a structural calculation. Each
corrected part is indicated by a circle, while a voxel with a member is colored.

5 Present Summary and Future Problems

Based on the generation ability of GAN, an encoder is added to infer the obtained
latent space and to use it for the correction of slightly infeasible data. Classifier
is also added for the fine-tuning for rigorous feasibility criteria. Computer experi-
ments show the effectiveness of the proposed model for a simple recognition task,
and a limit of CNN for a complex dynamical task.

Comprehensive framework of the training of generator, encoder and classifier
is a future problem, together with the investigation of the training ability beyond
a recognition task.

Data Correction by a Generative Model with an Encoder 413

References

1. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

2. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Advances in Neu-
ral Information Processing Systems (2014)

3. Arjovsky, M., Chintala, S. and Bottou, L.: Wasserstein GAN. arXiv:1701.07875v2
(2017)

4. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
training of Wasserstein GANs. arXiv preprint arXiv:1704.00028 (2017)

5. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond
pixels using a learned similarity metric. arXiv:1512.09300 (2016)

6. Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational
Approaches for Auto-encoding Generative Adversarial Networks. arXiv:1706.04987
(2017)

7. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial Feature Learning.
arXiv:1605.09782v7 (2017)

8. Dumoulin, V., et al.: Adversarially Learned Inference. arXiv:1606.00704v3 (2017)
9. Metz, D., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled Generative Adversarial

Networks. arXiv:1611.02163v4 (2017)
10. Lipton, Z.C., Tripathi, S.: Precise Recovery of Latent Vectors from Generative

Adversarial Networks. arXiv:1702.04782v2 (2017)
11. Yoshitomi, S., Nakagawa, D., Sada, T.: Research on structural optimization for

steel industrialised housing. J. Struct. Constr. Eng. 80(714), 1347–1355 (2015)
12. Zhang, H., et al.: Stack GAN: Text to Photo-realistic Image Synthesis with Stacked

Generative Adversarial Networks. arXiv:1612.03242 (2016)
13. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.

Res. 9, 2579–2605 (2008)

http://arxiv.org/abs/1701.07875v2
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1512.09300
http://arxiv.org/abs/1706.04987
http://arxiv.org/abs/1605.09782v7
http://arxiv.org/abs/1606.00704v3
http://arxiv.org/abs/1611.02163v4
http://arxiv.org/abs/1702.04782v2
http://arxiv.org/abs/1612.03242

PMGAN: Paralleled Mix-Generator
Generative Adversarial Networks with

Balance Control

Xia Xiao(B) and Sanguthevar Rajasekaran

Computer Science and Engineering Department, University of Connecticut,
Storrs, CT 06269, USA

{xia.xiao, sanguthevar.rajasekaran}@uconn.edu

Abstract. A Generative Adversarial Network (GAN) is an unsu-
pervised generative framework to generate a sample distribution
that is identical to the data distribution. Recently, mix strategy
multi-generator/discriminator GANs have been shown to outperform sin-
gle pair GANs. However, the mixed model suffers from the problem of
linearly growing training time. Also, imbalanced training among genera-
tors makes it difficult to parallelize. In this paper, we propose a balanced
mix-generator GAN that works in parallel by mixing multiple disjoint
generators to approximate the real distribution. The weights of the dis-
criminator and the classifier are controlled by a balance strategy. We also
present an efficient loss function, to force each generator to embrace few
modes with a high probability. Our model is naturally adaptive to large
parallel computation frameworks. Each generator can be trained on mul-
tiple GPUs asynchronously. We have performed extensive experiments on
synthetic datasets, MNIST1000, CIFAR-10, and ImageNet. The results
establish that our model can achieve the state-of-the-art performance (in
terms of the modes coverage and the inception score), with significantly
reduced training time. We also show that the missing mode problem can
be relieved with a growing number of generators.

Keywords: Deep learning · Generative adversarial networks
Parallelization

1 Introduction

Generative Adversarial Networks were proposed by [8], where two neural net-
works, the generator and the discriminator, are trained to play a minimax game.
The generator is trained to fool the discriminator while the discriminator is
trained to distinguish fake data from real data. When Nash Equilibrium is
reached, the generated distribution PG will be identical to the real distribution
Preal. Unlike Restricted Boltzmann Machine or Variational Auto-encoder that

This work has been supported in part by the NSF grants 1447711 and 1743418.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 414–424, 2018.
https://doi.org/10.1007/978-3-030-01424-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_41&domain=pdf

PMGAN: Paralleled Mix-Generator Generative Adversarial Networks 415

explicitly approximate data distribution, the approximation of GAN is implicit
[7]. Training a GAN is challenging due to various potential problems such as gra-
dient vanish [1], missing mode [5,10,11,15,16], mode collapse [2,7], equilibrium
[3,4], etc.

Recently, the authors of [3,9] have used a set of generators to replace a single
complex generator. Each generator only captures a part of the real distribution.
In this case, the distance between the mix-generated distribution and the real
distribution should be minimized. A new classifier is added to separate each pair
of generators. The generated image using this approach obtained the highest
score (Inception Score of about 15% better than the average of the second and
the third competitors). Note that the overlapping penalty from the classifier
and an unrealistic penalty from the discriminator may conflict during training.
More specifically, we observe two problems in practice: (1) competition: multiple
generators try to capture one mode, but are hampered by a strict boundary. The
competition happens when the total number of generators K is greater than the
actual number of modes of Preal. (2) One beats all: One or a few of the generators
are too strong to capture all the modes, while the other generators are forced
to move away from the data distribution since the penalty of the classifier is
stronger than the penalty of the discriminator. In this paper, we offer novel and
efficient techniques to solve the imbalance problems and effectively parallelize
the multi-generator model.

Our idea is to dynamically balance between two penalties, based on the stage
where each generator stands. To control this competition, we propose a balance
term β, where all the training information from all the generators are collected,
the current progress of each generator is evaluated, and a decision is made based
on the overall stage of all the generators. To further improve and speed up the
model, we propose a reverse KL divergence loss function instead of JS Diver-
gence as the generator loss, to avoid mode collapse and improve the generator’s
ability to capture all the modes. Moreover, our model can allow parallelized
training among generators, with synchronized or asynchronized updates for the
discriminator, which significantly reduces the training time. Another advantage
of our parallelization framework is robustness and extensibility. Increasing or
decreasing the number of processors will not hamper the training process. The
framework can dynamically adapt to the change. Experimental results show that
our model can solve the missing mode problem and generate diverse images by
adding generators into the model.

2 Related Works

Recently, many researchers have started focusing on designing a mixture of gen-
erators to beat the discriminator. The authors of [13] train different generators
to capture different granularities of the image and generate a high-resolution
image. The paper [17] uses the idea of Adaboost, where the weight of the mis-
classified data is increased, and the final model is a mixture of all the weak
learners trained in previous steps. A mixture model where multiple generators

416 X. Xiao and S. Rajasekaran

are trained to play against the discriminator is given in [3]. Given enough num-
ber and complexity of generators, a Nash Equilibrium can also be achieved, and
the discriminator tends to lose the game. The authors of [9] follow this idea and
achieve the state-of-the-art generated quality (inception score). However, these
two methods suffer from the imbalance and competition problems mentioned in
the previous section. Our method extends this idea in a novel manner. We exploit
the fact that given enough generators, with balance control, all the modes can
be captured and the mixed generators can finally win.

To understand and solve the missing mode problem, [1] proves that any
proxy loss function that contains the reverse Kullback Leibler divergence (KL
divergence [12]) term tends to capture a single or few modes of Pdata, while
ignoring the other modes. It has been claimed that an imbalance in data points
for different modes may cause the missing mode problem [5]. The generation
manifold tends to move to modes with dominating data points while ignoring
modes with only a few data points. Chey et al. [5] propose to use an autoencoder
to map the data points back to the prior distribution z, and let the generator
sample from the mapped distribution prior instead of a simple Gaussian. This
paper also introduces an evaluation metric to measure both the generated quality
and the ability to handle the missing mode problem, which is not highlighted in
the traditional Inception Score measurement ([15]). Unrolled GAN, where copies
of the discriminators are made, and back-propagation is done through all of the
discriminators, while the generator is updated based on the gradient update of
those discriminators has been presented in [10]. In [6], the authors propose a
multi-discriminator model, where weak discriminators are trained using parts
of the data, and the gradients from all the discriminators are passed to the
generator. The authors of [16] have used another reconstructor network to learn
the reverse mapping from generated distribution to prior noise. If the support
of the mapped distribution is aggregated to a small portion, then the missing
mode problem is detected. A dual discriminator model where KL and reverse KL
divergence are controlled by two discriminators is offered in [11]. In this model,
the weights of the two discriminators are controlled by a neural network.

3 Our Method

The original generative adversarial network was first proposed in [8], and can be
formulated as a minimax game between a discriminator D and a generator G,
where the loss function can be defined as:

J D
θD = Ex∼Pdata

[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]

J G
θG = Ez∼pz(z)[log(D(G(z)))]

θG = argmin
θG

max
θD

J D
θD

(1)

For the generator, the optimal discriminator at each step is D∗ = Pdata

Pdata+Pg
.

When convergence is reached, we can obtain Pg = Pdata. The procedure is

PMGAN: Paralleled Mix-Generator Generative Adversarial Networks 417

equivalent to minimizing the Jensen Shannon Divergence JSD(Pg||Pdata). As
discussed in [1], the zero sum loss results in the gradient vanish problem where
generator can learn nothing since the gradient is zero. Thus heuristic/proxy loss
for the generator G is proposed. As is proved in [1], the gradient of the heuristic
loss is equivalent to the gradient ∇θG [KL(Pg||Pdata) + JSD(Pg||Pdata)].

3.1 Loss Functions

In our work, we design a multi-player game by dividing one generator into K
generators, and adding another classifier to the original minimax game. The loss
function for every single generator is:

J D(G,D) = Ex∼Pdata
[log D(x)] + Ex∼PG

[log(1 − D(x))]

J C(G,C) = Ex∼Pg−k
[log C(x)] + Ex∼Pgk

[log(1 − C(x))]

J Gk(Gk, C,D) = Ex∼Pgk
[1 + log D(x) − log(1 − D(x))]

− βk Ex∼Pgk
[log(1 − C(x))]

(2)

Since the loss function J Gk(Gk, C,D) is not bounded, we need to truncate J Gk

if D > t to avoid the gradient explosion problem, where t is a threshold value.
The goal is to solve the multi-player minimax game. If we take a closer look at
the loss functions, we will notice that: (1) The discriminator loss J D is nothing
but the loss from the original GAN paper, which minimizes the Jensen-Shannon
Divergence (JSD) between the mixture of generators and Preal; (2) the classifier
loss J C is actually another discriminator that treats G−k as real samples, Gk

as fake samples, and separates each generator Gk from all the other generators
G−k maximizing JSD(Gk||G−k). The output of the classifier C is a softmax
layer with size K; and (3) each generator is trained according to the gradient
provided by both the discriminator D and a weighted classifier C.

We can show that the distance we are minimizing is DKL(Pgk
||Pdata) and

−DJSD(Pgk
||Pg−k

). From [8], the optimal discriminator, given the current gen-
erator G, has a close form D∗

G = Pdata(x)
Pdata(x)+Pg(x)

. Since the loss function of C

is fairly close to D, we can obtain the optimal C given that the current G is
C∗

G =
PG−k

(x)

PG−k
+Pg(x)

. Next, we will analyze the loss of the generator when we fix
D = D∗ and C = C∗.

Proposition 1. Given optimal D∗ and C∗, minimizing the loss for generator
in Eq. 2 is equivalent to minimizing:

D(Pgk
, Pdata, Pg−k

) = DKL(Pgk
||Pdata) − βDJSD(Pgk

||Pg−k
).

Proof. We first show that minimizing the first term is equivalent to minimizing
DKL(Pgk

||Pdata). If we take the partial derivative of the reverse KL divergence:

∂

∂θ
DKL(Pgk

(θ)||Pdata) =
∂

∂θ

∫
Pgk

(θ) log
Pgk

(θ)
Pdata

dx.

418 X. Xiao and S. Rajasekaran

We can use Leibniz integral rule to switch integral and derivative, if we assume
that the function inside the integral satisfies: 1. continuity, 2. continuous deriva-
tive, and 3. limx→∞ f(x) = 0. We obtain:

∂

∂θ
DKL(Pgk

(θ)||Pdata) =
∫

∂Pgk
(θ)

∂θ
log

Pgk

Pdata
+ Pgk

∂Pgk
(θ)

∂θ
dx.

Substituting D with optimal D∗, J Gk(Gk, C,D) can also be rewritten as:

J Gk(Gk, C,D∗) = Ex∼PG
[1 + log(

1 − D∗

D∗)] = Ex∼PG
[1 + log

Pgk
(θ)

Pdata
]

=
∂

∂θ

∫
log

Pgk

Pdata
Pgk

(θ)+Pgk
(θ) dx =

∫
log

Pgk

Pdata

∂Pgk
(θ)

∂θ
+Pgk

∂ log Pgk
(θ)

∂θ
dx,

which is equivalent to the gradient of the reverse KL divergence. Note that we
assume that Pgk

Pdata
is a constant when optimal D∗ is obtained. The second term

in the generator loss is the same as the zero-sum loss, which is equivalent to
minimizing the Jensen Shannon Divergence DJSD(Pgk

||Pg−k
). �

3.2 The Balance Term

For the loss function in the previous section, both the discriminator and the
classifier provide gradient to the generator, i.e., the unrealistic error and over-
lapping error. Note that the two directions may conflict in practice. Based on the
information gathered from all the other generators, one should decide whether
to focus on minimizing the unrealistic error, or the overlapping error. The infor-
mation includes: how the generator k performs against all the other generators;
how the generator k performs against an ideal generator; and how much overlap
is detected by the classifier C. We define these three terms as relative perfor-
mance w , absolute bias d, and absolute overlap c for the generator k, assuming
the total number of generators is K:

wk =
expJ D

k∑K
i=1 expJ D

i

, dk = σ(J D
k), ck = J C

k (3)

The balance term β is constructed based on w, d and c, considering the intuition:

1. ck and dk are both high or both low, the generator k is either in the initial
stage or in a stable stage, and there is no need to increase or decrease β.

2. ck is low but dk is high, the generator k runs outward in a wrong direction,
β needs to be reduced to pull PGk

back to Pdata.
3. ck is high but dk is low, the generator k captures a certain mode of Pdata

while conflicting with another generator. β has to be increased to separate
the two joint generators.

Synthesizing all the criteria above, we can construct β as:

βk = wk exp(−(
c

d
− λ)) =

exp J D
k∑K

i=1 exp J D
i

exp(−(
J C

k

σ(J D
k)

− λ)) (4)

PMGAN: Paralleled Mix-Generator Generative Adversarial Networks 419

The final β will be renormalized using βk = exp βk∑K
i=1 exp βi

. Note that the sigmoid in

the expression is to map the discriminator loss to R(0,1). λ can be interpreted as
’diversity factor’ to control the separation among the generators. β will decrease
sharply if c/d > λ. A higher λ will cause a higher penalty from overlapping error
which results in a higher generated diversity.

In practice, we also multiply an extra term t decaying with time, where t =
exp(−αt), if the expected number of modes is small or the number of generators
is high. Adding the term t forces the overlapping error shrink over time, and
reduces the three players game back to two players game, where the convergence
is guaranteed.

3.3 Structure of PMGAN

The structure of PMGAN is shown in Fig. 1. All generators and the classifier are
connected by shared memory. The communication among them only happens
through the shared memory. The shared memory has K slots, where K is the
number of generators. Each slot contains three subslots: a sample part where
the samples generated by the generator k are stored, a validation part where the
value of the classifier is stored, and a progress part where the loss of the generator
is stored. Thus the total size of the shared memory is k(batchsize + 3). During
training, generator k will store its generated sample in the sample part of kth

slot, and continue training. Once the validation or progress slot is updated, the
generator will recalculate the overlapping loss or βk. Classifier C will update once
all the sample slots are updated, and store the softmax output to validation slots
for each k. Note that it is not necessary that the generator should stop and wait
for the response from the classifier or progress from the others since the generator
will not go far away from the previous update, and the training process is totally
distributed and asynchronized.

Classifier

G1 G2 GK

D1 D2 DK

Shared Memory

(a) structure of PMGAN

Sample G1 C1 P1Sample G1 C1 P1 Sample G2 C2 P2Sample G2 C2 P2

Generator lossClassifier loss

(b) structure of shared memory

Fig. 1. Illustration of our proposed PMGAN

420 X. Xiao and S. Rajasekaran

4 Experiments

In this section, we demonstrate the practical effectiveness of our algorithm
through experiments on synthetic datasets and real datasets. The set up for
all the experiments is: (1) Learning rate = 0.0002, (2) Minibatch size = 128
for the generator, the discriminator, and the classifier, (3) Adam optimizer with
first-order momentum = 0.5, (4) β is set to 1 at the beginning, with decay
β = exp−λt, and (5) Activation function is LeakyReLU, weight initialization is
from DCGAN [14]. All the codes have been implemented in Pytorch (Inception
Score in Tensorflow).

4.1 Synthetic Datasets

Synthetic datasets are a mixture of 8 Gaussians without any overlaps. We have
used two settings: 8 generators and 10 generators. First, we train exactly 8
generators with random initialization. In Fig. 2, we show the results for every
5 K steps (discriminator steps).

Fig. 2. Evaluation on synthetic datasets. Top: 8 generators, 8 modes. Bottom: 10 Gen-
erators, 8 modes

From the results, we see that all the generators are spread out at the begin-
ning. The overlapping penalty and the generators proceeding in the same direc-
tion will be divided after certain number of steps. Since the number of modes is
exactly the same as the number of generators, the property of the reverse KL
divergence will keep each generator stay stationary. When competition happens,
the other generators will be pushed to other un-captured modes. Finally, all the
8 modes are captured by different generators.

We have then increased the number of generators to 10. The result is shown
in Fig. 3. In the beginning, the situation is the same as in the previous set-
ting, but the strong penalty will hamper the mode captured by two generators.

PMGAN: Paralleled Mix-Generator Generative Adversarial Networks 421

The two generators are competing for the same mode. This illustrates that the
function of the balance term with decay is to ‘mediate’ the competition among
the generators. Two or more generators can collapse to the same mode and reach
final convergence after several epochs(determined by the decay factor).

4.2 Real World Data

In this section, we use three popular datasets, MNIST1000, CIFAR-10 and Ima-
genet. Note that the difference between MNIST and MNIST1000 is that the
latter one is constructed using 1, 000 channels to evaluate the missing mode of
the model. To evaluate the quality of the generated samples, we use the Incep-
tion Score proposed in [15], where the score is calculated by the expectation of
KL divergence E[DKLp(y|x)||p(y)], where we calculate the distance between the
conditional label and the real label.

MNIST1000 Dataset: The MNIST dataset contains 1, 000 classes. We ran
our model with different numbers of generators ranging from 1 to 16. The result
is shown in Tables 1 and 2. Note that by increasing the number of generators, the
modes captured by the mixed generator increased, while the distance between
generators decreased. Comparing to other models, our model captures all the
1, 000 modes, and obtains the lowest distance between the generated distribution
and the real data distribution.

Table 1. MNIST-1000 results for different models

Missing mode evaluation

Model GAN UnrolledGAN DCGAN PMGAN

Modes covered 628.0 ± 140.9 817.4 ± 37.9 849.6 ± 62.7 1,000

DKL(model||data) 2.58 1.43 0.73 0.06

Table 2. MNIST-1000 results for different numbers of generators

Num of generator 1 4 8 12 16

Mode covered 140 488 732 977 1,000

CIFAR-10 and ImageNet Dataset: We trained 1 to 20 generators for
CIFAR-10 and ImageNetdataset. From the results, we can conclude that the
inception score increases with the number of generators, while it gradually gets
saturated. From our observation, the threshold depends on the complexity of the
dataset, model capacity, and the classifier. The highest score we get is 8.17 and
9.08, with more than 12 generators, which is very close to the sequential MGAN
model. See Table 3.

422 X. Xiao and S. Rajasekaran

4.3 Training Time

The training time for the sequential mix generator model for CIFAR-10 dataset
is 115.4 min in our setting. To obtain around the same score, the PMGAN with
4 generators takes 54% of the time, 8 generators takes 42%, 12 generators takes
37%, and 16 generators takes 35%. The inception scores are 7.02, 8.03, 8.73, 9.01,
and 9.08, respectively. From Fig. 3(d), we can observe that with the significantly
reduced training time, the inception scores remain unchanged(only with slightly
decrease).

Table 3. Real world data results

Inception score

Model CIFAR-10 ImageNet

Real data 11.24 ± 0.16 25.78 ± 0.47

Wasserstein GAN [2] 3.82 ± 0.06

MIX+WGAN [3] 4.04 ± 0.07

DCGAN [14] 6.40 ± 0.05 7.89

D2GAN [11] 7.15 ± 0.07 8.25

MGAN [9] 8.33 ± 0.10 9.22

PMGAN(Our work) 8.19 ± 0.16 9.08

(a) MNIST

(b) CIFAR-10 (c) ImageNet (d) Runtime

Fig. 3. (a): Random pick from the mix generator for MNIST dataset. (b): Random pick
from the mix generator for CIFAR-10 dataset. (c):Inception score for mix generators
and single generator for both datasets. (d): Runtimes and Inception Scores for different
numbers of machines

PMGAN: Paralleled Mix-Generator Generative Adversarial Networks 423

5 Conclusions

In this paper, we propose a novel balanced mixed generator GAN. Our algorithm
is parallelizable and can be scaled to large platforms. To resolve the competition
and one-beat all problems in the mix generator model, we have designed the
reverse KL divergence loss function, and a carefully designed balance term to
produce a stable, converging, and fast training method. Experimental results
show that we can handle the situation when the generators compete for the
same mode even when the number of generators is greater than the number of
modes. The empirical results reveal that our method achieves the state-of-the-
art performance on the quality of the generated distribution (in terms of the
inception score). Also, we show that our model solves the missing mode problem
on the MNIST1000 dataset.

More works have to be done in this multi-player game. First, the balance
method can also be improved if we can have a better heuristic for β. We can
also train to learn β, and to achieve a balance between competition and con-
vergence. The parallelization scheme that we propose can be utilized with other
multi-generator models such as the one in [13], to generate better resolution and
complex images.

References

1. Arjovsky, M., Bottou, L.: Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862 (2017)

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint
arXiv:1701.07875 (2017)

3. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y.: Generalization and equilibrium in
generative adversarial nets (gans). arXiv preprint arXiv:1703.00573 (2017)

4. Berthelot, D., Schumm, T., Metz, L.: Began: Boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

5. Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative
adversarial networks. arXiv preprint arXiv:1612.02136 (2016)

6. Durugkar, I., Gemp, I., Mahadevan, S.: Generative multi-adversarial networks.
arXiv preprint arXiv:1611.01673 (2016)

7. Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160 (2016)

8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

9. Hoang, Q., Nguyen, T.D., Le, T., Phung, D.: Multi-generator gernerative adver-
sarial nets. arXiv preprint arXiv:1708.02556 (2017)

10. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163 (2016)

11. Nguyen, T.D., Le, T., Vu, H., Phung, D.: Dual discriminator generative adversarial
nets. arXiv preprint arXiv:1709.03831 (2017)

12. Nowozin, S., Cseke, B., Tomioka, R.: F-GAN: training generative neural samplers
using variational divergence minimization. In: Advances in Neural Information
Processing Systems, pp. 271–279 (2016)

http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1612.02136
http://arxiv.org/abs/1611.01673
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1708.02556
http://arxiv.org/abs/1611.02163
http://arxiv.org/abs/1709.03831

424 X. Xiao and S. Rajasekaran

13. Okadome, Y., Wei, W., Aizono, T.: Parallel-pathway generator for generative
adversarial networks to generate high-resolution natural images. In: Lintas, A.,
Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol.
10614, pp. 655–662. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68612-7 74

14. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

15. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. In: Advances in Neural Information Pro-
cessing Systems, pp. 2234–2242 (2016)

16. Srivastava, A., Valkov, L., Russell, C., Gutmann, M., Sutton, C.: Veegan: Reduc-
ing mode collapse in gans using implicit variational learning. arXiv preprint
arXiv:1705.07761 (2017)

17. Tolstikhin, I., Gelly, S., Bousquet, O., Simon-Gabriel, C.J., Schölkopf, B.: Adagan:
Boosting generative models. arXiv preprint arXiv:1701.02386 (2017)

https://doi.org/10.1007/978-3-319-68612-7_74
https://doi.org/10.1007/978-3-319-68612-7_74
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1705.07761
http://arxiv.org/abs/1701.02386

Modular Domain-to-Domain Translation
Network

Savvas Karatsiolis1(&), Christos N. Schizas1, and Nicolai Petkov2

1 University of Cyprus, University Avenue 1, 2109 Aglantzia, Nicosia, Cyprus
karatsioliss@cytanet.com.cy

2 Department of Intelligent Systems Group, Johann Bernoulli Institute
for Mathematics and Computer Science, University of Groningen,

9712 CP Groningen, Netherlands

Abstract. We present a method for constructing and training a deep domain-to-
domain translation network: two datasets describing the same classes (i.e. the
source and target domains) are used to train a deep network that can translate a
pattern coming from the source domain to its counterpart form in the target
domain. We introduce the development of a hierarchical architecture that
encapsulates information of the target domain by embedding individually
trained networks. This deep hierarchical architecture is then trained as one
unified deep network. Using this approach, we prove that samples from the
original domain are translated to the target domain format for both the cases
where there is a one-to-one correspondence in the samples of the two domains
and also when this correspondence information is absent. In our experiments we
get a good translation operation as long as the target domain dataset provides
good classification results when trained alone. We use either some distorted
version of the MNIST dataset or the SVHN dataset as the original domain for
the translation task and the MNIST as the target domain. The translation from
one information domain to the other is visualized and evaluated. We also discuss
the proposed model’s relation to the conditional Generative Adversarial Net-
works and we further argue that deep learning can benefit from such forms of
strict hierarchical architectures.

Keywords: Unsupervised learning � Autoencoder � Feature mapping
Neural nets

1 Introduction

Deep Learning has taken pattern recognition into a new level during the past years.
Some years ago, implementations that are now hugely favored by deep learning
approaches were confined by shallow network architectures due to the lack of pro-
cessing power that could deal with really deep models and of algorithms that could
regularize and optimize learning across a much increased number of layers. The former
problem is mitigated by the technological advances achieved by the technology of
Graphical Processing Units (GPUs) that can execute a tremendous amount of calcu-
lations in a huge parallelized fashion while the latter problem was overcame with the
discovery of powerful training algorithms like Batch Normalization [5], Dropout [14]

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 425–435, 2018.
https://doi.org/10.1007/978-3-030-01424-7_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_42&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_42

and Adam [7]. While Batch Normalization and Adam concentrate on a better opti-
mization in terms of the objective function, Dropout focuses on the regularization of
the model by combining the hypotheses of an ensemble of networks. Convolutional
networks were highly favored by the advancement of deep learning in the sense that a
large part of the machine learning research community working in the specific field is
producing very interesting results. Recently, there is also an interest revitalization in the
exploration of methods for applying knowledge transfer. The specific concept may be
implemented in different flavors: domain adaptation, cross-domain information passing
and feature preserving networks. Hinton et al. [4] studied a form of knowledge transfer
from a cumbersome model to a smaller model and called this method knowledge
distillation. The cumbersome model could be an ensemble of separately trained models
or a single large model that is heavily trained. According to Hinton, knowledge transfer
is implemented through training the smaller model to match the class probabilities as
calculated from the cumbersome model in the form of higher entropy “soft targets.
Another approach to knowledge transfer was introduced by Chen et al. [1] with their
Net2Net function preserving transformations: Net2WiderNet and Net2DeeperNet.
Using these transformations a working model can be expanded to a wider or a deeper
network that is equivalent in the sense that the model function is kept unaltered. Using
these transformations Chen et al. implemented the concept of knowledge transfer from
a teacher network to an architecture enriched student network that was able to
accomplish better accuracy and faster learning. The knowledge transfer research field
could also be benefited by the increased interest in unsupervised and semi-supervised
learning algorithms along with the recent discoveries of very promising generative
models like the Generative Adversarial Network (GAN) [3]. Mirza and Osindero [9]
implemented the conditional flavor of the original generative adversarial network
algorithm by feeding the generator and the discriminator networks with an extra piece
of information that enabled conditioning the generated output on some auxiliary data
such as a class label vector. Denton et al. [2] used a Laplacian pyramid framework with
conditional generative adversarial networks to construct a coarse-to-fine generative
model producing CIFAR10 images that human evaluators mistaken for real ima-
ges 40% of the time. Odena [10] modified the GAN discriminator in order not only to
predict whether an image was real or came from the generator but also to provide the
class of the real images. In other words, the discriminator had K + 1 classes instead of
just 2 (real or fake image) which is advantageous for training a data efficient classifier
and generating good quality images when trained in a semi-supervised fashion. Con-
ditional adversarial Networks were also used by Isola et al. [10] to implement image to
image translation and effectively synthesize photos from labels, reconstruct images
from edge maps and colorize images. This work is notable because it illustrates that
GANS can be trained with a mapping relating one image domain with another domain,
without the need of hand-engineering these mappings. Cross-domain image generation
has been studied by Taigman, Polyak and Wolf [15] - by implementing a modified
multiclass GAN that they called Domain Transfer Network to produce an image that is
relevant to an input image. Finally, Tim Salimans et al. [12] published a set of
improved techniques for training GANs with their most interesting method being their
semi-supervised learning using feature mapping.

426 S. Karatsiolis et al.

2 The Proposed Model

The proposed model aims in the translation of patterns from a source domain to
patterns belonging to a target domain. Both domains share the same problem categories
and the target domain patterns should be able to train a well performing discriminator.
For our experiments the MNIST domain represents the target domain, while the source
domain is either the SVHN data or a distorted variant of the MNIST domain. Having a
well- performing classifier for the target domain at hand is important to the proposed
model because, during training, it provides the vital information for performing the
translation from one domain to the other. Domain to domain translation may deal with
two scenarios:

1. Cross-domain pattern information correspondence which is the case of having the
same information expressed by very similar but still different domains (patterns
have a 1:1 correspondence). For example, given an informational pattern x, the
target domain may carry this information in its original form while the input domain
may contain a modified version of this information x0 which is obtained after x has
been altered by a transformation t or distorted by a signal n, that is, x0 ¼ t xð Þþ n.
Nevertheless, these operations are reversible and maintain a great deal of the
original information.

2. Cross-domain pattern categorical correspondence which is the case of having
samples from two quite different domains belonging to the same set of problem
classes. This kind of relation will be referred to as 1:M correspondence because one
sample from the target domain is related to many samples of the input domain
simply because of categorical resemblance.

2.1 Deep Domain to Domain Translation Architecture

The proposed model’s concept relies on building a deep architecture that comprises of
three distinct components: the input domain to target domain representation network,
the decoding of this representation back to the target domain and a well performing
target domain classifier. All these stages (representation, decoding and classifier) are
embedded into a deep architecture that is trained with back propagation to produce a
translation network from the input domain to the target domain. However, the three
distinct stages must be trained before being embedded in the final deep architecture.
This pre-training strategy places the unified architecture in the vicinity of a good initial
training state that maintains the objective function and prevents over fitting due to the
increased number of model parameters. It also prevents under fitting due to the van-
ishing gradients phenomenon caused by the deep architecture. The detailed steps for
the construction of the model are shown in Tables 1 and 2. Figure 1 shows the model
architecture and the distinguishable stages that are trained before their unification to a
deep network architecture. It must be noted that every distinct stage is not restricted to a
specific architecture and can be shallow or deep according to the application com-
plexity. However, the width and depth of every stage affects the final model size
accordingly. As soon as the individual networks are constructed, they are embedded to
a deep architecture and trained as a unified network with tiny learning rates for the final

Modular Domain-to-Domain Translation Network 427

two stages in order to preserve the information transferred by the pre-training
procedure.

Table 1. Steps for constructing the deep domain-to-domain translation network

Assuming an input domain dataset of the form and a target
domain dataset of the form
For 1:1 pattern correspondence between and , it should also hold that

• Construct an auto-encoder for the target domain such as with
being the encoder, the decoder and is the latent representa on. The auto-
encoder should use the sigmoid ac va on func on to maintain a direct probabilis c in-
terpreta on for the latent representa ons.

• Train a representa on network with the input domain pa erns with cross-
entropy loss func on. The training targets are binary vectors sampled from the la-
tent representa ons calculated in step (1) such as . The sampling is per-
formed for every mini-batch of the training. Table2 describes this step in detail.

• Train a well performing classifier for the target domain such as .
• Create a deep architecture model by embedding the model from step (2), the decoder

from step (1) and the classifier from step (3) in this exact order as shown in Figure 1.
• Train the unified model with ny learning rates for stages and such

as
• The final transla on model S is formed by discarding the D stage and keeping

Table 2. Training algorithm for the representation network

Assuming an input domain dataset of the form , the corresponding
target domain latent representa ons as calculated from step (1) of
Table 1 and the binary form of these representa ons as the formal problem targets

such as

Repeat un l convergence
Repeat un l the whole dataset is examined

• Sample a k-size mini batch such as associated with binary targets
sampled from the probabili es such as

•

• Perform batch-normaliza on training with cross-entropy loss on the current mini
batch and as targets.

• End
• Evaluate network for dataset with targets

End

428 S. Karatsiolis et al.

If the target-domain-dependent stages are trained with anything but tiny learning
rates, then the network will not necessarily maintain its prior knowledge. In the
experiments these learning rates were assigned a value of 1e�8: Since the last stage was
initialized to be a well-performing target-domain classifier allowed to undergo only
slight changes due to a very small learning rate, it is expected to maintain a great
portion of this ability after the training of the model is over. Furthermore, it is expected
to guide (through the back propagation of its gradient information) the early stages of
the unified architecture in adapting their feature mapping in such a way that the
constructed features are a match for the last stage feature space. Consequently, this will
drive the early stages of the architecture to figure out a way to construct features that
are related to the target domain. The final model is not trained with batch normalization

Fig. 1. The proposed model architecture. Three distinct networks are pre-trained and then
placed into the final deep architecture: (a) a target domain auto-encoder (b) an input-domain to
target-domain representation network trained on cross entropy loss of sampled binary values
from the latent variables of the target domain auto-encoder and (c) a well performing pre trained
classifier of the target domain. After these stages are placed as shown in the final deep
architecture model, they are trained with very small learning rates in stages (a) and (c) in order to
avoid destruction of the knowledge transferred from the target domain. The final model
effectively consists of the domain translation network formed by stages (b) and (a). At the output
of the domain translation network, just before the final classifier, it is expected to observe patterns
belonging to the target domain.

Modular Domain-to-Domain Translation Network 429

because this could destroy the pre-training and provoke the loss of the target domain
information encapsulated in the network. Training the stages provided by the target
domain with learning rates that are not tiny can have the same effect. In turn, the first
three hidden layers are trained with a small learning rate while the next layers use a tiny
learning rate. The final domain translation model’s performance could be enhanced by
adding the available target domain auto encoder as an extra stage at the output of the
model. This approach produces sharper and more detailed images but is not applied in
the experimental results because the main purpose is to evaluate the proposed model in
its basic form. Performance enhancements and output image improvements may be
explored and implemented in future work.

3 Problem Setup

Having two forms of information describing the same or similar observations is not a
rare situation. For example, a digit recognition problem can be described by two
datasets, the MNIST and the SVHN (Street View Home Numbers). In the case of the
SVHN-MNIST pair every example in one of the datasets can be associated with many
examples in the other dataset linked by their common class label. Thus, their corre-
spondence is of a general nature (simply categorical) since it is difficult or meaningless
to link the examples with a more detailed relation like style, orientation, displacement
etc. In other words there is not a one-to-one correspondence between the examples of
the MNIST dataset and the examples of the SVHN dataset (Fig. 2).

Fig. 2. Samples from the SVHN, MNIST, MNIST_Rot, MNIST_Noisy and MNIST_Rot_Back
datasets. The arrows represent a 1:1 correspondence between the patterns of MNIST and its
variants. This correspondence is not applicable when a domain translation from SVHN to
MNIST domain is applied or vice versa.

430 S. Karatsiolis et al.

In order to explore such a one-to-one correspondence between the examples of the
two domains, we introduce three datasets which are corrupted versions of the original
MNIST dataset. These MNIST variants are listed below:

• Rotated MNIST (MNIST_Rot): the original digits are rotated by an angle generated
randomly in the range 0 to 2p.

• Noisy MNIST (MNIST_Noisy): each pixel in the original image is replaced with
20% probability by a random number uniformly sampled from the range 0 to 1:

• Rotated + Background image (MNIST_Rot_Bck): the digits are randomly rotated
as in rotated MNIST and the background is replaced with a black and white image
patch. These 28� 28 patches are extracted from random nature pictures down-
loaded from the internet and screened for having a minimum level of pixel varia-
tion. More specifically, patches that have a variance less than 0.01 are discarded.

4 Experimental Results

Two experimental pathways are explored: domain translation with cross-domain pattern
correspondence and domain translation without cross-domain pattern correspondence.
Both pathways are studied with the MNIST variants translation to the MNIST domain
while the translation of the SVHN domain to the MNIST domain is performed only
according to the latter pathway. According to the proposed methodology the MNIST
auto-encoder is trained making use of the whole 60000 available patterns in the dataset.
Next, the MNIST dataset is expressed by the latent representation of the auto-encoder
and all constant valued variables (1 or 0) are removed by making the necessary bias
weights’ adjustments for the decoder stage where necessary. Furthermore, for the case of
the SVHN to MNIST translation model the mean latent representations per class are
calculated. Finally, the individual stages defined by the proposed model are placed in a
unified architecture which is trained with a tiny learning rate for the final stages. After
the unified model is constructed by embedding the various stages, it is trained with mini
batch gradient descent. According to the networks used to form the model, the final
architecture for the MNIST variants is 784-2000-2000-922-784-800-800-10 and for the
SVHN is 1024-2000-2000-922-784-800-800-10. The results are particularly interesting
for the SVHN to MNIST translation setup since the model learns implicitly an efficient
way to reconstruct the MNIST form of the number in the middle of the image ignoring
any numbers appearing at its sides. Additionally, this model trains itself on dealing with
distorted digit images and many variations of the original patterns. During experi-
mentation it was noted that the quality of the target domain auto-encoder and the training
of the input domain representation network were more crucial for the performance of the
final model than extreme tuning of the final stage classifier. Another, rather unexpected,
observation extracted from the results, is the fact that cross-domain pattern correspon-
dence is not as advantageous as expected. The resulted quality of both experimental
pathways (1:1 correspondence and 1:M correspondence) is not that different which
suggests that during training of the input domain representation model, an adequate
approximation of the target domain manifold is sufficient in terms of enabling the unified
architecture to learn how to perform the domain translation (Fig. 3).

Modular Domain-to-Domain Translation Network 431

Fig. 3. From top to bottom: Random dataset samples for the MNIST_Noisy, MNIST_Rot,
MNIST_RotBck and SVHN domain to the MNIST domain translation experiments. Each pair of
images is formed by the input domain pattern on the left and the model’s output on the right. The
left side of the first three figures shows the 1:1 cross-domain pattern correspondence case while
the right side shows the translation results for the 1:M case.

432 S. Karatsiolis et al.

5 Conclusions

We have introduced a method for performing cross-domain pattern translation which
transfers a pattern from one domain to a similar domain that spans the same classifi-
cation categories. The results are also interesting from another point of view: the stages
of the model that perform the domain translation and the classifier of the final model
stage resemble the mechanisms of a conditional GAN. The former group of stages
represents the GAN generator and the latter represents the GAN discriminator that
outputs the K problem classes. In respect to Tim Salivans et al. semi-supervised GAN
[12] which implements Kþ 1 discriminator outputs, the proposed model omits the fake
image output class. This output is rather safely omitted because the generator is pre-
trained to produce images in the vicinity of the domain information format and is
prevented from deviating away from it since the training gradients come from a well
performing classifier acting on that domain. The concept served by the feature mapping
property added to the objective function of Tim Salivan et al. method is also served by
the pre-training of the input domain representation network proposed by our approach:
instead of enforcing a similarity on how an intermediate layer of the discriminator is
mapping real and generated information, our model consolidates this representation
through the pre-training process, the embedding of the decoder stage of the target
domain decoder and the tiny learning rate applied on this stage. Extending this rational,
the proposed model is acting similarly to a conditional GAN with K þ 1 outputs,
starting from an advanced training point, after the generator has started performing
“reasonably” by producing images that should mostly be classified as belonging to one
of the K problem classes. Hypothetically, the discriminator is constantly fooled by the
generator in identifying one of the available K classes for every fake image it examines.
Consequently, the fake output is omitted and not considered as an output option. Jost
Tobias Springenber [13] also uses K output classes for training a GAN in an unsu-
pervised or semi-supervised manner by omitting the fake image output. His strategy is
to train an artificial image generator which produces fake images that seem real and
uses a uniform distribution of samples in terms of their associating label. At the same
time the discriminator must be trained to perform well on real data, to raise classifi-
cation uncertainty when dealing with fake data and to choose the output class uni-
formly. By the requirements it is obviously assumed that the model deals with uniform
class priors. Our model complies with all the requirements stated above both for the
generator and the discriminator. Uniform distribution of sample generation is satisfied
by the generator due to equal class priors. The discriminator also satisfies this
requirement and the one for performing well on real data because of its pre-training on
the target domain data. The raised uncertainty condition for the discriminator is nat-
urally due to the noise injected during sampling of the latent probabilities. The pro-
posed model also shares some theoretic principles with the semi-supervised GAN
described by Odena [10] which uses Kþ 1 discriminator outputs. An obvious mod-
elling deviation of the proposed model from GANs is the absence of a noise generator
at the input. Noise is important for the unconditional GAN for supplying the necessary
variance at the input of the model. For conditional GANs, to which the proposed model
is parallelized, this noise is not critical or even necessary since there is enough input

Modular Domain-to-Domain Translation Network 433

variation due to the input domain images applied to the network and are acting like a
condition for the generative process. This is supported by Isola et al. [6] and Mathieu
et al. [8]. However, a great deal of noise is added to the proposed model during training
because of the latent variables’ sampling performed for each mini-batch. Besides the
conditional GAN parallelization, there is another notable characteristic of the proposed
model. It shows that deep networks perform well when the layers obey a hierarchy of
functionality. Of course this is not a new idea since convolutional networks are built
upon a function specific layer architecture with various types of layers (convolutional,
pooling and fully connected layers). However, a stricter sectional embedding paradigm
in the form proposed might worth further investigation and experimentation. Embed-
ding domain information to a model in the form of whole network blocks, may produce
networks that learn in a more efficient way. It could also provide the structural foun-
dation of combining information from many similar domains to construct high level
concepts that are transferable between these domains and are used to build more
sophisticated models.

References

1. Chen, T., Goodfellow, I., Shlens, J.: Net2Net: accelerating learning via knowledge transfer.
http://arxiv.org/abs/1511.05641 (2015)

2. Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a
laplacian pyramid of adversarial networks. arxiv Preprint http://arxiv.org/abs/1506.05751,
pp. 1–10 (2015)

3. Goodfellow, I., Pouget-Abadie, J., Mirza, M.: Generative adversarial networks. arXiv
Preprint http://arxiv.org/abs/1406.2661, pp. 1–9 (2014)

4. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS
2014 Deep Learning Workshop, pp. 1–9. https://doi.org/10.1063/1.4931082 (2015)

5. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift, pp. 1–11 (2015). arXiv:1502.03167, https://doi.org/10.1007/s13398-
014-0173-7.2

6. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional
adversarial networks. http://arxiv.org/abs/1611.07004 (2016)

7. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference On Learning Representations, pp. 1–13. http://arxiv.org/abs/1412.6980 (2014)

8. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean
square error. In: ICLR, pp. 1–14. http://arxiv.org/abs/1511.05440 (2015)

9. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR, pp. 1–7. http://
arxiv.org/abs/1411.1784 (2014)

10. Odena, A.: Semi-supervised learning with generative adversarial networks. In: ICML, pp. 1–
3. http://arxiv.org/abs/1504.01391 (2016)

11. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning
with ladder networks. In: Advances in Neural Information Processing Systems, pp. 3532–
3540 (2015)

12. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved
Techniques for Training GANs. In: NIPS, pp. 1–10. http://arxiv.org/abs/1504.01391 (2016)

13. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative
adversarial networks. http://arxiv.org/abs/1511.06390 (2015)

434 S. Karatsiolis et al.

http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1506.05751
http://arxiv.org/abs/1406.2661
http://dx.doi.org/10.1063/1.4931082
http://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1504.01391
http://arxiv.org/abs/1504.01391
http://arxiv.org/abs/1511.06390

14. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (JMLR) 15,
1929–1958 (2014). https://doi.org/10.1214/12-AOS1000

15. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. http://
arxiv.org/abs/1611.02200 (2016)

Modular Domain-to-Domain Translation Network 435

http://dx.doi.org/10.1214/12-AOS1000
http://arxiv.org/abs/1611.02200
http://arxiv.org/abs/1611.02200

OrieNet: A Regression System for Latent
Fingerprint Orientation Field Extraction

Zhenshen Qu1, Junyu Liu1, Yang Liu1(&), Qiuyu Guan1,
Chunyu Yang2, and Yuxin Zhang3

1 Department of Control Science and Engineering, HIT, Harbin, China
miraland@hit.edu.cn,

{17s004086,17s004024}@stu.hit.edu.cn
2 Beijing Hisign Technology Co., Ltd., Beijing, China

3 Cross-Strait Tsinghua Research Institute, Beijing, China

Abstract. Orientation field is an important characteristic of fingerprints. Many
biometrics processing steps rely on its accurate estimation. Previous works on
this task failed because of blurry fingerprint patterns and severe background
noises. In this paper, a new algorithm system specific for fingerprint orientation
estimation is proposed, combining domain knowledge of handcraft methods and
the generalization ability of DNN. System’s preprocessing part roughly extracts
effective information of input image with specially designed traditional method
combination, then a Deep Regression Neural Network (DRNN) is adopted to
predict the orientations fields, showing much faster convergence speed during
training process than classification networks with the same backbone structure.
Novel structure for DNN design is proposed to solve problem of discontinuity
around 0° and increase prediction accuracy. Experimental results on test data-
base proves that proposed algorithm system defeats state-of-the-art fingerprint
orientation estimation algorithms.

Keywords: Fingerprint � Orientation field � DRNN

1 Introduction

As a biometric identification technology, automatic fingerprint recognition is widely
used in judicial, government, commercial and financial fields because of its advantages
such as easy access, strong operability and high reliability. Automatic fingerprint
identification system (AFIS) [1] generally includes: fingerprint acquisition, image
enhancement, feature extraction, matching and other parts. Since the 1990s, algorithms
of each part of AFIS have been continuously improved [2–4].Due to the importance of
fingerprint orientation, a large number of scholars have conducted research in this field
to improve the accuracy of fingerprint recognition.

One of the commonly used methods is a gradient-based algorithm, which performs
a difference operation on the latent image. Therefore, it is very sensitive to image
quality. Hong et al. [5] improved this method. They proposed to filter the directional
field with a low-pass filter while correcting the isolated wrong direction. Another is the
model-based approach. This method mainly uses the global constraints to model the

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 436–446, 2018.
https://doi.org/10.1007/978-3-030-01424-7_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_43&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_43

orientation field mathematically. Sherlock et al. [6] proposed a zero-pole model that
models the fingerprint orientation field based on the location of singular points.
However, this method fails when there is no singularity in the fingerprint.

A few dictionary-based approaches have been proposed to improve latent orien-
tation field estimation. Feng et al. [7] proposed a novel fingerprint orientation field
extraction algorithm based on prior knowledge of fingerprint structure. The dictionary
is constructed using a set of ground truth orientation fields, and the compatibility
constraint among neighboring orientation patches. The dictionary-based approach has
better generalization ability than the model-based approach, but its performance relies
on large and diverse dictionaries, and results in higher computational cost.

Recent years, deep learning has made remarkable achievements in the field of
pattern recognition. Convolutional neural networks (CNN) are widely used in image
classification, object recognition, object detection and other fields [8–10]. Cao et al.
[11] proposed a learning-based approach to classify the orientation field of a latent
patch as one of a set of representative orientation patterns using a ConvNet. However,
the pattern set’s quality is directly affected by the quality of database. In 2017, Yao
et al. [12] proposed an end-to-end deep convolutional network combining domain
knowledge and the representation ability of deep learning. In terms of orientation field,
a classification network based on DeepLab v2 [13] is adopted. This pipeline achieves
better results with expert network-marked labels, but it still meets with difficult in
convergence and is easy to drop into local optimal solution.

Inspired by abundant achievements on semantic segmentation [14] in recent years,
we propose an effective orientation extraction framework for latent fingerprint. Con-
sidering the poor quality of latent images, we first design preprocessing method
combining local total variation (LTV) decomposition, band-pass filter and Gabor filter
on latent fingerprints so that input condition of the network is improved. Processed
images are passed to the proposed Convolutional Neural Network for high accuracy
orientation field prediction. Experimental results on test database proves that proposed
algorithm system defeats state-of-the-art fingerprint orientation estimation algorithms.

The contributions of this paper are summarized as follows:

1. A new algorithm system specific for fingerprint orientation estimation consisting of
preprocessing and deep neural network part. Domain knowledge and the general-
ization ability of network are combined in this system.

2. Effective preprocess to enhance the potential ridge structure of poor quality fin-
gerprints by specially designed algorithm combination.

3. A novel deep regression neural network(DRNN) is proposed, with higher accuracy,
faster training speed and less difficulty during convergence.

4. A new structure sources from traditional boosting algorithm is introduced into
proposed DRNN, solving label discontinuity problem and significantly improve
network performance.

OrieNet: A Regression System 437

2 Proposed Method

2.1 Methods Overview

The basic idea is to build an algorithm system specific for fingerprint orientation
estimation. Recent years, many works [12, 19, 20] show the necessity and tendency of
combining domain knowledge of traditional image algorithms with deep learning.
Along this way, we propose an algorithm consists of preprocessing part and full
convolutional network part. Firstly, preprocessing part is introduced, which roughly
extracts effective information of input images with designed traditional method com-
bination, including cartoon-texture decomposition and Gabor filtration. Secondly, we
discuss how to construct a deep neural network predicting the partial orientations, and
make full use of preprocessed fingerprints (Fig. 1).

2.2 Latent Fingerprint Preprocessing

Firstly, the LTV model, a nonlinear filter pair which retains both the essential features
of Meyer’s models and the simplicity and rapidity of the linear model, is used to
decompose images. Then, a Log-Gabor filter [15] is utilized to enhance the potential
ridge structure in marked ROI. Each latent image is divided into non-overlapping
blocks of 64 � 64 pixels. In order to avoid the edge effect of the filter, only 16 � 16
pixel in the center of the block is taken after filtering. In the frequency domain, two-
dimensional Log-Gabor Transfer function is defined as two parts:

G wð Þ ¼ exp � ln w=w0ð Þ½ �2=2 ln k=w0ð Þ½ �2
� �

ð1Þ

G hð Þ ¼ exp � h� h0ð Þ2=2r2h
� �

ð2Þ

The final Gabor filter can be obtained as follow:

G w; hð Þ ¼ G wð Þ � G hð Þ ð3Þ

Cartoon-texture
segmenta on

Band-pass
filter

Cartoon-texture
segmenta on Gabor filter

DNN Orienta onsLabel

preprocessing

DNN Latent Fingerprint

Fig. 1. The block diagram of the proposed method.

438 Z. Qu et al.

Since the center frequency of Log-Gabor filter needs to be determined in advance,
an automatic optimization method is used to find the appropriate frequency iteratively.
Then, a set of 12 directional filters is generated which is used to obtain the responses in
12 directions, where two orientations with the highest responses are selected. Finally,
the enhanced blocks are combined to generate the whole enhanced latent.

2.3 Deep Regression Neural Network

DRNN. Fingerprint orientation estimation can be regarded as a pixel level segmen-
tation question after down-sampling. Instead of widely used classification networks for
image segmentation [14], a deep regression neural network (DRNN) has been designed
in this work. Outputs of the network are directly the predicted angles, allowing con-
tinuous value of estimation. Meanwhile, we find that with small sample and relatively
large category quantity, it’s hard for classification networks to convergence in practice.
This is probably because in a segmentation network, the last layer divides every pixel
into different classes. Structure of this layer can be regarded as an aggregation of
classification outputs. The aggregation is much sparser than that of a single classifi-
cation network. Suppose the aggregation’s size is 20 * 20 * 90 (which is the condition
in our network during training), then there will be 20 * 20 = 400 1 s in the aggrega-

(a) (b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration num

no
rm

al
iz

ed
 lo

ss

Loss function landscape

regression

classification

Fig. 2. (a) Demonstration of classification layer of segmentation network. It can be seen that
positive samples (red) are much less than negative ones (blue), causing sample imbalance during
training process. (b) Convergence curve of classification network (top) and regression network
(bottom) with the same structure except the final output layer. X axis is number of training
iterations and y axis is normalized loss. It can be seen that regression network’s convergence
speed is much faster. Loss of regression network tend to be stable after 800 iterations while that
of classification network still keep on descending after 1800 iterations. It should be noticed that
the final magnitude of losses don’t represent two networks’ performance (Color figure online).

OrieNet: A Regression System 439

tion, and 20 * 20 * 89 = 35600 zeros. Positive samples are far less than negative ones,
which is demonstrated in Fig. 2. But a regression network has dense outputs. It can
perfectly avoid this problem. Right one in Fig. 2 shows the loss decrease rate by
training iteration of DRNN and classification network. Two networks are the same in
backbone structures, and the only difference is the final layer.

Boosting Structure. Anew structure sources from traditional boosting algorithm is
introduced into proposed DRNN’s output part. Boosting is a general machine learning
algorithm for improving the accuracy of any given learning algorithm [16]. Boosting
algorithm requires different kinds of weak learning machines, and then fuse the output
of all learning machines together with a certain strategy. As a result, boosting algorithm
solves the problem of discontinuity around 0° and produce a much more accurate
output.

Our expected outputs are angles range from 0 to 180°. Angles near 0 and those
approaching 180° are continuous in physical meaning but have a huge gap in scale,
which causes mutations in labels, as displayed in Fig. 3. This is the problem of dis-
continuity around 0°, and labels around 0° in physical meaning are called bad zones in
rest of this paper. Convolutional layers have the property of smoothing neighborhood
outputs, after which bad zone outputs will deviance. As shown in left one in Fig. 3,
labels nearer to bad zone result in larger deviation in outputs. Output nearly changes
90° when label is close to 0°. For this reason, if the regression result is directly taken as
final output, the proposed DRNN will be a weak learning machine in this situation. In
this work, boosting algorithm is introduced to upgrade this weak learning machine.

Fig. 3. Illustration of label discontinuity around 0° caused by angles’ definition (left). Cliff-type
descent is observed, which is extremely harmful for network performance. Example of network
outputs with single pass way (middle) and after using boosting structure (right). It’s clear that
predictions biasing for around 90° in the middle are corrected by boosting structure.

440 Z. Qu et al.

Instead of only one layer of outputs (angles), the network has been adjusted to 3 the
same pass ways, but each pass way has a different 0° definition. Figure 4 shows degree
definitions of three pass ways, in which definitions for pass way 2 and 3 can be
transformed from pass way 1 by (4) and (5). After this process, bad zone of 3 pass ways
will not overlap.

x2
0 ¼ x2þ 120; x2\60

x2� 60; x2� 60

�
ð4Þ

x3
0 ¼ x3þ 60; x3\120

x3� 120; x3� 120

�
ð5Þ

Outputs of three pass ways are first reversed to normal definition, and output 1, 2, 3
are single results of three pass ways at the same position respectively. Then output
strategy of this network is: if difference of output 1 and 2 is less than 10°, output is the
average of first 2 output channels, or output will be the last one. Kindly sacrificing the
simplicity of network, bad zones’ impact have been eliminated, causing large
improvement in output accuracy. Detailed data is displayed in experiments section.

Network Architecture. In practice, images of fingerprints are different in size and
aspect ratio, so a full convolutional network has been proposed for this task. The first
part of the network are 3 Conv-ReLu blocks. Instead of pooling, a Conv layer with
stride 2 is used in each block to compress the variables, totally 8 times down-sampling.
This is because pooling layers can create an invariance to small shifts and distortions
[17], which is advantage in object detection tasks, but this task is sensitive to partial
rotation. According to the results in [18], kernel size of the first part has been adjusted
to 7 * 7, 5 * 5 and 3 * 3 respectively (Fig. 5).

Second part of the network used ASPP [13] layers of the same size in 3 parallel
passing ways. In each passing way 2 atrous convolutional layers have been deployed
with different sample rates. Both layers’ feature maps are fused together. The final layer
is the direct overlap of three pass ways’ output. Implementing boosting algorithm,
predicted orientation field is produced.

Fig. 4. Demonstration of angles’ definitions in 3 pass ways. Angles increase along the
counterclockwise. The last two pass ways’ 0 and 180° are defined as the first one’s 60° and 120°
respectively.

OrieNet: A Regression System 441

Label, Loss Function and Training. As second part of network has three pass ways,
labels are also transformed to match the designed regression results. Instead of tradi-
tional quadratic error between label and regression results, the loss function is defined
as:

loss ¼ 1
NM

X
ðð1� 20 � labels� 1Þ2

� �
� 100 new labels� reg resultÞ2

� �
ð6Þ

Where N is size of output orientation field, M is batch size, reg result represents
the regression result of network’s second part, labels is original labels, and new_labels
means transformed labels. According to scale of loss, scale of labels can be adjusted by
multiplying a constant. To some extent, DRNN’s convergence speed can be controlled
in this way. After experiments, rather than [0,180), we found smaller labels mapped
into range [0, 0.01) help the network to convergence much easier. To improve the

accuracy of results, a weight ðð1� 20 � labels� 1Þ2
� �

is added to the loss function,

thus bad zones get ignorable weights. We don’t care what bad zones predict and only
consider the accuracy of effective areas. To speed up training process and improve
network performance, input images are all normalized and masked at first.

After reversing the regression result to one channel using the method in boosting
structure, accuracy is defined like:

accuracy ¼ 1�
P

labels� outputj j
N

ð7Þ

In training process, to increase samples’ number, we segmented the training images
into overlapping 160 � 160 blocks. Latent fingerprints are straightly used as inputs.
Labels’ quality were worse than library fingerprints, but fingerprints’ patterns were the
same with required inputs. In testing process, we used test images directly as input
because the input size of our system are not constrained, and impact of edge effect can
be eliminated.

Conv1

Image

Label

Conv2

Conv3

conv11

conv12

prelu

Atrous conv1 prelu

Atrous conv2 prelu

Orienta on2

Orienta on3

Conv4

Orienta on1

output

lossAtrous conv1:
rate=1

Atrous conv2:
rate=2

Stride=2

Fig. 5. Detailed network architecture. Pooling layers are replaced by striding 2 convolutional
layers. Each passing way generates area information in two different scales. Three pass ways are
the same in kernel sizes, consisting a whole boosting structure.

442 Z. Qu et al.

3 Experiments

3.1 Database

Database used in this paper is collected by Beijing Hisign Technology Co., Ltd, winner
of FVC-Ongoing 2017. Fingerprints are divided into 2 groups: library fingerprints and
latent fingerprints, every latent image has its matched library fingerprint image, totally
2164 pairs. 500 pairs are made into testing samples and the rest are used for training.
Each latent fingerprint is 512 � 512 pixels in size and 500 ppi in this paper, and library
fingerprints are 640 � 640 pixels and 500 ppi. Latent images’ orientations are to be
detected and used to enhance input latent fingerprints. Lacking of ground truth ori-
entation information, labels are produced by fingerprint recognition SDK of Beijing
Hisign Technology Co., Ltd.. Library fingerprints’ labels are more accurate, while latent
images’ output labels will include more mistakes.

3.2 Identification Performance

To test the quality of our output orientations, an objective comparison with other
methods is made. Gabor-based algorithm extracts orientation field on Gabor phase.
Template -based algorithm extracts orientation fields by first clustering label block
templates, then classifying fingerprint blocks into templates with a learned deep
learning network. FingerNet is re-trained and tested using the same data set with ours.
FingerNet extract orientation field with a learnt fully convolutional network based on
DeepLab v2. As our labels were collected using Hisign SDK, SDK’s performance is
also considered. After getting the output orientation fields of each methods, the same
reinforcement method has been used to fuse the orientation information and latent
fingerprint images. Finally, Hisign SDK was used to get the matching accuracy of each
method. Results are shown in Table 1.

Table 1. Matching results of each method on testing dataset

Method Top1 Top5 Top20 Top50

Hisign SDK 425/500 456/500 472/500 479/500
Gabor 406/500 441/500 462/500 471/500
Cao et al. 239/500 275/500 296/500 304/500
FingerNet 419/500 449/500 469/500 478/500
Proposed 427/500 459/500 473/500 481/500
Proposed (no boosting) 279/500 306/500 322/500 327/500
Proposed (no preprocess) 421/500 452/500 470/500 478/500

OrieNet: A Regression System 443

The Cumulative Match Characteristic (CMC) curves of above seven methods on
500 latent images are shown in Fig. 6. Following the control variable principle, Fin-
gerNet(yellow) is re-trained and tested using the same data set with ours. For more
convenient comparison, the results of some methods are placed separately in another
figure shown below. Thus, we can see the trend of the curve of fingerprint recognition
rate clearly.

The results show our method made an accuracy of over 85% in top 1 matching test,
which is undoubtedly better than Gabor or masking method. The result is also 1.6
percent higher than the result of FingerNet’s outputs. Boosting algorithm and pre-
process make clear contribution to the improvement of output quality. Comparing with
SDK’s result, our method get some increase in accuracy, which means the network has
the ability of generalization and corrects some mistakes made by SDK.

Figure 7 shows threshold-recall curves of proposed method and FingerNet. Recall
is defined as proportion of test images with average angular precision higher than
threshold. It shows that proposed method gets results closer to labels than FingerNet.
Figure 8 compares the orientation fields from top 2 algorithms on latent fingerprints
visually while the original latent image is also given. We observe that the proposed
algorithm outperforms the other algorithms on latent fingerprints.

Fig. 6. Identification performance (CMC curves) of different algorithms on all 500 latents.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold

re
ca

ll

proposed

FingerNet

Fig. 7. Threshold-recall curves of proposed method and FingerNet.

444 Z. Qu et al.

4 Conclusion and Future Work

We propose a whole system to produce more accuracy orientation fields of latent
fingerprints, including preprocess and orientation estimation. This system has com-
bined domain knowledge got from preprocess and contextual information generated by
deep learning method to outperform other orientation estimation algorithms. For better
and faster training of the network, not classification but regression network was
designed to get the output orientation field. To eliminate error in bad zones, boosting
algorithm and new structure is adopted in network design.

Future work will include (1) integration of the whole system, (2) optimization of
the network and preprocess, (3) extending this system to reinforcement and matching.

Acknowledgement. We would like to thank Beijing Hisign Technology Co., Ltd. and Cross-
strait Tsinghua Research Institute for providing essential resource and support to us.

References

1. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition.
Springer, London (2003). https://doi.org/10.1007/b97303

2. Jain, A.K., Feng, J., Nandakumar, K.: Fingerprint matching. Computer 43(2), 36–44 (2010)
3. Conti, V., et al.: Fast fingerprints classification only using the directional image. In:

Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007. LNCS (LNAI), vol. 4692, pp. 34–41.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74819-9_5

4. Jiang, X., Liu, M., Kot, A.C.: Fingerprint retrieval for identification. IEEE Trans. Inf. Foren.
Secur. 1(4), 532–542 (2006)

Fig. 8. Result comparison of different methods on different cropped latents shown in column
(a). Original fingerprints (b) Orientation fields obtained by proposed method and (c)–(d)
enhancement images obtained by proposed method and SDK method.

OrieNet: A Regression System 445

http://dx.doi.org/10.1007/b97303
http://dx.doi.org/10.1007/978-3-540-74819-9_5

5. Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance
evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1970)

6. Sherlock, B.G., Monro, D.M.: A model for interpreting fingerprint topology. Pattern
Recogn. 26(7), 1047–1055 (1993)

7. Feng, J., Zhou, J., Jain, A.K.: Orientation field estimation for latent fingerprint enhancement.
IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 925–940 (2013)

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: International Conference on Neural Information Processing Systems,
pp. 1097–1105. Curran Associates Inc (2012)

9. Redmon, J., et al.: You only look once: unified, real-time object detection. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 779–788. IEEE Computer
Society (2016)

10. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46448-0_2

11. Cao, K., Jain, A.K.: Latent orientation field estimation via convolutional neural network. In:
International Conference on Biometrics, pp. 349–356. IEEE (2015)

12. Tang, Y., et al.: FingerNet: an unified deep network for fingerprint minutiae extraction. In:
IEEE International Joint Conference on Biometrics, pp. 108–116. IEEE (2017)

13. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans.
Pattern Anal. Mach. Intell. PP(99), 1 (2017)

14. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmen-
tation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640 (2014)

15. Buades, A., Le, T.M., Morel, J.M., et al.: Fast cartoon + texture image filters. IEEE Trans.
Image Process. 19(8), 1978 (2010)

16. Schapire, R.E.: The boosting approach to machine learning: an overview. In: Denison, D.D.,
Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B. (eds.) Nonlinear Estimation and
Classification. Lecture Notes in Statistics, vol. 171. Springer, New York (2003). https://doi.
org/10.1007/978-0-387-21579-2_9

17. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image

recognition. In: Computer Science (2014)
19. Schuch, P., Schulz, S.-D., Busch, C.: ConvNet regression for fingerprint orientations. In:

Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 325–336. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_27

20. Liu, S., Pan, J., Yang, M.-H.: Learning recursive filters for low-level vision via a hybrid
neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol.
9908, pp. 560–576. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_34

446 Z. Qu et al.

http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-0-387-21579-2_9
http://dx.doi.org/10.1007/978-0-387-21579-2_9
http://dx.doi.org/10.1007/978-3-319-59126-1_27
http://dx.doi.org/10.1007/978-3-319-46493-0_34

Avoiding Degradation in Deep
Feed-Forward Networks by Phasing Out

Skip-Connections

Ricardo Pio Monti(B), Sina Tootoonian, and Robin Cao

Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, UK
{r.monti,s.tootoonian,r.cao}@ucl.ac.uk

Abstract. A widely observed phenomenon in deep learning is the degra-
dation problem: increasing the depth of a network leads to a decrease in
performance on both test and training data. Novel architectures such as
ResNets and Highway networks have addressed this issue by introduc-
ing various flavors of skip-connections or gating mechanisms. However,
the degradation problem persists in the context of plain feed-forward net-
works. In this work we propose a simple method to address this issue. The
proposed method poses the learning of weights in deep networks as a con-
strained optimization problem where the presence of skip-connections is
penalized by Lagrange multipliers. This allows for skip-connections to be
introduced during the early stages of training and subsequently phased
out in a principled manner. We demonstrate the benefits of such an
approach with experiments on MNIST, fashion-MNIST, CIFAR-10 and
CIFAR-100 where the proposed method is shown to greatly decrease the
degradation effect and is often competitive with ResNets.

Keywords: Degradation · Shattered/vanishing gradients
Skip-connections

1 Introduction

The representation view of deep learning suggests that neural networks learn
an increasingly abstract representation of input data in a hierarchical fashion
[7,8,25]. Such representations may then be exploited to perform various tasks
such as image classification, machine translation and speech recognition.

A natural conclusion of the representation view is that deeper networks will
learn more detailed and abstract representations as a result of their increased
capacity. However, in the case of feed-forward networks it has been observed
that performance deteriorates beyond a certain depth, even when the network
is applied to training data. Recently, Residual Networks (ResNets; [10]) and
Highway Networks [21] have demonstrated that introducing various flavors of
skip-connections or gating mechanisms makes it possible to train increasingly
deep networks. However, the aforementioned degradation problem persists in

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 447–456, 2018.
https://doi.org/10.1007/978-3-030-01424-7_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_44&domain=pdf

448 R. P. Monti et al.

the case of plain deep networks (i.e., networks without skip-connections of some
form).

A widely held hypothesis explaining the success of ResNets is that the
introduction of skip-connections serves to improve the conditioning of the opti-
mization manifold as well as the statistical properties of gradients employed
during training. [19,20] show that the introduction of specially designed skip-
connections serves to diagonalize the Fisher information matrix, thereby bringing
standard gradient steps closer to the natural gradient. More recently, [1] demon-
strated that the introduction of skip-connections helps retain the correlation
structure across gradients. This is contrary to the gradients of deep feed-forward
networks, which resemble white noise. More generally, the skip-connections are
seen to reduce the effects of vanishing gradients by introducing a linear term
[11].

The goal of this work is to address the degradation issue in plain feed-forward
networks by leveraging some of the desirable optimization properties of ResNets.
We approach the task of learning parameters for a deep network under the
framework of constrained optimization. This strategy allows us to introduce
skip-connections penalized by Lagrange multipliers into the architecture of our
network. In our setting, skip-connections play an important role during the ini-
tial training of the network and are subsequently removed in a principled man-
ner. Throughout a series of experiments we demonstrate that such an approach
leads to improvements in generalization error when compared to architectures
without skip-connections and is competitive with ResNets in some cases. The
contributions of this work are as follows:

– We propose an alternative training strategy for plain feed-forward networks
which reduces the degradation in performance as the depth of the network
increases. The proposed method introduces skip-connections which are penal-
ized by Lagrange multipliers. This allows for the presence of skip-connections
to be iteratively phased out during training in a principled manner. The pro-
posed method is thereby able to enjoy the optimization benefits associated
with skip-connections during the early stages of training.

– A number of benchmark datasets are used to demonstrate the empirical capa-
bilities of the proposed method. In particular, the proposed method greatly
reduces the degradation effect compared to plain networks and is on several
occasions competitive with ResNets.

2 Related Work

The hierarchical nature of many feed-forward networks is loosely inspired by the
structure of the visual cortex where neurons in early layers capture simple fea-
tures (e.g., edges) which are subsequently aggregated in deeper layers [14]. This
interpretation of neural networks suggests that the depth of a network should
be maximized, thereby allowing the network to learn more abstract (and hope-
fully useful) representations [3]. However, a widely reported phenomenon is that

Avoiding Degradation in Deep Feed-Forward Networks 449

deeper networks are more difficult to train. This is often termed the degrada-
tion effect in deep networks [10,21]. This effect has been partially attributed to
optimization challenges such as vanishing and shattered gradients [1,12].

In the past these challenges have been partially addressed via the use of
supervised and unsupervised pre-training [2] and more recently through careful
parameter initialization [6,9] and batch normalization [15]. In the past cou-
ple of years further improvements have been obtained via the introduction of
skip-connections. ResNets [10,11] introduce residual blocks consisting of a resid-
ual function F together with a skip-connection. Formally, the residual block is
defined as:

xl+1 = Fl(xl,Wl) + W′
lxl (1)

where Fl : R
n → R

n′
represents some combination of affine transformation,

non-linearity and batch normalization parameterized by Wl. The matrix W′
l

parameterizes a linear projection to ensure the dimensions are aligned1. More
generally, ResNets are closely related to Highway Networks [21] where the output
of each layer is defined as:

xl+1 = Fl(xl,Wl) · T (xl,Hl) + xl · (1 − T (xl,Hl)), (2)

where · denotes element-wise multiplication. In Highway Networks the output
of each layer is determined by a gating function:

T (xl,Hl) = sigmoid (Hlxl)

inspired from LSTMs. We note that both ResNets and Highway Networks were
introduced with the explicit goal of training deeper networks.

Recently, the goal of learning deep networks without skip-connections has
begun to receive more attention. [24] propose a novel re-parameterization of
weights in feed-forward networks which they call the Dirac parameterization.
Instead of explicitly adding a skip-connection, they model the weights as a resid-
ual of the Dirac function, effectively moving the skip-connection inside the non-
linearity. In related work, [1] propose to initialize weights in a CReLU activation
function in order to preserve linearity during the initial phases of training. This
is achieved by initializing the weights in a mirrored block structure. During
training the weights are allowed to diverge, resulting in non-linear activations.

Finally, we note that while the aforementioned approaches have sought to
train deeper networks via modifications to the network architecture (i.e., by
adding skip-connections) success has also been obtained by modifying the non-
linearities [5,16].

1 Unless stated otherwise we will assume F retains the dimension of xl and set W′
l to

the identity.

450 R. P. Monti et al.

3 Variable Activation Networks

The goal of this work is to train deep feed-forward networks without suffering
from the degradation problem described in previous sections. To set notation,
we denote x0 as the input and xL as the output of a feed-forward network with
L layers. Given training data {y,x0} it is possible to learn parameters {Wl}Ll=1

by locally minimizing some objective function

{Ŵl}Ll=1 = arg min C
(
y,xL; {Wl}Ll=1

)
. (3)

First-order methods are typically employed due to the complexity of the
objective function in Eq. (3). However, directly minimizing the objective is not
practical in the context of deep networks: beyond a certain depth performance
quickly deteriorates on both test and training data. Such a phenomenon does
not occur in the presence of skip-connections. Accordingly, we take inspiration
from ResNets and propose to modify Eq. (1) in the following manner:

xl+1 = Fl(xl,Wl) + (1 − αl) · xl (4)

where αl ∈ [0, 1]n determines the weighting given to the skip-connection. More
specifically, αl is a vector were the entry i dictates the presence and magnitude of
a skip-connection for neuron i in layer l. Due to the variable nature of parameters
αl in Eq. (4), we refer to networks employing such residual blocks as Variable
Activation Networks (VAN).

The objective of the proposed method is to train a feed-forward network
under the constraint that αl = 1 for all layers, l. When the constraint is satis-
fied all skip-connections are removed. The advantage of such a strategy is that we
only require αl = 1 at the end of training. This allows us to initialize αl to some
other value, thereby relaxing the optimization problem and obtaining the advan-
tages associated with ResNets during the early stages of training. In particular,
whenever αl �= 1 information is allowed to flow through the skip-connections,
alleviating issues associated with shattered and vanishing gradients.

As a result of the equality constraint on αl, the proposed activation function
effectively does not introduce any additional parameters. All remaining weights
can be trained by solving the following constrained optimization problem:

{Ŵl}Ll=1 = argmin C
(
y,xL; {Wl,αl}Ll=1

)
such that αl = 1 for l = 1, . . . , L.

(5)
The associated Lagrangian takes the following simple form [4]:

L = C
(
y,xL; {Wl,αl}Ll=1

)
+

L∑
l=1

λT
l (αl − 1), (6)

Avoiding Degradation in Deep Feed-Forward Networks 451

where each λl ∈ R
n are the Lagrange multipliers associated with the constraints

on αl. In practice, we iteratively update αl via stochastic gradients descent
(SGD) steps of the form:

αl ← αl − η

(
∂C
∂αl

+ λl

)
(7)

where η is the step-size parameter for SGD. Throughout the experiments we will
often take the non-linearity in Fl to be ReLU. Although not strictly required,
we clip the values αl to ensure they remain in the interval [0, 1]n.

From Eq. (6), we have that the gradients with respect to Lagrange multipliers
are of the form:

λl ← λl + η′ (αl − 1) , (8)

We note that since we require αl ∈ [0, 1]n, the values of λl are monotonically
decreasing. As the value of Lagrange multiplier decreases, this in turn pushes αl

towards 1 in Eq. (7). We set the step-size for the Lagrange multipliers, η′, to be
a fraction of η. The motivation behind such a choice is to allow the network to
adjust as we enforce the constraint on αl.

4 Experiments

We present experiments to demonstrate that the proposed method is able to
effectively alleviate the degradation problem in deep networks. We first demon-
strate the capabilities of the proposed method using a simple, non-convolutional
architecture on the MNIST and Fashion-MNIST datasets [22] in Sect. 4.1.
More extensive comparisons are then considered on the CIFAR datasets [17]
in Sect. 4.2.

4.1 MNIST and Fashion-MNIST

Networks of varying depths were trained on both MNIST and Fashion-MNIST
datasets. Following [21] the networks employed in this section were thin, with
each layer containing 50 hidden units. In all networks the first layer was a fully
connected plain layer followed by l layers or residual blocks (depending on the
architecture) and a final softmax layer. The proposed method is benchmarked
against several popular architectures such as ResNets and Highway Networks
as well as the recently proposed DiracNets [24]. Plain networks without skip-
connections are also considered. Finally, we also considered VAN network where
the constraint αl = 1 was not enforced. This corresponds to the case where
λl = 0 for all l. This comparison is included in order to study the capacity and
flexibility of VAN networks without the need to satisfy the constraint to remove
skip-connections. For clarity, we refer to such networks as VAN (λ = 0) networks.
For all architectures the ReLU activation function was employed together with
batch-normalization. In the case of ResNets and VAN, the residual function
consisted of batch-normalization followed by ReLU and a linear projection.

452 R. P. Monti et al.

The depth of the network varied from l = 1 to l = 30 hidden layers. All
networks were trained using SGD with momentum. The learning rate is fixed
at η = 0.001 and the momentum parameter at 0.9. Training consisted of 50
epochs with a batch-size of 128. In the case of VAN networks the αl values were
initialized to 0 for all layers. As such, during the initial stages of training VAN
networks where equivalent to ResNets. The step-size parameter for Lagrange
multipliers, η′, was set to be one half of the SGD step-size, η. Finally, all Lagrange
multipliers, λl, are initialized to −1.

Results. The results are shown in Fig. 1 where the test accuracy is shown as a
function of the network depth for both the MNIST and Fashion-MNIST datasets.
In both cases we see clear evidence of the degradation effect: the performance of
plain networks deteriorates significantly once the network depth exceeds some
critical value (approximately 10 layers). As would be expected, this is not the
case for ResNets, Highway Networks and DiracNets as such architectures have
been explicitly designed to avoid this behavior. We note that VAN networks do
not suffer such a pronounced degradation as the depth increases. This provides
evidence that the gradual removal of skip-connections via Lagrange multipli-
ers leads to improved generalization performance compared to plain networks.
Finally, we note that VAN networks obtain competitive results across all depths.
Further, we note that VAN (λ = 0) networks, where no constraint is placed on
skip-connections, obtain competitive results across all depths.

Fig. 1. Results on MNIST (left) and fashion-MNIST (right) for various different archi-
tectures as the depth of the network varies from 1 to 30. Mean average test accuracy
over 10 independent training sessions is shown. We note that with the exception of
plain networks, the performance of all remaining architectures is stable as the number
of layers increases.

4.2 CIFAR

As a more challenging benchmark we consider the CIFAR-10 and CIFAR-100
datasets. These consist of 60000 32 × 32 pixel color images with 10 and 100 classes
respectively. The datasets are divided into 50000 training images and 10000 test
images.

Avoiding Degradation in Deep Feed-Forward Networks 453

We follow [10] and train deep convolutional networks consisting of four blocks
each consisting of n residual layers, consisting of residual functions of the form
conv-BN-ReLU-conv-BN-ReLU. This corresponds to the pre-activation function
[11]. The convolutional layers consist of 3 × 3 filters with downsampling at the
beginning of blocks 2, 3 and 4. The network ends with a fully connected softmax
layer, resulting in a depth of 8n + 2.

Networks were trained using SGD with momentum over 165 epochs. The
learning rate was set to η = 0.1 and divided by 10 at the 82nd and 125th
epoch. The momentum parameter was set to 0.9. Networks were trained using
mini-batches of size 128. Data augmentation followed [18]: this involved ran-
dom cropping and horizontal flips. Weights were initialized following [9]. As in
Sect. 4.1, we initialize αl = 0 for all layers. Furthermore, we set the step-size
parameter for the Lagrange multipliers, η′, to be one tenth of η and all Lagrange
multipliers, λl, are initialized to -1. On CIFAR-10 we ran experiments with
n ∈ {1, 2, 3, 4, 5, 6, 8, 10} yielding networks with depths ranging from 10 to 82.
For CIFAR-100 experiments were run with n ∈ {1, 2, 3, 4}.

Fig. 2. Left: Results on CIFAR-10 dataset are shown as the depth of networks increase.
We note that the performance of both VAN and plain networks deteriorates as the
depth increases, but the effect is far less pronounced for VAN networks. Right: Training
and test error curves are shown for networks with 26 layers. We also plot the mean α
residuals: 1

L

∑L
l=1(1− αl)

2 on the right axis.

Results. Results for experiments on CIFAR-10 are shown in Fig. 2. The left
panel shows the mean test accuracy over five independent training sessions for
ResNets, VAN, VAN (λ = 0) and plain networks. While plain networks provide
competitive results for networks with fewer than 30 layers, their performance
quickly deteriorates thereafter. We note that a similar phenomenon is observed
in VAN networks but the effect is not as dramatic. In particular, the performance
of VANs is similar to ResNets for networks with up to 40 layers. Beyond this
depth, ResNets outperform VAN by an increasing margin. This holds true for
both VAN and VAN (λ = 0) networks, however, the difference is reduced in
magnitude in the case of VAN (λ = 0) networks. These results are in line with
[11], who argue that scalar modulated skip-connections (as is the case in VANs

454 R. P. Monti et al.

where the scalar is 1 − αl) will either vanish or explode in very deep networks
whenever the scalar is not the identity.

The right panel of Fig. 2 shows the training and test error for a 26 layer
network. We note that throughout all iterations, both the test and train accuracy
of the VAN network dominates that of the plain network. The thick gold line
indicates the mean residuals of the αl parameters across all layers. This is defined
as 1

L

∑L
l=1(1 − αl)2 and is a measure of the extent to which skip-connections

are present in the network. Recall that if all αl values are set to one then
all skip-connections are removed (see Eq. (4)). From Fig. 2, it follows that skip-
connections are fully removed from the VAN network at approximately the 120th

iteration.
A comparison of the performance of VAN networks in provided in Table 1.

We note that while VAN networks do not outperform ResNets, they do out-
perform other alternatives such as Highway networks when networks of similar
depths considered. However, it is important to note that Highway networks did
not employ batch-normalization, which is a strong regularizer. In the case of
both VAN and VAN (λ = 0) networks, the best performance is obtained with
networks of 26 layers while ResNets continue to improve their performance as
depth increases. Finally, current state-of-the-art performance, obtained by Wide
ResNets [23] and DenseNets [13], are also provided in Table 1.

Fig. 3. Left: Results on CIFAR-100 dataset are shown as the depth increases from 10
to 34 layers. We note that the performance of both VAN and plain networks deteriorates
as the depth increases, but the effect is far less pronounced for plain networks. Right:
Training and test error curves are shown for VAN and plain networks with 18 layers.
The mean α residuals, 1

L

∑L
l=1(1− αl)

2, are shown in gold along the right axis.

Figure 3 provides results on the CIFAR-100 dataset. This dataset is consider-
ably more challenging as it consists of a larger number of classes as well as fewer
examples per class. As in the case of CIFAR-10, we observe a fall in the per-
formance of both VAN and plain networks beyond a certain depth; in this case
approximately 20 layers for plain networks and 30 layers for VANs. Despite this
drop in performance, Table 1 indicates that the performance of VAN networks
with both 18 and 26 layers are competitive with many alternatives proposed

Avoiding Degradation in Deep Feed-Forward Networks 455

in the literature. Furthermore, we note that the performance of VAN (λ = 0)
networks is competitive with ResNets in the context of the CIFAR-100 dataset.

Training curves are shown on the right hand side of Fig. 3. As in the equivalent
plot for CIFAR-10, the introduction and subsequent removal of skip-connections
during training leads to improvements in generalization error.

Table 1. Comparison of VAN networks results (test error %) on CIFAR-10 and CIFAR-
100. For VAN networks we report the best value as well as the mean and standard
deviation over five independent training runs. We add a ∗ to denote results which did
not employ batch-normalization.

Architecture # Layers CIFAR-10 CIFAR-100

Highway Network∗ 32 8.80 -

Highway Network∗ 19 7.54 32.39

DiracNet (width-1) 34 7.10 -

ELU∗ 18 6.55 24.28

VAN (λ = 0) 26 6.29 (6.40 ± 0.16) 27.04 (27.42 ± 0.26)

VAN (λ = 0) 34 6.28 (6.45 ± 0.14) 26.46 (26.81 ± 0.31)

VAN 18 6.23 (6.49 ± 0.16) 28.20 (28.42 ± 0.36)

VAN 26 6.08 (6.35 ± 0.21) 27.70 (28.01 ± 0.39)

DiracNet (width-2) 34 5.60 26.72

ResNet 164 5.46 24.33

Wide ResNet (width-10) 28 4.00 19.25

DenseNet 160 3.46 17.18

5 Discussion

This manuscript presents a simple method for training deep feed-forward net-
works which greatly reduces the degradation problem. In the past, the degra-
dation issue has been successfully addressed via the introduction of skip-
connections. As such, the goal of this work is to propose a new training regime
which retains the optimization benefits associated with ResNets while ultimately
phasing out skip-connections. This is achieved by posing network training as a
constrained optimization problem where skip-connections are introduced during
the early stages of training and subsequently phased out in a principled manner
using Lagrange multipliers. Throughout a series of experiments we demonstrate
that the proposed training strategy greatly reduces the degradation problem,
providing an alternative to ResNets.

456 R. P. Monti et al.

References

1. Balduzzi, D., et al.: The shattered gradients problem: If ResNets are the answer,
then what is the question? In: ICML (2017)

2. Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends Mach. Learn.
2(1), 1–127 (2009)

3. Bengio, Y.: Representation learning: a review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

5. Clevert, D., et al.: Fast and accurate deep network learning by exponential linear
units (ELUs). In: ICLR (2016)

6. Glorot, X., Bengio Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS (2010)

7. Goodfellow, I., et al.: Deep Learning. MIT Press, Cambridge (2016)
8. Greff, K., et al.: Highway and residual networks learn unrolled iterative estimation.

In: ICLR (2017)
9. He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on

imagenet classification. In: ICCV (2015)
10. He, K., et al.: Deep residual learning for image recognition. In: CVPR (2016)
11. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:

Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

12. Hochreiter, S., et al.: Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies (2001)

13. Huang, G., et al.: Densely connected convolutional networks. In: CVPR (2016)
14. Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional archi-

tecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)
15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift. In: ICML (2015)
16. Klambauer, G., et al.: Self-normalizing neural networks. In: NIPS (2017)
17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images

(2009)
18. Lee, C.-Y., et al.: Deeply-supervised nets. In: AISTATS (2015)
19. Raiko, T., et al.: Deep learning made easier by linear transformations in percep-

trons. In: AISTATS (2012)
20. Schraudolph, N.N.: Centering neural network gradient factors. In: Orr, G.B.,

Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp.
207–226. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8 11

21. Srivastava, R., et al.: Training very deep networks. In: NIPS (2015)
22. Xiao, H., et al.: Fashion-MNIST: A Novel Image Dataset for Benchmarking

Machine Learning Algorithms (2017)
23. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMCV (2016)
24. Zagoruyko, S., Komodakis, N.: DiracNets: training very deep neural networks with-

out skip-connections. arXiv preprint arXiv:1706.00388 (2017)
25. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.

In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/3-540-49430-8_11
http://arxiv.org/abs/1706.00388
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

A Deep Predictive Coding Network
for Inferring Hierarchical Causes

Underlying Sensory Inputs

Shirin Dora1(&) , Cyriel Pennartz1, and Sander Bohte2

1 University of Amsterdam, Amsterdam, Netherlands
shirin.dora@gmail.com, c.m.a.pennartz@uva.nl
2 Centrum Wiskunde and Informatica, Amsterdam, Netherlands

S.M.Bohte@cwi.nl

Abstract. Predictive coding has been argued as a mechanism underlying
sensory processing in the brain. In computational models of predictive coding,
the brain is described as a machine that constructs and continuously adapts a
generative model based on the stimuli received from external environment. It
uses this model to infer causes that generated the received stimuli. However, it is
not clear how predictive coding can be used to construct deep neural network
models of the brain while complying with the architectural constraints imposed
by the brain. Here, we describe an algorithm to construct a deep generative
model that can be used to infer causes behind the stimuli received from external
environment. Specifically, we train a deep neural network on real-world images
in an unsupervised learning paradigm. To understand the capacity of the net-
work with regards to modeling the external environment, we studied the causes
inferred using the trained model on images of objects that are not used in
training. Despite the novel features of these objects the model is able to infer the
causes for them. Furthermore, the reconstructions of the original images
obtained from the generative model using these inferred causes preserve
important details of these objects.

Keywords: Predictive coding � Deep generative models

1 Introductions

Predictive coding has been proposed as a theory of sensory information processing in
which the brain infers causes that generated a sensory stimulus [1, 2]. It postulates that
the top-down flow of information in the brain serve as predictions of the inferred causes
of a stimulus at a lower level and the bottom-up flow of information conveys the errors
in these predictions to the higher areas. Rao and Ballard [3] proposed the first neural
network model of predictive coding for the processing of visual information in the
brain. Their model consisted of a recurrently connected neural network with three
layers.

Several studies have focused on the biological plausibility of the initial model of
predictive coding that was proposed by Rao and Ballard (hereafter, referred simply as
predictive coding) and its relation with other existing approaches. In [4], Spratling

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 457–467, 2018.
https://doi.org/10.1007/978-3-030-01424-7_45

http://orcid.org/0000-0001-6182-4124
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_45&domain=pdf

showed that a model of biased competition [5] that uses lateral inhibition to suppress
the input of other nodes is equivalent to the linear model of predictive coding. An
extension to predictive coding has been proposed in [6] that relaxes the requirement of
symmetric weights between two adjacent layers in the network. In a similar study, it
was shown that error-backpropagation and predictive coding use similar forms of
weight changes during learning [7].

From the perspective of training deep neural networks, predictive coding is an
approach that is widely supported by neurophysiological data [8] and adheres to the
locality (in terms of learning) constraints [3] imposed by the brain. Previous studies on
predictive coding focused on small neural network models to study the development of
orientation selective receptive fields in primary visual cortex [3, 6]. It is unclear how
predictive coding can be used to build deep neural network models of the brain to study
more complicated brain processes like perception, attention, memory, etc. An important
question in this regard is how to comply with the architectural constraints applicable in
the brain like the retinotopic arrangement of receptive fields that is found in the sensory
cortical areas. At present, mostly neural networks with fully connected layers are used,
which implies that all neurons have the same receptive field which encompasses the
entire input stimulus. To overcome this, predictive coding models are often trained on
patches from real world images. This approach works well when training small neural
network models but it is difficult to extend it for training deep neural networks.

In this paper, we present a systematic approach for training deep neural networks
using predictive coding in a biologically plausible manner. Our goal is to construct a
deep neural network model to infer hierarchical (here, hierarchical refers to causes
inferred at each layer in the network) causes for a given input stimulus. The architecture
of these neural networks is inspired by convolutional neural network. However, to
comply with the retinotopic arrangement of receptive fields observed in sensory areas,
we employ neural networks in which filters are not applied across the entire layer.
Instead, filters are applied only to a small receptive field which allows us to train the
filters associated with different receptive fields independently. This approach can be
easily scaled to construct deep predictive coding models for information processing
along the sensory processing pathways.

We trained a deep neural network using predictive coding on 1000 real-world
images of horses and ships from the CIFAR-10 data set. The model is trained in an
unsupervised learning paradigm to build a generative model for real-world images. To
estimate the capacity of the network in modeling real-world images, we used the model
to infer hierarchical causes for new images of horses and ships as well as objects that
had never been presented before to the network during training. The causes inferred by
the model can be used to reconstruct the original real-world images while retaining the
important features of the objects in these images. This shows that the model is able to
capture the statistical regularities generally present in the real-world images. This
allows the trained network to infer causes for images with objects that have never been
presented before to the network. This attribute of the network also enables it to infer
causes for images that are translated versions of images of horses and ships used in
training as well as images of new objects.

The paper is organized as follows: Sect. 2 describes the architecture and the pre-
dictive coding based learning algorithm used for training deep neural networks.

458 S. Dora et al.

Section 3 describes the results of studies conducted using the trained models. Section 4
discusses the computational implications of deep predictive coding and its relationship
with other approaches in machine learning. Section 5 summarizes the conclusions from
our modelling work and experiments.

2 Model

Suppose, we have a set of training images x1; . . .xi; . . .ð Þ where xi 2 RW�H�C. The aim
of the learning algorithm is to construct a deep neural network that can be used to infer
causes for real-world images presented to the network.

2.1 Architecture

Consider a neural network with Nþ 1ð Þ layers with 0 being the input layer and N being
the topmost layer in the network. The input layer is used to present the training images
to the network. Figure 1 shows a section of this network that depicts the recurrent
connections between layer l and layers above lþ 1ð Þ and below l� 1ð Þ it. The neurons
in a given layer l are arranged in a 3-dimensional block of shape Yl � Xl � Kl. Here, Yl,
Xl and Kl denote the height, width and the number of channels in layer l, respectively.
The neurons in layers l and lþ 1ð Þ are connected through Klþ 1 filters of size Dl and a
stride of sl. Based on this, the height and width of layer lþ 1ð Þ are given as

Ylþ 1 ¼ ðYl � DlÞ=sl þ 1 ð1Þ

Xlþ 1 ¼ ðXl � DlÞ=sl þ 1 ð2Þ

The number of channels in layer lþ 1ð Þ is equal to the number of filters between
layers l and lþ 1ð Þ.

Fig. 1. Architecture of the deep predictive coding network

A Deep Predictive Coding Network 459

The architecture of the network in Fig. 1 bears some resemblance to the archi-
tecture of Convolutional Neural Networks (CNNs). However, there are two important
differences between CNNs and the neural network used in this paper:

– The neurons in a given layer in the network, shown in Fig. 1, are recurrently
connected to the neurons only in the corresponding receptive field. This implies that
the filters for all the receptive fields in a particular layer are learnt independently.

– The most important difference with respect to CNNs lies in the direction of infor-
mation propagation. In a conventional CNN, the information propagates from layer
0 to layer N and during learning the error gradients propagate from layer N to layer
0. In contrast, in our predictive coding network the predictive information (Fig. 2)
propagates from layer N to layer 0 in the network and the error gradients propagate
in the opposite direction. Furthermore, in a CNN both information and error gra-
dients propagate serially (layer-by-layer) whereas in the deep predictive coding
network these two processes occur in parallel across all layers in the network. Each
layer in the network transmits predictions along the feedback pathway to the layer
below and receives the prediction errors from the layer below along the feedforward
pathway.

To better understand the structure of recurrent connections between layer l and
layer l� 1ð Þ, let us denote the activities of the neurons in the mth row and the nth

column (here, referred to as m; nð Þ) of layer l as y lð Þ
m;n which is a vector with Kl elements.

Here, the activities of neurons in layer l represent the causes behind the activities of
neurons in layer l� 1ð Þ. Based on this, the feedback predictions generated by the
neurons in layer l for the activities of neurons in layer l� 1ð Þ are given as

ŷ l�1ð Þ
ðsl�1mþ iÞ;ðsl�1nþ jÞ ¼ / w lð Þ

m;n;i;jy
lð Þ
m;n

� �
;

i; j 2 1; . . .;D l�1ð Þ
� �

;
m 2 1; . . .;Ylf g; n 2 1; . . .;Xlf g ð3Þ

Feedforward Feedforward
error error

Fig. 2. Direction of information propagation and error gradients in the deep predictive coding
network

460 S. Dora et al.

where w lð Þ
m;n;i;j denotes the filters through which the neurons at position m; nð Þ in layer l

project to the position sl�1mþ i; sl�1nþ jð Þ in layer l� 1ð Þ. The filter w lð Þ
m;n;i;j will be a

matrix with dimensions Kl�1 � Kl. / represents a non-linear vector-valued activation
function with Kl�1 elements.

It may be noted that when the stride is less than the filter size, this results in an
architecture with overlapping receptive fields. As a result, neurons in layer l generate
predictions for overlapping receptive fields in layer l� 1ð Þ. Therefore, the predicted
activity of neurons in layer l� 1ð Þ is computed by taking the mean of the predictions
across overlapping receptive fields.

2.2 Learning Algorithm

We use the classical methodology of predictive coding [3] to train a deep neural
network model that can be used to infer the hierarchical causes of a given input image.
For a given input image xið Þ, the activities of the neurons in layer l of the network are
inferred such that they can predict (using Eq. 3) the activities of the neurons in layer
l� 1ð Þ. The activities inferred in layer l of the network serve as target for inferring the
activities in layer lþ 1ð Þ of the network.

Suppose yl and ŷl represent the actual and predicted activities of the neurons in
layer l of the network, then the total error (E) for all layers in the network is given as

E ¼PN
l¼0

‘p y lð Þ � ŷ lð Þ� �þ ‘p y lð Þ� �þ P
m;n;i;j

‘p w lð Þ
m;n;i;j

� � !
ð4Þ

where ‘p :ð Þ denotes the error computed in accordance with p-norm. The total error in
Eq. 4 includes both errors, the prediction error and the regularization error.

The total error in Eq. 4 is minimized in order to simultaneously infer the activities
and learn the synaptic weights in the network. This implies that the neuronal activities
inferred at a particular layer in the network represent the causes behind activities of
neurons in the layer below. This allows us to infer hierarchical causes for a given image
presented to the network. To explicitly include the aspect of retinotopic arrangement of
receptive fields, the total error in Eq. 4 is expanded as

E ¼PN
l¼0

PYl;Xl

m;n
‘p y lð Þ

m;n � ŷ lð Þ
m;n

� �
þ PYl;Xl

m;n
‘p y lð Þ

m;n

� �
þ P

m;n;i;j
‘p w lð Þ

m;n;i;j

� � !
ð5Þ

Using gradient descent on the error function in Eq. 5, the activities of neurons at a
given position m; nð Þ in layer l are adapted as

Dy lð Þ
m;n ¼ �bu

PD l�1ð Þ

i¼1;j¼1
‘0p y l�1ð Þ

mþ ið Þ; nþ jð Þ � ŷ l�1ð Þ
mþ ið Þ; nþ jð Þ

� �
/0 w lð Þ

m;n;i;jy
lð Þ
m;n

� �
w lð Þ
m;n;i;j

� �T !

��td y lð Þ
m;n � ŷ lð Þ

m;n

� �
� �p‘

0
p y lð Þ

m;n

� � ð6Þ

A Deep Predictive Coding Network 461

where ‘
0
p :ð Þ denotes partial differentiation of p-norm. �bu is the bottom-up learning rate,

�td is the top-down learning rate and �p is the learning rate for regularization. For a
given layer l, the bottom-up learning rate helps in inferring activities that can make
better predictions about the activities of the neurons in layer l� 1ð Þ and the top-down
learning rate helps in ensuring that the inferred activities can be easily predicted by
layer lþ 1ð Þ. Together with regularization, these update terms help in inferring causes
with sparsely active neurons and provide numerical stability to the learning algorithm.

The filters in the network are also learnt by performing gradient descent along the
error function in Eq. 5. The filters are adapted using the learning rule below

Dw lð Þ
m;n;i;j ¼ �w ‘ep y l�1ð Þ

mþ ið Þ; nþ jð Þ � ŷ l�1ð Þ
mþ ið Þ; nþ jð Þ

� �
/0 w lð Þ

m;n;i;jy
lð Þ
m;n

� �
y lð Þ
m;n

� �T� 	
��p w lð Þ

m;n;i;j

� � ð7Þ

where �w is the learning rate.
For adapting the neuronal activities and the filters simultaneously, we employ the

approach described in [3]. At first the filters are held constant and the neuronal
activities are adapted using j update steps in accordance with Eq. 6 and then we update
filters once using the update rule in Eq. 7.

3 Experiments

In this section, we study the capabilities of the network in inferring the hierarchical
causes for a given input image. First, we will study the capabilities of the generative
model in reconstructing the original images from the inferred causes. Second, we
analyze the model’s abilities in inferring the causes for a new image that was not used in
training. Finally, we study the capability of the model to infer causes for an image that is
a translated version of the original image. For this purpose, we trained a 6-layered

Fig. 3. (a) Mean prediction error at each layer in the network during training. (b) Mean
reconstruction error during training. The reconstruction error is based on the images reconstructed
by the model using the causes inferred at the topmost layer (as described in Sect. 3.1).

462 S. Dora et al.

(including the input layer which is referred as the 0th layer in the following sections)
neural network on 1000 images of horses and ships from the CIFAR-10 data set.
Figure 3 shows the mean prediction error at each layer in the network as well as the
mean reconstruction error during training.

3.1 Generative Model

In this section, we study whether the causes inferred at different layers in the network
are able to capture the information present in the input image. For a given layer l, we
set the activities of the neurons in that layer to the inferred causes. Then, the neurons in
layer l predict the activities of neurons in layer l� 1ð Þ through the feedback pathways
(see Fig. 2). The predicted activities of neurons in layer l� 1ð Þ are used to compute the
activities of neurons in layer l� 2ð Þ. This process is repeated across all layers below
layer l to compute the activities of neurons in layer 0. If the inferred activations are able
to capture the information in the input images then the activities of neurons in layer 0
will provide a closer reconstruction of the original image.

Figure 4 presents some examples of the images reconstructed using the inferred
causes at each layer in the network. It can be observed that the images reconstructed by
the model are blurry. This is a known problem with the mean square error for com-
puting the error [9]. It may be possible to obtain visually better images using l1-norm,
as suggested in [10]. This will be a future direction of research.

0 1 2 3 4 5 0 1 2 3 4 5
1

2

3

4

5

Fig. 4. Examples of images reconstructed by the network when the activities of neurons in
different layers of the network have been set to the inferred causes. Each panel (left and right)
contains 5 rows. Each row contains six images. The first image in each row is the original image
and the following 5 images are reconstructed using the causes inferred in 5 layers of the network.
The layer in which the activities of the neurons were set to the inferred causes is shown at the
top. The numbers in the center denote the index of the example in the left and right panels.

A Deep Predictive Coding Network 463

3.2 Capacity to Represent Novel Input Patterns

To understand, whether the trained model can truly capture the statistical regularities of
the real-world images, we used the trained network to infer causes of images from the
CIFAR-10 data set that were not used in training. The set of images used included
images of objects like airplanes, dogs, birds, etc. which were never presented to the
network during training. Note that we used the trained network only for inferring the
causes. The filters are no longer adapted in this network.

The inferred causes for the new images are used to reconstruct the original images
as described in Sect. 3.1. Figure 5 presents some examples of the images reconstructed
from the causes inferred using predictive coding. It can be seen that the network can
infer causes even for images that contain objects which were never presented before to
the network. This clearly shows the model captures the statistical regularities present in
real-world images.

3.3 Robustness Towards Translated Images

In this section, we study the quality of the causes inferred by the trained model when
translated versions of the original images in the CIFAR-10 data set are presented to the
network. This problem is important because the network was trained on only 1000
images of horses and ships without any data augmentation. Convolutional Neural
Networks rely on data augmentation to train models that are invariant towards various
transformations like translations, rotations, etc. [11]. Here, we study the effect of a
specific transformation i.e. translation on the robustness of the causes inferred by the
trained network. Note that, again, we do not adapt the filters of the trained network.

The translated versions of the original images are obtained by shifted the content in
the images to right and down by 4 pixels. The boundary pixels on the left and top of the
original images are used in place of the pixels introduced as a result of shifting the

0 1 2 3 4 5 0 1 2 3 4 5
1

2

3

4

5

Fig. 5. Non-training images reconstructed by the network using the causes inferred for these
images. These images are also arranged in 2 panels, each containing 5 examples. We have used
the same layout as in Fig. 4.

464 S. Dora et al.

image. For this study, we used images of horses and ships that are used for training as
well as images of other objects that are never used in training. These translated images
are then presented to the trained network and the inferred causes are used to reconstruct
the translated versions of the original images as described in Sect. 3.1.

Figure 6 shows some examples of images reconstructed by the network using the
inferred causes for the translated images. It can be observed that, even after presenting
translated versions of the image, the information in the input images is well represented
in the inferred causes. This may be attributed towards the retinotopic arrangement of
receptive fields in the network but further analysis is needed to identify the reason
behind this behavior of the network.

4 Discussion

In this section, we discuss the computational implications of the algorithm presented in
this paper and the similarities it has with existing approaches in machine learning.

Error-backpropagation is an important algorithm for training deep neural networks.
It requires systematic propagation of information through the network in forward
direction and during learning, backward propagation of error gradients. This makes it
difficult to update all the network parameters in parallel. In this respect, predictive
coding can be easily parallelized. It may be seen from Eqs. 6 and 7 that causes and
filters can be adapted for all positions in a given layer parallelly due to the retinotopic
arrangement of receptive fields. Furthermore, it is also possible to adapt causes and
filters across all layers parallelly due to formulation of the error function (Eq. 5).

Another interesting aspect of predictive coding is its proximity to Deconvolutional
Neural Networks (DNNs) [12]. DNNs are used to infer hierarchical neuronal activities
for a given image. This problem is inherently ill-posed as there is no unique solution.
To handle this issue DNNs optimize auxiliary variables and the neuronal activities

0 1 2 3 4 5 0 1 2 3 4 5
1

2

3

4

5

Fig. 6. Translated images reconstructed by the network using the inferred causes. As before, the
images are arranged in 2 panels, each containing five rows. Note that the left panel contains
translated versions of the images in the left panel of Fig. 4 and the right panel contains translated
versions of the images in the left panel of Fig. 5.

A Deep Predictive Coding Network 465

alternately. A continuation parameter bð Þ is continuously increased during learning
until the inferred neuronal activities are clamped to the auxiliary variables. This
requires carefully controlling the learning process and higher computational power due
to an extra optimization step on auxiliary variables. Alternatively, in predictive coding
the update term associated with �td constrains the algorithm to infer activities that can
be easily predicted by successive layers in the network (Eq. 6). This allows predictive
coding to infer neuronal activities without using an extra optimization step.

5 Conclusion

In this paper, we describe a method to train deep neural networks using predictive
coding. The approach uses network in which neurons the feedforward pathways obey
the retinotopic arrangement of receptive fields observed in the brain. More empirical
research is needed to determine whether feedback pathways have a similar
organization.

We trained the network on a set of real-world images and then used the trained
network to infer hierarchical causes for a different set of images as well as their trans-
lated versions. Even though the network is trained on a small data set of 1000 images of
horses and ships, it can infer representative causes for translated versions of original
images and those of other objects like sparrows, dogs, cars, etc. This shows that the
network captures statistical regularities that are characteristic of real-world images.

Acknowledgement. The research work reported in this paper is carried out under European
Union Horizon 2020 Program under Grant Agreement 720270-Human Brain Project SGA1 to C.
M.A. Pennartz.

References

1. Mumford, D.: On the computational architecture of the neocortex - II the role of cortico-
cortical loops. Biol. Cybern. 66(3), 241–251 (1992)

2. Pennartz, C.M.A.: The Brain’s Representational Power: On Consciousness and the
Integration of Modalities. MIT Press, Cambridge (2015)

3. Rao, R.P.N., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nat. Neurosci. 2(1), 79–87 (1999)

4. Spratling, M.W.: Reconciling predictive coding and biased competition models of cortical
function. Front. Comput. Neurosci. 2, 4 (2008)

5. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annu. Rev.
Neurosci. 18(1), 193–222 (1995)

6. Spratling, M.W.: Unsupervised learning of generative and discriminative weights encoding
elementary image components in a predictive coding model of cortical function. Neural
Comput. 24(1), 60–103 (2012)

7. Whittington, J.C.R., Bogacz, R.: An approximation of the error backpropagation algorithm
in a predictive coding network with local hebbian synaptic plasticity. Neural Comput. 29(5),
1229–1262 (2017)

466 S. Dora et al.

8. Jehee, J.F.M., Ballard, D.H.: Predictive feedback can account for biphasic responses in the
lateral geniculate nucleus. PLoS Comput. Biol. 5(5), e1000373 (2009)

9. Ledig, C., et al.: Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network, pp. 1–14. arXiv (2016)

10. Michael Mathieu, Y.L., Couprie, C.: Deep multi-scale video prediction beyond mean square
error. arXiv (2015)

11. Kauderer-Abrams, E.: Quantifying Translation-Invariance in Convolutional Neural Net-
works. arXiv (2017)

12. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 2528–2535 (2010)

A Deep Predictive Coding Network 467

Type-2 Diabetes Mellitus Diagnosis from
Time Series Clinical Data Using Deep

Learning Models

Zakhriya Alhassan1,2(B), A. Stephen McGough3, Riyad Alshammari4,
Tahani Daghstani4, David Budgen1, and Noura Al Moubayed1

1 Computer Science, Durham University, Durham, UK
{zakhriya.n.alhassan,noura.al-moubayed,david.budgen}@durham.ac.uk

2 Computing and Information Technology, University of Jeddah,
Jeddah, Kingdom of Saudi Arabia

3 School of Computing, Newcastle University, Newcastle upon Tyne, UK
stephen.mcgough@newcastle.ac.uk

4 King Saud Bin Abdulaziz University for Health Sciences,
Riyadh, Kingdom of Saudi Arabia

{alshammariri,daghistanita}@ngha.med.sa

Abstract. Clinical data is usually observed and recorded at irregular
intervals and includes: evaluations, treatments, vital sign and lab test
results. These provide an invaluable source of information to help diag-
nose and understand medical conditions. In this work, we introduce
the largest patient records dataset in diabetes research: King Abdul-
lah International Research Centre Diabetes (KAIMRCD) which includes
over 14k patient data. KAIMRCD contains detailed information about
the patient’s visit and have been labelled against T2DM by clinicians.
The data is processed as time series and then investigated using tempo-
ral predictive Deep Learning models with the goal of diagnosing Type
2 Diabetes Mellitus (T2DM). Long Short-Term Memory (LSTM) and
Gated-Recurrent Unit (GRU) are trained on KAIMRCD and are demon-
strated here to outperform classical machine learning approaches in the
literature with over 97% accuracy.

Keywords: Type 2 diabetes mellitus · Deep learning
Long short-term memory · Gated-recurrent unit
King abdullah international research centre diabetes

1 Introduction

Diabetes is an increasingly growing medical condition worldwide. The estimated
number of diabetic patients globally was 415 million in 2015 and is expected to
affect one person in 10 by 2040 [6]. The number of people who are borderline
diabetic is rapidly increasing. The latest estimates indicate that 35.3% of the
adults in the UK are pre-diabetic [17]. Patients suffering from diabetes develop
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 468–478, 2018.
https://doi.org/10.1007/978-3-030-01424-7_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_46&domain=pdf

Deep Learning for T2DM Diagnosis 469

serious and complicated health problems to vital organs such as the kidneys,
eyes, as well as the heart. By the end of 2015, there were 5 million deaths caused
by diabetes worldwide [6].

There are three types of diabetes: (I) Type 1 Diabetes occurs when the
body’s defence system attacks the pancreas cells, causing it to stop producing
the needed insulin. (II) Type 2 Diabetes occurs when the body fails to respond to
the insulin produced. (III) Gestational Diabetes which happens when hormonal
changes during pregnancy make the body resistant to the insulin [18].

Type 2 Diabetes Mellitus (T2DM) is the most common form accounting for
91% to 95% of all cases [6]. It is the main contributor to causes of death from
diabetes and its associated cost. Furthermore, T2DM is difficult to diagnose
because it does not have clear clinical symptoms. It often stays undetected for
a long time as a result of the slow development of its symptoms [1]. Thus, an
early diagnosis of T2DM can assist with delaying any long-term complications.

In many hospital systems, patient data, such as vital signs and lab tests, are
routinely collected and stored with an associated time stamp which we will refer
to as “Clinical Time Series Data”. Patient clinical data is usually carried out
at irregular times and stored in the hospital record systems. The frequency of
taking these measurements is different for each patient, based on the physician’s
decisions. In addition, patients differ in their visit patterns (e.g., in-patient or
emergency visits), therefore the stay length for each patient varies from few hours
to days, weeks or even months.

In this study, we use King Abdullah International Research Centre Diabetes
(KAIMRCD) dataset. KAIMRCD is a unique dataset of 14,609 patient visits
which have been clinically tested against T2DM. It contains the personal details
of every patient such as age and gender along with the vital signs and lab test
results for every visit. The availability of such large dataset makes it possible to
train advance machine learning techniques, e.g. deep learning models to predict
T2DM.

The use of Recurrent Neural Networks (RNNs) has recently redefined the
standards for several research areas involiving sequential data such as speech
recognition, natural language processing and machine translation [8,11]. Despite
their success, RNNs are not usually fit for problems with long temporal depen-
dencies due to the exploding gradients problem [7]. Long Short-Term Memory
(LSTM) [9] and Gated-Recurrent Unit (GRU) [3,5], were specifically developed
to model problems that involve both long and short temporal dependencies.
Thus, LSTM and GRU have demonstrated the ability to model complex clinical
data in variety of medical applications such as diseases diagnosis [13,14].

The main contributions of this paper are: (I) Introducing the largest diabetes
patients time series data. (II) Applying temporal deep learning models: LSTM
and GRU to predict chronic disease, T2DM. (III) Integrating non-sequential risk
factors into the time series data such as gender and age. (IV) Investigating the
effect of input size on the performance of the built LSTM and GRU models.

470 Z. Alhassan et al.

Table 1. Neural network models for T2DM diagnosis

Study Dataset No of
Features

No of
Records

Data
availability

Accuracy

Venkatesan et al. [21] Private Date 9 1800 No 91.3%

Meng et al. [15] Private Date 12 1487 No 72.59%

Temurtas et al. [20] PPID 8 768 Yes 82.37%

Motka et al. [16] 90.49%

Karegowda et al. [10] 84.71%

Polat et al. [19] 89.47%

GRU KAIMRCD 30 14,609 Upon request 97.3%

2 Related Work

Machine learning has been successfully applied to clinical data and have been
demonstrated in tasks such as the prediction of patient progress and length of
stay. Disease diagnosis prediction using time series data is a growing field of
research for machine learning. Several neural network models have been applied
for T2DM diagnosis prediction, summarised in Table 1. Multi-Layer Perceptron
models were applied on various datasets [15,20,21]. Motka et al. [16] and Polat
et al. [19] used Artificial Neural Fuzzy Inference Systems (ANFIS). Genetic Algo-
rithms (GA) with Back-propagation Neural Network were also applied [10]. It is
important to note that the majority of these models were applied to the Pima
Indian Diabetes Data (PIDD) [12] and used small datasets that had no temporal
information with a small number of features.

To the best of our knowledge, there are no studies that looked at the T2DM
diagnosis from a time-series perspective. We are the first to apply deep learning,
LSTM and GRU in particular, for classification in T2DM diagnosis as a time
series (vital signs or lab test results) data. There are a few recent studies that
are related to our work. These studies used RNN models together with gen-
eral clinical time series datasets for multi-disease (T2DM was not among them)
diagnosis classification [13,14]. However, the time series datasets used in these
studies were not specifically collected for the purpose of diabetes diagnosis.

Lipton et al. [13] proposed the first model that applied LSTM on a clinical
dataset. The authors used LSTM on a Children’s Intensive Care Unit (ICU)
dataset to predict multiple diseases diagnosis (such as Asthma, Hypertension
and Anemia) using 13 lab test results. The LSTM model was built to classify
128 diseases with competitive accuracy. Another study [4], applied GRU on
larger and longitudinal patient data extracted from the general patients clinical
records. Similar to Lipton’s study, the aim of the study was mainly to predict
disease diagnosis. However, The features used in this study are different in type
than the ones used in Lipton’s study. The authors did not make use of patient’s
observation records (vital signs or lab test results). Instead, they used previous

Deep Learning for T2DM Diagnosis 471

patient’s diagnoses as input to predict future diseases. However, it was not clear
how many and what diseases have been examined for evaluating the model.

Both LSTM models as applied in [13,14], and GRU model as applied in [4],
have shown promising results with regard to multi-disease diagnosis. The number
of samples for each disease, on which the models were trained, was not reported
in either studies.

The work is motivated by the temporal nature of clinical data which
would potentially be better modelled by a model that directly models sequen-
tial/temporal data similar to GRU/LSTM. This is particularly relevant given
the size of our dataset, KAIMRCD, which considerably larger than any reported
in the literature for the diagnosis of T2DM. Our models incorporate not only
the clinical vital signs and lab test results, but also non-sequential data such as
age and gender, which are important risk factors for T2DM [6].

3 Dataset

King Abdullah International Medical Research Center (KAIMRC) is one of the
leading institutions in health research in the Middle East. The KAIMRCD1

dataset was collected by Ministry of National Guard Health Affairs (NGHA)
from the main National Guard Hospitals located in three populated regions2.
It is part of the hospital care service procedures to clinically diagnose visitors
against T2DM. The collected data contains records of clinical diagnosis of T2DM
from the full visits history of 14,609 patient visits.

KAIMRCD dataset was collected over the period between 2010 and 2015.
It contains 41 million time-stamped results for lab tests, such as Blood Urea
Nitrogin (BUN), cholesterol (Chol) and Mean Corpuscular Hemoglobin (MCH).
It also holds time-stamped data about patient vital signs such as Body Mass
Index (BMI) and Hypertension. Other important features are also included,
such as visit type (inpatient, outpatient or emergency), discharge type (home,
referred to another hospital, patient died), gender, patient’s age at the visit,
service type (e.g. Cardiology, Neurology, Endocrinology) and stay length3. The
data is imbalanced with 62% of the patients are diagnosed with diabetes, hence
F1 measure is used as an evaluation metric rather than accuracy. Figure 1 shows
the distribution of the data projected on a two-dimensional space using t-SNE.

Due to the variety of clinical procedures involved in different patient visits,
irregularities in data is expected. The frequency and the order of the clinical
procedures varies from one patient to another. Hence the episodes of patient
data vary with different sets of measures and their frequencies, pre-processing
the data for the purpose of this analysis is critical.

1 Access to KAIMRCD dataset can be obtained upon official request to KAIMRC.
2 Western, Central and Eastern regions of Saudi Arabia.
3 For space reasons the full list of features can not be listed here .

472 Z. Alhassan et al.

Fig. 1. KAIMRCD dataset distribution.

3.1 Data Pre-processing

Each patient visit is described by a set of measures. These measures are repre-
sented as episodes. An episode contains irregular time-stamped vital signs and
lab results. In addition, the non-sequential data (gender and age) is also inte-
grated into the episodes.

Every sequence element consists of 30 features (gender, age and 28 vital
signs and lab readings)3. The interval between the sequences is one day. There
are three types of features, starting with constant features which do not change
during a patient’s visit, such as age and gender. Frequently changing features are
collected on a daily basis, or the average of multiple daily measures, such as vital
signs. Finally, the infrequently changing features are collected on an interval of
more than a day. As a result, features that may be unavailable for some patients
are considered to be missing. The representation of an episode of patient x for
our proposed solution is defined as:

Episodex =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t1 : R11 R12 ... R1m

t2 : R21 R22 ... R2m

...

...
tn : Rn1 Rn2 ... Rnm

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where Rij : is the reading values (risk factors) at day i for vital signs, lab test
results and the embedded non-sequential values (gender and visit age) j. n is
the length of the sequence (the input size). m is the number of readings for each
sequence.

Patient visit (Episode) consists of a sequence length n (based on the length of
stay in hospital) at time t. If the number of days for a patient’s visit is less than
n, zero padding technique is applied to compensate for the missing sequences.
For each sequence there are m reading values (R). If Rij is missing then it is

Deep Learning for T2DM Diagnosis 473

assigned the value from the previous day (Rij = R(i−1)j). In the case that there
was no previous reading, Rij is replaced with zero.

4 Methods

Recurrent neural networks, and its variants, have achieved unprecedented accu-
racy in many domains with sequential data [11]. Unlike other deep learning
methods, RNNs have memory cells allowing the previous output to influence the
state for the next output, which proved to be a useful feature for sequential data.

Here, we investigate the performance of temporal models: LSTM and GRU, in
diagnosing T2DM from time-stamped sequences of patient observations. Given a
sequence of observations for a patient xt : R1, R2, ...Rm at time t, the activation
function of a recurrent hidden unit ht is:

ht = ν(Uxt
+ Wh(t−1)), (1)

where ν is a nonlinear function for the sum of the hidden state, U , matrix of
the current patient’s sequences, and W is a matrix of the weight input of the
previous sequence.

In the experiments, we use n previous sequences of patient’s observations
(series) to explore the impact of previous dependencies in influencing the classi-
fication decision of T2DM. In practice, RNNs have demonstrated a limited per-
formance when learning from sequences with long-term dependencies [2]. This
is mainly caused by limitations in the gradient decent approach, as the gradient
tends to either vanish or explode when modelling long dependencies. Hochreiter
and Schmidhuber addressed this problem by introducing LSTM [9]. LSTM, uses
a sophisticated structure with multiple cell and gated unites (forget and input)
to cope with learning from long-term dependencies, described by:

ft = σ(Wf .[h(t−1), xt] + bf) (2)

it = σ(Wi.[h(t−1), xt] + bi) (3)

C̃t = tanh(WC .[h(t−1), xt] + bC) (4)

Ct = ft × C(t−1) + it × C̃t (5)

ot = σ(Wo[h(t−1), xt] + bo) (6)

ht = ot × tanh(Ct), (7)

where f represents the forget gate of the cell with a sigmoid activation function σ
and the weight W and the learned bias b (Eq. 2). i is the input gate (Eq. 3) which
is used in combination with a non-linear(tanh) layer C̃. C̃ is the new value for
cell state (Eq. 4). The update state value C is then the sum of the multiplication
of the old state C(t−1) by ft, which decides on what to forget, and the new value
C̃ multiplied by the input gate value it (Eq. 5). Finally o is the output of the

474 Z. Alhassan et al.

sigmoid gate which is used with the cell state C to produce the final decision
(Eqs. 6 and 7) whether the patient x is diabetic or not.

Similar to LSTMs, GRU is used to deal with long-term dependencies. The
main difference is that GRU merges the forget and input gates in one unit gate
called the update gate. This means that previous memory is kept based on the
size of the new dependencies (input). GRUs do not have a protected hidden
cell state which gives full access to the corresponding allocated memory content.
GRU is formally defined as follows:

zt = σ(Wf × [h(t−1), xt]) (8)

rt = σ(Wr.[h(t−1), xt]) (9)

h̃t = tanh(WC .[rt × h(t−1), xt]) (10)

ht = (1 − zt) × h(t−1) + zt × h̃t, (11)

where z and r represent the update gate and the reset gate values. These gates
are calculated in a similar way to calculating the input gate and the forget gate
of LSTM, except that GRU does not consider adding these values in the formula
(Eq. 8) and (Eq. 9). The other difference is that instead of changing the current
hidden layer h as in the LSTM method, the input x and the previous layer h(t−1)

modify the update gate and the reset gate values in the GRU method. Then the
current layer is updated accordingly by z and r (Eq. 11) [4].

5 Experimental Setup

Both LSTM and GRU models were implemented, to allow for comparison
between their performance in predicting the diagnosis of T2DM. The neural
networks of both models have similar architectures. The model contains two
LSTM/ GRU layers and two dense layers. The first hidden layer has 128 neu-
rons with a sigmoid activation function, while the second contains 64 neurons
with ReLU activation function. The two dense layers also use the ReLU and
sigmoid activation functions, with 16 and 1 neurons respectively.

LSTM and GRU are trained using 90% of the data. The remaining 10% is
then used for testing. The models use adam optimizer with 0.001 learning rate.
The optimisation score function used in both models is root mean squared error.
Before preforming the prediction on the test data, the models were trained for
100 epochs. In our experiments, we investigated the performance of each model
for six different variations of input sizes (3, 5, 8, 10, 12, and 15). The models
are trained and tested using 10-folds cross-validation approach. We report the
macro, micro and weighted-averaged F1 scores to compare and evaluate the
performance of the classifiers.

Deep Learning for T2DM Diagnosis 475

Baseline Models. We compared our results against three commonly used base-
line models: Logistic Regression (LR), Support Vector Machine (SVM), and
Multi-Layer Perceptron (MLP). These models do not model temporal dynamics
in the data, hence the patient visits are assumed independent. Only sequences
with fewer missing readings are considered. MLP has similar architecture to
LSTM/GRU and uses the same optimiser settings.

6 Results

Table 2 shows the performance metrics obtained using LSTM, GRU and baseline
models. In Table 2, the results show that all of the neural network models,
including MLP, with all of the different number of input sizes, achieved better
performance than the models identified in the related work section (Table 1),
and the baseline shallow models (LR and SVM).

Table 2. Models performance in T2DM diagnosis

Input size Model F1 Weighted F1 Macro F1 Micro

1 Sequence* LR 0.7790 0.7517 0.8041

SVM 0.7452 0.7194 0.7576

3 Sequences MLP 0.9409 0.9371 0.9411

LSTM 0.9631 0.9649 0.9670

GRU 0.9706 0.9689 0.9705

5 Sequences MLP 0.9442 0.9406 0.9443

LSTM 0.9592 0.9566 0.9596

GRU 0.9634 0.9612 0.9634

8 Sequences MLP 0.9452 0.9417 0.9451

LSTM 0.9565 0.9536 0.9567

GRU 0.9714 0.9694 0.9715

10 Sequences MLP 0.9508 0.9476 0.9509

LSTM 0.9512 0.9485 0.9508

GRU 0.9729 0.9711 0.9730

12 Sequences MLP 0.9440 0.9403 0.9440

LSTM 0.9646 0.9623 0.9646

GRU 0.9624 0.9598 0.9627

15 Sequences MLP 0.9454 0.9421 0.9451

LSTM 0.9669 0.9650 0.9667

GRU 0.9656 0.9632 0.9657

Table 2: shows the performance metrics for LSTM and GRU
and baseline classifiers.
* Most complete sequence with fewer missing data among the
whole patient’s visit.

476 Z. Alhassan et al.

Fig. 2. Change of F1 measure with the length of the input size.

Both LSTM and GRU outperformed MLP models and achieved promising
results using different input sizes (from 3 to 15). GRU with 10 input sequence
length is the best performing model with regard to the reported measures (results
in bold), but with insignificant difference to GRU with only 3 sequences. Table 2
also shows that GRU models with 3 and 10 sequence length, have better results
compared to the same model with larger input size. This is not the same for
the LSTM models, which show better results with longer dependencies. Figure 2
shows the performance trend of LSTM, GRU and MLP against the input sizes.
Figure 3 demonstrates the models performance results. Figure 3 shows that GRU
results are distributed in smaller areas to LSTM, which indicates that GRU
approach can have more consistent results when used for predicting T2DM.

Fig. 3. F1 Micro result for LSTM, GRU and MLP Models

6.1 Discussion and Conclusion

In this paper, we investigated the use of temporal predictive deep neural network
models for the diagnosis of T2DM. The proposed models (LSTM and GRU),
using clinical time-stamped data and without intensive feature engineering can

Deep Learning for T2DM Diagnosis 477

achieve very high accuracy with as short as 3 sequences. The models were trained
and tested with different input sizes using unique and large dataset (KAIMRCD).
The results were compared to common baseline classifiers (LR, SVM and MLP)
using the same dataset. LSTM and GRU models outperformed the baseline
classifiers and achieved 97.3% accuracy. Due to the lack of datasets that are
specific to T2DM, replicating this work using different datasets can be difficult.

The models were able to predict with a high accuracy 97% even with a 3-day
length sequence. This is very significant finding as it would reduce the time and
associated cost required to perform further tests and delivers early diagnosis.
Further work may investigate the impact of applying different techniques for
handling the missing data on KAIMRCD data.

References

1. Beagley, J., Guariguata, L., Weil, C., Motala, A.A.: Global estimates of undiag-
nosed diabetes in adults. Diabetes Res. Clin. Pract. 103(2), 150–160 (2014)

2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

3. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

4. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: pre-
dicting clinical events via recurrent neural networks. In: Machine Learning for
Healthcare Conference, pp. 301–318 (2016)

5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

6. Federation, I.D.: IDF diabetes atlas (2015). http://www.diabetesatlas.org
7. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction

with LSTM (1999)
8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge

(2016)
9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
10. Karegowda, A.G., Manjunath, A., Jayaram, M.: Application of genetic algorithm

optimized neural network connection weights for medical diagnosis of pima indians
diabetes. Int. J. Soft Comput. 2(2), 15–23 (2011)

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

12. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
13. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzell, R.: Learning to diagnose with LSTM

recurrent neural networks. arXiv preprint arXiv:1511.03677 (2015)
14. Lipton, Z.C., Kale, D.C., Wetzel, R.: Modeling missing data in clinical time series

with RNNs. Machine Learning for Healthcare (2016)
15. Meng, X.H., Huang, Y.X., Rao, D.P., Zhang, Q., Liu, Q.: Comparison of three data

mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J.
Med. Sci. 29(2), 93–99 (2013)

16. Motka, R., Parmarl, V., Kumar, B., Verma, A.: Diabetes mellitus forecast using
different data mining techniques. In: 2013 4th International Conference on Com-
puter and Communication Technology (ICCCT), pp. 99–103. IEEE (2013)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555
http://www.diabetesatlas.org
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1511.03677

478 Z. Alhassan et al.

17. (NHS), U.N.H.S.: http://www.nhs.uk
18. World Health Orgnization: Global report on diabetes (2016). http://www.who.int/

diabetes/global-report/en/
19. Polat, K., Güneş, S.: An expert system approach based on principal component

analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease.
Digit. Signal Process. 17(4), 702–710 (2007)

20. Temurtas, H., Yumusak, N., Temurtas, F.: A comparative study on diabetes disease
diagnosis using neural networks. Expert. Syst. Appl. 36(4), 8610–8615 (2009)

21. Venkatesan, P., Anitha, S.: Application of a radial basis function neural network
for diagnosis of diabetes mellitus. Curr. Sci. 91(9), 1195–1199 (2006)

http://www.nhs.uk
http://www.who.int/diabetes/global-report/en/
http://www.who.int/diabetes/global-report/en/

A Deep Learning Approach for Sentence
Classification of Scientific Abstracts

Sérgio Gonçalves1, Paulo Cortez1(B), and Sérgio Moro2

1 ALGORITMI Centre, Department of Information Systems,
University of Minho, Guimarães, Portugal

a72886@alunos.uminho.pt, pcortez@dsi.uminho.pt
2 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisboa, Portugal

sergio.moro@iscte-iul.pt

Abstract. The classification of abstract sentences is a valuable tool to
support scientific database querying, to summarize relevant literature
works and to assist in the writing of new abstracts. This study proposes
a novel deep learning approach based on a convolutional layer and a
bi-directional gated recurrent unit to classify sentences of abstracts. The
proposed neural network was tested on a sample of 20 thousand abstracts
from the biomedical domain. Competitive results were achieved, with
weight-averaged precision, recall and F1-score values around 91%, which
are higher when compared to a state-of-the-art neural network.

Keywords: Bi-directional gated recurrent unit
Sentence classification · Scientific articles · Text mining · Deep learning

1 Introduction

In the last decades, there has been a rise in the number of scholarly publica-
tions [14]. For instance, around 114 million of English scholarly documents were
accessible on the Web in 2014 [9]. Such volume makes it difficult to quickly select
relevant scientific documents. Scientific abstracts summarize the most important
elements of a paper and thus those are valuable sources for filtering the most
relevant papers during a literature review process [1].

The classification of scientific abstracts is a particular instance of the sequen-
tial classification task, considering there is a typical order in the classes (e.g.,
the ‘Objective’ label tends to appear after the ‘Background’). This classification
transforms unstructured text into a more information manageable structure [6].
This is acknowledged by the Emerald publisher, which requires all submissions
to include a structured abstract [4]. In effect, the automatic classification of
abstract sentences presents several advantages. It is a valuable tool for general
scientific database querying (e.g., using Web of Science, Scopus). Also, it can
assist in manual [11] or text mining [15] systematic literature review processes,
as well as other bibliometric analyses. Moreover, it can help in the writing of
new paper abstracts [13].
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 479–488, 2018.
https://doi.org/10.1007/978-3-030-01424-7_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_47&domain=pdf

480 S. Gonçalves et al.

In this study, we present a deep learning neural network architecture for
the sequential classification of abstract sentences. The architecture uses a word
embedding layer, a convolutional layer, a bi-directional Gated Recurrent Unit
(GNU) and a final concatenation layer. The proposed deep learning model is
compared with a recently proposed bi-directional Long Short-Term Memory
(LSTM) based model [6], showing an interesting performance on a large 20 K
abstract corpus that assumes five sentence classes: ’Background’, ‘Objectives’,
‘Methods’, ‘Results’ and ‘Conclusions’. This paper is organized as follows. First,
the related work is introduced in Sect. 2. Next, the abstract corpus and meth-
ods are described in Sect. 3. Then, the experimental results are presented and
analyzed in Sect. 4. Finally, the main conclusions are discussed in Sect. 5.

2 Related Work

As pointed out in [6], most sequential sentence classification methods are based
on ‘shallow’ methods (e.g., naive Bayes, Support Vector Machines (SVM))
that require a manual feature engineering based on lexical (e.g., bag of words,
n-grams), semantic (e.g, synonyms), structural (e.g., part-of-speech tags) or
sequential (e.g., sentence position) information. The advantage of using deep
learning is that the neural networks do not require such manual design of fea-
tures. Also, deep learning often achieves competitive results in text classification
[8].

Regarding abstract sentence classification, this topic has been scarcely
researched when compared to other text classification tasks (e.g., sentiment anal-
ysis). The main reason for this reduced attention is the restricted availability of
publicly datasets. In 2010 [2], the manual engineering approach was used to
set nine features (e.g., bi-grams) and train five classifiers (e.g., SVM) that were
combined to classify four main elements of medical abstracts. In 2013 [13], a
private corpus with 4550 abstracts from different scientific fields was collected
from ScienceDirect. The abstract sentences were manually labeled into four cate-
gories: ‘Background’, ‘Goal’, ‘Methods’ and ‘Results’. The authors also used the
conventional manual feature design approach (e.g., n-grams) and a transduc-
tive SVM. More recently, in 2017 [5], a large abstract corpus was made publicly
available. Using this dataset, a deep learning model, based on one bi-directional
LSTM, was proposed for a five class sentence prediction, outperforming four
other approaches (e.g., n-gram logistic regression, multilayer perceptron) [6].

In this paper, we propose a different deep learning architecture, mainly com-
posed by a convolutional layer and a bi-directional GRU layer to classify the sen-
tences from abstracts, which uses word embeddings instead of character embed-
dings. By taking into consideration the position of the sentences, as well as
encoding contextual information on the vector of each sentence, we expect that
the proposed architecture can potentially achieve better results when compared
with the study by [6].

A Deep Learning Approach for Sentence Classifcation of Scientific Abstracts 481

3 Materials and Methods

3.1 Abstract Corpus

We adopted the abstract corpus first analyzed by [5], which sets the baseline for
comparison purposes. The corpus includes open access papers from the PubMed
biomedical database and related with Randomized Controlled Trials (RCT). The
sentences were classified by the authors of the articles into the five standardized
labels.

The full corpus has a total of 200 K abstracts. A smaller subset, with 20 K
most recent abstracts, was also made available for a faster experimentation of
sequential sentence classification methods. Considering the 20 K subset was used
in the work of [6], we also adopt the same dataset, to facilitate the experimental
comparison. Table 1 presents the class frequencies and train, validation and test
split sizes. This is an unbalanced dataset, with most sentences being related with
‘Methods’ or ‘Results’ (around 30%).

Table 1. Class distribution and train, validation and test sizes (PubMed 20K corpus).

Background Objective Methods Results Conclusions
#sentences 28,797 18,548 79,214 77,507 36,321
percentage 12.0% 7.7% 33.0% 32.2% 15.1%

Train Validation Test
#abstracts 15.0K 2.5K 2.5K
#sentences 180.0K 30.0K 30.0 K

3.2 Neural Networks Models

In the last years, there has been remarkable developments in deep learning [8].
Architectures such as Convolutional Neural Network (CNN), LSTM and GRU
have obtained competitive results in several competitions (e.g., computer vision,
signal and natural language processing).

The CNN is a network mainly composed by convolutional layers. The purpose
of the convolutional layers is to extract features that preserve relevant informa-
tion from the inputs [12]. To obtain the features, a convolutional layer receives
a matrix as input, to which a matrix with a set of weights, known as a filter,
is applied using a sliding window approach and, at each of the sliding window
steps, a convolution is calculated, resulting in a feature. The size of the filter is
a relevant hyperparameter.

Although CNNs have been widely used in computer vision, they can also be
used in sentence classification [10]. The use of convolutional layers enables the
extraction of features from a window of words, which is useful because word

482 S. Gonçalves et al.

embeddings alone are not able to detect specific nuances, such as double nega-
tion, which is important for sentiment classification. The width of the filter,
represented by h, determines the length of the n-grams. The number of filters
is also a hyperparameter, making it possible to use multiple filters with vary-
ing lengths [10]. The filters are initialized with random weights and, during the
training of the network, the weights are learned for the specific task of the net-
work, through backpropagation. Since each filter produces its own feature map,
there is a need to reduce the dimensionality caused by using multiple filters. A
sentence can be encoded as a single vector by applying a max pooling layer after
the convolutional layer, which takes the maximum value for each position, from
all the feature maps, keeping only the most important features.

Recurrent Neural Networks (RNN) are relevant for sequential data, such as
the words that appear in a sentence. Consider the words (x1, ..., xt) from a given
sentence (sequence of words). The hidden state st of the word xt depends on
the hidden state st−1, which in turn is the hidden state of the word xt−1 and,
for this reason, the order in which words appear over the sequence also influence
the various hidden states of the RNN.

The LSTM network is a particular RNN that uses an internal memory to
keep information between distant time steps to model long-term dependencies
of the sequence. It uses two gating mechanisms, update gate and forget gate,
which controls what information should be updated into the memory, and what
information should be erased from the memory, respectively. The GRU [3] was
recently introduced and it can be used as an alternative to the LSTM model.
The GRU uses a reset and update gate, which are able to control how much
information should be kept from previous time steps. Both GRU and LSTM
are solutions that help mitigate the vanishing gradient problem of conventional
RNNs.

A deep learning model was used in [6] for abstract sentence classification.
The model uses character embeddings that are then concatenated with word
embeddings and used as input for a bi-directional LSTM layer, which outputs
a sentence vector based on those hybrid embeddings. The sentence vector is
used to predict the probabilities of the labels for that sentence. The authors
also use a sequence optimization layer, which has the objective of optimizing
the classification of a sequence of sentences, exploiting existing dependencies
between labels.

3.3 Proposed Architecture

The proposed word embedding, convolutional and bi-directional GRU (Word-
BiGRU) architecture is shown in Fig. 1. We assume that each abstract has i
sentences (S1, ..., Si) and each individual sentence has n words (x1

1, ..., x
i
n), where

xi
n is the nth word from the ith sentence. The various words from the sentences

are mapped to their respective word embeddings, and those embedding are used
to create a sentence matrix E ∈ Rm×d, where d equals to the dimensionality
of the embeddings. We use word embeddings pre-trained on English Wikipedia,
provided by Glove (with d = 200) [16].

A Deep Learning Approach for Sentence Classifcation of Scientific Abstracts 483

Fig. 1. Schematic of the proposed Word-BiGRU deep learning architecture.

Then, a convolutional layer is used with a sliding window approach that
extracts the most important features from the sentences. Let E ∈ Rm×d denote
the sentence matrix, w ∈ Rh×d a filter, and E[i : j] the sub-matrix from row i
to j. The single feature oi is obtained using:

oi = w ∗ E[i : i + h − 1] . (1)

In this study, we use a filter with a size of h = 5. To add nonlinearity to the
output, an activation function applied to every single feature. For the feature oi,
it is obtained by:

ci = f(oi + b); (2)

where f is the activation function and b is the bias. We use ReLU as the activation
function in our model because it tends to present a faster convergence [7].

Next, we take the various features maps obtained from the convolutional
layer, and feed them into a max pooling layer to encode the most important
features extracted by the convolutional layer into a single vector representation
that can be used by the next layers. Let g1, ..., gi denote several vectors, each one
encoding a particular sentence of the abstract. The vectors are then fed to bi-
directional GRU layer, where the hidden states for each time step are calculated.

484 S. Gonçalves et al.

We will use � to denote the Hadamard Product, while using W and U to denote
weight matrices of the GRU layer. Let hi−1 be the hidden state of the previous
sentence from the same abstract, the candidate hidden state h̃i for the current
sentence is given by:

h̃i = tanh(Whgi + Uh(ri � hi−1) + bh) . (3)

The reset gate ri ∈ [0, 1] has the purpose of controlling how much information
of the past hidden state, ht−1 will be kept. Let σ be the sigmoid activation
function. The reset gate ri is calculated by:

ri = σ(Wrgi + Urhi−1 + br) . (4)

To control how much new information will be stored in the hidden state, an
update gate zi ∈ [0, 1] is used, given by:

zi = σ(Wzgi + Uzhi−1 + bz) . (5)

The hidden state hi, which is the hidden state of the sentence i, is obtained by:

hi = zi � h̃i + (1 − zi) � hi−1 . (6)

Since we use a bi-directional GRU layer, there is a forward pass and a back-
ward pass. The hidden states resulting from the forward pass are:

(
−→
h1, ...,

−→
hi) . (7)

where hi is the hidden state of the ith sentence of the abstract. Similarly, the
hidden states resulting from the backward pass are:

(
←−
h1, ...,

←−
hi) . (8)

By using a bi-directional GRU, we want to capture contextual information
about each sentence of the abstract, by taking into consideration the sentences
that appear before and after it. For the ith sentence of the abstract, the individual
vector ki, which encodes the sentence with contextual information captured using
the bi-directional GRU layer, is obtained by concatenating (⊕ operator) the
forward and backward hidden states:

ki = [
−→
hi ⊕ ←−

hi] . (9)

Each encoded sentence ki is then concatenated with an integer value indicating
the position of that sentence in the abstract, resulting in zi:

zi = [ki ⊕ i] . (10)

Finally, a softmax layer is used, such that the outputs can be interpreted as class
probabilities.

A Deep Learning Approach for Sentence Classifcation of Scientific Abstracts 485

3.4 Evaluation

Classification accuracy is often measured using a confusion matrix, which maps
predicted versus desired labels. From this matrix, several metrics can be com-
puted, such as: [17]: Precision, Recall, F1-score. For a class c, these metrics are
obtained using:

Precisionc = TPc

TPc+FPc

Recallc = TPc

TPc+FNc

F1-scorec = 2 × Precisionc×Recallc
Precisionc+Recallc

.

(11)

where TPc, FPc, FNc denote the number of true positives, false positives and
false negatives for class c.

To combine all five class results into a single measure, we adopt two aggre-
gation methods: macro-averaging and weight-averaging. The macro-averaging
computes first the metric (e.g., Precision using Eq. 11) for each class and then
averages the overall result. The weight-averaging is computed in a similar way
except that each class metric is weighted proportionally to its prevalence in the
data. In [6] only the weight-averaging method was used.

For comparison purposes, we adopt the same train, validation and test
sets used in [6] (Table 1). When fitting the deep learning architecture, we
adjusted different combinations of its main hyperparameters, namely: the num-
ber of filters (128 or 256) in the convolutional layer and the number of units
(∈ {25, 50, 75, 100}) in the bi-directional GRU Layer. The validation set was
used to select the best configuration, when monitoring the macro-averaging Pre-
cision metric. In the test set comparison, we computed all classification metrics.

4 Results

The deep learning models were trained on the p2.xlarge instance from Amazon
Elastic Compute Cloud, which has an Intel Xeon E5-2686 v4 2.30 GHz, Nvidia
Tesla K80 and 61 GB of RAM. The experiments were implemented in Python
using the Keras and Scikit packages. The selected hyperparameters (using val-
idation metrics) are shown in Table 2. Figure 2 shows the normalized confusion
matrix of the proposed model. The matrix confirms that a very good classifica-
tion was achieved, in particular for the ‘Methods’, ‘Conclusions’ and ‘Results’
labels and that correspond to the most frequent classes.

The proposed Word-BiGRU deep learning architecture is compared with two
other approaches: a similar model that does not include the bi-directional GRU
layer (CNN model), and with the results provided in [6] (Char-BiLSTM). Table 3
shows the test results for each class. Word-BiGRU shows competitive results
when compared with Char-BiLSTM. Specifically, it achieves the best Precision
and Recall values for three classes and the best F1-scores for all classes. Further-
more, the deep learning model provides the highest classification improvement
(11.3% points) for the least frequent class (‘Objectives’). The averaged class

486 S. Gonçalves et al.

Table 2. Selected hyperparameters of the proposed model.

Common parameters
Embedding dimension 200
Maximum Length 100
Dropout 0.35
Loss Function Categorical Cross-entropy
Optimizer Adam

reyaLURGlanoitcerid-iBreyaLlanoitulovnoC
Activation function(s) ReLU Activation function Tanh
Filter size 5 Number of units 50
Number of Filters 128

Fig. 2. Normalized confusion matrix.

results are detailed in Table 4. Word-BiGRU provides better results in all met-
rics when compared with the other models. The improvement ranges: from 6.0 to
9.1% points, when compared with CNN, confirming the value of the bi-directional
GRU layer; and from 0.3 to 3.0% points when compared with Char-BiLSTM.
Finally, we note that the Word-BiGRU model requires more computation than
the simpler CNN model. On average, the proposed architecture requires 880 s
per epoch while CNN requires 182 s.

A Deep Learning Approach for Sentence Classifcation of Scientific Abstracts 487

Table 3. Test results for each class (in %, best values in bold).

Background Objective Methods Results Conclusions

Precision Word-BiGRU 79.7 70.5 93.3 95.9 94.2

Char-BiLSTM [6] 71.8 78.2 93.7 94.8 93.5

Recall Word-BiGRU 78.7 71.4 96.7 92.3 94.5

Char-BiLSTM [6] 88.2 48.1 96.2 93.1 92.9

F1-Score Word-BiGRU 79.2 70.9 95.0 94.1 94.3

Char-BiLSTM [6] 79.1 59.6 94.9 93.9 93.2

Table 4. Averaged test results (in %, best values in bold).

Metric Averaged Char-BiLSTM [6] CNN Word-BiGRU

Precision Macro-Averaged 86.4 80.7 86.7

Weight-Averaged 90.1 83.6 90.9

Recall Macro-Averaged 83.7 77.6 86.7

Weight-Averaged 89.9 83.5 90.8

F1-score Macro-Averaged 85.0 78.5 86.7

Weight-Averaged 90.0 83.5 90.8

5 Conclusions

Abstract sentence classification is a key element to assist in scientific database
querying, performing literature reviews and to support the writing of new
abstracts. In this paper, we present a novel deep learning architecture for abstract
sentence classification. The proposed Word-BiGRU architecture assumes word
embeddings, a convolutional layer and a bi-directional Gated Recurrent Unit
(GRU). Using a large sentence corpus, related with 20 thousand abstracts from
the biomedical domain, we have obtaining high quality classification perfor-
mances, with weight-average Precision, Recall and F1-score values around 91%.
These results compare favourably against a state-of-the-art bi-directional Long
Short-Term Memory (LSTM) model. In future work, we wish to enlarge the
experimentation of the proposed deep learning architecture to classify abstract
corpus from other scientific domains and also to other sequential tasks.

Acknowledgements. This work was supported by COMPETE: POCI-01-0145-
FEDER-007043 and FCT Fundação para a Ciência e Tecnologia within the Project
Scope: UID/CEC/00319/2013.

488 S. Gonçalves et al.

References

1. Atanassova, I., Bertin, M., Larivière, V.: On the composition of scientific abstracts.
J. Doc. 72(4), 636–647 (2016)

2. Boudin, F., Nie, J.Y., Bartlett, J.C., Grad, R., Pluye, P., Dawes, M.: Combining
classifiers for robust pico element detection. BMC Med. Inform. Decis. Mak. 10(1),
29 (2010)

3. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association
for Computational Linguistics, Doha, Qatar, October 2014

4. Cornuel, E.: A vision for Business Schools, vol. 24. Emerald Group Publishing
(2005)

5. Dernoncourt, F., Lee, J.Y.: Pubmed 200k rct: a dataset for sequential sentence
classification in medical abstracts. In: Proceedings of the Eighth International Joint
Conference on Natural Language Processing, vol. 2, pp. 308–313 (2017)

6. Dernoncourt, F., Lee, J.Y., Szolovits, P.: Neural networks for joint sentence classi-
fication in medical paper abstracts. In: Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics, vol. 2, pp.
694–700 (2017)

7. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 315–323 (2011)

8. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT
press, Cambridge (2016)

9. Khabsa, M., Giles, C.L.: The number of scholarly documents on the public web.
PloS One 9(5), e93949 (2014)

10. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1746–1751 (2014)

11. Kitchenham, B., Brereton, P.: A systematic review of systematic review process
research in software engineering. Inf. Softw. Technol. 55(12), 2049–2075 (2013)

12. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, pp. 253–256 (2010)

13. Liu, Y., Wu, F., Liu, M., Liu, B.: Abstract sentence classification for scientific
papers based on transductive SVM. Comput. Inf. Sci. 6(4), 125 (2013)

14. Michalska-Smith, M.J., Allesina, S.: And, not or: quality, quantity in scientific
publishing. PloS One 12(6), e0178074 (2017)

15. Moro, S., Cortez, P., Rita, P.: Business intelligence in banking: a literature analysis
from 2002 to 2013 using text mining and latent dirichlet allocation. Expert. Syst.
Appl. 42(3), 1314–1324 (2015)

16. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543 (2014)

17. Witten, I., Frank, E., Hall, M., Pal, C.: Data Mining: Practical Machine Learning
Tools and Techniques, 4th edn. Morgan Kaufmann, San Franscico (2017)

Weighted Multi-view Deep Neural
Networks for Weather Forecasting

Zahra Karevan(B), Lynn Houthuys, and Johan A. K. Suykens

KU Leuven, ESAT-STADIUS Kasteelpark Arenberg 10, 3001 Leuven, Belgium
{zahra.karevan,lynn.houthuys,johan.suykens}@esat.kuleuven.be

Abstract. In multi-view regression the information from multiple rep-
resentations of the input data is combined to improve the prediction.
Inspired by the success of deep learning, this paper proposes a novel
model called Weighted Multi-view Deep Neural Networks (MV-DNN)
regression. The objective function used is a weighted version of the pri-
mal formulation of the existing Multi-View Least Squares Support Vec-
tor Machines method, where both the objectives from all different views,
as well as the coupling term, are weighted. This work is motivated by
the challenging application of weather forecasting. To predict the tem-
perature, the weather variables from several previous days are taken
into account. Each feature vector belonging to a previous day (delay)
is regarded as a different view. Experimental results on the minimum
and maximum temperature prediction in Brussels, reveal the merit of
the weighting and show promising results when compared to existing the
state-of-the-art methods in weather prediction.

Keywords: Multi-view learning · Neural networks · Deep learning
Weather forecasting

1 Introduction

Accurate weather prediction is one of the most challenging tasks in climate infor-
matics. The prediction task is being complicated due to various environmental
issues like topography of surrounding structures, the chaotic characteristics of
the atmosphere, the influence of human behavior and many more. State-of-the-
art methods usually apply the Numerical Weather Prediction (NWP) to get a
decent prediction. Because this method is very computationally intensive [3],
there is an increasing interest in data-driven methods which uses historical data
to do the prediction.

Multi-view learning denotes a group of learning techniques that are applied
when the data is described through multiple representations, or views. By using
the information available from all views, multi-view learning aims to improve
the performance over only using a single view. This could be achieved by simply
concatenating the features from all views, like e.g. the work done by Zilca and

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 489–499, 2018.
https://doi.org/10.1007/978-3-030-01424-7_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_48&domain=pdf

490 Z. Karevan et al.

Bistritz [22]. This approach is a typical example of early fusion, as the infor-
mation from all views is fused early on in the training process. However, as
this increases the dimensionality greatly and it ignores the statistical proper-
ties of each individual view, most state-of-the-art multi-view methods aim to
jointly optimize the objectives of each view [5,19,20]. Liu et al. [13] propose a
multi-task multi-view method to predict Urban Water Quality where the spatial
and temporal features are considered as two views. Houthuys et al. [10] pro-
pose a multi-view kernel-based method to predict temperature by considering
the neighboring cities as different views.

Inspired by the success of deep learning in feature learning research [4,7,12],
several deep multi-view methods have recently been proposed. These techniques
are usually based on one of the two main approaches [18]. The first approach is
based on autoencoders, like e.g. the work done by Ngiam et al. [14], the second
is based on a Deep Neural Network (DNN) extension to CCA-like [9] methods,
e.g. the deep CCA method proposed by Andrew et al. [2].

In this paper a novel DNN-based multi-view method is proposed and its per-
formance is evaluated on the application of temperature prediction. The model
follows the second deep multi-view approach, where the novelty lies in the weight-
ing of the view-specific objectives and the coupling term. These weights can be
tailored to the needs of each application. They can be determined through e.g.
the similarity to the prediction task, some expert knowledge about the applica-
tion, and so on. For our application we have chosen to weight according to the
performance of each view on the validation set when used separately. Tempera-
ture prediction is a multi-variate time-series forecasting application, and hence
the prediction of a certain day depends on the features of the previous days.
To have a reliable prediction, one may use a large feature vector which is the
concatenation of the weather features from the previous days. However, instead
of simply concatenating these feature vectors, this paper regards each previous
day, or delay, as a separate view.

We will denote matrices as bold uppercase letters and vectors as bold low-
ercase letters. The superscript [v] will denote the vth view for the multi-view
method.

2 Background: Multi-View LS-SVM Regression

This section summarizes the Multi-View LS-SVM Regression (MV LS-SVM) [10]
model. This model is a multi-view extension of the well known Least Squares
Support Vector Machine (LS-SVM) [16], where the primal formulation contains
the summation of the objective functions corresponding to each view plus a
coupling term. The coupling term takes into account the correlation between
the different views.

Given a number of V views and training data {yk,x
[v]
k }Nk=1 for v = 1, . . . , V ,

where x[v]
k ∈ R

d[v]
denotes the k-th input sample and yk ∈ R the k-th target

Weighted Multi-view Deep Neural Networks for Weather Forecasting 491

value, the primal formulation of the MV LS-SVM model is stated as follows:

min
w[v],e[v],

b[v]

1
2

V∑

v=1

w[v]Tw[v] +
1
2

V∑

v=1

γ[v]e[v]
T

e[v] + ρ
V∑

v,u=1;v �=u

e[v]
T

e[u] (1)

s.t. y = Φ[v]w[v] + b[v]1N + e[v] for v = 1, . . . , V

where y = [y1; . . . ; yN], b[v] are bias terms, γ[v] are positive real constants and
e[v] ∈ R

N are error variables for each view v. The term ρ
∑V

v,u=1;v �=u e
[v]T e[u]

is defined as the coupling term and the regularization parameter ρ > 0 as the
coupling parameter.

Φ[v] ∈ R
N×d

[v]
h is defined as Φ[v] = [ϕ[v](x[v]

1)T ; . . . ;ϕ[v](x[v]
N)T] where ϕ[v] :

R
d[v] → R

d
[v]
h are the feature maps, related to the vth view, which map the

d[v]-dimensional input to a high dimensional feature space. Since this feature
space is high dimensional, and can even be infinite dimensional, the function
ϕ[v](·) is usually not explicitly defined. Instead, the dual model [10, Eq.(10)] is
derived where the function is implicitly defined trough the use of a positive kernel
function K [v] : Rd[v] × R

d[v] → R where K [v](x[v]
i ,x[v]

j) = ϕ[v](x[v]
i)Tϕ[v](x[v]

j).
However, this primal formulation can be used by a Neural Network (NN) as

a loss function to optimize the parameters. Hence, an NN could be used to solve
the problem in the primal, as shown by the neural networks interpretation in
primal and dual by Suykens et al. [16] and as was previously done for kernel
methods e.g. by Zhong and Ghosh [21] for the SVM model [17].

3 Proposed Method

In this section the Weighted Multi-view DNN model (Weighted MV-DNN) is
introduced. The loss function of the proposed DNN is based on the primal for-
mulation of MV LS-SVM (Eq. (1)) where the objectives of different views are
weighted, as well as the coupling term.

The loss function optimized by the Weighted MV-DNN is stated as follows:

min
w[v],e[v]

1
2

V∑

v=1

s[v]
(
w[v]Tw[v] + γ[v]e[v]

T

e[v]
)

+
V∑

v,u=1;v �=u

ρ[v,u]
√

s[v]
√

s[u] e[v]
T

e[u]

(2)
where ρ[v,u] denotes the coupling parameter which can be different for each
pairwise combination of views v and u and for which should hold that 0 ≤ ρ[v,u] ≤
min(γ[v], γ[u]). The reason for this upper bound on the coupling parameter is to
ensure that the objective function does not converge to −∞ for error variables
e[v] belonging to a certain view v, which can happen when ρ[v,u] is significantly
larger than γ[v]. Notice that w[v] are the parameter vectors for the whole DNN.

The proposed model is graphically represented in Fig. 1 and compared to a
graphical representation of the early fusion DNN approach, where the features
from all views are simply concatenated. Notice that it is possible to use another

492 Z. Karevan et al.

model and learning mechanism instead of DNN like e.g. LS-SVM, Convolutional
Neural Networks [11], Deep Belief Networks [8], Restricted Kernel Machines [15]
and so on.

…
Vi

ew
 1

Vi
ew

 2
Vi

ew
 Fe

at
ur

e
Co

nc
at

en
a

on

DN
N

Lo
ss

 fu
nc

on

Predic ons

Real values

Loss

(a) Early fusion DNN

…
Vi

ew
 1

Vi
ew

 2
Vi

ew

DN
N

DN
N

D
N

N

Predic ons

Real values

Predic ons

Real values

Predic ons

Real values

Lo
ss

 fu
nc

on
Lo

ss
 fu

nc
on

Lo
ss

 fu
nc

on
Co

up
lin

g
vi

ew
s

Loss

(b) Weighted Multi-view DNN

Fig. 1. General schemes of early fusion and the proposed method

The weights s[v] for v = 1, . . . , V are added to control the influence of each
view. These weights can be tailored to each specific application and can be
manually determined by an expert, or calculated during a pre-processing step.
Take for example the application of temperature prediction where the different
views represent different neighboring cities. In this example the weights could be

Weighted Multi-view Deep Neural Networks for Weather Forecasting 493

determined by means of the similarity of different cities (views) to the target city,
which could be calculated through a similarity function on the features of each
city. Another example for temperature prediction is where each view represents
a different weather variable (temperature, wind speed, humidity, etc.). In this
example one might have some expert knowledge about which weather variables
influence temperature more than others. In case this expert knowledge is not
available another way to determine the weights is by looking at the performance
of each individual view. In this way the views that have a weak performance can
have a smaller weight than the views that perform well.

The resulting regressor ŷ(·) for an unseen test point xt, with representations
xt

[v] for all views v = 1, . . . , V , is defined as

ŷ(xt) =
1
V

V∑

v=1

β[v]ŷ[v](xt
[v]) (3)

where ŷ[v](·) is the view-specific function estimation based on the obtained w[v]

and e[v]. This last prediction step thus includes another weighting, where the
weighs can be equal to the weights from the training phase, i.e. β[v] = s[v], or
equal to 1 in order to obtain an unweighted averaged prediction.

4 Experiments

4.1 Weather Data

Fig. 2. Weather stations (from Google
maps)

In this paper the data are collected from
the Weather Underground website [1]
which is one of the popular ones in
weather forecasting. The data include real
measurements for weather elements such
as minimum and maximum temperature,
dew point and pressure from the begin-
ning of 2007 until mid 2014 and for 5 cities
including Brussels, Liege, Antwerp, Ams-
terdam and Eindhoven (Fig. 2).

To assess the performance of the pro-
posed method in different weather condi-
tions, the experiments are conducted on two different test sets: one from mid-
November 2013 until mid-December 2013 and the other one from mid-April 2014
to mid-May 2014. The prediction is done on a daily basis and for each test set,
the training data includes daily weather variables of all of the five cities from
the beginning of 2007 until the previous day of the test set. For each location
there are 18 measured weather variables per day.

494 Z. Karevan et al.

4.2 Model Selection

As it was mentioned, in this study we consider each delay as a view. This was
inspired by the fact that Recurrent Neural Networks (RNN) [6], which is a well-
known approach in time-series prediction, splits the features based on the time
delay and take into account each delay as separate input. In this study, the
number of delays that has been taken into account is five; hence the number
of views V is equal to five. By concatenation of the features (early fusion), the
total number of features is equal to 450 (number of views × number of cities
× number of features per day per location). Note that the number of features
in each view is equal to 90 (number of cities × number of features per day per
location).

To find a proper baseline, we evaluated the performance of LS-SVM, RNN
and DNN with two hidden layers. For the experiments we use LSSVMlab1 (in
MATLAB) to deploy LS-SVM as a learning approach and TensorFlow2 (in
Python) to implement basic RNN [6] and DNN. The results in Tables 1 and 2
suggest that the DNN approach outperforms RNN and LS-SVM in most of the
cases. Thus, we deploy DNN as our baseline approach. Note that for LS-SVM,
the tuning hyperparameters are the regularization parameter and the RBF ker-
nel bandwidth which are tuned using cross validation. In RNN and DNN, the
tuning parameters are the number of neurons and the regularization parameters.
To decrease the weighted MV-DNN tuning complexity, the number of neurons
in each layer and the regularization parameter γ[v] for each view is tuned inde-
pendently on each view. Afterwards, the views are coupled based on Eq. (2) and
the ρ[v,u] values for each couple of views are tuned. Note that all parameters are
tuned based on a validation set. The validation set for each test set is defined to
include the data from last year prior to the corresponding test set. Moreover, to
avoid local minima problem, we did the experiments five times. LS-SVM does not
have the local minima problem; nevertheless, we did the experiments five times
to tune the hyperparameters. The results are reported based on the median and
the standard deviation of the Mean Absolute Error (MAE) on the test sets.

In this study we define the weights of the views based on their performance
on the validation set independently. Assuming mse

[v]
val to be the Mean Squared

Error of the view v on the validation set, the weight of this view is defined as
exp(−mse

[v]
val). The weights are further rescaled so that

∑V
v=1 s[v] = V . Thus, a

view that performs well will have a higher corresponding weight. In Fig. 3, the
average weight values for different delays in one to six days ahead prediction are
shown. It can be seen that for short term prediction smaller delays have higher
impact on the prediction while for long term prediction the weights of the views
are more similar.

In Tables 3 and 4 the performance of different multi-view methods are com-
pared. The last two columns show the performance of the proposed method
where weighted average refers to taking a weighted averaged prediction and aver-

1 https://www.esat.kuleuven.be/sista/lssvmlab/.
2 www.tensorflow.org.

https://www.esat.kuleuven.be/sista/lssvmlab/
www.tensorflow.org

Weighted Multi-view Deep Neural Networks for Weather Forecasting 495

Table 1. Median MAE of the predictions in Weather LS-SVM, RNN and DNN with
two hidden layers on Nov/Dec test set

Step ahead Temp. LS-SVM RNN DNN

1 Min 1.84 ± 0.05 1.71± 0.01 1.71± 0.02

Max 1.52 ± 0.01 1.62 ± 0.05 1.37± 0.07

2 Min 1.84 ± 0.02 1.85 ± 0.04 1.81± 0.04

Max 1.85 ± 0.01 1.67± 0.1 1.78 ± 0.08

3 Min 2.23 ± 0.04 1.98 ± 0.02 1.85± 0.011

Max 2.03 ± 0.007 2.06 ± 0.2 1.93± 0.1

4 Min 2.01 ± 0.04 1.76 ± 0.01 1.70± 0.01

Max 2.07 ± 0.009 1.99 ± 0.03 1.73± 0.09

5 Min 2.26 ± 0.1 1.84± 0.008 1.84± 0.08

Max 2.06 ± 0.01 2.17 ± 0.3 1.67± 0.09

6 Min 2.18 ± 0.05 1.89± 0.02 1.95 ± 0.02

Max 2.02 ± 0.01 1.93 ± 0.3 1.76± 0.1

Table 2. Median MAE of the predictions in LS-SVM, RNN and DNN with two hidden
layers on Apr/May test set

Step ahead Temp. LS-SVM RNN DNN

1 Min 1.63± 0.007 1.67± 0.04 1.60±0.01

Max 2.18±0.001 2.25± 0.07 2.37± 0.03

2 Min 2.17 ±0.002 2.59± 0.1 2.10± 0.06

Max 2.40±0.008 2.58± 0.02 2.40±0.08

3 Min 2.37± 0.003 2.24± 0.01 2.10±0.02

Max 2.50± 0.01 2.46±0.01 2.54± 0.06

4 Min 2.59± 0.002 2.29± 0.01 2.17±0.03

Max 3.00± 0.003 2.52± 0.01 2.67± 0.01

5 Min 2.87± 0.004 2.46± 0.02 2.33±0.03

Max 2.94± 0.009 2.51± 0.03 2.70± 0.06

6 Min 3.16± 0.003 2.77± 0.02 2.56± 0.06

Max 2.76± 0.002 2.71±0.02 2.89± 0.06

age to taking an unweighted one (i.e. β[v] = s[v] and β[v] = 1, respectively, for
all v = 1, . . . , V in Eq. (3)). The results yield that Weighted MV-DNN outper-
forms the unweighted version in most test cases. This suggests that considering
weights for different delays can improve the temperature prediction performance.
Unweighted MV-DNN refers to the proposed method with all weights equal to
one. In Fig. 4, the overall performance of Weather Underground, Early fusion
DNN and MV-DNN on both test sets together are compared. The results reveal

496 Z. Karevan et al.

Fig. 3. Weights of different views (delays) for 1 to 6 days ahead in Nov/Dec and
Apr/May data sets

Table 3. Median MAE of the predictions in Unweighted MV-DNN and Weighted
MV-DNN with two hidden layers on Nov/Dec test set

Step ahead Temp. Unweighted
MV-DNN

Weighted MV-DNN
(average)

Weighted MV-DNN
(weighted average)

1 Min 1.58± 0.01 1.51±0.01 1.63 ± 0.02

Max 1.39± 0.01 1.59± 0.002 1.35±0.02

2 Min 1.64±0.01 1.69± 0.002 1.80± 0.02

Max 1.76±0.007 2.00± 0.01 1.89± 0.02

3 Min 1.78±0.005 1.78±0.003 2.07± 0.01

Max 2.06± 0.03 1.97±0.01 1.97± 0.006

4 Min 1.79±0.02 1.84± 0.005 1.85± 0.009

Max 1.80±0.06 1.88± 0.02 1.80±0.03

5 Min 1.90± 0.02 1.75±0.04 1.84± 0.04

Max 1.93± 0.04 1.77±0.01 1.87± 0.1

6 Min 2.18± 0.01 1.88±0.08 1.90± 0.06

Max 1.94± 0.008 1.85±0.07 1.90± 0.05

that the black-box methods are competitive with the state-of-the-art method
used by Weather Underground. Moreover, it is shown that taking into account
each delay as a view and deploying multi-view learning can improve the perfor-
mance.

Weighted Multi-view Deep Neural Networks for Weather Forecasting 497

Table 4. Median MAE of the predictions in Unweighted MV-DNN and Weighted
MV-DNN with two hidden layers on Apr/May test set

Step ahead Temp. Unweighted
MV-DNN

Weighted MV-DNN
(average)

Weighted MV-DNN
(weighted average)

1 Min 1.89± 0.002 2.01± 0.0001 1.67±0.01

Max 2.41± 0.01 2.52± 0.01 2.11±0.009

2 Min 2.22± 0.004 2.17± 0.03 1.96±0.02

Max 2.53± 0.02 2.49± 0.03 2.47±0.02

3 Min 2.29± 0.01 2.28± 0.002 2.06±0.01

Max 2.66± 0.01 2.60± 0.006 2.42±0.0008

4 Min 2.28± 0.006 2.26± 0.02 2.17±0.01

Max 2.65± 0.005 2.74± 0.03 2.56±0.01

5 Min 2.46±0.0006 2.46±0.0002 2.49± 0.004

Max 2.78± 0.01 2.83± 0.03 2.73±0.02

6 Min 2.64± 0.002 2.60± 0.01 2.59±0.002

Max 2.85 ± 0.01 2.87± 0.03 2.75±0.03

Fig. 4. Average MAE of the predictions for Weather Underground, DNN and MV-DNN
on both test set

498 Z. Karevan et al.

5 Conclusion

In this paper we proposed a DNN-based multi-view method which is based on the
weighting of the view-specific objectives and the coupling term. These weights
can be determined by different approaches. In this paper we defined each view
to be the weather variables on a specific delay in the time series. The weights
are determined based on the performance of each view on the validation set,
independently. The results on an application of temperature prediction show
the improvement of the proposed MV-DNN method over an unweighted version
as well as over the early fusion approach.

Acknowledgments. Research supported by Research Council KUL: CoE
PFV/10/002 (OPTEC), PhD/Postdoc grants Flemish Government; FWO: projects:
G0A4917N (Deep restricted kernel machines), G.088114N (Tensor based data similar-
ity), ERC Advanced Grant E-DUALITY (787960).

References

1. www.wunderground.com. Accessed: 10 July 2018
2. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis.

In: ICML, pp. 1247–1255 (2013)
3. Bauer, P., Thorpe, A., Brunet, G.: The quiet revolution of numerical weather

prediction. Nature 525(7567), 47–55 (2015)
4. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1),

1–127 (2009). https://doi.org/10.1561/2200000006
5. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering

via canonical correlation analysis. In: ICML, pp. 129–136 (2009)
6. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
7. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural

networks. Science 313, 504–507 (2006)
8. Hinton, G.E.: What kind of a graphical model is the brain? In: IJCAI, pp. 1765–

1775 (2005)
9. Hotelling, H.: Relations between two sets of variates. Biometrica 28, 321–377 (1936)

10. Houthuys, L., Karevan, Z., Suykens, J.A.K.: Multi-view LS-SVM regression for
black-box temperature prediction in weather forecasting. In: IJCNN, pp. 1102–
1108 (2017)

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.
1109/5.726791

12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–44 (2015)
13. Liu, Y., Zheng, Y., Liang, Y., Liu, S., Rosenblum, D.S.: Urban water quality pre-

diction based on multi-task multi-view learning. In: IJCAI, pp. 2576–2582 (2016)
14. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep

learning. In: ICML, pp. 689–696 (2011)
15. Suykens, J.A.K.: Deep restricted kernel machines using conjugate feature duality.

Neural Comput. 29(8), 2123–2163 (2017)
16. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.:

Least Squares Support Vector Machines. World Scientific (2002)

www.wunderground.com
https://doi.org/10.1561/2200000006
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

Weighted Multi-view Deep Neural Networks for Weather Forecasting 499

17. Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag, New-York
(1995). https://doi.org/10.1007/978-1-4757-3264-1

18. Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation
learning. In: ICML, pp. 1083–1092 (2015)

19. Xu, C., Tao, D., Xu, C.: A survey on multi-view learning. eprint arXiv:1304.5634,
April 2013

20. Zhao, J., Xie, X., Xu, X., Sun, S.: Multi-view learning overview: recent progress
and new challenges. Inf. Fusion 38, 43–54 (2017). https://doi.org/10.1016/j.inffus.
2017.02.007

21. Zhong, S., Ghosh, J.: Decision boundary focused neural network classifier. Intelli-
gent Engineering Systems Through Articial Neural Networks (2000)

22. Zilca, R.D., Bistritz, Y.: Feature concatenation for speaker identification. In:
EUSIPCO pp. 1–4, September 2000

https://doi.org/10.1007/978-1-4757-3264-1
http://arxiv.org/abs/1304.5634
https://doi.org/10.1016/j.inffus.2017.02.007
https://doi.org/10.1016/j.inffus.2017.02.007

Combining Articulatory Features
with End-to-End Learning
in Speech Recognition

Leyuan Qu(&), Cornelius Weber, Egor Lakomkin, Johannes Twiefel,
and Stefan Wermter

Department of Informatics, University of Hamburg,
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany

{qu,weber,lakomkin,twiefel,

wermter}@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/WTM

Abstract. End-to-end neural networks have shown promising results on large
vocabulary continuous speech recognition (LVCSR) systems. However, it is
challenging to integrate domain knowledge into such systems. Specifically,
articulatory features (AFs) which are inspired by the human speech production
mechanism can help in speech recognition. This paper presents two approaches
to incorporate domain knowledge into end-to-end training: (a) fine-tuning net-
works which reuse hidden layer representations of AF extractors as input for
ASR tasks; (b) progressive networks which combine articulatory knowledge by
lateral connections from AF extractors. We evaluate the proposed approaches on
the speech Wall Street Journal corpus and test on the eval92 standard evaluation
dataset. Results show that both fine-tuning and progressive networks can inte-
grate articulatory information into end-to-end learning and outperform previous
systems.

Keywords: Articulatory features � Automatic speech recognition
Deep neural networks (DNN) � End-to-end learning

1 Introduction

End-to-end learning has been successfully applied in many domains, such as hand-
writing recognition [1], neural machine translation [2], scene text recognition [3], and
so on. Furthermore, end-to-end models have become popular in automatic speech
recognition (ASR) tasks. The conventional ASR pipeline consists of many different
components: the acoustic model, pronunciation model and language model. These
components are separate and require lots of human expertise, e.g. a handcrafted pro-
nunciation dictionary and designed senone states for Hidden Markov Models (HMMs).
Additionally, the training targets and alignment information needed for neural networks
in a DNN-HMM paradigm can only be obtained from another GMM-HMMs (GMM is
short for Gaussian Mixture Model) model which is trained beforehand. Such a pipeline
requires not only multiple training stages but also different optimization functions [4].

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 500–510, 2018.
https://doi.org/10.1007/978-3-030-01424-7_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_49&domain=pdf

To simplify this complex paradigm, end-to-end learning approaches [4–6, 11–13]
have been proposed to replace hand-designed feature engineering and jointly learn all
components in a single architecture. These approaches can be transformed into com-
putational flow graphs which can be optimized by backpropagation in a simple end-to-
end training process. End-to-end models are able to naturally handle sequences of
arbitrary lengths and directly optimize the word error rate. However, it is challenging to
integrate domain knowledge into these models. Therefore, the goal of this study is to
combine articulatory features into end-to-end learning.

Articulatory features (AFs), also known as phonological features, phonological
attributes or distinctive phonetic features, are used to represent the movement of dif-
ferent articulators, such as lips and tongue, during speech production. AFs can be
robustly estimated from speech by statistical classifiers, such as GMM and neural
networks [7]. A series of studies have demonstrated that AFs can improve the per-
formance of ASR systems by systematically accounting for coarticulation, speaking
styles and other variability, especially in a noisy scenario [8]. Conventional methods to
extract AFs from speech require precise boundary transcription. To get this boundary
information, the usual practice is using forced alignments generated by a GMM-HMMs
model [9], or labeling data manually at a frame-level [10], which are complex and time-
consuming.

Our hypothesis in this paper is that AFs can provide useful and complementary
representations that cannot be learned automatically by an end-to-end architecture. This
paper explores two approaches to integrate domain knowledge to improve end-to-end
model performance. Our contribution is two-fold: In the first step, we train a bank of
AF extractors using Connectionist Temporal Classification (CTC) in an end-to-end
way, which does not require precise phone or frame-level boundary information; In the
second step, we propose two approaches (fine-tuning networks and progressive net-
works) to integrate domain knowledge (articulatory features) into end-to-end learning
in speech recognition tasks.

2 Related Work

2.1 End-to-End Learning in Speech Recognition

At present, end-to-end learning in ASR can be mainly divided into two parts: CTC-
based approaches and encoder-decoder models. For the CTC, Graves et al. [5] intro-
duced the CTC loss function which removes the alignment constraint by introducing a
“blank” label and allows to train a sequence labeling task directly without alignment
and pre-segmentation. Miao et al. [4] explored a weighted finite-state transducers-
decoding method to incorporate lexicons and language models in CTC objective
function-based models. Recently, Zweig et al. [6] presented an iterated CTC approach
on the NIST 2000 conversational telephone speech evaluation set which significantly
improved performance over previous systems. For the encoder-decoder, Chorowski
et al. [11] introduced an attention mechanism into speech recognition, in which the
authors combined both content and localization information to recognize a longer
utterance. Bahdanau et al. [12] replaced HMMs with an attention-based recurrent

Combining Articulatory Features with End-to-End Learning 501

sequence generator (ARSG) on the LVCSR task. Unlike CTC-based methods, the
ARSG system can learn a language model implicitly. Chan et al. [13] presented a
Listen, Attend and Spell system to transcribe speech to characters directly. They
reported 10.3% word error rate (WER) with rescoring compared to the-state-of-the-art
WER of 8.0% achieved by a convolutional neural network and long short-term
memory DNN-HMMs model [20] on 2000 h Google voice search dataset.

2.2 Domain Knowledge Integration in Speech Recognition

There are lots of approaches focusing on integrating domain knowledge to improve
ASR performance, such as in feature engineering: mel-frequency cepstral coefficients
[25] and vocal tract length normalization [26], and in algorithm optimization:
sequence-discriminative training [27]. Here, we only consider studies that involve
linguistic and phonetic knowledge.

Lee et al. [14] proposed automatic speech attribute transcription (ASAT) which is a
new detected-based speech recognition paradigm. Compared to conventional ASR top-
down paradigms, ASAT is bottom-up and coincident with the mechanism of humans
perceiving and producing speech. To further improve phonological feature detection
accuracy, Yu et al. [9] replaced one hidden layer multi-layer perceptrons by DNNs
when building attribute detectors. Based on the high attribute detection precision,
excellent phoneme estimate accuracy was obtained on the WSJ0 benchmark. Sinis-
calchi et al. [15] integrated acoustic-phonetic information into lattice rescoring.
Inspired by shared phonetic knowledge among different languages, Siniscalchi et al.
[16] designed a universal set of phones and used the set to improve the performance of
cross-language phone recognition. Pitch accent was proposed by Ananthakrishnan
et al. [17] to re-score the N-best results outputted from a standard ASR system. At
present, the works integrating knowledge into ASR are mostly based on HMM hybrid
architectures. Our approaches mainly focus on combining domain knowledge with
neural end-to-end ASR systems.

3 Model Architecture

In this section, we present the details of AF extractors, fine-tuning networks and
progressive networks.

3.1 AF Extractor

Figure 1 shows the flow diagram to get AF-level transcriptions. First, we split words
into phonemes according to the CMU dict1. Then, we generate AFs transcriptions
according to the mapping [9] (see Table 3 in the Appendix). The AF-level transcrip-
tions will be used as training targets to build the AF extractors.

1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

502 L. Qu et al.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Eight AF extractors were built: place, manner, anterior, back, continuant, round,
tense and voiced. The AF extractor architecture is shown in Fig. 2(a), which begins
with two layers of 2D convolutions, followed by five layers of gated recurrent units
(GRU), and the output layer is a fully connected layer. We train each extractor with the

Fig. 1. Flowchart to convert word-level transcriptions of the phrase “of course” to AF labels.

Fig. 2. Illustration of (a) AF extractor, (b) ASR baseline system, (c) and (d) fine-tuning
networks and (e) progressive networks. The ASR baseline system is based on Deep Speech 2
[19]. Note: frozen (dotted line) without backpropagation and weight updating.

Combining Articulatory Features with End-to-End Learning 503

CTC and additional two symbols (blank and space). For example, for ‘voiced’, the
target labels are {voiced, other, space, blank}.

3.2 Fine-Tuning Networks

Fine-tuning is a process to transfer what a neural network learned on a given task to a
second task. In this paper, AF extractors that have been learnt in a first task can be
treated as a fixed front-end which transforms spectrograms to AFs. Hidden layer
outputs from different AF extractors will be combined, then fed into another neural
network for the second task (ASR). Figure 2 (c) and (d) show the fine-tuning networks
used in this study. The details of AF extractors (place, manner, anterior, back, con-
tinuant, round, tense and voiced) are shown in Fig. 2(a). We concatenate the fourth or
fifth GRU layer output of all extractors as a vector, namely fine-tuning networks 1
(Fig. 2(c)) and fine-tuning networks 2 (Fig. 2(d)) respectively, and feed it into a 5
bidirectional GRU-layer neural network for the ASR task.

3.3 Progressive Networks

Progressive networks with lateral connections from previous tasks can accelerate
learning speed and avoid forgetting [18]. They not only learn relevant features but also
acquire different representations from previous learned tasks, which may be irrelevant
to the target task. The scheme of progressive networks is shown in Fig. 2(e). In this
paper, there are no connections between the AF extractors and they are trained in
parallel and independently, then linearly combined. The source task is AF extraction
from speech signals and the target task is speech recognition. We use the following
formula to compute outputs of layer i in ASR tasks:

hi ¼ Wiðhi�1 þ
X8

j¼1

k j
i�1Þ ð1Þ

where hi is the output of layer i of the ASR system, k j
i is the output of layer i of AF

extractor j, Wi 2 Rni�ni�1 is the weight matrix of layer i of ASR systems, with ni the
number of units at layer i. Layer hi receives input from both hi�1 and k j

i�1 via Eq. (1).

4 Experiments

In this section, we present the dataset and the experimental setup.

4.1 Evaluation Metric

In this paper, we use the word error rate (WER) to evaluate model performance. WER
quantifies how many elementary operations are required to transform the generated

504 L. Qu et al.

output sequence of the network into the correct target sequence. It is calculated as
follows:

WER ¼ SþDþ I
N

ð2Þ

where S is the number of substitutions, D is the number of deletions and I is the number
of insertions. N is the total number of words in the reference.

4.2 Data

We used the Wall Street Journal (WSJ) [22] speech corpus both for AF and ASR
experiments. The training set is the 81 h ‘train-si284’ with about 37 K sentences. We
used the ‘dev93’ development set for validation and hyper-parameter optimization and
report the final performance on the ‘eval92’ test set.

4.3 Training

The baseline ASR system (shown in Fig. 2(b)) used in this paper is similar to the Deep
Speech 2 system [19]. The first two layers of all architectures are 2D (frequency and
time domains) convolutions. The convolution layers not only reduce temporal vari-
ability in the time domain but also normalize speaker variance in the frequency domain
[23]. These are followed by GRU layers. It has been shown that GRU cells achieve
comparable performance to Long Short-Term Memory (LSTM) but GRU cells are
faster and easier to train [21]. Finally, we pass the output from the GRU cells to a fully-
connected layer.

The input features for all models are spectrograms derived from the raw audio files,
with 20 ms window size and 10 ms window stride. All neural networks are trained
with the CTC, using the stochastic gradient descent optimization strategy along with a
mini-batches of 20 utterances per batch. We use 40 epochs and pick the model that
performs best on the development set to evaluate on the test set. Learning rates are
chosen from [1e−4, 6e−4], and a learning rate annealing algorithm is used by the value
of 1.1 after each epoch. The momentum is 0.9. Batch normalization is used to optimize
models and accelerate training on hidden layers. All architectures described in this
paper do not use language models and add ‘space’ to segment outputs into words. The
output alphabet for ASR experiments consists of 29 classes (a, b, c, …, z, space,
apostrophe, blank). Once all AF extractors have been built, we freeze all extractor
weights during ASR training. All models are trained on the corpus described in
Sect. 4.1.

5 Results and Discussion

In this section, we present the performance of AF extractors and ASR systems using
fine-tuning networks and progressive networks. Table 1 shows the error rate of dif-
ferent AF extractors trained on the 81 h ‘train-si284’ training set. All error rates are less

Combining Articulatory Features with End-to-End Learning 505

than 10%, from which we conclude that articulatory features can be robustly detected
from speech signals using the CTC loss function without requiring boundary alignment
information.

Table 2 lists the results from our ASR experiments and some results as reported in
previous approaches using the CTC loss function on the WSJ benchmark. The fine-
tuning network 1 (using 4-layer GRU from AF extractors) achieves a 33.2% WER
which is worse than the baseline model (32.4%). However, when concatenating 5
layers of output from all AF extractors, the fine-tuning network 2 performs both better
than the fine-tuning network 1 and the baseline system. We hypothesize that the deeper
fine-tuning network 2 can capture more invariant and effective articulatory represen-
tation than the architecture with shallow layers.

Table 1. Results of articulatory feature extractors at a phoneme-level.

Articulatory Features Error Rate (%)

Place Vowel
Fricative
Nasal

Stop
Approximant

9.4

Manner Coronal
High
Dental
Glottal
Labial

Low
Mid
Retroflex
Velar

8.6

Others Anterior 5.2
Back 9.2
Continuant 4.0
Round 9.1
Tense 8.7
Voiced 4.0

Table 2. Word Error Rate (WER) on the Wall Street Journal Corpus “eval92 20 k” evaluation
set. All models are trained with CTC loss function. No language models are used but the CTC-
lexicon model [4] uses a lexicon.

Model WER (%)

RNN-CTC [5] 30.1
BDRNN-CTC [24] 35.8
CTC-lexicon [4] 26.9
Baseline 32.4
Fine-tuning network 1 33.2
Fine-tuning network 2 31.6
Progressive network 28.6

506 L. Qu et al.

The progressive network performs best in all our approaches achieving 28.6%
WER. The progressive network can avoid forgetting and provide some complementary
articulatory representations which can be learned by end-to-end architectures.

Table 3 shows the details of eight AF extractors (Manner, Place, Anterior, Back,
Continuant, Round, Tense, Voiced). Output units states the number of units in each AF
extractor output layer. The phoneme-level transcriptions shown in the last column can
be transformed into AF-level labels according to the flow diagram shown in Fig. 1
when building AF extractors.

Table 3. The mapping of articulatory features and phonemes used in this paper [9].

AF
extractor
number

Output
units

Category Attribute Phonemes

1 39 Manner Vowel iy ih eh ey ae aa aw ay ah ao oy ow uh
uw er

Fricative jh ch s sh z zh f th v dh hh
Nasal m n ng
Stop b d g p t k
Approximant w y l r

2 41 Place Coronal d l n s t z
High ch ih iy jh sh uh uw y ow g k ng
Dental dh th
Glottal hh
Labial b f m p v w
Low aa ae aw ay oy
Mid ah eh ey ow
Retroflex er r
Velar g k ng

3 14 Other Anterior b d dh f l m n p s t th v z w
4 11 Back ay aa ah ao aw ow oy uh uw g k
5 26 Continuant aa ae ah ao aw ay dh eh er r ey l f ih iy

oy ow s sh th uh uw v w y z
6 10 Round aw ow uw ao uh v y oy r w
7 19 Tense aa ae ao aw ay ey iy ow oy uw ch s sh

f th p t k hh
8 29 Voiced aa ae ah aw ay ao b d dh eh er ey g ih

iy jh l m n ng ow oy r uh uw v w y z

Combining Articulatory Features with End-to-End Learning 507

To examine the approaches we proposed and make a fair comparison, we cite some
previous approaches which use CTC and an end-to-end architecture, and only compare
the ASR performance without additional language models. Compared to prior
approaches, the final performance of our progressive network (28.6%) is better than the
bidirectional RNN model [19] (35.8%) and the RNN-CTC approach (30.1%). It is not
as good as the CTC lexicon system [4] (26.9%) which uses a lexicon in decoding and
the lexicon helps to correct the output to correctly spelled words but we do not.

6 Conclusions and Future Work

In this work, we have presented two approaches to combine domain knowledge AFs
into end-to-end learning. First, fine-tuning neural networks are proposed to concatenate
hidden layer outputs of AF extractors as inputs to another RNN for ASR. Second, a
progressive neural network with lateral connections from AF extractors is proposed to
integrate articulatory knowledge into an end-to-end architecture. Results show that both
approaches can effectively incorporate articulatory information into end-to-end learn-
ing. Furthermore, the progressive neural network brings a significant improvement
compared to the baseline system and to previous works.

Different speech attributes play different roles during speech production. Future
work will investigate the weighted combination approach to automatically learn the
contributions of different speech attributes. Furthermore, we are interested to integrate
more domain knowledge into end-to-end learning under noisy and reverberation sce-
narios. The integration of AF improves ASR performance while increasing computa-
tion and time complexity. Future work will also focus on jointly training different AF
extractors with one network to decrease computation and time complexity.

Acknowledgements. The authors gratefully acknowledge partial support from the China
Scholarship Council (CSC), the German Research Foundation DFG under project CML (TRR
169), and the European Union under project SECURE (No. 642667).

References

1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. In: Proceedings of the ICLR (2015)

3. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: Proceedings of
ICCV-2011, pp. 1457–1464 (2011)

4. Miao, Y., Metze, F.: End-to-End Architectures for Speech Recognition. In: Watanabe, S.,
Delcroix, M., Metze, F., Hershey, J. (eds.) New Era for Robust Speech Recognition,
pp. 299–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64680-0_13

5. Graves, A., Fernández, S., Gomez, F., et al.: Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In: Proceedings of ICML-2006,
pp. 369–376 (2006)

508 L. Qu et al.

http://dx.doi.org/10.1007/978-3-319-64680-0_13

6. Zweig, G., Yu, C., Droppo, J., et al.: Advances in all-neural speech recognition. In:
Proceedings of ICASSP-2017, pp. 4805–4809 (2017)

7. King, S., Taylor, P.: Detection of phonological features in continuous speech using neural
networks. Comput. Speech Lang. 14(4), 333–353 (2000)

8. Kirchhoff, K.: Robust speech recognition using articulatory information. Ph.D. thesis,
University of Bielefeld (1999)

9. Yu, D., Siniscalchi, S.M., Deng, L., et al.: Boosting attribute and phone estimation
accuracies with deep neural networks for detection-based speech recognition. In: Proceed-
ings of ICASSP-2012, pp. 4169–4172 (2012)

10. Sak, H., Senior, A., Rao, K., et al.: Learning acoustic frame labelling for speech recognition
with recurrent neural networks. In: Proceedings of ICASSP-2015, pp. 4280–4284 (2015)

11. Chorowski, J.K., Bahdanau, D., Serdyuk, D., et al.: Attention-based models for speech
recognition. In: Advances in Neural Information Processing Systems, pp. 577–585 (2015)

12. Bahdanau, D., Chorowski, J., Serdyuk, D., et al.: End-to-end attention-based large
vocabulary speech recognition. In: Proceedings of ICASSP-2016, pp. 4945–4949 (2016)

13. Chan, W., Jaitly, N., Le, Q., et al.: Listen, attend and spell: a neural network for large
vocabulary conversational speech recognition. In: Proceedings of ICASSP-2016, pp. 4960–
4964 (2016)

14. Lee, C.-H., et al.: An overview on automatic speech attribute transcription (ASAT). In:
Proceedings of INTERSPEECH-2007, pp. 1825–1828 (2007)

15. Siniscalchi, S.M., Lee, C.-H.: A study on integrating acoustic-phonetic information into
lattice rescoring for automatic speech recognition. Speech Commun. 51, 1139–1153 (2009)

16. Siniscalchi, S.M., Lyu, D.C., Svendsen, T., et al.: Experiments on cross-language attribute
detection and phone recognition with minimal target-specific training data. IEEE Trans.
Audio Speech Lang. Process. 20(3), 875–887 (2012)

17. Ananthakrishnan, S., Narayanan, S.: Improved speech recognition using acoustic and lexical
correlates of pitch accent in a n-best rescoring framework. In: Proceedings of ICASSP-2007,
vol. 4, pp. IV-873–IV-876 (2007)

18. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., et al.: Progressive neural networks. arXiv
preprint arXiv:1606.04671 (2016)

19. Amodei, D., Ananthanarayanan, S., Anubhai, R., et al.: Deep speech 2: end-to-end speech
recognition in English and Mandarin. In: Proceedings of ICML-2016, pp. 173–182 (2016)

20. Sainath, T.N., Vinyals,. O., Senior, A., et al.: Convolutional, long short-term memory, fully
connected deep neural networks. In: Proceedings of ICASSP-2015, pp. 4580–4584 (2015)

21. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network
architectures. In: Proceedings of ICML-2015, pp. 2342–2350 (2015)

22. Paul, D.B., Baker, J.M.: The design for the wall street journal-based CSR corpus. In:
Proceedings of the Workshop on Speech and Natural Language, pp. 357–362 (1992)

23. Abdel-Hamid, O., Mohamed, A., Jiang, H., et al.: Applying convolutional neural networks
concepts to hybrid NN-HMM model for speech recognition. In: Proceedings of ICASSP-
2012, pp. 4277–4280 (2012)

24. Hannun, A.Y., Maas, A.L., Jurafsky, D., et al.: First-pass large vocabulary continuous
speech recognition using bi-directional recurrent DNNs. arXiv preprint arXiv:1408.2873
(2014)

Combining Articulatory Features with End-to-End Learning 509

http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1408.2873

25. Davis, S., Mermelstein, P.: Comparison of parametric representations for monosyllabic word
recognition in continuously spoken sentences. In: Proceedings of ICASSP-2015, pp. 357–
366 (1980)

26. Lee, L., Rose, R.: A frequency warping approach to speaker normalization. IEEE Trans.
Speech Audio Process. 6(1), 49–60 (1998)

27. Veselý, K., Ghoshal, A., Burget, L., et al.: Sequence-discriminative training of deep neural
networks. In: Proceedings of INTERSPEECH-2013, pp. 2345–2349 (2013)

510 L. Qu et al.

Estimation of Air Quality Index
from Seasonal Trends Using Deep

Neural Network

Arjun Sharma, Anirban Mitra, Sumit Sharma, and Sudip Roy(B)

CoDA Laboratory, Department of Computer Science and Engineering, IIT Roorkee,
Roorkee, India

arjunjamdagni@gmail.com, anbanmta@gmail.com, sumitsharma1825@gmail.com,
sudiproy.fcs@iitr.ac.in

Abstract. Growing economy of a country is actually leading to harm
for its atmosphere. Due to increase in the number of vehicles and indus-
trial development in or around a city, air pollution has also escalated,
which has started affecting health of the citizens. Therefore, the level of
air pollution of a city needs to be monitored regularly in real-time to
maintain the air quality. The state of the air of a city is described by a
dimensionless value known as air quality index (AQI). In order to find a
pattern from the time-series data, several techniques have been reported
in literature such as linear regression, support vector machine, neural
network. In this paper, we propose a method based on deep neural net-
work architecture namely recurrent neural network (RNN) and memory
cell called as long-short-term-memory (LSTM) for estimation of AQI of a
city on future dates using the seasonal trends of the recorded time-series
data. Simulation results confirm that the proposed method outperforms
in terms of both root mean square error and Min/Max aggregation of
AQI values compared to a state-of-the-art technique of AQI estimation.

Keywords: Air pollution · Air quality index · Deep neural network
Long-short-term-memory · Recurrent neural network

1 Introduction

Air pollution occurs when harmful and/or excessive quantities of gases and par-
ticulates are released into the atmosphere of a city. Particularly, the excessive
presence of NO, CO, O3, SO2, NH4, NOx, PM10, PM2.5, etc. in the air causes
air pollution in a city. There are many hazardous biological and ecological effects
of air pollution like lung-cancer, asthma, skin-diseases, allergic reactions, smog,
acid-rain, etc. [6,7,12,19]. A report of world health organization (WHO) in 2000
states that nearly 2.5% to 11% of annual death in Europe happened due to air
pollution [1]. Another survey by Numbeo revealed that New Delhi in India is one
of the most polluted cities in the world ranking at 14 [4]. It was also reported
that around eight people die every day in New Delhi due to air pollution [2].
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 511–521, 2018.
https://doi.org/10.1007/978-3-030-01424-7_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_50&domain=pdf

512 A. Sharma et al.

A significant increase in the number of vehicles and the number of factories is
observed in recent years and this trend is expected to persist in near future.

In order to reduce the atmospheric pollution level of a region, it is required
to develop a reliable monitoring system. Among different indices used in air-
quality monitoring systems, air quality index (AQI) [17] is widely used as a
metric based on some specific pollutants to estimate the air pollution level of a
city. The higher the value of AQI, the higher is the air pollution level. There are
different methods to calculate the AQI of a city using the choice of pollutants
(parameters) and the methods to combine their concentration levels.

In this paper, we present a method for estimation of AQI of a city using a
recurrent neural network (RNN) based model and further it is integrated with a
long-short-term-memory (LSTM) for better prediction of AQI, where LSTM is
used to memorize the already ‘seen’ data. As a case study, we choose a location
called R. K. Puram of New Delhi, India, for which we got some available data
of concentration levels of 10 pollutants to estimate the AQI.

The remainder of the paper is organized as follows. Sect. 2 provides a brief
survey of related previous work. Motivation and problem statement are presented
in Sect. 3. The proposed method for AQI estimation is discussed in Sect. 4. Sim-
ulation results for performance evaluation are provided in Sect. 5 and finally, the
paper is concluded in Sect. 6.

2 Related Previous Work

In literature, it is found that AQI is computed using the concentration levels of
different pollutants and those pollutants are called as parameters. A recent work
on calculating AQI from the concentrations of various parameters is reported
by Youping et al. [23]. In order to study the adverse effects of air pollution
on human health, Georgieva et al. [11] provided a relationship between AQI
and human health with the help of some health descriptors. Furthermore, some
efforts have also been reported on different learning based techniques to predict
the value of AQI from the available concentration levels of some parameters.
Kumar et al. [16] proposed a linear regression based technique for predicting
AQI from the available concentration levels of some parameters. Zhang et al. [24]
purposed another technique based on random forest to predict the AQI from the
voting of each and every tree present in the forest. A support vector machine
(SVM) based technique has been proposed by Saxena et al. [20] to predict the
concentration levels of SO2, NO2, PM2.5 and/or PM10 as SVM can segregate
the datasets by the best hyperplane. Ganesh et al. [8] presented a multiple linear
regression based technique to build the relationship between dependent variables
and independent variables of AQI estimation, in which support vector regression
analysis is used for forecasting the AQI. Song et al. [21] provided the decision and
correlation coefficients to predict the AQI values considering some relationships
among the parameters. Ganesh et al. [9] presented a fuzzy interface system to
predict the AQI. Kang et al. [14] proposed a three-tier neural network optimized
by annealing algorithm to predict the AQI. Yang et al. [22] described a Gaussian
Plume model on the basis of neural network, in which they used multi-layer
neural network to estimate the AQI in real-time. Kok et al. [15] proposed a

Estimation of AQI from Seasonal Trends Using DNN 513

SVM regression and LSTM based classification technique for AQI prediction,
whereas Hajek et al. [18] proposed hierarchical regression models to predict AQIs
to achieve low prediction errors.

3 Motivation and Problem Statement

Here, we discuss about the motivation and the problem statement of this work.

3.1 Motivation

So far, all the previous work are based on the some AQI values known before-
hand, which basically depends on the supervised learning technique. However,
no integrated approach has been reported to estimate the necessary parameter
values for AQI estimation from its time-series data followed by estimating AQI
from the predicted concentration levels of the parameters. Hence, the research
question is how to predict the future values of the AQI given the input parame-
ters as well as the previous trends of AQIs of the same location.

Recurrent neural network (RNN) has been found to be impressive in process-
ing the sequential data, which exhibits some temporal sequence and whose value
at each time-step depends on the context and requires remembering the context
present in the data at the previous time-steps [10]. Unlike the feed-forward neu-
ral network, in which output of the network depends only on the current input
values, in recurrent nets the output value at each time-step depends on the cur-
rent input as well as the internal state of the network, which is a function of the
data seen so far in the previous time-steps [10]. In this context, long-short-term-
memory (LSTM) was introduced by Hochreiter and Schmidhuber to primarily
solve the long-term dependency problems [10]. It is a popular variant of recur-
rent nets and facilitates learning as well as forgetting of the context present in
the data using its gating mechanism, which fits perfectly well for modeling our
aforementioned task [10]. Hence, we found LSTMs are suitable for learning the
time-series pattern present in the data and predicting the future values of the
AQI of a city. This motivates us to consider the following problem statement.

3.2 Problem Statement

Consider that the concentration levels of ten atmospheric pollutants (parame-
ters) namely ammonia (NH4), benzene (C6H6), carbon monoxide (CO), nitric
oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), ozone(O3),
PM10, PM2.5 and sulfur dioxide (SO2) are given as the inputs. We need to
the predict the AQIs for one month after training the model by the transformed
input AQIs obtained from the input concentration levels of the parameters con-
sidered. The problem is to develop such a model using RNN and LSTM to
predict the future values of the AQI of a city. The main objective of this work is
to achieve more precise AQI value of a location by considering seasonal pattern
and targeted number of memory cells of LSTM along with a particularly suitable
number of neurons.

514 A. Sharma et al.

4 Proposed Method for Estimation of AQI

Air quality index (AQI) is the measure of air pollution present in the environ-
ment in a city and its impact on the lives of citizens. AQI is calculated from
the concentration levels of the pollutants and the corresponding sub-indices.
Estimation of AQI is a quantification that converts air pollution parameters
(concentration levels of pollutants) into a single number. The final calculation
of AQI (I) involves two steps (a) formation of sub-indices and (b) aggregation
of calculated sub-indices, as depicted in Fig. 1.

Sub-Index of X1

Sub-Index of X2

...

...

...
Sub-Index of Xn

AQI

Concentrations of
Pollutants

Sub-Index Aggregation

Step 1 Step 2

Fig. 1. Estimation of Air Quality Index (AQI).

4.1 Formation of Sub-indices (Step 1)

A sub-index of a pollutant is the weight calculated from the concentration levels
of the pollutant (Cp). The sub-index Ii [13,17] of a pollutant Xi is calculated

as Ii =
[

IHI−ILO

BHI−BLO
(Cp −BLO)

]
+ ILO, where BHI is a breakpoint concentration

level of the pollutant Xi, which can be greater or equal to Cp, BLO is another
breakpoint concentration level of the same pollutant Xi that can be smaller or
equal to Cp, IHI is the AQI value corresponding to BHI and ILO is the AQI
value corresponding to BLO.

4.2 Aggregation of Sub-indices (Step 2)

The calculated sub-indices for each of the pollutants are aggregated to obtain
the overall AQI. There are two different ways for this aggregation to estimate
the AQI (I) value as mentioned below.

a Root Mean-Squared Error (RMSE): Here, first, the squares of all sub-indices
are calculated and then the mean of all these squared values is obtained
followed by the square-root over that mean is taken. This root value is the
overall AQI (I) estimated as I =

√∑n
i=1 Ii, where Ii is the sub-index of

pollutant Xi and there are n such pollutants.

Estimation of AQI from Seasonal Trends Using DNN 515

b Min/Max Operator: Here, the overall AQI (I) is calculated either by taking
maximum or minimum among the sub-indices of the n parameters. Hence,
I = Max(I1, I2, I3, . . . , In) or I = Min(I1, I2, I3, . . . , In), where Ii is the
sub-index of pollutant Xi.

After the second step (Step 2), the overall AQI of that place is estimated.
This AQI is used to find the air quality status of that place and to decide whether
it is polluted or not.

4.3 Proposed Models

In this paper, we propose two methods to predict the AQI values of a location.
One method is called auto-regressive integrated moving average model (ARIMA
model) to calculate the RMSE value of AQI. Whereas, the other one uses a
modified recurrent neural network (RNN with 120 LSTM layers) for calculating
the RMSE value of AQI and called as RNN-based model.

4.4 ARIMA Model

The auto-regressive integrated moving average (ARIMA) model is a well-used
time-series prediction model for non-stationary and non-seasonal time-series
data. The auto-regressive (AR) part expresses the next outcome of the time-
series as a linear regression of previous observations and an error term. The
moving average (MA) part considers the errors in predicting past outcomes as
a linear combination to estimate the next step. Whereas, the term ‘integrated’
refers to the adding of error terms and differentiated value in the prediction of
next step. It is often expressed as ARIMA(p, d, q), where p and q are orders
of AR and MA models, respectively, while d is the degree of differentiation. We
keep the values of p, d and q as 1, 1 and 0, respectively, and use auto-correlation
function to estimate the values of p and q. Logarithmic function is used to scale
down the original concentration levels. Only the months from the seasonal cycles
are used in this prediction of AQI values.

4.5 RNN-Based Model

The recurrent neural network (RNN) has been used to feed the time-series data
of certain pollutant concentration levels with specific architecture to obtain the
concentration levels for future. This will, in turn, be used to evaluate the esti-
mated values of AQI for future.

4.6 Seasonal Data Re-configuring

As a case study, we have considered New Delhi, India as the region of interest
and hence, the weather pattern is split into some clear partitions. As there are
primarily three seasons in India, this work considers parameters mentioned for
R. K. Puram, New Delhi in the year of 2016, while taking the monthly average of
those parameters. It was observed that the patterns of the concentration levels of
the pollutants are similar in the seasonal groups as follows: (a) winter consists of

516 A. Sharma et al.

November, December, January, February; (b) neutral consists of March, April,
September, October; and (c) summer consists of May, June, July, August.

Figure 2(a) and (b) demonstrate the monthly average trends of two pollutants
CO and PM2.5, respectively, for R. K. Puram, New Delhi, India in 2016. It is
reflected that winter months exhibit the high concentration levels; neutral season
follows moderate concentrations and summer observes low values of both these
parameters (CO and PM2.5). Similar patterns are observed for other parameters
as well as mentioned in Sect. 3.2, where the concentration trends are clearly
differentiable. Based on these observations, seasons are primarily tuned into
well-formed-cycles. Then the concentration levels of all the parameters on the
days of a month are estimated based on the corresponding previous cycle(s).

Fig. 2. Monthly average trends of (a) CO and (b) PM2.5 for R. K. Puram, New Delhi,
India in 2016.

4.7 Architecture of RNN-Layer

The recurrent neural network (RNN) is a widely used approach in time-
series forecasting, where some trend is repeated. It excels, especially, where
inputs and/or outputs are inter-dependent by maintaining a sequence of mem-
ory referred to as long-short-term-memory (LSTM) of the trend calculated
(or ‘seen’) so far. LSTM adds the capability of keeping or losing information
to/from series of data passed on RNNs using three types of gates namely
input, forget and output. They add up the weighted multiplications of input
data and output of the previous cell passed through the sigmoid function.
Weights and biases are specific to the type of the gates. An input gate (It)
is defined as It = g(Wxixt + WhiPt−1 + bi), a forget gate (Ft) is defined
as Ft = g(Wxfxt + WhfPt−1 + bf) and an output gate (Ot) is defined as
Ot = g(Wxoxt+WhoPt−1+bo), where It, Ft and Ot are input, forget and output
gate outputs, respectively, g is a sigmoid function, Pt−1 is the (t− 1)th cell out-
put and xt is tth input. The new cell state is achieved by St = FtSt−1 + ItSint

,
where Sint

= tanh(Wxcxt +WhcPt−1 + bSin
), St−1 is previous cell state, Wx∗ is

input weight, Wh∗ is previous layer weight, b∗ is bias. The current cell output is
obtained as Pt = Ottanh(St).

Estimation of AQI from Seasonal Trends Using DNN 517

Fig. 3. (a) Overall architecture of RNN-based model and (b) LSTM cell architecture.

Figure 3(a) shows the entire architecture of the RNN-LSTM model, while
Fig. 3(b) presents the architecture of a LSTM cell. As shown in Fig. 3(a), a
sequential model is built having around 120 LSTM cells (one for each day of
training data cycle of four months in a season), one hidden layer, one dense layer
at the end. The output of the RNN-based model is then passed into the first
step of AQI estimation (Step 1), which computes the sub-indices for the same
place. Then the second step of AQI estimation (Step 2) is performed to com-
pute the overall AQI of the place. The mean error is optimized using RMSProp
optimizer [5]. The other specifications of the proposed RNN-LSTM model used
to predict the AQI of the next month of a place are given in Table 1.

Table 1. Specifications of the proposed RNN-LSTM model.

Specification Values

LSTM units 120

Hidden layer 1

Dense layer 1

Output layers 1

Batch size 30

Epoch 50

5 Simulation Results

In this section, we discuss about the input data used for training and testing
of the proposed model and the comparative analysis of the simulation results
followed by discussions.

518 A. Sharma et al.

5.1 Input Dataset

The central pollution control board (CPCB) of India acquires the data from
the sub-station of R. K. Puram New Delhi, during the period starting from 1st

January 2015 to 31st December 2017 [3]. This data has been collected for all the
ten parameters for AQI estimation as mentioned in Sect. 3.2. The used units for
concentration levels of each of these parameters are as follows: CO is expressed
in mg/m3 and NO, NO2, NOx, O3, PM10, PM2.5, SO2, C6H6 and NH4 are
expressed in µg/m3. The data of all these parameters of the same place for two
years 2015 and 2016 are used as training, while each month of 2017 individually
is used as the testing data with corresponding cycle of seasons.

5.2 Comparative Results and Discussions

Here we discuss about our simulation experiment for comparative analysis of
performance of the proposed method with two other methods. All the methods
for AQI estimation are implemented in Python programming language using
NumPy, SciPy and CSV as the necessary packages along with TensorFlow and
simulated in an Ubuntu 16.04 operating system environment having an Intel i5
core processor and 8 GB RAM.

Out of three seasonal cycles observed in India the summer cycle (May-June-
July-August) is considered for this evaluation. The dataset of all these param-
eters of the same place for two years 2015 and 2016 are used as training, while
the dataset of May, 2017 is used as the testing data. For this case, RNN-LSTM
method for AQI estimation provide the root mean-squared error (RMSE) value
as 40.

Fig. 4. Comparative results for (a) Max-AQI and (b) error analysis of AQI using
Min/Max aggregation technique.

Estimation of AQI from Seasonal Trends Using DNN 519

The AQI value is calculated using RMSE and Min/Max as the aggregation
techniques and the results are compared with Kok et al. [15] on the same dataset.
Prediction curve for Max-AQI value obtained by the proposed method are very
close to actual AQI value curve as shown in Fig. 4(a). Figure 4(b) shows the
comparison of errors in the calculation of AQI values by the proposed method
and the previous method by Kok et al. [15] on the same dataset. As the error in
prediction is less for the proposed model, hence a better prediction accuracy is
achieved by the proposed method compared to the previous method [15] on the
same dataset.

The RMSE is used as the aggregation technique in order to aggregate the
sub-indices to obtain overall AQI and the simulation results are compared with
Kok et al. [15] using the RMSE as the aggregation method. Figure 5(a) shows a
comparison of the overall RMSE-AQI values obtained by the proposed method
and by Kok et al. [15] along with the actual AQI for the same dataset. It is
observed from Fig. 5(b) that the prediction by the proposed method is close to
the actual AQI and it has less error compared to the method by Kok et al. [15].

Fig. 5. Comparative results for (a) RMSE-AQI and (b) error analysis of AQI using
RMSE aggregation technique.

In another study, the Min/Max aggregation technique is used in simulation
of the proposed RNN-LSTM method in order to aggregate the sub-indices to
obtain the overall AQI values and the simulation results are compared with
Kok et al. [15] using the Min/Max aggregation as the aggregation method on
the same dataset. In case of Min/Max aggregation technique, overall the pre-
diction error is 2.7%, while it is 0.37% for the RMSE aggregation technique.
This suggests that RMSE aggregation technique is better to use than Min/Max
aggregation technique in order to predict the AQI values from the trained data
by the proposed method.

520 A. Sharma et al.

A comparative analysis among the proposed method, the ARIMA model and
the previous work by Kok et al. [15] shows RMSE by the proposed method based
on RNN-LSTM model using seasonal trends outperforms the other two. For the
testing data of the input dataset, the RMSE value of AQIs is obtained as 75
by the proposed method based on RNN-LSTM model and 204 by the previous
method by Kok et al. [15] with the Min/Max aggregation technique. Whereas
for the same dataset, the RMSE value of AQIs is obtained as 40 by the proposed
method based on RNN-LSTM model and 105 by the previous method by Kok
et al. [15] with the RMSE aggregation technique. For the same testing data of
the input dataset, the RMSE value of AQIs is obtained as 40 by the proposed
method based on RNN-LSTM model with the RSME aggregation technique,
whereas it is 114 obtained by the ARIMA model. It confirms that the proposed
method with RMSE aggregation technique outperforms and hence, it can be
used to predict the future AQI values of a city.

These simulation results confirm that the proposed method based on RNN-
LSTM model with the RMSE aggregation technique performs better than
ARIMA model and the state-of-the-art method reported by Kok et al. [15] for
AQI estimation of a city.

6 Conclusions

In this paper, we propose a method based on RNN-LSTM model with the RMSE
aggregation technique that can predict the actual value of AQI of a location with
less RMSE compared to the state-of-the-art technique for AQI estimation and
another method based on ARIMA model. As an added advantage, compared
to the supervised learning techniques, RNN provides higher ability for learning
and higher capability of parallel computing. Hence, further research may be
done in this direction for more accurate and time-efficient model using LSTM
to calculate the AQI value of a location in real-time.

References

1. The World Health Report 2000: Health Systems - Improving Performance (2000).
http://www.who.int/whr/2000/en/

2. 8 People Die in Delhi Every Day due to Pollution (2018). http://www.thehindu.
com/news/cities/Delhi/8-people-die-in-Delhi-every-day-due-to-pollution-SC/
article17205973.ece

3. CPCB: Average Report Criteria (2018). http://www.cpcb.gov.in/caaqm/Auth/
frmViewReportNew.aspx

4. Pollution Index by City 2018 (2018). https://www.numbeo.com/pollution/
rankings.jsp

5. RMSPropOptimizer (2018). https://www.tensorflow.org/api docs/python/tf/
train/RMSPropOptimizer

6. Chen, T.-M., Kuschner, W.G., Gokhale, J., Shofer, S.: Outdoor air pollution: nitro-
gen dioxide, sulfur dioxide, and carbon monoxide health effects. Am. J. Med. Sci.
333(4), 249–256 (2007)

http://www.who.int/whr/2000/en/
http://www.thehindu.com/news/cities/Delhi/8-people-die-in-Delhi-every-day-due-to-pollution-SC/article17205973.ece
http://www.thehindu.com/news/cities/Delhi/8-people-die-in-Delhi-every-day-due-to-pollution-SC/article17205973.ece
http://www.thehindu.com/news/cities/Delhi/8-people-die-in-Delhi-every-day-due-to-pollution-SC/article17205973.ece
http://www.cpcb.gov.in/caaqm/Auth/frmViewReportNew.aspx
http://www.cpcb.gov.in/caaqm/Auth/frmViewReportNew.aspx
https://www.numbeo.com/pollution/rankings.jsp
https://www.numbeo.com/pollution/rankings.jsp
https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer

Estimation of AQI from Seasonal Trends Using DNN 521

7. Chen, B., Kan, H.: Air pollution and population health: a global challenge. Environ.
Health Prev. Med. 13(2), 94–101 (2008)

8. Ganesh, S.S., Modali, S.H., Palreddy, S.R., Arulmozhivarman, P.: Forecasting air
quality index using regression models: a case study on Delhi and Houston. In:
Proceedings of the ICEI, pp. 248–254 (2017)

9. Ganesh, S.S., Reddy, N.B., Arulmozhivarman, P.: Forecasting air quality index
based on Mamdani fuzzy inference system. In: Proceedings of the ICEI, pp. 338–
341 (2017)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

11. Ivanov, V., Georgieva, I.: Air quality index evaluations for Sofia City. In: Proceed-
ings of the IEEE EUROCON, pp. 920–925 (2017)

12. Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut.
151(2), 362–367 (2008)

13. Kanchan, K., Goyal, P.: A review on air quality indexing system. Asian J. Atmos.
Environ. 9(4), 101–113 (2015)

14. Kang, Z., Qu, Z.: Application of BP neural network optimized by genetic simulated
annealing algorithm to prediction of air quality index in Lanzhou. In: Proceedings
of the IEEE ICCIA, pp. 155–160 (2017)

15. Kök, İ., Şimşek, M.U., Özdemir, S.: A deep learning model for air quality prediction
in smart cities. In: Proceedings of the IEEE International Conference on Big Data,
pp. 1983–1990 (2017)

16. Kumar, A., Goyal, P.: Forecasting of air quality in Delhi using principal component
regression technique. Atmos. Pollut. Res. 2(4), 436–444 (2011)

17. Kyrkilis, G., Chaloulakou, A., Kassomenos, P.A.: Development of an aggregate
air quality index for an urban Mediterranean agglomeration: relation to potential
health effects. Environ. Int. 33(5), 670–676 (2007)

18. Petr, H., Olej, V.: Predicting common air quality index - the case of Czech Microre-
gions. Aerosol Air Qual. Res. 15, 544–555 (2015)

19. Puri, P., Kumar, S., Kathuria, S., Ramesh, V.: Effects of air pollution on the skin:
a review. Indian J. Derm.Logy, Venereol., Leprol. 3(4), 415 (2017)

20. Saxena, A., Shekhawat, S.: Ambient air quality classification by Grey Wolf opti-
mizer based support vector machine. J. Environ. Public Health 2017(3131083), 12
(2017)

21. Song, L.: Impact analysis of air pollutants on the air quality index in jinan winter.
In: Proceedings of the IEEE CSE-EUC, pp. 471–474 (2017)

22. Yang, Y., Zheng, Z., Bian, K., Song, L., Han, Z.: Real-time profiling of fine-grained
air quality index distribution using UAV sensing. IEEE Internet Things J. 5(1),
186–198 (2018)

23. Youping, L., Ya, T., Zhongyu, F., Hong, Z., Zhengzheng, Y.: Assessment and com-
parison of three different air quality indices in China. Environ. Eng. Res. 23(1),
21–27 (2017)

24. Zhang, C., Yuan, D.: Fast fine-grained air quality index level prediction using
random forest algorithm on cluster computing of spark. In: Proceedings of the
IEEE, pp. 929–934 (2015)

http://www.deeplearningbook.org
http://www.deeplearningbook.org

A Deep Learning Approach to Bacterial
Colony Segmentation

Paolo Andreini, Simone Bonechi(B), Monica Bianchini, Alessandro Mecocci,
and Franco Scarselli

DIISM, University of Siena, Via Roma 56, Siena, Italy
bonechi@diism.unisi.it

Abstract. In this paper, we introduce a new method for the segmenta-
tion of bacterial colonies in solid agar plate images. The proposed app-
roach comprises two contributions. First, a simple but nonetheless effec-
tive engine is devised to generate synthetic plate images. This engine
overlays bacterial colony patches to existing background images, taking
into account both the local appearance of the background and the intrin-
sic opacity of the bacterial colonies. Therefore, a scalable alternative to
the human ground–truth supervision—often difficult to obtain in medical
imaging, due to privacy issues and scarcity of data—is provided. Then,
synthetic generated data, together with few annotated images, were used
to train a Fully–Convolutional Network. Such network is actually effec-
tive in separating bacterial colonies from the background. Finally, we
discuss the role of the generation of synthetic images, conducting exper-
iments that show how their inclusion improves the performances of the
segmentation network, producing very encouraging results.

Keywords: Computer vision · Deep learning · Synthetic image
generation · Semantic segmentation · Agar plates · Bacterial cultures

1 Introduction

Agar plates are used for bacterial cultures, which are employed in a wide variety
of microbiological tests, that range from food and beverage safety assessments to
environmental control, and to many specific clinical analyses (i.e. urinoculture).
In the standard protocol, the biological sample is sown on a Petri dish that holds
a culture substrate, used to artificially recreate the environment required for the
bacterial growth. After an incubation period, each dish is typically examined by
a human expert. This visual inspection is time consuming and prone to errors.
In this work, we introduce a new method for the segmentation of bacterial
colonies in solid agar plate images, based on deep learning techniques. Indeed, in
recent years, deep learning has pushed the state of the art in many visual recog-
nition tasks, achieving outstanding results [1–3]. Nevertheless, most of these
improvements rely on fully annotated data, being the annotation procedure

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 522–533, 2018.
https://doi.org/10.1007/978-3-030-01424-7_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_51&domain=pdf

A Deep Learning Approach to Bacterial Colony Segmentation 523

inherently difficult and costly. This is especially true for semantic segmenta-
tion, which requires pixel–wise annotations. Moreover, in biological and medical
applications, the problem of collecting large set of annotated samples is even
more crucial, due to privacy issues and scarcity of data. In fact, dealing with
a reduced number of fully annotated data, without significantly affecting the
recognition performances, is one of the most active research field in computer
vision, and has a great relevance, in particular, for the automatic Petri plate
analysis, where:

• The data distribution is unbalanced, with a small number of bacterial species
found with high frequency and a lot of very rare infections; hence, it is usually
necessary to deal with under–represented classes with a reduced number of
available samples;

• The bacterial growth is supported by a variety of different substrates, used
either to isolate a specific strain or a multitude of different bacteria (i.e.,
for screening tests); the complete characterization of the whole variability of
substrates and species would require a considerable amount of resources.

In order to address these problems, we propose a new method for generating syn-
thetic images of Petri plates, which naturally blend bacterial colonies in existing
images of empty dishes. A simple heuristic also allows us to deal with the nat-
ural differences in the reflectance within the colonies (Sect. 2.4). The generated
images are then used to train a Fully–Convolutional Network, called Pyramid
Scene Parsing Network (PSP) [4], a state–of–the–art architecture for semantic
segmentation.

The paper is organized as follows. After a brief review of related works,
in Sect. 2, the process for generating synthetic Petri plate images is outlined,
whereas, in Sect. 3.3, we show how the injection of synthetic data improves
the PSP training. The segmentation method is then evaluated on the recently
released MicrobIA Haemolysis Dataset [5] (described in Sect. 3.2). Finally, con-
clusions and future research are collected in Sect. 4.

1.1 Related Works

The proposed method is related to three main research topics, namely auto-
matic agar plate analysis, synthetic data generation, and image segmentation
by Convolutional Neural Networks (CNNs), whose literature is reviewed in the
following.

Agar Plate Analysis. The automatic agar plate analysis has a long history.
Specialized recording and processing systems for automatic bacterial counting
were originally proposed in the late fifties by [6,7]. Later on, a distance trans-
form on binarized images was used by [8], whereas the watershed transform on
grayscale images was firstly employed in [9,10]. A grayscale morphological anal-
ysis was also proposed by [11]. A particular lighting technique was presented
in [12], aimed at producing highlights on the colonies to simplify their count-
ing. In [13], a method based on segment classification has been proposed for the

524 P. Andreini et al.

segmentation of images, whereas the OpenCFU free software [14] employs a
multiple threshold segmentation method and a watershed transform for the
separation of confluent segments. More recently, a bacterial count and classi-
fication approach, based on a custom background subtraction procedure and
shallow feedforward neural networks, was proposed in [15,16], while a back-
ground subtraction technique based on a mixture of gaussians (MOG) is used in
[17]. Moreover, a bag–of–word approach for infected plate detection and colony
classification was used in [18]. Finally, [19] exploits a proprietary image process-
ing method for the colony segmentation on blood agar plates, employing CNNs
on the obtained segments for the bacterial count. Indeed, to the best of our
knowledge, our approach is the first in proposing the use of convolutional neural
networks for the colony segmentation problem.

Synthetic Data. Synthetic datasets are a cheap and scalable alternative to the
human ground–truth supervision in machine learning. In recent years, several
works in computer vision have used synthetic data to face a variety of different
problems. For instance, in [20,21], virtual environments have been exploited
for the pedestrian detection problem, addressed by neural networks. Synthetic
data have also been used for text detection [22,23] and pose estimation [24,25].
Moreover, also in the field of semantic segmentation, some approaches have been
recently proposed. Large collections of synthetic images of driving scenes in
urban environments were generated in [26,27], while synthetic indoor scenes
have been exploited by [28].

Semantic Segmentation with CNNs. Image semantic segmentation aims at
making dense predictions, inferring the class of objects represented by each pixel
of an image. A lot of efforts have recently been spent in semantic segmentation
of natural scenes [2,4,29]. Relatively large datasets have been created with this
purpose: for example, PASCAL VOC 2012 [30] and MS–COCO [31], which con-
tain altogether more than 100,000 images with full pixel–wise annotations. In
medical imaging, the number of available samples is generally smaller, making
small networks, with a reduced number of parameters, the only viable approach.
Indeed, one of the most successful deep learning method is constituted by the
U–net architecture [32], which uses a standard convolutional network, followed
by an upsampling part of up–convolutions combined with skip–connections. In
this paper, we advocate the use of synthetically generated images to train more
complex architectures, such as the Pyramid Scene Parsing Network.

2 Synthetic Petri Plate Generation

Supervised training of deep convolutional neural networks, which contain mil-
lions of parameters, requires a significant number of labeled training data. The
generation of pixel–level annotations by a human expert is very costly in term
of both time and money. Therefore, segmentation datasets are generally quite
smaller compared with the large scale classification collections, such as ImageNet
[33]. Moreover, almost all these datasets collect common objects in natural scenes

A Deep Learning Approach to Bacterial Colony Segmentation 525

and are not suitable for more specific tasks, that often suffer for the lack of a
sufficient amount of data to be tackled with deep learning approaches. This is
just the case of the Petri plate analysis, for which, to the best of our knowledge,
the only publicly available dataset is the MicrobIA Dataset, released by the Uni-
versity of Brescia. Such dataset only contains a segmentation ground–truth for
a small set of blood agar plates (see Sect. 3.2), being barely sufficient to train
a large CNN and totally inadequate to represent the huge variety of different
growing media and species that can be found on Petri plates. For this reason, we
propose a new synthetic image generator, which can be used to cheaply produce
large datasets of fully annotated images of Petri plates. The engine constructs a
huge variety of realistic images that can be used to train a deep neural network
capable of generalizing to real data. The generator pipeline (see Fig. 1) can be
described as follows:

• A suitable set of background images and colony prototypes is collected
(Sect. 2.1);

• For each colony prototype, a generation model is built (Sect. 2.2);
• A seeding procedure is simulated (Sect. 2.3);
• Randomly selected patches are blended onto the background images, following

the seeding simulation (Sect. 2.4).

Fig. 1. Scheme of the synthetic agar plate image generation.

Using the proposed engine, a dataset of 120000 simulated blood agar plate images
has been generated; some examples of synthetic images are shown in Fig. 2.

2.1 Background and Token Collection

The first step of the generation procedure is the collection of bacterial colony
patches (tokens) and empty plate images. From the MicrobIA image dataset,
we extracted a set of single bacterial colony prototypes. Each token includes a
background/foreground mask that allows us to recognize if a pixel belongs to

526 P. Andreini et al.

Fig. 2. Some examples of synthetically generated blood agar plate images (top row);
images taken from the MicrobIA Haemolysis dataset (bottom row).

the culture ground or to the colony, and a small image crop which contains the
colony. Using the MicrobIA dataset, the extraction procedure is straightforward
since tokens can be easily isolated exploiting the provided annotations. We also
gathered a small set of images of empty plates, representing Petri dishes free of
infections, on which colonies are blended. A set of 16 different background images
and 30 tokens are used in our simulations, both augmented using different scale,
rotations and lightness in order to increase variability.

2.2 Colony Models

The generation of the colony model consists of two steps (see Fig. 3). First, each
token is analyzed to generate a model of the background that will be used as a
reference. Then, this reference is exploited to produce a generative model of the
colony that is independent from the background. The procedure is summarized
by the following steps.

• Background model generation – the background colors of each token are
quantized in a fixed number of k clusters through k–means, to speed–up the

Fig. 3. Colony model generation scheme.

A Deep Learning Approach to Bacterial Colony Segmentation 527

algorithm and smooth the model, removing small changes in the appearance
of the substrate. Then, for each pixel px,y belonging to a colony, the centroid
rk with the minimum L2 distance in the Lab space is chosen, to represent
the background reference for the current pixel.

• Colony model – the generative model of the colony, which will be used during
the blending procedure, is calculated, subtracting from each colony pixel px,y

the corresponding reference value:

mx,y = px,y − argmin
rk

(||px,y − rk||) (1)

Fig. 4. The streaking simulation scheme.

2.3 Streaking Simulation

In microbiology, several methods are available to plate out cells. The plate streak-
ing procedure consists in inoculating the surface of an agar plate with a high
dilution of a biological sample. As a result, after the inoculation, individual cells
grow increasingly far apart from each other, on the surface of the agar medium.
The sample streaking can be manual or automatic and it can follow different
patterns, leading to a variety of topologies for the distribution of the bacterial
colonies over the agar plates. In this paper, we simulate the streaking procedure
of the WASPLab automation system1 used in the MicrobIA dataset. Neverthe-
less, the same approach can be applied to any kind of streaking method. A
scheme of the simulation procedure is depicted in Fig. 4. First of all, in order
to deduce the streaking path2, we selected a plate image in which the bacterial
growth covers almost the entire surface of the substrate. The sowing procedure
generally starts by inoculating the diluted sample from an initial position on
the agar and spreading it over the substrate surface. Hence, the concentration of
bacteria is greater at the starting point, while it decreases progressively during
sowing. Based on this intuition, a probability matrix is constructed, with pij rep-
resenting the probability that, in a certain position (i, j), a bacterial colony will

1 http://www.copanusa.com/products/automation/wasplab//%7Bpath=.
2 If the path is known a priori, this step can be avoided.

http://www.copanusa.com/products/automation/wasplab//%7Bpath=

528 P. Andreini et al.

grow. We suppose such probability to decrease linearly from the starting point
to the end of the streaking path. Although this hypothesis is not completely
realistic in certain situations, it looks empirically significant in our experimental
set–up (some examples are reported in Fig. 2). Then, the streaking simulation
proceeds by selecting n random points within the streaking path, each of which
will produce a bacterial colony with probability p.

2.4 Rendering and Blending Procedure

The rendering procedure takes a set of colony models as input and blend them on
a background image (i.e. an agar plate without any bacterial growth), following
the topology provided by the seeding simulator. Our proposed method is also
devised to tackle with the following problem: a colony is a conglomerate of
bacterial cells with a three–dimensional structure and with the most inner part
which is generally more voluminous than the outer. Hence, from an optical point
of view, the center of the colony is much more opaque (i.e. there is a greater
concentration of molecules absorbing the light radiation). The following approach
is used to simulate this behavior. A specific blurring is initially applied to the
background image in the regions where the colony models will be attached. In
particular, for such regions, every pixel color b′

x,y is replaced with a weighted
sum of b and bx,y, where b is the average color of background pixels inside the
region, and bx,y is the actual pixel value (see Eq. 2). The weighting factor αx,y

follows a normal distribution, enhancing the blurring effect in the innermost part
of the patch:

b′
x,y = αx,y(b) + (1 − αx,y)bx,y with αx,y =

1
2πσ2

e− (x−x0)2+(y−y0)2

2σ2 (2)

where (x, y) are the spatial coordinates of the patch and (x0, y0) are the coordi-
nates of its center. The colony models are then added to the blurred background
image, producing the final result. A dedicated procedure also accounts for the
overlapping of different colonies. Indeed, in the overlapping regions, each pixel
is associated with the colony with the nearest centroid, and the area near the
contours is Gaussian–smoothed to avoid a crisp visual separation.

3 Experiments

In the following Sect. 3.1, the semantic segmentation network employed in our
experiments is described, while Sect. 3.2 illustrates the used dataset, and Sect. 3.3
reports our experimental setup and results.

3.1 Semantic Segmentation Network

The segmentation of bacterial colonies is performed through the Pyramid Scene
Parsing (PSP) Network. This is a deep fully convolutional neural network, built
on the ResNet model [34] for image classification. To enlarge the receptive field

A Deep Learning Approach to Bacterial Colony Segmentation 529

of the neural network, a set of dilated convolutions [29] replaces standard con-
volutions in the ResNet part of the network. Then, a pyramid pooling module is
used to gather context information, followed by both an upsampling and a con-
catenation layer, to form the final feature representation. This representation is
then fed into a convolutional layer, to get the expected per–pixel prediction.

3.2 Dataset

The segmentation network has been evaluated on the MicrobIA Haemolysis
Dataset, collecting 324 images of blood agar plates. This dataset contains a
segmentation ground–truth labeling obtained following the procedure reported
in [19]. The dataset has been randomly split, using 221 images for training the
network and the remaining 103 images for testing its generalization ability.

3.3 Segmentation Experiments

Training and Evaluation. A dataset containing 119000 synthetic blood agar
images, of size 800× 800, was used to pre–train the PSP Network. More pre-
cisely, random crops of 233× 233 pixels were employed during training, whereas
a sliding window approach was used for the evaluation. The Adam optimizer,
based on a learning rate of 10−6 and a mini–batch of 15 examples, has been
used to train the network, with a validation set of 1000 synthetic images used
for early stopping. Finally, the network has been fine–tuned on the MicrobIA
Haemolysis Dataset.

Ablation Study. To evaluate the contribution of the injection of synthetic data
during training, we proceed with the following experimental setup:

• Synthetic images – training on synthetic data only;
• Real images – training on real data from the MicrobIA dataset only;
• Synthetic and real images – training on synthetic data and fine–tune on real

data from the MicrobIA dataset.

Table 1 collects the obtained experimental results. The segmentation model,
trained on the real images of the MicrobIA dataset, produces a mean inter-
section over union (mean IoU) of 85,30%, which can be considered our baseline.
When the network is pre–trained on artificial examples and fine–tuned on the
real data, an improvement of 1,03% on the mean IoU is obtained on the test
set. Instead, when only synthetic data are used during training, the mean IoU
drops down by 2,51%. Both these results prove the importance of the injection
of synthetic data during training. In particular, the small difference between
performances obtained using only real or only synthetic data is an interesting
result. This suggests that, when real agar plate images are not available (with
respect to different culture grounds or bacterial species), a deep segmentation
network can be used anyway, based on synthetic data only (a hypothesis that is
worth proving as a future matter of research). In Fig. 5 a qualitative comparison
of the results is shown. In the first row, we can observe that, using only synthetic

530 P. Andreini et al.

images, the network learns to segment correctly the isolated colonies but fails
to identify the confluent growth. This behavior can be observed in almost all
the images in the test set. We can also note that the network is able to recog-
nize the colony shape more accurately when trained on both real and synthetic
data, although it is not clear if this is due to the augmented number of available
examples or to the rough annotation often provided in the MicrobIA dataset (see
(e) in the first row of Fig. 5). Instead, in the second row, an example in which
synthetic images suffice to obtain the correct result is depicted.

Table 1. Segmentation results, obtained using the three different experimental setups.

Experimental setup Mean IoU Pixel accuracy

Synthetic images 82,79% 98,29%

Real images 85,30% 99,19%

Synthetic and real images 86,33% 99,26%

Fig. 5. Original images (a). Results obtained with synthetic images, real images and
both real and synthetic images, respectively, in (b)–(d). Ground–Truth images (e).

4 Conclusions

In this paper, we trained a deep convolutional neural network for bacterial colony
segmentation in agar plate images. Despite the huge variety of growing media
and bacterial species that can be found on Petri dishes, public datasets do not
exist accounting for such a variability. For this reason, we propose a new syn-
thetic image generator, which can be used to cheaply produce large datasets of
fully annotated images of Petri plates. The synthetically generated data can be
employed to train a convolutional neural network for semantic image segmenta-
tion, which we proved to be capable to generalize to real images. Actually, the

A Deep Learning Approach to Bacterial Colony Segmentation 531

network trained based only on artificial examples achieves comparable results
with respect to using real data, whereas a significant improvement in perfor-
mances can be observed when both types of data are used for training. It is a
matter of future research to obtain a more accurate estimation of the probabil-
ity matrix for the streaking simulation and to improve the quality of synthetic
images in the region of the confluent growth.

References

1. Krizhevsky, A., Sustkever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

2. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Learn. 39(4), 640–651 (2017)

3. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accurate object detection and semantic segmentation. In: Proceedings of CVPR
2014, pp. 580–587 (2014)

4. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
Proceedings of CVPR 2017, pp. 6230–6239 (2017)

5. Savardi, M., Ferrari, A., Signoroni, A.: Automatic hemolysis identification on
aligned dual-lighting images of cultured blood agar plates. Comput. Methods Pro-
grams Biomed. 156, 13–24 (2018)

6. Mansberg, H.P.: Automatic particle and bacterial colony counter. Science
126(3278), 823–827 (1957)

7. Alexander, N., Glick, D.: Automatic counting of bacterial cultures – a new machine.
IRE Trans. Med. Electron. PGME-12, 89–92 (1958)

8. Mukherjee, D., Pal, A., Sarma, S.E., Majumder, D.D.: Bacterial colony counting
using distance transform. Int. J. Biomed. Comput. 38, 131–140 (1995)

9. Zhang, C., Chen, W., Liu, W., Chen, C.: An automated bacterial colony counting
system. In: IEEE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing (SUTC), pp. 233–240 (2008)

10. Brugger, S., Baumberger, C., Jost, M., Jenni, W., Brugger, U., Mühlemann, K.:
Automated counting of bacterial colony forming units on agar plates. PLoS ONE
7(3), e33695 (2012)

11. Liu, A., Liu, Z., Song, L., Han, D.: Adaptive ideal image reconstruction for bacteria
colony detection. In: Zhu, E., Sambath, S. (eds.) Information Technology and Agri-
cultural Engineering, vol. 134, pp. 353–360. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27537-1 44

12. Corkidi, G., Diaz-Uribe, R., Folch-Mallol, J., Nieto-Sotelo, J.: COVASIAM: an
image analysis method that allows detection of confluent microbial colonies and
colonies of various sizes for automated counting. Appl. Environ. Microbiol. 64(4),
1400–1404 (1998)

13. Masala, G.L., Bottigli, U., Brunetti, A., Carpinelli, M., Diaz, N., Fiori, P.L., Oliva,
P., Stegel, G.: Automatic cell colony counting by region-growing approach. Nuovo
Cimento C 30(6), 633–644 (2008)

14. Geissmann, Q.: OpenCFU: a new free and open-source software to count cell
colonies and other circular objects. PLoS ONE 8(2), e54072 (2013)

15. Andreini, P., Bonechi, S., Bianchini, M., Garzelli, A., Mecocci, A.: Automatic image
classification for the urinoculture screening. Comput. Biol. Med. 70, 12–22 (2016)

https://doi.org/10.1007/978-3-642-27537-1_44
https://doi.org/10.1007/978-3-642-27537-1_44

532 P. Andreini et al.

16. Andreini, P., Bonechi, S., Bianchini, M., Mecocci, A., Di Massa, V.: Automatic
image classification for the urinoculture screening. In: Neves-Silva, R., Jain, L.C.,
Howlett, R.J. (eds.) Intelligent Decision Technologies. SIST, vol. 39, pp. 31–42.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19857-6 4

17. Andreini, P., Bonechi, S., Bianchini, M., Garzelli, A., Mecocci, A.: ABLE: an auto-
mated bacterial load estimator for the urinoculture screening. In: Proceedings of
ICPRAM 2016, pp. 573–580 (2016)

18. Andreini, P., et al.: Extraction of high level visual features for the automatic recog-
nition of UTIs. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.) WILF 2016. LNCS
(LNAI), vol. 10147, pp. 249–259. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52962-2 22

19. Ferrari, A., Lombardi, S., Signoroni, A.: Bacterial colony counting with convolu-
tional neural networks in digital microbiology imaging. Pattern Recogn. 61, 629–
640 (2016)

20. Marin, J., Vazquez, D., Geronimo, D., Lopez, A.: Learning appearance in virtual
scenarios for pedestrian detection. In: Proceeding of CVPR 2010, pp. 137–144
(2010)

21. Hattori, H., Boddeti, V.N., Kitani, K.M., Kanade, T.: Learning scene-specific
pedestrian detectors without real data. In: Proceedings of CVPR 2015, pp. 3819–
3827 (2015)

22. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild
with convolutional neural networks. Int. J. Comput. Vis. 116(1), 1–20 (2016)

23. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in nat-
ural images. In: Proceedings of CVPR 2016, pp. 2315–2324 (2016)

24. Busto, P., Liebelt, J., Gall, J.: Adaptation of synthetic data for coarse-to-fine
viewpoint refinement. In: Proceedings of BMVC, pp. 14.1–14.12 (2015)

25. Papon, J., Schoeler, M.: Semantic pose using deep networks trained on synthetic
RGB-D. In: Proceedings of ICCV 2015, pp. 774–782 (2015)

26. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth
from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 7

27. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIA
dataset: a large collection of synthetic images for semantic segmentation of urban
scenes. In: Proceedings of CVPR 2016, pp. 3234–3243 (2016)

28. Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: Syn-
thcam3d: semantic understanding with synthetic indoor scenes. arXiv preprint
abs/1505.00171 (2015)

29. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Semantic image
segmentation with deep convolutional nets and fully connected CRFs. In: Proceed-
ings of ICLR (2015)

30. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J.,
Zisserman, A.: The PASCAL visual object classes challenge: a retrospective. Int.
J. Comput. Vis. 111(1), 98–136 (2015)

31. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

https://doi.org/10.1007/978-3-319-19857-6_4
https://doi.org/10.1007/978-3-319-52962-2_22
https://doi.org/10.1007/978-3-319-52962-2_22
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1007/978-3-319-10602-1_48

A Deep Learning Approach to Bacterial Colony Segmentation 533

32. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

33. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: Proceedings of CVPR 2009, pp. 248–255 (2009)

34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of CVPR 2016, pp. 770–778 (2016)

https://doi.org/10.1007/978-3-319-24574-4_28

Sparsity and Complexity of Networks
Computing Highly-Varying Functions

Věra Kůrková(B)

Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou věž́ı 2,
18207 Prague, Czech Republic

vera@cs.cas.cz

Abstract. Approximative measures of network sparsity in terms of
norms tailored to dictionaries of computational units are investigated.
Lower bounds on these norms of real-valued functions on finite domains
are derived. The bounds are proven by combining the concentration of
measure property of high-dimensional spaces with characterization of
dictionaries of computational units in terms of their capacities and coher-
ence measured by their covering numbers. The results are applied to dic-
tionaries used in neurocomputing which have power-type covering num-
bers. Probabilistic results are illustrated by a concrete construction of a
class of functions, computation of which by perceptron networks requires
large number of units or it is unstable due to large output weights.

Keywords: Shallow and deep networks · Model complexity
Sparsity · l1-norm · Highly-varying functions · Covering numbers
Dictionaries of computational units · Perceptrons

1 Introduction

Although neural networks were introduced as multilayer computational systems,
shallow networks with one hidden layer have been the standard type of feedfor-
ward network architecture until the recent renewal of interest in deep networks.
Successes of deep networks led to the conjecture that “most functions that can
be represented compactly by deep architectures cannot be represented by a com-
pact shallow architecture” [1]. On the other hand, an empirical study [2] demon-
strated that shallow networks can learn some functions previously learned by
deep ones using the same numbers of parameters as the original deep networks.
Characterization of tasks, which can be computed by deep networks of smaller
model complexities than shallow ones, is an important area of research, which
is still in its early stages.

An application of the topological approach for obtaining lower bounds on
complexity of shallow networks exhibiting the “curse of dimensionality” (i.e., an
exponential dependence on the number of parameters [3]) from [4] was recently
in [5] proposed as a potential tool for comparison of deep and shallow networks.
However, its applicability is limited to classes of networks where best or near
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 534–543, 2018.
https://doi.org/10.1007/978-3-030-01424-7_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_52&domain=pdf

Sparsity and Complexity of Networks Computing Highly-varying Functions 535

best approximation of functions can be obtained by a continuous selection of
network parameters. We proved in [6–8] that in many common classes of networks
such continuous selection is not possible due their nonlinear and non-convex
nature. Generally, derivation of lower bounds on network complexity is much
more difficult than estimates of upper ones. Moreover, minimization of network
sparsity measured by the number of units formalized as “l0-pseudonorm” is a
difficult non convex optimization problem.

In [9], it was suggested that a cause of large model complexities of shallow net-
works might be in the “amount of variations” of functions to be computed. As an
example of a highly-varying function, the parity function on the Boolean cube was
presented and it was proven that classification of points from the d-dimensional
Boolean cube by Gaussian SVM requires at least 2d−1 support vectors. In [10], we
showed that the concept of a highly-varying function has to be studied in depen-
dence on a type of computational units.Weproposed to formalize it using a concept
of variational norm tailored to a type of computational units. These norms have
been used as a tool for estimating rates of approximation by neural networks [11–
13]. Using probabilistic arguments based on Chernoff-Hoeffding bound, we derived
in [10] lower bounds on variational norms and in [14] on errors of approximation of
binary-valued functions (representing binary classification tasks) by shallow net-
works. In [15] we complemented probabilistic results by constructive ones showing
that a class of functions induced byHadamard matrices has large variational norms
with respect to the dictionary of perceptrons.

In this paper, we investigate network complexity and sparsity in terms of the
l1-norms of output-weight vectors. Minimization of the number of hidden units in
a shallow network or in the last hidden layer of a deep one is a difficult non convex
optimization problem and thus we focus on investigation of minima of l1-norms of
output-weight vectors. l1-norm is a good approximation of convexification of “l0-
pseudonorm” formalizing the concept of network sparsity and it plays a role of a
stabilizer in weight-decay regularization [16]. The l1-norms of output-weight vec-
tors of all networks with units from a given dictionary computing a given function
are bounded from below by the variational norm with respect to the dictioary. We
derive lower bounds on minima of l1-norms of output-weight vectors of networks
computing real-valued functions on finite domains. Sets of such functions are iso-
morphic to Euclidean spaces of dimensions equal to the sizes of the domains. Thus
for large domains, geometrical properties of high-dimensional spaces influence dis-
tribution of variational norms of real-valued functions on these domains. Combin-
ing concentration of measure property of high-dimensional spaces with character-
ization of dictionaries of computational units in terms of their capacity and coher-
ence described by their covering numbers, we derive lower bounds on variational
norms of real-valued functions on finite domains and on l1-norms of output-weight
vectors of networks computing these functions. Applying these estimates to dictio-
naries with power-type covering numbers, we prove that on large domains almost
any uniformly randomly chosen function has large variation with respect to such
dictionary and thus its computation requires either large number of units or it is
unstable as some output weights are large. We illustrate our probabilistic results by
a concrete construction of a class of functions induced by matrices with orthogonal

536 V. Kůrková

rows which have large variational norms with respect to the dictionary of percep-
trons.

The paper is organized as follows. Section 2 contains basic concepts and nota-
tions on feedforward networks and dictionaries of computational units. In Sect. 3,
approximative measures of network sparsity in terms of l1 and variational norms
are investigated. In Sect. 4, probabilistic lower bounds on distribution of varia-
tional norms are derived in terms of covering numbers of dictionaries and sizes of
the domains. In Sect. 5, probabilistic results are complemented by constructive
ones. Section 6 is a brief discussion.

2 Preliminaries

A feedforward network with a single linear output can compute input-output
functions from the set

span G :=

{
n∑

i=1

wigi

∣∣∣ wi ∈ R, gi ∈ G, n ∈ N

}
,

where G, called a dictionary, is a parameterized family of functions. In shallow
(one-hidden-layer) networks, G is formed by functions computable by a given
type of computational units, whereas in deep networks with several hidden layers,
it is formed by combinations and compositions of functions representing units
from lower layers. By spann G :=

{∑n
i=1 wigi

∣∣∣ wi ∈ R, gi ∈ G
}

we denote the
set of functions computable by networks with at most n units in the last hidden
layer.

For X ⊂ R
d, we denote by F(X) := {f | f : X → R} the set of all real-

valued functions on X. In practical applications, domains X ⊂ R
d are finite,

but their sizes card X and/or input dimensions d can be quite large. Fixing
a linear ordering {x1, . . . , xm} of elements of X we define an isomorphism ι :
F(X) → R

m as ι(f) := (f(x1), . . . , f(xm)) and thus we identify F(X) with the
finite dimensional Euclidean space R

m. On F(X) we denote the induced inner
product by 〈f, g〉 :=

∑
u∈X f(u)g(u) and the Euclidean norm ‖f‖2 :=

√〈f, f〉.
We denote by B(X) := {f | f : X → {−1, 1}} the set of all functions on X with
values in {−1, 1}. It is convenient to consider binary-valued functions with the
range {−1, 1} instead of {0, 1} as all functions in B(X) have norms equal to√

card X.
Dictionaries are parameterized families of functions of the form

G(X) = Gφ(X,Y) := {φ(·, y) : X → R | y ∈ Y } ,

where φ : X ×Y → R is a function of two variables: an input vector x ∈ X ⊆ R
d

and a parameter vector y ∈ Y ⊆ R
s. We denote by

P (X) := {sgn(v · . + b) : X → {−1, 1} | v ∈ R
d, b ∈ R}

the dictionary of signum perceptrons, where sgn(t) = −1 for t < 0 and sgn(t) = 1
for t ≥ 0. Note that it is more convenient to consider the dictionary of signum

Sparsity and Complexity of Networks Computing Highly-varying Functions 537

perceptrons instead of Heaviside ones because all signum perceptrons have the
same norms equal to

√
m, where m is the size of the domain X. Another impor-

tant class of dictionaries is formed by sets of kernel units. For X,U ⊆ R
d and

a symmetric positive semidefinite kernel K : R
d × R

d → R, we denote by
K(X,U) := {K(., u) : X → R |u ∈ U} the dictionary of kernel units on X
with parameters (centers) in U . In the Support Vector Machine (SVM) algo-
rithm, the set U = {ui, | i = 1, . . . , l} is the set of points to be classified, among
which some play roles of support vectors.

3 Sparsity, Variational Norm, and Correlation

In this section, we investigate approximate measures of network sparsity in terms
of l1-norm and variational norms tailored to computational units.

Formally, the number of hidden units in a shallow network or in the last
hidden layer of a deep one can be described as the number of non zero entries
of the vector of output weights of the network. In applied mathematics, the
number of non zero entries of a vector w ∈ R

n, denoted ‖w‖0, is called “l0-
pseudonorm” because it satisfies the equation ‖w‖0 =

∑n
i=1 w0

i . The quotation
marks are used because ‖w‖0 is neither a norm nor a pseudonorm. Minimization
of “l0-pseudonorm” is a difficult non convex problem as l0 lacks the homogeneity
property of a norm and its “unit ball” is not convex.

In neurocomputing, instead of “l0-pseudonorm”, l1 and l2-norms have been
used as stabilizers in weight-decay regularization methods [16]. Acting as a sta-
bilizer, l2-norm penalizes even a small number of large output weights but it can
tolerate many small ones, which are penalized by l1-norm stabilizers. This can
be illustrated by a simple example of a weight vector w ∈ R

m, with wi = c
m for

all i = 1, . . . ,m and m large. Then ‖w‖1 = c, while ‖w‖2 = c√
m

.
Networks with large l1-norms of output-weight vectors have either large num-

bers of units or some of the weights are large. Both are not desirable: implemen-
tation of networks with large numbers of units might not be feasible and large
output weights might lead to instability of computation. The following lemma
from [17] shows that when we restrict l2-norms of weight vectors, then balls in
l1-norm are good approximations of convexifications of balls in “l0-pseudonorm”.
For any norm or“pseudonorm” ‖.‖, we denote by Br(‖.‖) = {w ∈ R

n | ‖w‖ ≤ r}
the ball of radius r in ‖.‖.

Lemma 1. For every positive integer m and every r > 0,
conv (Br(‖.‖0)∩ B1(‖.‖2)) ⊂B√

r(‖.‖1)∩ B1(‖.‖2)⊂ 2 conv (Br(‖.‖0)∩ B1(‖.‖2)).
It should be noted that in contrast to “l0-pseudonorm”, any norm can be

made arbitrarily large or small by multiplying a function by a suitable scalar.
Also errors in approximation of scalar multiples of a given function can be made
arbitrarily large or small with proper choices of scalars. Indeed, for every c > 0,
‖cf − spann G‖2 = c‖f − spannG‖2. Thus, approximation and representation
of functions by sets of the form spann G have to be studied either for sets of
normalized functions or for sets of functions of a given fixed ambient (typically
l2) norm. In particular, large l1-norms have to be considered relatively to the
norms of elements of a dictionary.

538 V. Kůrková

For a function f ∈ F(X) and a dictionary G, we denote by

Wf (G) = {w = (w1, . . . , wn) | f =
∑k

i=1
wigi, gi ∈ G,n ∈ N}

the set of output-weight vectors of networks with units from G representing
f . Many dictionaries G of computational units used in neurocomputing satisfy
the universal representation property, i.e., every function on a finite domain
can be exactly represented as an element of span G (see, e.g., [14,18]). Such
universality type results guarantee representations of all f ∈ F(X) by networks
with the number of units equal to the size of the domain X, i.e., they prove that
F(X) ⊂ spanm G, where m = card X. Thus from universality type results, we
can conclude that sets Wf (G) are non empty.

Proposition 1. Let X ⊂ R
d, f ∈ F(X), and G = {g1, . . . , gk} ⊂ F(X) be a

finite dictionary. Then

(i) Wf (G) = {w = (w1, . . . , wk) ∈ R
k | f =

∑k
i=1 wigi} is convex;

(ii) if Wf (G) is non empty, then Wf (G)∗ = {w∗ ∈ Wf | ‖w∗‖1 =
minw∈Wf

‖w‖1}
is non empty and convex.

Proof. Convexity of both sets follows directly from their definitions. As l1-norm
is a continuous functional and every continuous function on a convex set achieves
its minimum, (ii) holds. �

Note that due to its strict convexity, l2-norm does not satisfy (ii). Thus
Proposition 1 (ii) shows an advantage of l1-norm.

Some insight into efficiency of networks with units from G can be obtained
from investigation of minima of l1-norms of vectors from sets Wf (G). These
minima can be investigated in terms of a norm of f tailored to a dictionary G
called G-variation. It is defined for a bounded subset G of a normed linear space
(X , ‖.‖) as

‖f‖G := inf
{

c ∈ R+

∣∣∣ f/c ∈ clX conv (G ∪ −G)
}

,

where −G := {− g | g ∈ G}, clX denotes the closure with respect to the topology
induced by the norm ‖ · ‖X , and conv is the convex hull. Variation with respect
to Heaviside perceptrons (called variation with respect to half-spaces) was intro-
duced in [11] and extended to general dictionaries in [12]. Functions with large
G-variations can be seen as highly-varying with respect to the dictionary G.

The next proposition showing the relationship between G-variation and l1-
norm follows easily from the definition.

Proposition 2. Let G be a bounded subset of (X , ‖.‖). Then, for every f ∈ X

(i) ‖f‖G ≤ min
{∑n

i=1 |wi|
∣∣∣ f =

∑n
i=1 wi gi , wi ∈ R, gi ∈ G,n ∈ N

}
;

Sparsity and Complexity of Networks Computing Highly-varying Functions 539

(ii) for G finite with card G = k,
‖f‖G ≤ min

{
‖w‖1 |w = (w1, . . . , wk), f =

∑k
i=1 wi gi gi ∈ G

}
.

To derive lower bounds on minima of l1-norms of output weight vectors we
take advantage of geometric characterization of variational norm. The following
theorem is a special case formulated for finite dimensional space F(X) of a
theorem from [13]. By G⊥ is denoted the orthogonal complement of G in the
Hilbert space F(X).

Theorem 1. Let X be a finite subset of R
d and G be a bounded subset of F(X).

Then for every f ∈ F(X) \ G⊥, ‖f‖G ≥ ‖f‖2

supg∈G |〈g,f〉| .

Theorem 1 shows that lower bounds on G-variation of a function f can be
obtained by estimating correlations of f with functions from the dictionary G.
When f is nearly orthogonal to all elements of G, then f has large G-variation
(it is highly-varying with respect to G). On the other hand when f is correlated
with an element of G, then f can be well approximated by this element. As
mentioned above about norms and approximation errors, also G-variation has
to be studied for sets of normalized functions or for sets of functions of a given
fixed norm.

4 Lower Bounds on l1 and Variational Norms

In this section, we prove a probabilistic lower bound on distribution of variational
norms in terms of covering numbers of dictionaries and sizes of their domains.

Covering numbers were introduced in [19] as a way to measure sizes of subsets
of metric spaces using as measuring units small balls. For ε > 0, an ε-net in G
is a set {g1, . . . , gn} ⊆ G such that the family of the closed balls Bε(gi) of radii
ε centered at gi covers G. The ε-covering number denoted Nε(G) of a subset G
of a metric space S is the cardinality of a minimal ε-net in G, i.e.,

Nε(G) = min
{
n ∈ N+ |G ⊆

⋃n

i=1
Bε(fi), (∀i = 1, . . . , n)(fi ∈ G)

}
.

When the set over which the minimum is taken is empty, Nε(G) = +∞. Covering
numbers are related to packing numbers defined as the maximal numbers of
disjoint balls that fit in a set.

We consider covering numbers of normalized dictionaries as subsets of the
unit sphere S1(X) = {f ∈ F(X) | ‖f‖2 = 1} endowed with the angular pseudo-
metrics ρ(f, g) = arccos |〈f, g〉|. So the angular distance between f and g is α,
where cos α = |〈f, g〉|. The proof of the following theorem is based on the concen-
tration of measure on high-dimensional spheres which states that most values of
a Lipschitz function on a high-dimensional sphere are concentrated around their
median [20, p. 337].

540 V. Kůrková

Theorem 2. Let d be a positive integer, X ⊂ R
d with card X = m, μ be a

uniform probability measure on S1(X), b > 0, and G(X) ⊂ S1(X) has finite
covering numbers. Then

μ({f ∈ S1(X) | ‖f‖G(X) ≥ b}) ≥ 1 − 2Narccos(2/b)(G(X)) e− 2m
b2 .

Proof. Let C(g, ε) = {f ∈ S1(X) | |〈f, g〉| ≥ ε} = {f ∈ S1(X) | ρ(f, g) ≤ α},
where α = arccos(ε). By Theorem 1, ‖f‖G(X) ≥ 1

supg∈G |〈f,g〉| . Thus {f ∈
S1(X) | ‖f‖G ≥ b} = S1(X) \ 2

⋃
g∈G C(g, 1/b). Let α = arccos(2/b) and

{g1, . . . , gn} be a minimal α-net in G in the angular pseudometrics ρ. Then⋃n
i=1 C(gi, 2/b) �

⋃
g∈G C(g, 1/b).

For every g ∈ G, the inner product with g is Lipschitz continuous on S1(X)
and the median of the inner products of g with uniformly randomly chosen
functions f ∈ S1(X) is zero. Thus by the concentration of measure property
[20, p. 28], we have μ(C(g, 1/b) ≤ e− 2m

b2 . Thus μ(S1(X)) \ ⋃n
i=1 C(gi, 2/b) ≥

1 − 2Nα(G)e− 2m
b2 and so the statement follows. �

Theorem 2 implies that for dictionaries with covering numbers Nα(G(X))

which do not outweigh the factor e− m(cos α)2

2 , almost any uniformly randomly
chosen function has variation larger than 1

cos α .
Combining Theorem 2 with Proposition 2 we obtain the following lower

bound on the l1-norm of the output-weight vector of any network with units
from G computing a uniformly randomly chosen real-valued function on X.

Corollary 1. Let d be a positive integer, X ⊂ R
d with card X = m, b > 0,

G(X) ⊂ S1(X) has finite covering numbers, and f be a function uniformly
randomly chosen from S1(X). Then for any representation of f as an input-
output function f =

∑n
i=1 wigi, the l1-norm of the output weight vector w =

(w1, . . . , wn) satisfies

Pr (‖w‖1 ≥ b) ≥ 1 − 2Narccos(2/b)(G(X)) e− 2m
b2 .

For finite dictionaries G, all covering numbers are bounded from above by
cardG. Dictionaries formed by functions on finite domains with finite ranges are
finite. An example of such dictionary is the dictionary P (X) of signum percep-
trons. Its size is bounded from above by 2md

d! , where X ⊂ R
d with card X = m

[21]. Thus its size grows with m only polynomially with the polynomial degree
equal to d. Some dictionaries with infinite ranges have finite sets of parameters
and thus they are finite. Kernel dictionaries K(X,U) used in SVM has sizes
equal to cardU . Note that for some values of ε, covering numbers of finite dic-
tionaries can be even smaller than their sizes. This can happen when a dictionary
is highly coherent.

Also some infinite dictionaries have power-type covering numbers, i.e., there
exists c > 0 and a positive integer s such that Nε(G) ≤ (

c
ε

)2s. It was shown in
[22] that for any Lipschitz continuous sigmoidal function, L2-covering numbers
of the dictionary of sigmoidal perceptrons on any bounded domain Ω ⊂ R

d grow

Sparsity and Complexity of Networks Computing Highly-varying Functions 541

as
(
1
ε

)β , where β > 0. Note that covering numbers in angular pseudometrics are
related to covering numbers in l2. Indeed, for f, g ∈ S1(X) with α = ρ(f, g), we
have ‖f − g‖2 = 2 sin(α/2). Various estimates of covering numbers in l2-norm
are known. For example, any subset G of the set of functions on a finite domain
X with range {0, 1} which has a finite VC-dimension has power-type covering
numbers in l2 [23].

On the other hand, covering numbers of the whole set of all normalized func-
tions on X (the unit sphere S1(X) in F(X)) are growing exponentially with
m. It follows from a lower bound on �emε2

2 � on the quasiorthogonal dimension
dimε m of Rm proven in [24,25]. It is defined as the maximal number of vectors
such that each pair of distinct ones has inner product at most ε and thus it is
related to the packing number. Many dictionaries occupy only fractions of the
sphere S1(X) and their covering numbers grow much more slowly than those of
S1(X). Theorem 2 implies that on a sufficiently large domain almost any uni-
formly randomly chosen function has large variation with respect to a dictionary
with power-type covering numbers.

5 Construction of Functions with Large Variations with
Respect to Perceptrons

In this section, we complement probabilistic results from the previous section
by constructive ones. We describe a construction of class of functions on square
domains whose elements can be seen as pixels.

A function f on a square domain of the form X = {xi | i = 1, . . . , n} ×
{yj | j = 1, . . . , n} can be described by a matrix M(f) defined as M(f)i,j =
f(xi, yj). The following theorem gives a lower bound on variation with respect
to signum perceptrons for a class of real-valued functions defined by matrices
with orthogonal rows. It is an extension of our result from [15] constructing
classifiers (functions with values in {−1, 1}) to real-valued functions.

Theorem 3. Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 , {yj | j = 1, . . . , n} ⊂

R
d2 , X = {xi | i = 1, . . . , n} × {yj | j = 1, . . . , n} ⊂ R

d, a > 0, and fM : X →
{−1, 1} be defined as fM (xi, yj) = Mi,j, where M is an n × n matrix with
orthogonal rows such that the l2-norm of each row vector is bounded from above
by a. Then ‖fM‖P (X) ≥

√
a

log2 n� .

The proof of Theorem 3 proceeds in a similar way as our proof of [15, The-
orem 5] with replacing Lindsay lemma holding for Hadamard matrices with the
following lemma holding for matrices with orthogonal rows with any real-valued
entries.

Lemma 2. Let n,m be a positive integers, M be an m×n matrix, v1, . . . , vm be
its row vectors, and a = maxi=1,...,m ‖vi‖22. If each pair of distinct row vectors is
orthogonal, then for any subset I of the set of indices of rows and any subset J

of the set of indices of columns of M ,
∣∣∣b∑

i∈I

∑
j∈J Mi,j

∣∣∣ ≤ √
a card I card J.

542 V. Kůrková

Proof. Without loss of generality, we can assume that J = {1, . . . , k}.
Let v̄i = (vi1, . . . , vik) and set u =

∑
i=I v̄i. Then

∣∣∣∑i∈I

∑
j∈J Mi,j

∣∣∣ =
|〈u, (1, . . . , 1)〉|. By the Cauchy-Schwartz Inequality, it is bounded from above by
‖u‖√

card J . By orthogonality of the row vectors, 〈u, u〉 =
∑

i∈I

∑k
l=1〈ui, ul〉 =∑

i∈I

∑k
l=1〈ui, ul〉 =

∑
i∈I ‖ui‖2 ≤ acardI and so the statement follows. �

Theorem 3 provides a method of constructing functions on square domains,
whose computation by signum perceptrons can be only achieved by networks
with large l1-norms of output weights. Such functions can be defined by n × n
matrices having as rows elements of any orthogonal basis of Rn. For example,
the basis of R

n with n = 2d formed by generalized parities {pu |u ∈ {0, 1}d},
where pu(x) = −1x·u (normalized generalized parities form the Fourier basis).

6 Discussion

Minimization of “l0-pseudonorm” formalizing the concept of network sparsity
measured by the number of units in the last hidden layer is a difficult non con-
vex problem. Thus we focused on l1-norm of output-weight vectors, which is
a good approximation of convexification of“l0”, has been used in weight-decay
regularization [16], and in statistical learning in the Lasso method [26]. We inves-
tigated minima of l1-norms of output-weight vectors of networks computing a
given function using variational norms tailored to dictionaries of computational
units. Applying geometrical properties of high-dimensional Euclidean spaces (the
concentration of measure) we derived probabilistic lower bounds on minima of
variational and l1-norms of output-weight vectors in terms of covering numbers
of dictionaries. Combining our results with known estimates of sizes of finite dic-
tionaries of signum or Heaviside perceptrons and kernel units used in SVM, we
proved that large lower bounds hold for almost any uniformly randomly chosen
function. Estimates of covering numbers of dictionaries consisting of composi-
tions of functions computed in several hidden layers and probabilistic bounds
holding for non uniform distributions are subject of our future research.

Acknowledgments. V.K. was partially supported by the Czech Grant Foundation
grant GA18-23827S and institutional support of the Institute of Computer Science
RVO 67985807.

References

1. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In: Bottou, L.,
Chapelle, O., DeCoste, D., Weston, J. (eds.) Large-Scale Kernel Machines. MIT
Press, Cambridge (2007)

2. Ba, L.J., Caruana, R.: Do deep networks really need to be deep? In: Ghahrani, Z.,
et al. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 1–9
(2014)

3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
4. DeVore, R.A., Howard, R., Micchelli, C.: Optimal nonlinear approximation.

Manuscripta Mathematica 63, 469–478 (1989)

Sparsity and Complexity of Networks Computing Highly-varying Functions 543

5. Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., Liao, Q.: Why and when can
deep-but not shallow-networks avoid the curse of dimensionality: a review. Int. J.
Autom. Comput. https://doi.org/10.1007/s11633-017-1054-2

6. Kainen, P.C., Kůrková, V., Vogt, A.: Approximation by neural networks is not
continuous. Neurocomputing 29, 47–56 (1999)

7. Kainen, P.C., Kůrková, V., Vogt, A.: Geometry and topology of continuous best
and near best approximations. J. Approx. Theor. 105, 252–262 (2000)

8. Kainen, P.C., Kůrková, V., Vogt, A.: Continuity of approximation by neural net-
works in Lp-spaces. Ann. Oper. Res. 101, 143–147 (2001)

9. Bengio, Y., Delalleau, O., Roux, N.L.: The curse of highly variable functions for
local kernel machines. In: Advances in Neural Information Processing Systems, vol.
18, pp. 107–114. MIT Press, Cambridge (2006)

10. Kůrková, V., Sanguineti, M.: Model complexities of shallow networks representing
highly varying functions. Neurocomputing 171, 598–604 (2016)

11. Barron, A.R.: Neural net approximation. In: Narendra, K.S. (ed.) Proceedings of
7th Yale Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University
Press (1992)

12. Kůrková, V.: Dimension-independent rates of approximation by neural networks.
In: Warwick, K., Kárný, M. (eds.) Computer-Intensive Methods in Control and
Signal Processing. The Curse of Dimensionality, pp. 261–270. Birkhäuser, Boston
(1997)

13. Kůrková, V.: Complexity estimates based on integral transforms induced by com-
putational units. Neural Netw. 33, 160–167 (2012)

14. Kůrková, V., Sanguineti, M.: Probabilistic lower bounds for approximation by shal-
low perceptron networks. Neural Netw. 91, 34–41 (2017)

15. Kůrková, V.: Constructive lower bounds on model complexity of shallow perceptron
networks. Neural Comput. Appl. 29, 305–315 (2018)

16. Fine, T.L.: Feedforward Neural Network Methodology. Springer, Heidelberg (1999).
https://doi.org/10.1007/b97705

17. Plan, Y., Vershynin, R.: One-bit compressed sensing by linear programming. Com-
mun. Pure Appl. Math. 66, 1275–1297 (2013)

18. Ito, Y.: Finite mapping by neural networks and truth functions. Math. Sci. 17,
69–77 (1992)

19. Kolmogorov, A.: Asymptotic characteristics of some completely bounded metric
spaces. Dokl. Akad. Nauk. SSSR 108, 585–589 (1956)

20. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002). https://
doi.org/10.1007/978-1-4613-0039-7

21. Schläfli, L.: Gesamelte Mathematische Abhandlungen, vol. 1. Birkhäuser, Basel
(1950)

22. Makovoz, Y.: Random approximants and neural networks. J. Approx. Theor. 85,
98–109 (1996)

23. Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with
bounded Vapnik-Chervonenkis dimension. J. Comb. Theor. A 69(2), 217–232
(1995)

24. Kainen, P.C., Kůrková, V.: Quasiorthogonal dimension of Euclidean spaces. Appl.
Math. Lett. 6(3), 7–10 (1993)

25. Kainen, P.C., Kůrková, V.: Quasiorthogonal dimension. In: Kosheleva, O., Shary,
S., Xiang, G., Zapatrin, R. (eds.) Beyond Traditional Probabilistic Data Processing
Techniques: Interval, Fuzzy, etc. Methods and Their Applications. Springer (2018,
to appear)

26. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc.
B 58, 267–288 (1996)

https://doi.org/10.1007/s11633-017-1054-2
https://doi.org/10.1007/b97705
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7

Deep Learning Based Vehicle
Make-Model Classification

Burak Satar1 and Ahmet Emir Dirik2(B)

1 Department of Electrical-Electronics Engineering,
Uludag University, Bursa, Turkey

buraksatar@gmail.com
2 Department of Computer Engineering, Uludag University, Bursa, Turkey

edirik@uludag.edu.tr

Abstract. This paper studies the problem of vehicle make & model
classification. Some of the main challenges are reaching high classifi-
cation accuracy and reducing the annotation time of the images. To
address these problems, we have created a fine-grained database using
online vehicle marketplaces of Turkey. A pipeline is proposed to combine
an SSD (Single Shot Multibox Detector) model with a CNN (Convolu-
tional Neural Network) model to train on the database. In the pipeline,
we first detect the vehicles by following an algorithm which reduces
the time for annotation. Then, we feed them into the CNN model. It
is reached approximately 4% better classification accuracy result than
using a conventional CNN model. Next, we propose to use the detected
vehicles as ground truth bounding box (GTBB) of the images and feed
them into an SSD model in another pipeline. At this stage, it is reached
reasonable classification accuracy result without using perfectly shaped
GTBB. Lastly, an application is implemented in a use case by using our
proposed pipelines which detects the unauthorized vehicles by compar-
ing their license plate numbers and make & models. It is assumed that
license plates are readable.

Keywords: Deep learning · Vehicle · Model · Classification · CNN
ResNet · Detection · SSD · Fraud · License plate

1 Introduction

Numerous researches have been performed on make & model classification of
vehicles [8,14,15]. This paper studies some of the main issues of these researches.
First of all, there are only a few open source databases which include various
vehicles. However, they generally either contain fewer images per class or don’t
include commonly used vehicles. In this study, a country-specific database is
created to address this issue. Tables 1 and 2 explain its content. Images are
collected through online sources such as vehicle marketplace websites. A script
is used as a web crawler to gather the images.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 544–553, 2018.
https://doi.org/10.1007/978-3-030-01424-7_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_53&domain=pdf

Deep Learning Based Vehicle Make-Model Classification 545

On the other hand, plenty of related studies use only CNN [10] based archi-
tectures. Thus, they can’t reach high classification accuracy results. We imple-
ment three different experiments in our database to approach this problem. As
a first pipeline, normalization and data-augmentation processes are applied to
the database. Then, we feed the images into a ResNet (Residual Network) [9]
model for classification. This is called Experiment I. As a second pipeline, the
vehicles are detected by an SSD [12] model which pre-trained on MS COCO
[11] and PASCAL VOC [7] databases. Detected vehicles pass through the same
pre-processing methods. They are fed into the same ResNet model for classifica-
tion. We call it Experiment II. It is shown that Experiment II reaches a higher
classification accuracy result than Experiment I.

Moreover, annotation of the GTBB is another issue. Using manual annotation
tools [3] requires a considerable amount of time when a database is immense. For
instance, three million images should be annotated manually in some studies [5].
Using methods like Amazon Mechanical Turk also would be possible; however,
it could cost a lot of money when the database contains a relatively high volume
of the data. For those reasons, we use the pre-trained SSD model for annotation
which we already use in Experiment II. Algorithm 1 explains how we implement
the annotation semi-autonomously in our database. Therefore, the coordinates
of detected vehicles are picked as GTBB of the images. We fine-tune the VGG
[13] based SSD model on our database. This pipeline is called Experiment III.
It is reached a relatively close classification accuracy result when comparing to
Experiment I. It is seen that Experiment III achieves this score without having
perfectly shaped GTBB.

Besides, we propose an application to implement this study in a use case. The
use case is regarding the detection of an illegal vehicle. Plenty of studies handle
detecting the license plates [2,6]. However, it is challenging to understand which
vehicle uses a fraudulent license plate when a recurrent license plate is recog-
nized. For this reason, we suggest using our vehicle make & model classification
methods to detect the unauthorized license plates assuming that license plates
are readable. Reading the license plates is out of the scope of this study. Thus,
an open source project is used to fulfill the need [4].

The remainder of this paper is organized as follows. Section 2 provides all the
details of our system: data gathering, annotation, testing models, classification
and detection architectures respectively. Section 3 describes the experiments with
results. Section 4 presents the conclusions and future studies.

2 Vehicle Make-Model Classification

Firstly, this part explains the details about the database. Then, it introduces an
algorithm to annotate the database for detection purposes. Lastly, the compo-
nents of the testing models are explained.

546 B. Satar and A. E. Dirik

2.1 Data Gathering

We do all experiments in the database; therefore it has a crucial effect on the
results. Table 1 shows the distribution of the database. We take into account
the statistical works of TurkStat (Turkish Statistical Institute) [1] to form the
database. The Institute monthly declares the number of vehicle brands which are
registered in Turkey. According to the top 5 list which is composed of between
2015 and 2017, we choose Volkswagen since it is at the top of the list. We choose
the models of Renault and Fiat because they manufacture local models in our
town. They are also on top 5 of the list. It is also needed to indicate that Fiat
Dogan SLX and Renault R12 Toros are manufactured in Turkey and only sold
in Turkey. For the seventh class which stands for make & models of other vehicle
brands other than Volkswagen, Renault, Fiat; the statistical data of TurkStat is
also taken into account. Therefore, this work becomes more focused on country-
specific data.

Several focused keywords are used to gather the classes of the images. We
eliminate the ones that have inappropriate features such as showing the inside
of the vehicle, containing not the main part of the vehicle, etc. As a result, the
database includes 27887 number of images of the vehicles.

Table 1. Distribution of the dataset

Make Model Year Feature # of Images

Volkswagen Passat 2015 1.6 TDi BlueMotion Comfortline 4024

Renault Fluence 2016 1.5 dCi Touch 4293

Fiat Linea 2013 1.3 Multijet Active Plus 4234

Volkswagen Polo 1999 1.6 3208

Renault Toros 2000 R12 3783

Fiat Dogan 1996 SLX 4183

Other Class 4162

Table 2 shows the distribution of the seventh class which refers to the other
cars in general. It is composed of seven different make & models, other than the
first six classes.

2.2 Annotation

We follow Algorithm 1 to reduce the annotation time. It defines the GTBB and
classes of the images from the database with the help of predicted outcomes of
pre-trained SSD model. In this case, we assume that the images usually include
a car which is bigger than a certain size. Annotation takes a work day long when
this algorithm is implemented in our database.

Deep Learning Based Vehicle Make-Model Classification 547

Table 2. Distribution of the other class

Make Model Year Feature # of Images

Toyota Corolla 2016 1.4 D-4D Advance 663

Volvo S60 2014 1.6 D Premium 707

Peugeot 206 2001 1.4 XR 468

Ford Focus 2017 1.6 TDCi Trend X 693

Mercedes-Benz C 2015 CLA 180d 608

Nissan Micra 2016 1.2 Match 533

Audi A3 Sedan 2017 1.6 TDI 490

Algorithm 1. Annotating ground truth bounding boxes and classes
Require: certainSize ← a threshold value, classId ← zero,

for all images of that class do
read the image and pass it through the pre-trained SSD to detect only cars;
carSize ← the size of the detected car;
if carSize ≥ certainSize then

classOfDetectedCar ← classId;
else

ask annotator to give a label or delete it;
end if
save the annotation to a .csv file;

end for
increase the classID by one if any and run again;

2.3 Model Training and Testing

Figure 1 presents the three main experiments. It shows the differences among
classification results of using a custom ResNet model only, a pre-trained SSD
with the ResNet model and a fine-tuned SSD only.

Figure 2 shows the custom designed ResNet model which has 30 layers. It
is used in Experiment I and II for classification by one difference. In Experi-
ment I, the model takes the images to implement the pre-processing methods on
them. Pre-processing methods include normalization, zero padding, resizing and
data augmentation. The images are resized to the shape of (300,300,3). Data
augmentation is done by flipping, adding Gaussian blur, adding Gaussian noise
and zooming. Later, they are fed into the model for training. In Experiment
II images are processed through an SSD model, which has weights pre-trained
on MS COCO and fine-tuned on PASCAL VOC07 & VOC12 database, to only
detect cars. Then, the same pre-processing methods are applied to the images
of the detected vehicles. They are fed into the same ResNet model for training.
Therefore we give only the vehicles to the model in Experiment II instead of
giving the whole image to the model.

548 B. Satar and A. E. Dirik

Fig. 1. Overview of experiments

The coordinates of the vehicles are detected in Experiment II. They are used
as ground truth bounding boxes of the database in Experiment III. We take VGG
based weights for the SDD model which are pre-trained on ImageNet. Then,
the SSD model is fine-tuned on our database for classification and detection
purposes.

yI,IIpredict =
[
[class1 : prob1], [class2 : prob2], ..., [class7 : prob7]

]
(1)

yIIIpredict =
[
[prob, class, xmin, ymin, xmax, ymax], [...]

]
(2)

Equation 1 refers to the outcome of Experiment I and II. However, Eq. 2
refers to the output of Experiment III. Probability can be in a range between 0
and 1.

The number of trainable parameters which we use in the architecture is equal
to 1,132,775. (1,1) is used as stride values in convolutional sections of Identical
Blocks. Thus, heights and widths keep their shapes the same. The filter sizes are
also not changed. Equation 3 shows the output of the block.

In Convolutional Block, the first section and shortcut section have a stride
of (2,2) while other sections have a stride of (1,1). Besides, the first and second
section of the main branch has equal filter number. However, the third section
on Main Branch has same filter number with the shortcut section. Equation 4
shows the output of the block.

Deep Learning Based Vehicle Make-Model Classification 549

(a) Convolutional Block (b) Identity Block

(c) Main Block

Fig. 2. The architecture of the ResNet based classification model

yidentity block = F(x,Wi) + x. (3)

yconv block = F(x,Wi) + Wsx. (4)

Figure 3 shows the architecture of the SSD model. It is consist of series of con-
volutional blocks. Detections are made on certain levels. The number of detec-
tions is equal to 8732 per class. Then, a Non-Maximum Suppression method
is implemented to eliminate predictions that have low Intersection over Union
(IoU) ratio with GTBB.

Fig. 3. The architecture of the SSD model for detection

3 Experimental Results

In this part, we examine the results with the help of Table 3, confusion matrices,
sample outcomes. Training-validation-test sets are distributed based on 80%-
10%-10% rule in Experiment I and II. We implement the distribution of 80%-
20% on training-test sets in Experiment III. NVIDIA GT 730 with 2 GB RAM
is used for Experiment I and II. However, Tesla K80 is used with the help of
Google Colab for Experiment III because it needs a lot more computation.

Table 3 and Fig. 4 show that Experiment I and II reach 91.27% and 95.10%
accuracy scores respectively. It can be said that giving only the vehicles in a

550 B. Satar and A. E. Dirik

Table 3. Comparing the results of experiments

Experiment I Experiment II Experiment III

Method Only ResNet Pre-trained SSD + ResNet SSD with VGG based weights

Batch size 32 32

Epoch 100 30

Loss Categorical cross entropy Smooth L1 + Softmax

Train score 0.9635 0.9836 0.9071

Valid score 0.9052 0.9376 0.9057

Test score 0.9127 0.9510

well-centered way to the model helps to increase accuracy significantly. It is
interesting to see that Experiment II generalizes the Other Class 10% better. Fiat
Polo Class has less amount of images comparing to the other classes. However,
Experiment II also generalizes it 11% better than Experiment I.

(a) Only ResNet Model (b) Car Detection by Fine-tuned SSD +
ResNet Model

Fig. 4. Confusion matrices: overall accuracy results of Experiment I and Experiment II

Less number of epochs are used in Experiment III than the others. The origi-
nal SSD model has a VGG base which pre-trained on ImageNet first. Therefore,
no need to train further. It is also seen that there is a significant difference
between train and validation score. It indicates that we especially need more
data and a bit of a change in our model.

Figure 5 shows that we reach 90.57% mAP (Mean Average Precision) score on
the test set. It is seen that Experiment III has almost the same and even better
classification scores for several classes. We should note that GTBB of images is

Deep Learning Based Vehicle Make-Model Classification 551

defined by an algorithm which uses a pre-trained SSD model. The Other Class
has the lowest accuracy result. Finally, it reaches 70.34% detection accuracy on
the test set. Localization loss is also included in calculating this accuracy.

Fig. 5. Overall accuracy result of Experiment III, VGG based weights of SSD

We also tested the SSD based model on some videos. It can detect the vehicles
with 12 FPS using Tesla K80. When we compare the power of GPUs with the
one used in the original paper, it is very reasonable to get this FPS score. The
results can be found in the author’s repository. https://goo.gl/EB6vyF.

Tables 4 and 5 show the certain positive and negative outcomes respectively.
Green lines refer to the correct predictions. The first image shows that the model
can predict the vehicle better in spite of not having perfectly shaped GTBB. The
other samples show that having a well-centered position in an image have well
effects on detection.

Red lines refer to false predictions in Table 5. The samples show that if the
vehicles have a relatively small size in the image, it causes to be detected wrongly.
Oppositely, having a relatively big size in the image also causes false detection.

3.1 A Use Case

This study also introduces an application for detecting fraudulent license plates
in Fig. 6. Middleware first takes the detected license plate number and predicted
class by using our make & model detection method. Then it assigns them to
a dictionary value which is composed of a key and value. Finally, it compares
them with the values of the database.

It is assumed that every license plate number is matched with the class of
a car and the database is set manually from the beginning. Then, if the license
plate numbers are matched but make & models of a car not, it means there

https://goo.gl/EB6vyF

552 B. Satar and A. E. Dirik

Table 4. True decisions

Sample

Predicted Class VW. Polo Other Class Fiat Linea Fiat Dogan
Probability 1.00 1.00 1.00 1.00

Table 5. False decisions

Sample

Predicted Class VW. Polo Other Class Fiat Linea Fiat Dogan
Probability 1.00 1.00 1.00 1.00

Fig. 6. A use case diagram, the case I: license plates match, but models don’t

is a fraud. Meaning that the license plates are recurrent and the detected car
uses an illegal license plate. The performance of the application depends on how
accurate and fast the detection and the prediction are made.

Deep Learning Based Vehicle Make-Model Classification 553

4 Conclusions and Future Works

This study deals with the problems of vehicle make & model classification. At
first, a fine-grained database is created to gather a large number of samples spe-
cific to Turkey. It is used in the test experiments. As a first outcome of this paper,
we see that combining a CNN based model with an SSD model could increase
the classification score. This paper also introduces an algorithm to reduce the
annotation time; however, it causes not to have perfectly shaped GTTB of the
images. Nevertheless, we reach an acceptable classification score. For future work,
it requires a change in the filter sizes of the SSD model architecture to fix false
detection results. Besides, this study shows that implementing this model on
fraud detection of license plates is considerably possible in certain use cases.
The application could be extended to further use cases for future works. For
instance, it is quite hard to detect an illegal car when the license plates cannot
be recognized to read. However, security providers easily improve their chance
to catch the unapproved vehicles by knowing the make & model of them.

References

1. Road motor vehicles (2018). https://goo.gl/svnzXN. Accessed 5 May 2018
2. Chang, S.L., Chen, L.S., Chung, Y.C., Chen, S.W.: Automatic license plate recog-

nition. IEEE Trans. ITS 5(1), 42–53 (2004)
3. Ciocca, G., Napoletano, P., Schettini, R.: IAT - image annotation tool: Manual.

CoRR (2015)
4. Dahms, C.: LPR. https://goo.gl/Wk6GFT. Accessed 5 May 2018
5. Dehghan, A., Masood, S.Z., Shu, G., Ortiz, E.G.: View independent vehicle make,

model and color recognition using convolutional neural network. CoRR (2017)
6. Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition

(ALPR): a state-of-the-art review. TCSVT 23(2), 311–325 (2013)
7. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J.: The

pascal visual object classes challenge: a retrospective. IJCV 111(1), 98–136 (2015)
8. Gupte, S., Masoud, O., Martin, R.F.K., Papanikolopoulos, N.P.: Detection and

classification of vehicles. IEEE Trans. ITS 3(1), 37–47 (2002)
9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: 2016 IEEE Conference on CVPR, pp. 770–778 (2016)
10. LeCun, Y., Bengio, Y.: ConvNets for images, speech, and time series. In: The

Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press (1998)
11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,

Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

12. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR (2014)

14. Tafazzoli, F., Frigui, H., Nishiyama, K.: A large and diverse dataset for improved
vehicle make and model recognition. In: CVPRW, pp. 874–881 (2017)

15. Zhou, Y., Cheung, N.M.: Vehicle classification using transferable deep neural net-
work features. CoRR (2016)

https://goo.gl/svnzXN
https://goo.gl/Wk6GFT
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2

Detection and Recognition of Badgers
Using Deep Learning

Emmanuel Okafor1(&), Gerard Berendsen2, Lambert Schomaker1,
and Marco Wiering1

1 Bernoulli Institute for Mathematics, Computer Science, and Artificial
Intelligence, University of Groningen, Groningen, The Netherlands
{e.okafor,l.r.b.schomaker,m.a.wiering}@rug.nl
2 Twente Quality Centre (TQC), Enschede Area, The Netherlands

Abstract. This paper describes the use of two different deep-learning algo-
rithms for object detection to recognize different badgers. We use recordings of
four different badgers under varying background illuminations. In total four
different object detection algorithms based on deep neural networks are com-
pared: The single shot multi-box detector (SSD) with the Inception-V2 or
MobileNet as a backbone, and the faster region-based convolutional neural
network (Faster R-CNN) combined with Inception-V2 or residual networks.
Furthermore, two different activation functions are compared to compute
probabilities that some badger is in the detected region: the softmax and sigmoid
functions. The results of all eight models show that SSD obtains higher
recognition accuracies (97.8%–98.6%) than Faster R-CNN (84.8%–91.7%).
However, the training time of Faster R-CNN is much shorter than that of SSD.
The use of different output activation functions seems not to matter much.

Keywords: Image recognition � Object detection � Deep learning
Badger classification

1 Introduction

Badgers are short-legged omnivores and wild animals, and their existence is in danger
in some parts of the world. To control this threat, some countries in Europe: United
Kingdom, France, Republic of Ireland, Northern Ireland, and the Netherlands formed
the Eurobadger collaboration with the objective to protect the existence of badgers. To
assist this protection, there is a need to deploy computer vision systems that can aid in
detecting and recognizing these animals, whose habitat is often a network of under-
ground tunnels (setts). This paper describes the use of several deep neural network
approaches to detect and classify different badgers.

Previous research [10] suggests that the human eye is an efficient and reliable
method for animal detection. However, the effectiveness of the human eye reduces due
to tiredness and a human is not able to focus on an animal for 24 h a day. Therefore, it is
more efficient to apply computer-vision techniques for detecting and recognizing ani-
mals. Early research in [1] detects animal faces using Haar-like features and the Ada-
boost classifier, while tracking the animals was done using the Kanade-Lucas-Tomasi

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 554–563, 2018.
https://doi.org/10.1007/978-3-030-01424-7_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_54&domain=pdf

method. Researchers have investigated different approaches to detect animals or
humans: detection of humans in motion using background subtraction (BG) [2], using
frame differences with the W4 algorithm [20], using background frame differences
based on Gaussian functions [12], and the combination of BG and three-frame differ-
encing [13].

Since the emergence of deep neural networks in the computer vision community,
they have gained a lot of attention and successes for solving different learning tasks
such as classification of objects, plants, and animals [11, 21, 6], classifying wild-
animals [16], and recognizing cows with unmanned aerial vehicles (UAVs) using data-
augmented images [18, 17]. Concerning wildlife monitoring and conservation, the
authors in [3] investigated an automated detection and classification method of animals
or non-animals using thermal images. Their method is based on the discrete cosine
transform for feature extraction and k-nearest neighbors for classification. The research
in [5] approaches wildlife monitoring using UAVs that use thermal image acquisition
and a video processing pipeline to provide automatic detection, classification, and
tracking of wildlife in a forest or open area. Recent research in [7] unites some sci-
entists with the objective of monitoring wildlife. Their study showed that convolutional
neural networks outperform a more classical technique based on the bag of visual
words with a support vector machine in their wildlife detection challenge.

To the best of our knowledge, no research has been done concerning the detection
and recognition of different badgers. The challenge is that some of the examined
badgers have very similar color appearances, and therefore accurately discriminating
the various badgers could be a difficult problem for computer vision algorithms.

Contributions: This research proposes the use of several object detection algorithms
based on deep neural networks for detecting and recognizing badgers from video data.
For this, a comparison is made between two neural network-based detectors: SSD [14]
and Faster R-CNN [19]. SSD is combined with the Inception-V2 [9] or MobileNet [8]
as a backbone and the Faster R-CNN detector is combined with either Inception-V2 or
Residual networks [6] with 50 layers (ResNet-50) as feature extractors. Furthermore,
we compare the use of two output activation functions: the softmax and sigmoid
function. For the experiments, we use several videos recorded with a low-resolution
camera. The results show that most of the trained SSD detectors significantly outper-
form the different variants of the Faster R-CNN detector. All the Faster R-CNN
methods are computationally much faster than the SSD techniques for training the
system, although for testing SSD is a bit faster.

Paper Outline: Section 2 describes the dataset used and the preprocessing steps.
Section 3 explains the detection algorithms and the experimental setup for training the
models. Section 4 presents the results. Section 5 concludes the paper and provides
directions for future research.

Detection and Recognition of Badgers Using Deep Learning 555

2 Dataset and Preprocessing

The dataset is based on videos of different badgers collected by the foundation of Das
and Boom1. The dataset contains four individual instances of badgers with a total
number of 51 videos. The badger classes (identities) are: badger_esp, badger_iaco,
badger_looi, and badger_strik. The badgers were recorded in 2016 and 2017 at the
Badger Rescue Center of Das & Boom in the Netherlands. Additionally, some videos
and photos were made at release locations for badger rehabilitation purposes. To
identify each badger, they are micro-chipped, so the animal can be tracked during
captivity and identified after release. The streaming lengths (Ts) of the videos vary in
the range between 15 and 60 s. We extracted approximately a frame per second, for
which we developed a script that extracts (Ts ± 2) video frames. We remark that some
frames do not contain the existence of badgers and such frames are not used in our
experiments. The details of the used dataset are shown in Table 1. Some example
images of the used dataset are shown in Fig. 1.

We now describe how we made the ground truth annotations for the detection task.
We used one video to create the images for the test set for each of the classes except for
Badger_iaco where two videos are used in the test set. The remaining videos are used
to create the train set. Manual extraction of the bounding box containing the existence
of a badger was done using the LabelImg2 tool. The used tool provides the annotation
of a given image, and it is saved in the.xml file format. Each of the annotation files
contains 4 coordinates representing the location of the bounding box surrounding the
badger, the label and the file path to the images. We employed the Pascal VOC format.

Table 1. Dataset description

Dataset class No. of videos Dataset-
Split
(frames)

Ts (s)

Train Test

Badger_esp 7 328 28 59
Badger_iaco 28 323 30 15
Badger_looi 9 437 61 59
Badger_strik 7 372 62 60
Total 51 1460 181

1 http://www.dasenboom.nl/.
2 http://www.github.com/tzutalin/labelImg.

556 E. Okafor et al.

http://www.dasenboom.nl/
http://www.github.com/tzutalin/labelImg

3 Methods

This section describes the used deep neural network detection frameworks. Figure 2
shows the overall network pipeline that consists of data preprocessing as presented in
Sect. 2, training the CNN to obtain the different detection models and their corre-
sponding real-time deployment.

Fig. 1. Example images present in the Badger dataset; where each column represents:
Badger_esp, Badger_iaco, Badger_looi, and Badger_strik respectively. The yellow arrows in
column two indicate the existence of badger_iaco under poor illumination conditions
(environment). Note that most videos were shot while the badgers were in captivity for a
while, although some videos were shot in the wild.

Fig. 2. Overall pipeline for the real-time detection systems; the first box accounts for the data-
preprocessing, the second box represents the training of the CNN detection system, and the last
box provides the network the inference generator and visual monitoring deployment system in
the testing phase.

Detection and Recognition of Badgers Using Deep Learning 557

3.1 SSD with Inception-V2

The Single Shot multi-box-Detector (SSD) [14] is a detection framework that employs
feed-forward convolutional neural networks for prediction of object classes and anchor
offsets, with no consideration for second phase classification. Instead, it uses non-
maximum suppression that allows the final detection of the objects in a single pass.
A unique characteristic of this framework is that multi-scale convolutional bounding
box outputs are attached to several feature maps at the top of the network layer. At the
bottom or base portion of the network, the feature extraction method Inception-V2 [9]
increases the breadth and depth of the network with a quite low computational com-
plexity due to the used inception modules. The Inception-V2 extracts feature maps
from the input images. The combination of SSD and Inception-V2 is called SSD-
Inception-V2 [15]. We examine two forms of classification activation functions; sig-
moid and softmax. This results in two variants of this approach.

Network Setup: we have trained the network using pre-trained weights ssd_inception
v2_coco_2017_11_17, originally trained by a group of Google researchers. The pre-
trained weights contain information from a subset of the Microsoft common object in
context (COCO) dataset containing a total of approximately 328 K images with dif-
ferent object classes. We further trained the network using badger images with
bounding boxes and class labels as input to the training algorithm. This use of pre-
trained weights has the benefit of less training time compared to training random
weights from scratch that demands longer computing times. During training of the
network, we adopted a similar experimental setup as in [14] because it yields good
performances. The network parameters include; the original input image frames contain
427 � 240 pixels and are resized online to 300 � 300 pixels, the convolutional box
predictor uses a prediction dropout probability 0.8, kernel size 3 � 3 and a box-code
size set to 4. The root mean square propagation (RMSprop) optimization algorithm is
used for optimizing the loss functions trained for 40,000 steps using the following
parameters; a learning rate of 0.004, decay factor 0.95, and decays at an interval of
16,000 steps. At the non-maximum suppression part of the network a score threshold of
1 � 10�8 is used with an intersection of union (IoU) threshold of 0.6, both the clas-
sification and localization weights are set to 1.

3.2 SSD with MobileNet-V1

This method also uses SSD [14] for detection while the MobileNet-V1 [8] as the base
network is used as feature extractor. A MobileNet is a neural network-based feature
extractor that employs depth-wise separable filters for extracting feature maps from a
given image. The depth-wise separable convolution in this network involves the
integration of depth-wise convolution and 1 � 1 point-wise convolution. The merit of
this approach is that it reduces computational cost compared to standard convolution
[8]. The output from the MobileNet is further processed using SSD. The method is
referred to as SSD-MobileNet-V1. Additionally, we consider two forms of classifica-
tion activation functions: sigmoid and softmax. This results in two variants of this
method.

558 E. Okafor et al.

Network Setup: we have trained the network using pre-trained weights ssd_mo-
bilenet_v1_coco_2017_11_17 from the COCO dataset as was explained in the previous
subsection, and further trained our custom network using the badger images as input to
the SSD-MobileNet-V1 system. The training process uses similar hyperparameters as
described in the previous subsection.

3.3 Faster R-CNN with ResNet-50

The Faster R-CNN algorithm [19] is an improvement of Fast R-CNN [4]. In this
system, the working operation of the Faster R-CNN involves two phases. The first
phase requires the use of a region proposal network (RPN) which allows concurrent
prediction of object anchors and confidence (objectiveness) from some intermediate
layers. Note that a feature extraction network can be used for this purpose, in this case,
a residual network with a depth of 50 layers (ResNet-50) [6] is used. The second phase
requires information from the first phase to make an accurate prediction of the class
label and its bounding box refinement. Additionally, we made consideration of the
classification activation functions that were earlier discussed in the previous subsec-
tions. Hence this results in two variants of this network.

Network Setup: We have trained the network using pre-trained weights faster_rcnn_
resnet50_coco_2018_01_28 from the COCO dataset. The training of the network
factored in some modified experimental setups as in [19]. The original input image
(badger) to the network contains 427 � 240 pixels and is resized online with an aspect
ratio of min-max dimensions [600, 1024] during training. As earlier discussed the
network comprises of two phases. The first phase initiates a grid-anchor of size
16 � 16 pixels with scales [0.25, 0.5, 1.0, 2.0], a nonmaximum-suppression-IoU-
threshold set to 0.7, the localization loss weight 2.0, objectiveness weight 1.0 with an
initial crop size of 14 � 14 pixels, kernel size 2 � 2 with strides set to 2. The second
phase computes the prediction score with the IoU-threshold set to 0.6; the SGD
optimizer optimizes the loss functions using an initial learning rate 0.0002 and
momentum value 0.9. Again, the network was trained for 40,000 steps.

3.4 Faster R-CNN with Inception-V2

The Faster R-CNN detector employs an Inception V2 feature extractor for extracting
useful feature maps from an input image. The intermediate layer from the Inception
module uses the RPN component of the network for prediction of object anchors and
confidences. Similar procedures as explained in [19] were followed.

Network Setup: we have trained the network using pre-trained weights faster_rcnn_
inception_v2_coco_2018_01_28 from the COCO dataset. The training of our custom
network employs the badger images as input to the Faster-RCNN-InceptionV2 system.
The training process uses similar hyperparameters as described in the previous
subsection.

All the experiments were carried out using the Tensorflow object detection API
framework on a Ge-Force GTX 960 GPU model, and the operating system platform
employed is Ubuntu 16.0. We modified the deployment script in the Tensorflow object

Detection and Recognition of Badgers Using Deep Learning 559

detection API, by providing the possibility to evaluate all images in the test directory
instead of applying restrictions. Moreover, we also use our own script to compute the
performance index metrics of the used methods. The next section discusses the per-
formance and overall training time for each of the methods.

4 Experimental Results

The overall training time for each of the used methods is reported in Table 2. The table
shows that the training time of Faster R-CNN is much shorter than the training time of
SSD, and the use of Inception-V2 leads to the shortest training times. The frame rates
show that most of the methods can analyze 0.8–1.5 images per second using our
hardware, and SSD is a bit faster than Faster R-CNN for deployment.

We have carried out two experimental runs and computed the average precision,
recall and accuracy, based on the predicted class label in a detected box. The standard
deviations for all the methods are � 1.4%, which indicates that the performances of the
techniques are consistent. The summary of the average performance indices and the
standard deviations for each of the methods is presented in Table 3. From this table, we
draw the conclusion that SSD-Inception-V2 for both output functions and the
SSDMobileNet-V1-Sigmoid outperforms all the Faster R-CNN variants with p < 0.05
significance level.

The performance index from the SSD-network variants provides a more precise
detection compared to the Faster R-CNN network variants. The lower precision in the

Table 2. Average time evaluation for the different detection systems

Methods (CNN models) Training
time

Time
improvement

Testing
time

Frame rate
(f/s)

Faster_RCNN-
Inception_V2_Sigmoid

3 h, 21 m �3.0 222 s 0.82

Faster_RCNN-
Inception_V2_Softmax

3 h, 23 m �2.9 211 s 0.86

Faster_RCNN-ResNet-50-
Sigmoid

5 h, 37 m �1.4 268 s 0.68

Faster_RCNN-ResNet-50-
Softmax

5 h, 44 m �1.3 267 s 0.68

SSD_Inception_V2_Softmax 10 h,
45 m

�0.24 162 s 1.12

SSD_Inception_V2_Sigmoid 10 h,
46 m

�0.24 163 s 1.11

SSD_MobileNet_V1_Softmax 13 h,
16 m

�0.01 120 s 1.51

SSD_MobileNet_V1_Sigmoid
(Baseline)

13 h,
21 m

− − − 122 s 1.48

560 E. Okafor et al.

Faster R-CNN may have arisen due to localization bias problems. Figure 3 shows some
examples of the detection scores of badgers within a given image during testing
evaluation. From this figure, we observe that the Faster R-CNN methods misclassified
this particular example of badger_strik (gray box) as badger_esp (green box) as shown
in sub-images within cells (3, 2) and (4, 2). Hence, this explains the lower performance
index using the Faster R-CNN methods compared to the SSD network variants. From
an application standpoint, it could be profitable to use Inception-V2 as the backbone for
the SSD detector since it presents more precise detections of the objects of interest.

Table 3. Average performances for the different detection and recognition systems

Methods (CNN models) Performance index
Precision Recall Accuracy

SSD_Inception_V2_Softmax 0.988 ± 0.012 0.986 ± 0.014 0.986 ± 0.014
SSD_Inception_V2_Sigmoid 0.986 ± 0.003 0.986 ± 0.004 0.986 ± 0.004
SSD_MobileNet_V1_Sigmoid 0.985 ± 0.005 0.983 ± 0.006 0.983 ± 0.006
SSD_MobileNet_V1_Softmax 0.978 ± 0.011 0.978 ± 0.011 0.978 ± 0.011
Faster_RCNN-Inception_V2_Softmax 0.942 ± 0.009 0.917 ± 0.011 0.917 ± 0.011
Faster_RCNN-Inception_V2_Sigmoid 0.945 ± 0.003 0.914 ± 0.008 0.914 ± 0.008
Faster_RCNN-ResNet-50-Sigmoid 0.936 ± 0.000 0.890 ± 0.000 0.890 ± 0.000
Faster_RCNN-ResNet-50-Softmax 0.921 ± 0.003 0.848 ± 0.003 0.848 ± 0.003

Fig. 3. Testing detection confidence prediction of the badger individual instances using different
neural network detection methods: the first row indicates detection using ssd_mobilenet_v1_-
softmax, the second row shows the detection using ssd_inception_ v2_sigmoid, the third row
shows the detection using faster_rcnn_inception_v2_softmax, and the last row shows the
detection using faster_rcnn_resnet50_sigmoid. Note that each of the columns represents the
badger individual instances in the order; Badger_esp, Badger_strik, Badger_looi, and
Badger_iaco respectively. (Color figure online)

Detection and Recognition of Badgers Using Deep Learning 561

Additionally, the results suggest that SSD-based networks are useful in handling
localization bias problems.

5 Conclusion

Real-time detection using deep learning can be used for many localization and iden-
tification tasks. In this paper, several deep neural networks were used to detect and
classify different badgers using a novel animal dataset. We compared the single shot
multi-box detector (SSD) combined with Inception-V2 or MobileNet, to faster-region-
based convolutional neural network (Faster R-CNN) combined with Inception-V2 or
residual networks (ResNet). We used the pre-trained networks and further trained them
on our dataset. The four detectors were combined with either a softmax or sigmoid
function for computing the output probability scores, hence resulting in eight different
models.

The results showed that SSD with the Inception-V2 as a backbone obtains the
highest mean accuracy performance (98.6%). Furthermore, we noticed that during
testing, SSD has a higher frame rate than Faster R-CNN, although its training time is
longer. Our analyses suggest that the examined SSD methods tackle the problem of
localization bias much better than Faster R-CNN during prediction of the bounding
boxes. Finally, we noticed that the use of the sigmoid or softmax output activation
functions led to comparable results.

Future work will be directed at the scalability in the number of classes and envi-
ronments, using a much larger dataset. We also suggest that the best found model,
SSD-Inception-V2-Softmax, could be improved and deployed into UAVs or thermal
acquisition cameras, as this can help to detect badgers in environments where they are
endangered.

References

1. Burghardt, T., Calic, J.: Real-time face detection and tracking of animals. In: 8th Seminar on
Neural Network Applications in Electrical Engineering, NEUREL 2006, pp. 27–32. IEEE
(2006)

2. Chen, P.: Moving object detection based on background extraction. In: International
Symposium on Computer Network and Multimedia Technology, CNMT 2009, pp. 1–4.
IEEE (2009)

3. Christiansen, P., Kragh, M., Steen, K.A., Karstoft, H., Jørgensen, R.N.: Platform for
evaluating sensors and human detection in autonomous mowing operations. Precis. Agric.
18(3), 350–365 (2017)

4. Girshick, R.: Fast R-CNN. arXiv preprint arXiv:1504.08083 (2015)
5. Gonzalez, L.F., Montes, G.A., Puig, E., Johnson, S., Mengersen, K., Gaston, K.J.:

Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife
monitoring and conservation. Sensors 16(1), 97 (2016)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

562 E. Okafor et al.

http://arxiv.org/abs/1504.08083

7. He, Z., Kays, R., Zhang, Z., Ning, G., Huang, C., Han, T.X., Millspaugh, J., Forrester, T.,
McShea, W.: Visual informatics tools for supporting large-scale collaborative wildlife
monitoring with citizen scientists. IEEE Circ. Syst. Mag. 16(1), 73–86 (2016)

8. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861 (2017)

9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

10. Koik, B.T., Ibrahim, H.: A literature survey on animal detection methods in digital images.
Int. J. Futur. Comput. Commun. 1(1), 24 (2012)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

12. Liu, H., Hou, X.: Moving detection research of background frame difference based on
Gaussian model. In: 2012 International Conference on Computer Science & Service System
(CSSS), pp. 258–261. IEEE (2012)

13. Liu, H., Dai, J., Wang, R., Zheng, H., Zheng, B.: Combining background subtraction and
three-frame difference to detect moving object from underwater video. In: OCEANS 2016-
Shanghai, pp. 1–5. IEEE (2016)

14. Liu, Wei, et al.: SSD: single shot multibox detector. In: Leibe, Bastian, Matas, Jiri, Sebe,
Nicu, Welling, Max (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0_2

15. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., Omata, H.: Road damage detection using
deep neural networks with images captured through a smartphone. arXiv preprint arXiv:
1801.09454 (2018)

16. Okafor, E., et al.: Comparative study between deep learning and bag of visual words for
wild-animal recognition. In: 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8. IEEE (2016)

17. Okafor, E., Schomaker, L., Wiering, M.A.: An analysis of rotation matrix and colour
constancy data augmentation in classifying images of animals. J. Inf. Telecommun., 1–27
(2018)

18. Okafor, E., Smit, R., Schomaker, L., Wiering, M.: Operational data augmentation in
classifying single aerial images of animals. In: 2017 IEEE International Conference on
INnovations in Intelligent SysTems and Applications (INISTA), pp. 354–360. IEEE (2017)

19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with
region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–
99 (2015)

20. Sengar, S.S., Mukhopadhyay, S.: Moving object detection based on frame difference and
W4. Signal, Image Video Process. 11(7), 1357–1364 (2017)

21. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

Detection and Recognition of Badgers Using Deep Learning 563

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1801.09454
http://arxiv.org/abs/1801.09454

SPSA for Layer-Wise Training of Deep
Networks

Benjamin Wulff1,2(B), Jannis Schuecker1,2, and Christian Bauckhage1,2,3

1 Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
2 Fraunhofer IAIS, Sankt Augustin, Germany

benjamin.wulff@iais.fraunhofer.de
3 B-IT, University of Bonn, Bonn, Germany

Abstract. Concerned with neural learning without backpropagation, we
investigate variants of the simultaneous perturbation stochastic approxi-
mation (SPSA) algorithm. Experimental results suggest that these allow
for the successful training of deep feed-forward neural networks using
forward passes only. In particular, we find that SPSA-based algorithms
which update network parameters in a layer-wise manner are superior to
variants which update all weights simultaneously.

1 Introduction

Error backpropagation [19] is the de facto algorithm for neural network training,
and, given its success especially in deep learning, one can hardly argue against
its utility. Nevertheless, a growing number of voices worries about its dominance
in neurocomputing.

Some of the criticism points to the fact that, in biological brains, backward
communication channels among neurons have not yet been identified that would
allow for the backpropagation of gradient information [1]. In fact, for artificial
feed-forward neural networks, there is growing evidence that parameters can
be learned without having to propagate precise error signals from the output
to the input layer [1,5,11,14,18]. Others criticize that gradient-based learning
frequently suffers from slow convergence or saturation effects due to vanishing or
exploding gradients, saddle points in the error landscape, or poor conditioning of
weight matrices [25]. However, it is known that backpropagation-free, layer-wise
training, where the parameters of all but one layer of a network are kept fixed
during updates, can provide a remedy [3,7,25].

In this paper, we, too, investigate neural learning without backpropagation.
Contrary to the work cited so far, we resort to derivative-free optimization and
thus avoid the computation of analytical, chain rule based gradients altogether.

In particular, we propose to learn the parameters of deeply layered networks
using Spall’s simultaneous perturbation stochastic approximation (SPSA) [23,24].
The basic idea is to create two random perturbations of the set of weights and
biases of a randomly initialized network, to evaluate the network’s performance
under these perturbed parameters, to apply information gathered thusly in order
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 564–573, 2018.
https://doi.org/10.1007/978-3-030-01424-7_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_55&domain=pdf

SPSA for Layer-Wise Training of Deep Networks 565

to update the current estimates, and to iterate this process until convergence.
This way, learning happens by means of forward passes only and there is no need
for elaborate backward communication through the layers of the network.

Our idea of SPSA-based neural network training is not entirely novel since
it has previously been applied to train recurrent neural networks for control
tasks [4,20,22,27]. While these contributions validate SPSA-based learning, the
networks considered there were comparatively small and weights and biases were
updated simultaneously. Yet, for larger networks with much more parameters
this intuitive approach may suffer from the curse of dimensionality.

Here, we therefore consider layer-wise SPSA updates of network parameters.
We propose an algorithm which, in each training epoch, cycles through the layers
of a network and updates only the weights in the layer currently considered while
keeping the others fixed. Experiments on didactic and real-world classification
problems show this to be a viable neural network training algorithm.

2 Derivative-Free Optimization and SPSA

Next, we briefly review derivative-free optimization in general and the SPSA
algorithm in particular. Readers familiar with these topics may safely skip ahead.

Assume we need to find the minimizer

x∗ = argmin
x

f(x) (1)

of some multivariate function f : Rm → R that may be non-convex, non-smooth,
or even non-continuous. For complicated functions like this, solutions to (1) are
typically determined iteratively. That is, we first guess an initial solution xt=0

and then repeatedly apply an oracle or optimization procedure o : Rm → R
m to

create a sequence of improved guesses

xt+1 = o(xt) (2)

hoping that it approaches x∗. For this procedure to work, we have to require that
the optimizer achieves f(xt+1) ≤ f(xt) and that the sequence in (2) converges,
because only then will it lead to at least a local minimum.

Note that gradient descend is but a specific instance of this general idea,
because here we have o(xt) = xt − ηt ∇f(xt) which will meet our requirements
if the step sizes ηt are chosen appropriately. However, for gradient descend to be
applicable, f(xt) must be differentiable, and, in order for it to work well, ∇f(xt)
should neither vanish nor explode.

Derivative-free optimization techniques such as the Nelder-Mead method [16]
or pattern search [9] avoid potential limitations of gradient-based techniques.
Instead of computing ∇f

(
xt

)
, they merely probe f at several points x in the

vicinity of the current estimate xt and use information gathered this way to
compute the next estimate xt+1. In other words, derivative-free optimization
relies on evaluations of f rather than on evaluations of ∇f .

566 B. Wulff et al.

Algorithm 1. SPSA for solving (1)
function SPSA(f, x0, a, α, c, γ)

for all t = 1, . . . , tmax do
set at = a

tα

set ct = c
tγ

randomly sample a perturbation vector δ where δi ∼ U{−1, +1}
set x+ = xt + ct δ
set x− = xt − ct δ

compute an approximated gradient ĝ(xt) where ĝi(xt) =
f
(

x+
i

)
−f

(
x−

i

)

2 ct δi

compute an improved solution estimate such that xt+1 = xt − at ĝ(xt)
return xtmax

Simultaneous perturbation stochastic approximation (SPSA) is a derivative-
free optimization procedure that closely resembles gradient descend. Since the
components gi(x) of the gradient g(x) = ∇f(x) of f at x can be defined as

gi(x) = lim
ε→0

f(xi + ε) − f(xi − ε)
2 ε

(3)

we can compute a rough, stochastic approximation ĝ(x) of g(x) using

ĝi(x) =
f(xi + δi) − f(xi − δi)

2 δi
(4)

where δ is a random perturbation vector. SPSA as summarized in Algorithm1
utilizes this observation to improve on the older Kiefer-Wolfowitz scheme [12]. It
realizes iterative optimization by creating two perturbations x+ and x− of the
current best solution xt which are used to compute a stochastic approximation
of a gradient and to descend accordingly.

To guarantee convergence to a (local) minimum, gradient approximations
must become more and more refined in each iteration; this is achieved via the
scaling factors at and ct which must obey the Robbins-Monro conditions [17].
Common choices are therefore at = a

tα where a > 0 and α ≥ 1 and ct = c
tγ where

c > 0 and γ ∈ [
1
6 , 1

2

]
.

The perturbation vector δ, too, has to obey certain conditions. Its elements
δi must be mutually independent zero-mean random variables and their inverse
first and second moments (i.e. E

[
δ−1
i

]
and var

[
δ−1
i

]
) must be finite. Note that the

latter is explicitly not the case if the δi are sampled from a zero-mean Gaussian.
A good and popular choice for the δi is thus to sample them from the uniform
distribution over {−1,+1}.

3 SPSA-Based Neural Network Training

In this section, we discuss how to adapt SPSA-based parameter estimation to
neural network training. We focus on feed-forward architectures, i.e. deep or
multi-layered networks consisting of L layers of neurons.

SPSA for Layer-Wise Training of Deep Networks 567

Letting the vector al−1 denote the activations computed by the neurons in
layer l − 1 of such a network, neuron i in layer l computes

al
i = hl

i

(〈
wl

i,a
l−1

〉)
(5)

where hl
i(·) is a non-linear activation function, 〈·, ·〉 denotes the inner product,

and the vector wl
i represents the synaptic weights of the neuron (for notational

simplicity, we subsume bias terms into synaptic summations). The collective
output of layer l can then be expressed as

al = hl
(
W lal−1

)
(6)

where hl(·) now denotes a vector-valued activation function and the matrix W l

contains all input weights of the layer. If the network has M input neurons and
m output neurons, it computes a function y : RM → R

m given by

y
(
x

∣
∣ W)

= hL

(

W LhL−1

(
W L−1 . . . h2

(
W 2h1

(
W 1x

))
))

(7)

where W =
{
W 1, . . . ,W L

}
represents the set of all weight parameters of the

network.
In order to train this model to act as a classifier, we assume that we are given

labeled training data
D =

{(
xi,yi

)}n

i=1
(8)

where the xi ∈ R
M are data points and the yi ∈ {−1,+1}m are correspond-

ing label vectors. Proceeding as usual, we consider minimization of the sum of
squared residuals

E
(D,W)

=
n∑

i=1

‖y
(
xi

∣
∣ W) − yi‖2 (9)

as the learning objective. Training the network therefore amounts to solving

W∗ = argmin
W

E
(D,W)

(10)

which we recognize as a specific instance of the general problem in (1). This then
suggests that SPSA or Algorithm 1 should allow for deep learning.

Indeed, work [4,20,22,27] shows that, at least for small networks, it is viable
to compute perturbations W+ = Wt + ct δ and W− = Wt − ct δ to approximate
the gradient of E in order to update the current parameter estimate Wt.

However, if the network is large, holistic or simultaneous updates of W may
suffer from the curse of dimensionality since, in very high dimensional parameter
spaces, two random perturbations can not be guaranteed to sample the vicin-
ity of Wt comprehensively enough to obtain “useful” gradient approximations.
In other words, holistic SPSA-based training may converge slowly as random
perturbations in high dimensions might approximate gradients only poorly.

568 B. Wulff et al.

Algorithm 2. SPSA-based, layer-wise neural network training
initialize W0 =

{
W 1

0, . . . , W
L
0

}

// perform emax epochs of training
for all e = 1, . . . , emax do

// iterate over all layers of the network
for all l ∈ L do

// keeping weight matrices W k �=l
e fixed, use SPSA to update

// weight matrix W l
e; the objective function to be evaluated

// by Algorithm 1 is E
(D, W)

in equation (9)

W l
e+1 = SPSA

(
E, W l

e

)

Yet, experience with hierarchical factor models [2,26] and work on layer-
wise neural network training [3,7,25] suggest a solution. Due to the hierarchical
nature of the network function in (7), we may just as well proceed in an alter-
nating fashion where weights are updated one layer at a time.

This idea is summarized in Algorithm 2. Having randomly initialized the
network weights W0, we adhere to common custom and perform emax epochs of
training. In each epoch e, we iterate over the layers of the network. Denoting the
current layer by l, we keep the weight matrices W k �=l

e of the other layers fixed and
use SPSA to optimize E

(D,We

)
w.r.t. the weights in matrix W l

e. This way, the
dimensions of the parameter spaces that have to be probed become much smaller
and perturbation based gradients stand a better chance to well approximate
the corresponding analytical gradients. Indeed, our practical experiments in the
next section show that layer-wise SPSA updates of network weights find suitable
solutions but converge or learn considerably faster than holistic updates.

An open question at this point is in which sequence to iterate over the net-
work layers during training? Three approaches seem possible: top-down from the
output to the input layer

l ∈ Ltd = {L,L − 1, . . . , 2, 1}, (11)

bottom-up from the input to the output layer

l ∈ Lbu = {1, 2, . . . , L − 1, L}, (12)

or in a random order

l ∈ Lrnd = random permutation
({1, 2, . . . , L − 1, L}). (13)

In our experiments reported below, we consider all three possibilities and
find that neither training time nor training success seem to depend on the order
in which layer-wise learning happens.

Regardless of the update strategy (holistic or layer-wise), however, SPSA-
based training only requires forward passes through a network. That is, weight

SPSA for Layer-Wise Training of Deep Networks 569

updates based on approximated gradients only require direct evaluations of (9)
and thus of (7) but no backward communication among neurons in different
layers. In other words, Algorithm 2 accomplishes neural network training without
backpropagation.

4 Practical Experiments

Next, we discuss baseline experiments to evaluate the practical performance
of (layer-wise) SPSA-based neural network training. For experimentation,
we implemented the SPSA method as an Optimizer in the TensorFlow
framework; readers interested in this implementation can retrieve it from
github.com/fraunhofer-iais.

Fig. 1. Didactic classification problems. The upper row shows training data for two-
and three-class classification problems together with decision boundaries learned by
a neural network. The lower row visualizes progressions of training errors (averaged
over 100 trials) for network training using the SPSA variants discussed in the text; in
each case, the alternating, layer-wise training variants behave almost identical and are
superior to the holistic approach.

4.1 Low-Dimensional Classification Problems

The upper row of Fig. 1 shows three sets of two-dimensional training data for
simple classification problems together with visualizations of the decision bound-
aries obtained from training neural networks to classify these data.

https://github.com/fraunhofer-iais

570 B. Wulff et al.

For the two-class classification problems in Figs. 1a and b, we considered
labels yi ∈ {−1,+1} and trained five-layered networks of the following topology
2×5×5×5×1 where each layer also included an additional bias unit; the num-
ber of parameters to be learned during training thus was 81. For the three-class
classification problem in Fig. 1c, we considered label vectors yi ∈ {−1,+1}3 and
trained a seven-layered 2×10×10×10×10×10×3 network again with bias units;
the number of parameters to be learned in this task was thus 503. The activa-
tion functions of all computational units of these networks were chosen to be
hl

i(〈wl
i,a

l−1〉) = tanh(β · 〈wl
i,a

l−1〉) with β = 0.5 for the two-class classification
problems and β = 0.25 for the three-class classification problem.

The lower row of Fig. 1 shows corresponding average evolutions of training
errors using holistic and layer-wise SPSA where averages were computed from
100 trials with different random initializations of the network parameters. Two
observations are immediate: first, alternating or layer-wise SPSA according to
Algorithm 2 learns better than a holistic variant where all weights are updated
simultaneously. Using the holistic approach, learning converges only for a fraction
of trials in the two-class case (individual trials not shown) while it does not
converge at all for the three-class classification. Second, the order in which the
layer-wise learning algorithm iterates of the network layers does not seem to
matter. In other words, whether updating layer l is chosen from Ltd, Lbu, or Lrnd

does not seem to impact training errors; with respect to the speed of learning,
the three different variants of the algorithm behave basically indistinguishably.

4.2 MNIST

To investigate the feasibility and performance of layer-wise training using SPSA
for networks with a much larger number of parameters we chose the well-
known MNIST classification problem [13] with one-hot encoded label vectors
yi ∈ {0, 1}10. We considered a three-layered network with topology 784×196×10,
corresponding to a total number of 771,270 parameters. As before, the activation
function for all units in the network was tanh with β = 1.

As in the case of the three-class classification example, the holistic variant of
SPSA failed to learn the MNIST task. Therefore we trained the network using
the bottom-up variant of Algorithm2 with a = 0.1, c = 0.1 and tmax = 50,
however, with the following modification. For each layer we first apply the SPSA
Algorithm 2 to the weights and afterwards to the biases, which is inspired by
our previous findings that a partial perturbation of the network is superior to
a holistic one (Sect. 4.1). Without this modification we did not observe any
learning behavior of the network. For comparison we also trained the network
with standard Gradient Descent (GD) (tf.train.GradientDescentOptimizer
in TensorFlow) with a learning rate of l = 0.01.

In most of the runs, SPSA training was successful. Figure 2 shows the learning
curves averaged over three successful runs in comparison to GD training. While
GD achieves a higher accuracy after additional training epochs, SPSA already
learns within the first twelve epochs. Note, however, that during one epoch,

SPSA for Layer-Wise Training of Deep Networks 571

extended Algorithm 2 contains additional iterations over weights and biases com-
pared to GD. Furthermore, each application of SPSA (Algorithm1) entails tmax

partial weight updates, while GD only contains one update of all parameters
per batch. Anyway, we neither aim for a quantitative comparison between the
two approaches nor for achieving state of the art results (<1% error rate). Our
goal is rather to show that SPSA training is feasible even for a total number of
parameters close to a million.

5 10 15

training epoch e

1.5

2.0

2.5

er
ro
r
E
(D

,W
e
)

100 200

GD
SPSA

(a) MNIST training error

5 10 15

training epoch e

0.2

0.4

0.6

0.8

ac
cu
ra
cy

100 200

(b) MNIST classification accuracy

Fig. 2. MNIST classification. The left panel compares the training error for SPSA and
gradient descent. The right panel shows the corresponding accuracies evaluated on a
test set. While SPSA training learns within the first twelve epochs, gradient descent
achieves a higher accuracy in the end.

5 Conclusion

In this paper, we were concerned with the idea of neural network training without
backpropagation. To accomplish this, we considered Spall’s SPSA algorithm, a
derivative-free optimization procedure, and proposed different variants as to how
to adopt it towards training feed-forward networks. In particular, we proposed
to carry out training in a layer wise manner, where we iterate over the layers of
a network and only update the weights of the current layer while the others are
kept fixed.

In practical experiments on didactic classification problems, we found that
layer-wise training is superior compared to the holistic approach. In other words,
sequentially choosing sub-sets of updated parameters is beneficial, presumably
because a holistic perturbation is error-prone to the curse of dimensionality. In
addition we find that the sequence in which the subsets are perturbed does not
influence training performance.

In experiments with larger networks applied to the MNIST classification
problem we found the holistic variant to be failing. The bottom-up approach

572 B. Wulff et al.

proved to be working after further modification that adjusts weights and biases
subsequently. Here, we do not attempt to achieve state of the art results but
rather show a proof of concept that SPSA can be used to train multi-layered
networks with almost a million of parameters.

From an abstract point of view, the approach studied in this paper is loosely
reminiscent of the idea of connectionist reinforcement learning [28]. This is
because each individual neuron of the network learns based on immediate feed-
back as to their collective performance. This opens up auspicious directions for
future research.

The way we incorporated SPSA into neural network training is also akin to
the idea of gradient descend with warm starts [15] or the idea of using cyclic
learning rates [21]. This is because, in each iteration over the layers of a network,
we reinitialize the SPSA parameters at and ct to large values which then decrease
during the SPSA iterations. This analogy to warm starts or cyclic learning rates
then provides a natural point of contact to the recent paradigm of weight aver-
aging [6,10] which has been observed to improve learning results especially when
dealing with shallow error landscapes [8]. This connection, too, will be explored
further in future work.

References

1. Baldi, P., Sadowski, P., Lu, Z.: Learning in the machine: random backpropagation
and the deep learning channel. arXiv:1612.02734 [cs.LG] (2016)

2. Bauckhage, C., Thurau, C.: Making archetypal analysis practical. In: Denzler, J.,
Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 272–281. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03798-6 28

3. Bengio, Y., Lamblin, P., Popovic, D., Larochelle, H.: Greedy layer-wise training of
deep networks. In: Proceedings NIPS (2006)

4. Choy, M., Srinivasan, D., Cheu, R.: Neural networks for continuous online learning
and control. IEEE Trans. Neural Netw. 17(6), 2006 (2006)

5. Courbariaux, M., Bengio, Y., David, J.P.: Training deep neural networks with low
precision multiplications. arXiv:1412.7024 [cs.LG] (2014)

6. Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D., Wilson, A.: Loss sur-
faces, mode connectivity, and fast ensembling of DNNs. arXiv:1802.10026 [stat.ML]
(2018)

7. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets.
In: Proceedings NIPS (2006)

8. Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Comput. 9(1), 1–42 (1997)
9. Hooke, R., Jeeves, T.: Direct search solution of numerical and statistical problems.

J. ACM 8(2), 212–229 (1961)
10. Izmailov, P., Garipov, D.P.T., Vetrov, D., Wilson, A.: Averaging weights leads to

wider optima and better generalization. arXiv:1803.05407 [cs.LG] (2018)
11. Jaderberg, M., et al.: Decoupled neural interfaces using synthetic gradients.

arXiv:1608.05343 [cs.LG] (2016)
12. Kiefer, J., Wolfowitz, J.: Estimation of the maximum of a regression function. Ann.

Math. Stat. 23(3), 462–466 (1952)
13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86, 2278–2324 (1998)

http://arxiv.org/abs/1612.02734
https://doi.org/10.1007/978-3-642-03798-6_28
http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1802.10026
http://arxiv.org/abs/1803.05407
http://arxiv.org/abs/1608.05343

SPSA for Layer-Wise Training of Deep Networks 573

14. Lillicrap, T., Cownden, D., Tweed, D., Akerman, J.: Random synaptic feedback
weights support error backpropagation for deep learning. Nat. Commun. 7(13276)
(2016)

15. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
In: Proceedings ICLR (2017)

16. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J.
7(4), 308–313 (1965)

17. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat.
22(3), 400–407 (1951)

18. Rosenfeld, A., Tsotsos, J.: Intriguing properties of randomly weighted networks:
generalizing while learning next to nothing. arXiv:1802.00844 [cs.LG] (2018)

19. Rummelhart, D., Hinton, G., Williams, R.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

20. Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber,
J.: Policy gradients with parameter-based exploration for control. In: Kůrková,
V., Neruda, R., Koutńık, J. (eds.) ICANN 2008. LNCS, vol. 5163, pp. 387–396.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87536-9 40

21. Smith, L.: Cyclical learning rates for training neural networks. In: Proceedings
Winter Conference on Applications of Computer Vision. IEEE (2017)

22. Song, Q., Spall, J., Soh, Y.C., Nie, J.: Robust neural network tracking controller
using simultaneous perturbation stochastic approximation. IEEE Trans. Neural
Netw. 19(5), 817–835 (2008)

23. Spall, J.: Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)

24. Spall, J.: Introduction to Stochastic Search and Optimization: Estimation, Simu-
lation, and Control. Wiley, Hoboken (2003)

25. Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., Goldstein, T.: Training
neural networks without gradients: a scalable ADMM approach. In: Proceedings
ICML (2016)

26. Thurau, C., Kersting, K., Wahabzada, M., Bauckhage, C.: Convex non-negative
matrix factorization for massive datasets. Knowl. Inf. Syst. 29(2), 457–478 (2011)

27. Vande Wouver, A., Renotte, C., Remy, M.: On the use of simultaneuous per-
turbation stochastic approximation for neural network training. In: Proceedings
American Control Conference. IEEE (1999)

28. Williams, R.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

http://arxiv.org/abs/1802.00844
https://doi.org/10.1007/978-3-540-87536-9_40

Dipolar Data Aggregation in the Context
of Deep Learning

Leon Bobrowski1,2(&) and Magdalena Topczewska1

1 Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45A Street, Bialystok, Poland

{l.bobrowski,m.topczewska}@pb.edu.pl
2 Institute of Biocybernetics and Biomedical Engineering, PAS,

Trojdena 4 Street, Warsaw, Poland

Abstract. Separable data aggregation processes can be analyzed and realized
with models of multilayer neuronal networks. Deep learning techniques can be
engaged in forming hierarchical neuronal structures with such powerful
properties.
Data processing through hierarchical, multilayer structure may result in a

replacement of many feature vectors of the same category by a single output
vector in an upper layer. Separable data aggregation in the dipolar layers of
binary classifiers allows reaching such goal.

Keywords: Univariate binary classifiers � Separable data aggregation
Dipolar aggregation strategies � Deep learning � Designing hierarchical
networks

1 Introduction

Data sets used in classifiers designing can be composed of a large number of multi-
variate feature vectors [1]. It is assumed that particular feature vectors represent objects
(patients, events, etc.) [2]. We are considering a situation where a given data set has
been divided into separable learning subsets in accordance with additional knowledge
about particular objects categories (classes). As an example, separable clinical learning
sets may contain such feature vectors which represent patients with only one, particular
disease [3].

Different types of classifiers can be designed (trained) on feature vectors contained
in learning data sets according to a variety of pattern recognition goals and methods [2].
A classifier allocates each feature vector to one of categories in accordance with the
decision (classification) rule designed on the basis of the learning sets. The designed
classification rule should have a generalization property. It means, that the designed
classifier should reasonably allocate not only elements of the learning sets but also
similar feature vectors which are not contained in the learning sets.

A binary classifier transforms a given feature vector into the number equal to one or
to zero. The formal neuron is an example of a binary classifier [3]. The output of the
formal neuron is equal to one if and only if the weighted sum of input signals is greater
or equal to some threshold. If this sum is less than the threshold, then the output is

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 574–583, 2018.
https://doi.org/10.1007/978-3-030-01424-7_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_56&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_56&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_56&domain=pdf

equal to zero. Univariate binary classifiers (logical elements) can be treated as formal
neurons only with single input signals.

A given layer of L binary classifiers transforms feature vectors into output vectors
with L binary components. The layer of binary classifiers aggregates input data sets if
some feature vectors are transformed into the same output vector. The aggregation is
separable if and only if some of the feature vectors belonging to the same class are
aggregated into a single output vector. In other words, there are no two feature vectors
belonging to different learning sets (mixed dipole) that are transformed (aggregated)
into the same output vector [4].

Complex, hierarchical networks can be designed from binary classifiers. The
concept of separable layers has been proposed for this purpose [3]. It was demonstrated
that the separable layers can be built from binary classifiers in accordance with the
ranked strategy [5, 6]. Possibility of separable layer designing from univariate binary
classifiers in accordance with the dipolar strategy is examined in the presented paper.
Multilayer networks of dipolar separable layers can successively aggregate given data
set. This technique can be used, among others, in the deep learning tasks [7].

2 Partially Structured Data Sets

Let us assume, that each of given m objects (patients) Oj (j = 1,…, m) can be char-
acterized by n features xi (i = 1,…, n) from the fixed, given a priori set of features F
(n) = {x1,…, xn}. If the i-th feature xi of the j-th object Oj has been measured, then the
numerical result xj,i of this measurement is represented as the real number (xj,i 2 R) or
as the binary number (xj,i 2 {0,1}). If the i-th feature xi of the j-th object Oj remains
unmeasured (undefined), then the number xj,i is assumed to be equal to zero (xj,i = 0).
In result, all the objects Oj can be represented in the n-dimensional feature space F
(n) as the feature vector xj (xj 2 F(n)):

ð8j 2 1; . . .;mf gÞ xj ¼ xj;1; . . .; xj;n
� �T ð1Þ

For each object Oj (j = 1,…, m) we define the subset Fj (Fj � F(n)) of such features
xi that the i-th component of the j-th feature vector (1) is not equal to zero (xj,i 6¼ 0):

ð8j 2 1; . . .;mf gÞ Fj ¼ xi : xj;i 6¼ 0
� � ð2Þ

Definition 1. The feature vector xj ¼ xj;1; . . .; xj;n
� �T

(1) which represents the j-th
object Oj is partially structured when a part of the n features xi (xi 2 F(n)) of this object
have been not defined and corresponding components xj,i are equal to zero (xj,i = 0)
(2).

The m feature vector xj can be represented as the data matrix X of the dimension
m � n:

Dipolar Data Aggregation in the Context of Deep Learning 575

X ¼ x1; . . .; xm½ �T ð3Þ

The data matrix X is sparse, if many of elements xj,i = 0 is equal to zero (xj,i = 0)
[8].

Let us assume, that each of m objects Oj (j = 1,…, m) has been assigned by experts
to one of K categories (classes) xk (k = 1,…, K). For example, clinical doctors
assigned the j-th patients Oj to one of diseases xk on the basis of their knowledge and
diagnostic examination of this patient. The data matrix X (3) can be divided into
K learning sets Ck on the basis of experts’ knowledge about objects Oj (data labelling):

ð8k 2 1; . . .;Kf gÞ Ck ¼ xj : Oj 2 xk
� � ¼ xj : j 2 Jk

� � ð4Þ

where it is assumed that Jk = { j: Oj 2 xk} are disjoined sets of mk indices j:

ð8 k 2 1; . . .;Kf gÞð8k0 2 1; . . .;K : k0 6¼ kf gÞ Jk0 \ Jk ¼ £ ð5Þ

Definition 2. The disjoined learning set Ck (4) is partially structured if it contains

partially structured feature vectors xj ¼ xj;1; . . .; xj;n
� �T

(Definition 1).

Such components xj,i of the feature vector xj ¼ xj;1; . . .; xj;n
� �T

(1) which have not
been defined should not be used in decision rules and can often be reduced. The
reduced vector x0j can be obtained from the feature vector xj by neglecting such
components xj,i which are equal to zero (xj,i = 0). The reduced feature vectors x0j have
different dimensionality nj equal to the number of such components xj,i which are not
equal to zero (0 < nj < n). The partially structured data sets are composed of such
reduced feature vectors x0j which can have different dimensionality nj. Partially struc-
tured data often occurs in practice, for example, in the deep learning tasks [7]. Special
mathematical and computational techniques are needed for exploring such large data
sets which are partially structured.

Definition 3. Two learning sets Ck and Ck0 (4) are separable, if such elements xj which
belong to different sets (xj 2 Ck and xj0 2 Ck0) are not equal:

if ðk0 6¼ kÞ; then ð8j0 2 Jk0 Þ and ð8j 2 JkÞ xj0 6¼ xj ð6Þ

where the inequality xj0 6¼ xj of the vectors xj0 ¼ xj0;1; . . .; xj0;n
� �T

and xj ¼
xj;1; . . .; xj;n
� �T means that there exists at least one feature xi (xi 2 Fj0 and xi 2 Fj) which
was measured in both objects Oj′ and Oj and gave different measurement results
(xj0;i 6¼ xj;i).

The assumption of the learning sets Ck (4) separability (6) is connected to some
constraints in the structure of the features subsets Fj (2). Only such partially structured
data sets Ck (4) are considered in the paper in which the separability property (6) is
fulfilled. The proposed dipolar strategy of separable layers designing is based on the
concept of the mixed dipoles and the clear dipoles [4].

576 L. Bobrowski and M. Topczewska

Definition 4. Two feature vectors xj and xj0 (xj0 6¼ xj) which belong to different
learning sets Ck (xj 2 Ck) and Ck0 xj0 2 Ck0

� �
(4) constitute the mixed dipole xj,xj0

� �
.

Definition 5. Two feature vectors xj and xj0 which belong to the same learning sets Ck

(xj 2 Ck and xj0 2 Ck) (4) constitute the clear dipole xj,xj0
� �

.

3 Separable Layers of Univariate Binary Classifiers

The univariate binary classifier BCi(hl) based on the i-th feature xi and the l-th threshold
hl (hl 2 R1) can be characterized by the bellow decision rule ri,l = ri(hl; xj): (8i 2{1,…,
n}) (8l 2 {1,…, L′})

ri;l ¼ riðhl; xjÞ ¼ 1 if xj;i � hl
0 if xj;i\hl

ð7Þ

where xj = [xj,1,…, xj,n]
T is the j-th feature vector with n components xj,i.

The layer of L binary classifiers BCi(hl) (7) transforms each of the m input feature

vectors xj = [xj,1,…,xj,n]
T from the data matrix X (3) into the output vector rj0 ¼

rj0;1; . . .; rj0;L
� �T

with L binary components rj0;l rj0;l 2 0; 1f g� �
, where j′ = j′(j) is some

index function which links the j-th feature vector xj to the j′-th output vector rj0 :

ð8j 2 1; . . .;mf gÞ rj0 ¼ rj0;1; . . .; rj0;L
� �T

; where ð8l 2 1; . . .; Lf gÞ rj0;l 2 0; 1f g ð8Þ

We assume, that the index function j′ = j′(j) fulfills the below separability
condition:

ð8j0 6¼ j00Þ rj0 6¼ rj00 ð9Þ

Definition 6. The layer of L binary classifiers BCi(hl) (7) is separable in respect to the
learning sets Ck (4) if and only if elements xj and xj0 of each mixed dipole xj,xj0

� �
(Definition 2) are transformed (8) into different vectors rj and rj0 rj 6¼ rj0

� �
.

Remark 1. The l-th binary classifier BCi(hl) (7) of the layer divides the dipole xj,xj0
� �

if and only if one of the below two pairs of inequalities is fulfilled [3]:

ðxj;i [hl and xj0;i\hlÞ or ðxj;i\hl and xj0;i [hlÞ ð10Þ

In accordance with the decision rule (7), the inequalities (10) mean that only one
vector xj or xj0 from each mixed dipole xj,xj0

� �
gives the output ri,l = 1.

Remark 2. The layer of L binary classifiers BCi(hl) (7) is separable in respect to the

learning sets Ck (4) if and only if each mixed dipole xj,x0j
n o

is divided in accordance

with the rules (10) by at least one binary classifier of this layer [4].

Dipolar Data Aggregation in the Context of Deep Learning 577

4 Separation of Selected Data Subsets by Dipolar Layers
of Univariate Binary Classifiers

Let us consider the layer of Lk binary classifiers BCi(hl) (7) (i = 1,…, Lk) designed for
extraction of selected data subset Ck from the data matrix X (3). In this case, it is useful
to consider for each index k two data subsets Ck and Cc

k k ¼ 1; . . .;Kð Þ. The k-th subset
Ck = {xj: j 2 Jk} (4) is composed of mk feature vectors xj = [xj,1,…,xj,n]

T (1) and the
subset Cc

k is composed from the remaining m – mk vectors xj from the matrix X (3):

Ck ¼ xj : j 2 Jk
� �

; and Cc
k ¼ xj : j 2 Jk0 ; where k0 6¼ k

� � ð11Þ

We can infer on the basis of the Remark 3, that the dipolar separation of the data
subset Ck (4) from the complementary subset Cc

k by the layer of Lk binary classifiers
BCi(hl) (7) can be based on the division (10) of all the mixed dipoles xj,xj0

� �
[4]:

if ðxj 2 Ck; and xj0 2 Cc
kÞ; then xj,xj0

� �
is a mixed dipole ð12Þ

Remark 3. The number md of the mixed dipoles xj,xj0
� �

(12) depends on the numbers
mk and m − mk of the elements xj of the subsets Ck and Cc

k (12), adequately:

md ¼ mk � m�mkð Þ ð13Þ

The k-th layer of Lk binary classifiers BCi(hl) (7) allows extracting the subset Ck

(4) from the data matrix X (3) if and only if each mixed dipole xj,xj0
� �

(12) is divided
in accordance with (10) by at least one of the Lk classifiers from this layer [3].

The optimization of the separable layers designing is aimed at decreasing the
numbers Lk of binary classifiers BCi(hl) (7) in the layers. This postulate can lead also to
decreasing dimensionality Lk of the transformed vectors rj (8). A merging of possible
large number feature vectors xj from the same subset Ck (4) is recommended in order to
decrease the number of different transformed vectors rj (8).

The proposed strategy of the separable layer designing from binary classifiers
BCi(hl) (7) is based on finding the values hi,l of the threshold on the i-th axis (feature)
xi. Let us consider for a moment the ordered sequence of the values xj(l),i of the i-th

components xj(l),i of the vector xj lð Þ ¼ xj lð Þ;;1; . . .; xj lð Þ;n
� �T2 X (3):

xj 1ð Þ;i 	 xj 2ð Þ;i 	 . . .	 xj nð Þ;i ð14Þ

Separating values hi,l of the threshold hl (7) have been located in the centers of such
intervals [xj(l),i, xj(l+1),i] on the i-th axis xi which have been defined by mixed dipoles {xj
(l),i, xj(l+1).i} (Fig. 1) [5]:

hi;l ¼ xj lð Þ;i þ xj lþ 1ð Þ;i
� �

=2 ð15Þ

where xj lþ 1ð Þ ¼ xj lþ 1ð Þ;1; . . .; xj lþ 1ð Þ;n
� �T

, and xj(l+1),i − xj(l),i > 0.

578 L. Bobrowski and M. Topczewska

Remark 4. If the i-th feature xi is binary (xi 2 {0,1}), then the separating thresholds hi
can be defined similarly to (15) in the below manner:

hi ¼ 0:5 ð16Þ

The example shown in Fig. 1 contains 11 objects Oj marked as “o” and 11 objects
Oj marked as “x”. These objects Oj (j = 1,…, 22) could be represented by high
dimensional feature vectors xj (1) belonging to the learning sets C1 and C2 (4). All
mixed dipoles xj,xj0

� �
constituted by feature vectors xj (1) have been divided based on

the i-th feature xi by three binary classifiers BCi(hl) (7) (l = 1, 2, 3) with the thresholds
hi,1, hi,2, and hi,3 adequately to the decision rule (7). The numbers ml of mixed dipoles
xj,xj0

� �
divided by particular classifier BCi(hl) (7) shown in the figure are equal to:

m1 = 44, m2 = 54, and m3 = 60.
It is assumed here that the quality of the classifier BCi(hl) (7) increases with the

number mi,l of the mixed dipoles xj,xj0
� �

divided by this classifier. The optimal binary
classifiers BCi�ðhl� Þ (7) can be found on the basis of the below inequalities:

ð8i 2 1; . . .; nf gÞð8l 2 f1; . . .; L0gÞ mi�;l� �mi;l ð17Þ

where mi,l is the number of the divided mixed dipoles xj,xj0
� �

by the classifier BCi(hl).
The optimal feature (axis) xi� is characterized by the largest number mi�;l� (17) of

the divided mixed dipoles xj,x0j
n o

. The optimal threshold hi�;l� specified by the

inequalities (17) allows defining the optimal classifiers BCi�ðhl� Þ (7):

if xi� � hi�;l�; then ri�;l� ¼ 1 else ri�;l� ¼ 0 ð18Þ

where xi� is the i*-th component of the input feature vector x ¼ x1; . . .; xn½ �T.
The optimal binary classifier BCi�ðhl�Þ (18) which is based on the i*-th feature xi�

divides the maximal number mi�;l� (17) of mixed dipoles xj,xj0
� �

. Usually not all the
mixed dipoles xj,xj0

� �
are divided in accordance with the inequalities (18). The below

procedure is aimed at division (10) of all mixed dipoles xj,xj0
� �

(12) [5].

Designing separable layer on the basis of the data subsetsCk andCc
kð12Þ ð19Þ

The designing procedure includes Lk steps. During the first step of the procedure,
the mi(I),l(I) mixed dipoles xj,xj0

� �
(14) are divided (18) by the first optimal classifier

Fig. 1. Example of mixed dipoles xj,xj0
� �

division (11) on the i-th axis xi

Dipolar Data Aggregation in the Context of Deep Learning 579

BCi(I)(hl(I)) (7) of the layer. The dipole xj,xj0
� �

is divided by the classifier BCi(I)(hl(I))
(7) if one of the below inequalities (10) is fulfilled:

ðxj;iðIÞ [hlðIÞ and xj0;i Ið Þ\hl Ið ÞÞ or ðxj;i Ið Þ\hl Ið Þ and xj0;i Ið Þ [hl Ið ÞÞ ð20Þ

Such mixed dipoles xj,xj0
� �

(12) which have been divided (20) by the classifier BCi

(I)(hl(I)) (7) are removed from further considerations. The remaining, yet undivided
mixed dipoles xj,xj0

� �
are used in the second stage to design the second optimal

classifier BCi(II)(hl(II)) (7) of the layer, and so on. The described scheme is repeated in
successive steps l (l = 1,…, Lk) until all mixed dipoles xj,xj0

� �
(12) are divided or the

number of the undivided mixed dipoles xj,xj0
� �

it’s small enough.

Theorem 1. If the subsets Ck and Cc
k (11) are separable (6), then all mixed dipoles

xj,xj0
� �

(12) can be divided after a finite number Lk of the steps of the procedure (19).
The proof of a similar theorem can be found in the paper [4].

5 Hierarchical Networks of Separable Layers

During the k-the stage of the procedure (19) all the mixed dipoles xj,xj0
� �

with ele-
ments from the two data subsets Ck and Cc

k (11) can be divided (20). The separation of
the subsets Ck and Cc

k (11) is assured if all considered mixed dipoles xj,xj0
� �

(12) with
one element xj from the subset Ck (4) are divided. For each pair of the data subsets Ck

and Cc
k (12) the separable sublayer SLk of Lk optimal binary classifiers BCi*(hl*) (7) can

be designed in accordance with the procedure (19).The sublayer SLk transforms (8)
each of the m input feature vectors xj = [xj,1,…,xj,n]

T from the data matrix X (3) into
the output vector rj0 ¼ ½rj0;1; . . .; rj0;Lk

�T with Lk binary components rj0;l rj0;l 2 0; 1f g� �
,

where j0 ¼ j
0
k jð Þ is the index function (9).

The k-th sublayer SLk of the Lk optimal classifiers BCi�ðhl�Þ (7) allows transforming
the learning set Ck (4) of the mk feature vectors xj (1) into the set Rk composed of
m0

kðm0
k 	mkÞ transformed vectors rj0 ¼ ½rj0;1; . . .; rj0;Lk�T (8):

ð8k 2 1; . . .;Kf gÞ Rk ¼ rj0 : j
0 ¼ j0k jð Þ 9ð Þ and xj 2 Ck 4ð Þ� � ð21Þ

Remark 5. The separable sublayers SLk (k = 1,…, K) of the binary classifiers BCi(hl)
(7) transform the separable learning sets Ck (4) into the disjoined sets Rk (21):

ð8k 2 1; . . .;Kf gÞð8k0 2 1; . . .;K : k0 6¼ kf gÞRk0 \Rk ¼ £ ð22Þ

The separable layer SLk of binary classifiers BCi(hl) (7) can be used as a tool for the

separable aggregation of the learning set Ck (4) with mk elements xj ¼ xj;1; . . .; xj;n
� �T

.

580 L. Bobrowski and M. Topczewska

Definition 7. The sublayer SLk of the Lk classifiers BCi(hl) (7) aggregates the k-th
learning set Ck (4) if and only if the number m0

k of the transformed vectors rj′ (8) is less
than the number mkðm0

k\mkÞ of the feature vectors xj (1) in the subset Ck (4).
The aggregation coefficient ηk of the k-th separable sublayer SLk can be defined as:

gk ¼ ðmk�m0
kÞ=ðmk�1Þ ð23Þ

where, mk is the number of the input vectors xj from the learning set Ck (4), and m0
k is

the number of different output vectors rj′ (9) of the k-th sublayer SLk.
It can be seen, that the minimal number m0

k of the different output vectors rj′ (9)
from the k-th separable sublayer SLk is equal to one m0

k ¼ 1
� �

. The aggregation
coefficient ηk (23) takes the maximal value equal to one (ηk= 1) in this ideal situation.
The maximal value of the number m0

k is equal to mk. There is no aggregation in this
case and the aggregation coefficient ηk (23) is equal to zero (ηk = 0). As a result:

0	 gk 	 1 ð24Þ

Remark 6. If the aggregation coefficient ηk (24) of the k-th separable sublayer SLk is
greater than zero (ηk > 0), then the number m0

k of the transformed vectors rj′ (8) in the
set Rkðrj0 2 Rkð21ÞÞ is less than the number mk of the feature vectors xj (1) in the
learning set Ck (4) (xj 2 Ck).

Remark 7. Each separable data subset Ck (6) (k 2 {1,…, K}) can be aggregated in one
vector rj0 by a hierarchical network of separable sublayers SLk.

If the aggregation coefficient ηk (23) of a given sublayer SLk is equal to one
(ηk = 1), then such sublayer transforms all feature vectors xj from the learning set Ck

(4) into one vector rj′ (8) only. In this case, the network with only one layer can fully
aggregate the data subset Ck (4). Let us consider now a hierarchical network of
L (L > 1) separable sublayers SLk with the aggregation coefficients ηk (24) greater than
zero and smaller than one (0 < ηk < 1). Each such sublayer SLk causes reduction of the
number m0

k of the transformed vectors ri0 (8). So, after gradual inclusion of L layers the
number m0

k of the transformed vectors rj0 (8) can be reduced to one.
In order to design hierarchical networks with a small number L of separable sub-

layers SLk, the aggregation coefficients ηk (23) of particular sublayers should have large
values. It is assumed that the sublayer of binary classifiers BCi(hl) (7) is enlarged
gradually. An additional classifier BCi(k)(hl(k)) (7) is added to the sublayer during the k-
th step of the procedure (k = 1,…, K). The below designing postulate can be applied
during each step k of a given sublayer enlargement [4]:

The designing postulate : ð25Þ

An additional classifier BCi(hl) (7) should divide the highest number of the yet
undivided mixed dipoles xj,xj0

� �
and the lowest number of the yet undivided clear

dipoles.

Dipolar Data Aggregation in the Context of Deep Learning 581

6 Experimental Results

The synthetic data set of m = 1165 two dimensional feature vectors xj = xj;1; xj;2
� �T (1)

was generated (Fig. 2). The selected data subset C1 (11) contained 541 points xj
(circles) and the complementary subset Cc

1 contained 624 points xj (crosses). The
number of the mixed dipoles xj,xj0

� �
(12) was equal to 337584, and the number of

clear dipoles was equal to 678030.

All mixed dipoles xj,xj0
� �

(12) were divided by the separable layer of five uni-
variate classifiers BCi(hl) (7). As a result, all 541 points xj were transformed into below

five vectors rj0 ¼ rj0;1; . . .; rj0;5
� �T

(8) with five binary components rj0;iðj0; i ¼ 1; . . .; 5Þ:

r1 ¼ 1; 0; 1; 1; 1½ �;withm1 ¼ 177

r2 ¼ 1; 1; 1; 1; 1½ �;withm2 ¼ 121

r3 ¼ 1; 1; 1; 0; 1½ �;withm3 ¼ 154

r4 ¼ 0; 1; 1; 0; 1½ �;withm4 ¼ 85

r5 ¼ 1; 1; 1; 0; 0½ �;withm5 ¼ 4

where the symbol mj′ means the number of points xj transformed into the vector rj0 (8).
The aggregation coefficient (23) has a high value η1 = 536/540 in this example.

Fig. 2. An example of the division of all mixed dipoles xj,xj0
� �

from two sets C1 and Cc
1 (11)

582 L. Bobrowski and M. Topczewska

7 Concluding Remarks

Multilayer hierarchical networks can be designed from univariate, binary classifiers on
the basis of the dipolar separability technique described in the paper. This approach to
hierarchical networks designing could be an alternative to current methods of deep
learning [7].

Dipolar technique described in the presented paper allows designing multilayer
hierarchical networks from binary classifiers while preserving learning data separa-
bility. Multilayer network of dipolar separable layers can successively aggregate a
given data set in one vector only. This technique can enrich the arsenal of tools used in
the deep learning tasks.

Dipolar designing allows to obtain separable layers from binary classifiers. The
dipolar approach described in the paper can be treated as a completion of the ranked
method used in designing linearly separable layers [6]. The ranked approach can be
treated as a basic possibility to design linearly separable layers from binary classifiers
[6]. The aggregation of given family of separable data sets in one vector only is
possible by only two linearly separable layers.

Univariate binary classifiers used in separable aggregating layers of are based on
single features only. For this reason the proposed dipolar designing is relatively low
costly. This type of classifiers could be particularly useful in processing such large data
sets which are only partially structured (Definition 1). Many big data sets encountered
in practice have such property.

Acknowledgments. The presented study was supported by the grant S/WI/2/2013 from
Bialystok University of Technology and funded from the resources for research by Polish
Ministry of Science and Higher Education.

References

1. Hand, D., Smyth, P., Mannila, H.: Principles of Data Mining. MIT Press, Cambridge (2001)
2. Duda, O.R., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)
3. Bobrowski, L.: Data Mining Based on Convex and Piecewise Linear Criterion Functions

(in Polish). Bialystok University of Technology, Bialystok (2005)
4. Bobrowski, L.: Piecewise-linear classifiers, formal neurons and separability of the learning

sets. In: Proceedings of ICPR 1996 13th International Conference on Pattern Recognition,
Vienna, Austria, pp. 224–228 (1996)

5. Bobrowski, L.: Dipolar data integration through univariate, binary classifiers. In: Nguyen, N.
T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017.
LNCS (LNAI), vol. 10448, pp. 73–82. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-67074-4_8

6. Bobrowski, L., Topczewska, M.: Linearizing layers of radial binary classifiers with movable
centers. Pattern Anal. Appl. 18(4), 771–781 (2015)

7. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning– a new frontier in artificial
intelligence – a survey paper. IEEE Comput. Intell. Mag. (2013)

8. Wang, Z., et al.: Sparse Coding and Its Applications in Computer Vision. World Scientific,
New Jersey (2016)

Dipolar Data Aggregation in the Context of Deep Learning 583

http://dx.doi.org/10.1007/978-3-319-67074-4_8
http://dx.doi.org/10.1007/978-3-319-67074-4_8

Video Surveillance of Highway Traffic
Events by Deep Learning Architectures

Matteo Tiezzi1(B), Stefano Melacci1, Marco Maggini1, and Angelo Frosini2

1 Department of Information Engineering and Mathematics, University of Siena,
Siena, Italy

{mtiezzi,mela,maggini}@diism.unisi.it
2 IsTech s.r.l., Pistoia, Italy

a.frosini@istech.it

http://sailab.diism.unisi.it

Abstract. In this paper we describe a video surveillance system able to
detect traffic events in videos acquired by fixed videocameras on high-
ways. The events of interest consist in a specific sequence of situations
that occur in the video, as for instance a vehicle stopping on the emer-
gency lane. Hence, the detection of these events requires to analyze a
temporal sequence in the video stream. We compare different approaches
that exploit architectures based on Recurrent Neural Networks (RNNs)
and Convolutional Neural Networks (CNNs). A first approach extracts
vectors of features, mostly related to motion, from each video frame and
exploits a RNN fed with the resulting sequence of vectors. The other
approaches are based directly on the sequence of frames, that are even-
tually enriched with pixel-wise motion information. The obtained stream
is processed by an architecture that stacks a CNN and a RNN, and we
also investigate a transfer-learning-based model. The results are very
promising and the best architecture will be tested online in real opera-
tive conditions.

Keywords: Convolutional Neural Networks
Recurrent Neural Networks · Deep learning · Video surveillance
Highway traffic

1 Introduction

The progressive growth of the number of vehicles, that nowadays are traveling
on roads and highways, has created high interest in the research areas related
to the development of techniques needed in automatic instruments for traffic
monitoring. These systems are generically referred to as Intelligent Transporta-
tion Systems (ITSs). Basic tasks, that are to be accomplished by ITSs, are the
identification of vehicles and of their behaviour from video streams, captured by
surveillance cameras installed along the road connections. The automatic detec-
tion of specific events happening in the traffic flow, such as accidents, dangerous

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 584–593, 2018.
https://doi.org/10.1007/978-3-030-01424-7_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_57&domain=pdf

Video Surveillance of Highway Traffic Events by Deep Architectures 585

driving, and traffic congestions, has become an indispensable functionality of
ITSs since it is impractical to employ human operators both for the number of
control points and the need of a continuous attention. Automatic notifications
guarantee an immediate response to exceptional events such as car crashes or
wrong-way driving. At the same time, the estimation of road congestion allows
us to notify drivers and to provide information for optimizing the itineraries com-
puted by navigation devices. This field of research began to be particularly active
in the ‘80, with projects funded by governments, industries and universities, in
Europe (PROMETHEUS [12]), Japan (RACS [10]) and the USA (IVHS [1]).
These studies included autonomous cars, inter-vehicle communication systems
[7], surveillance and monitoring of traffic events [3,8].

Among the general ITSs, the Advanced Traffic Management Systems
(ATMS) are aimed at exploiting all the information coming from cameras, sen-
sors and other instruments, positioned along highways and main routes, to pro-
vide an analysis of the current state of traffic and to respond in real time to spe-
cific conditions. Signals from all devices are gathered at a central Transportation
Management Center that must implement technologies capable of analyzing the
huge amounts of data coming from all the sensors and cameras.

In this context, Machine Learning provides tools to tackle many problems
faced in the design of the ATMS modules. In particular, Deep Neural Net-
work architectures are able to yield state-of-the-art performances in many com-
puter vision tasks [4] and are currently applied in real systems, such those for
autonomous driving [2]. Hence, most of current video surveillance modules are
based on deep learning techniques, that allow us to tune the system just by pro-
viding enough examples of the objects or events of interest [13]. The wide use of
these approaches has also be driven by the availability of pre-trained architec-
tures for computer vision tasks that can be adapted to new problems by transfer
learning [9].

The objective of this work is the creation of an instrument capable to perform
a real time/on-line analysis of data coming from cameras, in order to detect
automatically significant events occurring in the traffic flow. We analyze the
results obtained by different approaches on real videos of traffic on highways.
In particular we compare an approach based on precomputed motion features
processed by a Recurrent Neural Network (RNN) with a technique exploiting the
original video augmented by channels to encode the optical flow. The latter is
based on an architecture composed by a Convolutional Neural Network (CNN),
processing each input frame, stacked with a RNN. We consider both the cases
in which the CNN is learned from our traffic videos and when it is a pre-trained
CNN in a transfer learning scheme.

The paper is organized as follows. The next Section describes the consid-
ered problem, while our dataset and the feature representation are described in
Sect. 2. In Sect. 4 we introduce the selected deep neural network architectures,
while Sect. 5 reports the results. Finally, Sect. 6 concludes the paper.

586 M. Tiezzi et al.

2 Video Surveillance of Highway Traffic

We focus on a system that processes videos acquired by fixed cameras on high-
ways. Cameras can be positioned in very different environments (e.g. tunnels or
outdoor) and can have many different settings for the point of view (e.g. long
or short range, wide or narrow span). Moreover, videos are captured in different
environmental and weather conditions (daylight, night, fog, rain, etc.). The sys-
tem is expected to detect specific events of interest happening in the scene for a
variable time interval. In particular, we consider four different classes of events,
collected in the set E (see Fig. 1):

– Stationary vehicle, a vehicle stops inside the field of the camera;
– Departing vehicle, a vehicle, previously stationary, departs from his

position;
– Wrong-way vehicle, a vehicle moves in the wrong direction;
– Car crash, accident involving one or more vehicles.

Fig. 1. The four different classes of events. (a) Stationary. (b) Departing. (c) Wrong-
way. (d) Car crash.

As already stated, all the videos are captured by cameras positioned in differ-
ent places and settings on highways, including tunnels and high-speed stretches.
This fact entails several issues that can deteriorate the prediction performances.
For instance, cameras are exposed to all kind of weather conditions, including
fog, rain or strong wind. Another relevant problem is due to variations in bright-
ness caused by tunnel lamps activation, clouds passing by, and sun movement
(see Fig. 2 for examples).

3 Data Description and Representation

Video surveillance cameras provide a continuous stream of a given view of the
highway along the direction of the traffic flow. Due to the nature of the events
we are trying to detect, it was difficult to collect a large dataset of examples1.
For instance, some events like wrong-way driving are quite rare.
1 The dataset was collected thanks to IsTech srl and was based only on a limited

number of fixed cameras.

Video Surveillance of Highway Traffic Events by Deep Architectures 587

Fig. 2. Conditions causing difficulties in video analysis. (a) Rain. (b) Fog. (c)–(d)
Brightness variation, before and after.

Videos were captured in colors in two standard resolutions (352 × 288 and
640×320 pixels, depending on the camera type) at 25 frames per second. In some
cases the videocamera includes the lanes in both directions in its field. Hence, in
order to remove potential sources of misleading information (for instance, related
to wrong-way vehicles) each frame is masked with a template that keeps only
the portion related to the lanes to be considered (see Fig. 4).

Fig. 3. (a) Original frame. (b) Mask. (c) Masked frame.

We down-sampled the available videos at 2 frames per second, and extracted
clips of 125 frames (1 min), containing instances of the events E listed in Sect. 2,
as well as clips with normal traffic conditions. To avoid artificial regularities
that may hinder the generalization, the clips are generated such that events
can happen in every instant inside the 125 frame interval, apart from the very
beginning or ending. The statistics of the available dataset used in training and
testing are reported in Table 1. The optical flow algorithm2 was exploited to
compute the motion field for each input frame. Each frame was resized and
cropped to 160 × 120 pixels. We represented the input frames in three different
ways, using i. pre-designed motion features, ii. appearance, or iii. appearance
and motion, as described in the following.

Representation by Motion Features. Due to the effect of perspective, mov-
ing objects closer to the camera position have an apparent motion larger than
distant objects. Therefore, we decided to split each frame into four horizontal

2 We used the default implementation in the OpenCV library https://opencv.org/,
based on the Farneback’s algorithm.

https://opencv.org/

588 M. Tiezzi et al.

Table 1. Statistics of the dataset used in the paper.

No Event Stationary Departing Wrong-way Car crash Total

Clips 281 111 56 131 16 595

stripes as shown in Fig. 4a. For each stripe the directions and modules of the
optical flow are quantized, building a histogram of the distribution of the motion
vectors. In the implementation we considered 32 bins based on 8 directions and
4 levels for the module (Fig. 4b). This scheme yields 128 values (32 bins for each
stripe) collected into a vector for each frame. In order to provide evidence for
stationary vehicles, we computed an additional feature for each stripe as follows.
We applied and manually tuned a Background Subtraction [6] method to extract
the pixels not belonging to the static background of the video (see Fig. 4c). The
additional feature per stripe is the count of non-background pixels having null
motion. Hence, each frame is represented by a vector of 132 entries.

Representations by Appearance and Motion. The appearance-based rep-
resentation consists of the raw frame converted to grayscale to reduce the image
variability. Another representation is obtained by adding two additional chan-
nels for each frame corresponding to the horizontal and vertical components of
the motion field provided by the optical flow, leading to a 160 × 120 × 3 tensor.

Fig. 4. (a) Motion vectors, frame partitioned into 4 stripes. (b) Histogram computed
in one stripe. (c) Background subtraction (original frame on the left, estimated not-
background objects on the right).

4 Deep Architectures

We are given a video stream V that produces frames at each time instant t. At
a certain t > 0, we have access to the sequence of frames up to time t, that we
indicate with St = {Ii, i = 1, . . . , t}, where Ii is the i-th frame of the sequence.
We implemented multiple deep architectures that learn to predict the set of
events Yt that characterize frame It, given the sequence St. Formally, if f(·) is
a generic deep neural network, we have

Yt = f(t|St),

Video Surveillance of Highway Traffic Events by Deep Architectures 589

where Yt = {yt,h, h = 1, . . . , |E|} is a set of predictions of the considered events
E (in this work, |E| = 4). In particular, yt,h ∈ {0, 1}, where yt,h = 1 means that
the h-th event is predicted at time t.

Before being processed by the network, each frame Ii is converted into one
of the three representations that we described in Sect. 3, generically indicated
here with ri,

ri = frame representation(Ii). (1)

Our deep architecture f(·) is then composed of four computational stages, and
each of them projects its input into a new latent representation. Stages consist of
a feature extraction module feature extraction(·), a sequence representation
module sequence representation(·), a prediction layer predictor(·), and a
decision function decision(·) that outputs Yt,

qt = feature extraction(rt) (2)
st = sequence representation(qt, st−1) (3)
pt = predictor(st) (4)
Yt = decision(pt). (5)

Equation (2) is responsible of extracting features from rt, building a new rep-
resentation qt of the current frame. We implemented multiple extractors, in
function of the method selected to produce rt (we postpone their description).
Equation (3) encodes the sequence of frames observed so far. The sequence repre-
sentation st is computed by updating the previous representation st−1 with the
current input rt. This is implemented with a Recurrent Neural Network (RNN),
where s is the hidden state of the RNN. In particular, we used a Long Short Term
Memory RNN (LSTM) [5], and we also experienced multiple layers of recurrence
(2 layers). Equation (4) is a fully connected layer with sigmoidal activation units,
that computes the event prediction scores pt ∈ [0, 1]|E|. We indicate with pt,h the
h-th component of pt, and Eq. (5) converts it into the binary decision yt,h. We
implemented each decision yt,h to be the outcome of a thresholding operation
on pt,h, so that

yt,h =
{

1, if pt,h ≥ γh
0, otherwise

where γh ∈ (0, 1) is the threshold associated to the h-th event.
We are given a training set composed of fully labeled video clips, so that we

have a ground truth label Ŷt = {ŷt,h, h = 1, . . . , |E|} on each frame. For each
sequence, the time index t spans from 1 to the length of the sequence itself, and
we set s0 to be a vector of zeros. We trained our network by computing a loss
function that, at each time instant, consists of the cross-entropy between the
event-related output values and the ground truth,

Lt =
|E|∑
h=1

{wh · [−ŷt,h · log(pt,h)] − (1 − ŷt,h) · log(1 − pt,h)} .

590 M. Tiezzi et al.

Notice that we introduced the scalar wh > 0 to weigh the contribute of the
positive examples of class h. As a matter of fact, it is crucial to give larger
weight to those events that are rarely represented in the training data, and
our experience with the data of Sect. 3 suggests that an even weighing scheme
frequently leads to not promising results (we choose w1 = 10, w2 = 40, w3 = 30,
w4 = 100, following the event ordering of Sect. 2).

We evaluated four different deep networks that follow the aforementioned
computations, and that are depicted in Fig. 5, together with several numerical
details. The networks differ in the frame representation rt that they process
(Eq. (1)) and in the way they implement the feature extraction function of
Eq. (2). The first network, referred to as hist, processes the histogram of the
motion features in the input frame, that are fed to the RNN without further
processing (qt = rt). The second network, conv, is based on the appearance-only
representation of each frame, i.e. rt = gray(It), and it extracts features using
a Convolutional Neural Network (CNN) with 3 layers (we also tested configura-
tions with 2 layers). When the frame representation consists of the appearance
gray(It) paired with the motion field (vx, vy), then conv becomes the convFlow
network. Finally, we also considered the effects of transfer learning in the convPre
model, where we modified the conv net by plugging a pre-trained VGG-19 con-
volutional network [11] in Eq. (2). VGG-19 is composed of 19 layers and trained
using the ImageNet database, so rt is first rescaled/tiled to 224 × 224 × 3 to
match the size of the ImageNet data.

5 Experimental Results

We divided our dataset sets of video clips into three groups for fitting, validating
and testing our models, with a ratio of 70%, 20%, 10%, keeping the original
distribution of events in each split. We selected the F1 measure to evaluate
the models of Sect. 4, and since some events occur very rarely in the data (see
Sect. 3), we computed the F1 for each single event class. In particular, for every
tested architecture, we selected the optimal value of the decision threshold γh
ensuring the best performances on the validation set (testing multiple values in
[0.1, 0.9]). We trained our networks with stochastic gradient-based updates that
occur after having processed each video clip, and we used the Adam optimizer
with a learning rate of 3 · 10−5, processing the training data for 350 epochs. The
training times are reported in Table 2, considering a system equipped with an
NVidia GTX Titan GPU (recall that the CNN of convPre is pre-trained).

Table 2. Avg training times (hours). Frame representations were precomputed.

hist conv convFlow convPre

1 Layer RNN 2.03 15.12 17.05 3.91

2 Layers RNN 3.06 21.96 22.44 6.41

Video Surveillance of Highway Traffic Events by Deep Architectures 591

vx

It vy

It

conv7x7-30

conv5x5-40

conv3x3-50

maxpool2x2

maxpool2x2

maxpool2x2

fully connected-50
(tanh)

LSTM-50

fully connected-4
(sigmoid)

Fr
am

e
R

ep
re

se
nt

at
io

n
Fe

at
ur

e
E

xt
ra

ct
io

n
S

eq
ue

nc
e

R
ep

re
se

nt
at

io
n

P
re

di
ct

or

conv3x3-64

conv3x3-128

conv3x3-256

maxpool2x2

maxpool2x2

maxpool2x2

LSTM-50

fully connected-4
(sigmoid)

x2

x2

x4

conv3x3-512

maxpool2x2

x4

conv3x3-512

maxpool2x2

x4

fully connected-4096 x2

It

LSTM-50

fully connected-4
(sigmoid)

120x160

120x160x3 120x160

conv7x7-30

conv5x5-40

conv3x3-50

maxpool2x2

maxpool2x2

maxpool2x2

fully connected-50
(tanh)

LSTM-50

fully connected-4
(sigmoid)

132

qt qt

rt = qt

qt

st stst st

rt
rt

rt

pt ptpt pt

 conv convFlowhist convPre

LST LSTLS LST

upscale/tile

Fig. 5. Deep architectures applied to our task. Layer names are followed by the suffix
-n, where n is the number of output units (or the size of the hidden state in LSTM).
We use the ReLu activation, unless differently indicated in brackets. In convolutional
and pooling layers we report the size of their spatial coverage (e.g., k × k). In Sect. 5
we evaluate several variants of these nets.

Table 3. Performances (F1) of the compared models.

hist conv convFlow convPre

h = 20 50 132 � = 2 3 � = 2 3 h = 30 50 200

(stationary) 1 Layer RNN 0.63 0.89 0.86 0.98 0.94 0.91 0.79 0.95 0.92 0.90

2 Layers RNN 0.87 0.85 0.87 0.87 0.91 0.76 0.82 0.95 0.91 0.89

(departing) 1 Layer RNN 0.56 0.63 0.73 0.61 0.79 0.63 0.57 0.59 0.63 0.58

2 Layers RNN 0.48 0.66 0.72 0.74 0.82 0.52 0.63 0.74 0.81 0.68

(wrong-way) 1 Layer RNN 0.59 0.84 0.89 0.92 0.93 0.89 0.92 0.96 0.93 0.94

2 Layers RNN 0.83 0.87 0.89 0.86 0.88 0.86 0.88 0.94 0.93 0.91

(car crash) 1 Layer RNN 0.65 0.61 0.70 0.85 0.64 0.79 0.78 0.80 0.78 0.77

2 Layers RNN 0.56 0.33 0.91 0.75 0.50 0.74 0.74 0.95 0.86 0.90

(average) 1 Layer RNN 0.61 0.74 0.80 0.84 0.83 0.81 0.77 0.83 0.82 0.80

2 Layers RNN 0.69 0.68 0.85 0.81 0.78 0.72 0.77 0.90 0.88 0.85

We summarize in Table 3 the best performances obtained, for each class of
event, by the hist, conv, convFlow, convPre models of Fig. 5 with multiple lay-
ers or recurrence. Depending on the model, we also evaluated different sizes of
the recurrent state dimension h (20, 50, 132 for hist, 30, 50, 200 for convPre), or

592 M. Tiezzi et al.

number of convolutional layers � (2 or 3 layers for both conv and convFlow).
These results show that the hist approach generally performs worse than the
other models, and that convolutional architectures are a better solution to the
proposed task, by virtue of their capability to extract autonomously relevant
representation from images. When using 2 layers of RNNs, the configuration of
hist with h = 132 leads to more competitive results, that, however, are paired
with a larger computational burden than the CNN-based models due to the cost
of computing its hand-engineered features. The conv model with only two convo-
lutional layers shows good results paired with a computational cost that can be
tolerated in real-time applications. The addition of the motion related informa-
tion (convFlow) does not seem to help the performances. This can be explained
by the fact that an architecture composed by a combination of a CNN together
with a RNN is able by itself to grasp the temporal dynamics of a video, making
an addition of optical flow features worthless. The use of a pre-trained network
(convPre) leads to the best performances, on average, even if with a more costly
inferential process. Finally, we notice that using 2 layers of RNNs does not add
useful information to the conv model, while it always helps in convPre, mostly
due to larger number of high-level features that are extracted by the CNN, where
the system seems to find longer-term regularities (more easily captured by mul-
tiple layers of recurrence). The event class where all the models have shown
worse performances is “departing”, that we explain by the larger incoherence in
the training data in defining the beginning and, mostly, the ending frames of
the event. In Fig. 6 we report an example that compares a prediction and the
ground truth (test set), showing the mismatch in the ending-part of the event.

Fig. 6. Comparing predictions and ground truth in a “departing” event.

6 Conclusions

We described a deep-network-based implementation of an ATMS (Advanced
Traffic Management System) that predicts a set of events while processing videos
of traffic on highways. We performed a detailed analysis of a real-world video
data collection, investigating four classes of traffic events. We reported the results
of an experimental evaluation that involved multiple representations of the input
data and different deep architectures composed of a stack of convolutional and
recurrent networks. Our results have shown that these networks can efficiently

Video Surveillance of Highway Traffic Events by Deep Architectures 593

learn the temporal information from the video stream, simplifying the feature
engineering process and making very promising predictions. We also proved the
benefits of transferring the representations learned on a generic image classifica-
tion task. Our best architectures will be tested online in real operative conditions.

References

1. Betsold, R.: Intelligent vehicle highway systems for the united states - an emerging
national program. In: JSK International Symposium - Technological Innovations
for Tomorrow’s Automobile Traffic and Driving Information Systems, pp. 53–59
(1989)

2. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for
direct perception in autonomous driving. In: ICCV, pp. 2722–2730. IEEE (2015)

3. Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A real-time computer vision
system for vehicle tracking and traffic surveillance. Transp. Res. Part C Emerg.
Technol. 6(4), 271–288 (1998)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of CVPR, pp. 770–778 (2016)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture
model for real-time tracking with shadow detection. In: Remagnino, P., Jones,
G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp.
135–144. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0913-4 11

7. Lee, W.H., Tseng, S.S., Shieh, W.Y.: Collaborative real-time traffic information
generation and sharing framework for the intelligent transportation system. Inf.
Sci. 180(1), 62–70 (2010)

8. Michalopoulos, P.G., Fundakowski, R.A., Geokezas, M., Fitch, R.C.: Vehicle detec-
tion through image processing for traffic surveillance and control. Patent (US)
4,847,772, 11 July 1989

9. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: Proceedings of
CVPR, pp. 1717–1724. IEEE (2014)

10. Shibata, M.: Road traffic management in Japan and development of the RAC sys-
tem. In: JSK International Symposium - Technological Innovations for Tomorrow’s
Automobile Traffic and driving Information Systems, pp. 29–27 (1989)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

12. Williams, M.: PROMETHEUS-the European research programme for optimising
the road transport system in Europe, pp. 1–9, January 1989

13. Xu, D., Yan, Y., Ricci, E., Sebe, N.: Detecting anomalous events in videos by learn-
ing deep representations of appearance and motion. Comput. Vis. Image Underst.
156, 117–127 (2017)

https://doi.org/10.1007/978-1-4615-0913-4_11
http://arxiv.org/abs/1409.1556

Augmenting Image Classifiers Using Data
Augmentation Generative Adversarial

Networks

Antreas Antoniou1(B), Amos Storkey1(B), and Harrison Edwards1,2(B)

1 University of Edinburgh, Edinburgh, UK
{a.antoniou,a.storkey,h.l.edwards}@sms.ed.ac.uk

2 Open AI, San Francisco, USA
https://www.ed.ac.uk/

https://openai.com/

Abstract. Effective training of neural networks requires much data. In
the low-data regime, parameters are underdetermined, and learnt net-
works generalise poorly. Data Augmentation alleviates this by using
existing data more effectively, but standard data augmentation produces
only limited plausible alternative data. Given the potential to gener-
ate a much broader set of augmentations, we design and train a gen-
erative model to do data augmentation. The model, based on image
conditional Generative Adversarial Networks, uses data from a source
domain and learns to take a data item and augment it by generating
other within-class data items. As this generative process does not depend
on the classes themselves, it can be applied to novel unseen classes. We
demonstrate that a Data Augmentation Generative Adversarial Network
(DAGAN) augments classifiers well on Omniglot, EMNIST and VGG-
Face.

1 Introduction

Over the last decade Deep Neural Networks have enabled unprecedented perfor-
mance on a number of tasks. They have been demonstrated in many domains
[12] including image classification [16–18,21,25], machine translation [44], natu-
ral language processing [12], speech recognition [19], and synthesis [42], learning
from human play [6] and reinforcement learning [10,13,27,35,40] among others.
In all cases, very large datasets have been utilized, or in the case of reinforce-
ment learning, extensive play. In many realistic settings we need to achieve goals
with limited datasets; in those cases deep neural networks seem to fall short,
overfitting on the training set and producing poor generalisation on the test set.

Techniques have been developed over the years to help combat overfitting
such as L1/L2 reqularization [28], dropout [20], batch normalization [23], batch
renormalisation [22] or layer normalization [2]. However in low data regimes,
even these techniques fall short, since the flexibility of the network is so high.
These methods are not able to capitalise on known input invariances that might
form good prior knowledge for informing the parameter learning.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 594–603, 2018.
https://doi.org/10.1007/978-3-030-01424-7_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_58&domain=pdf

Augmenting Image Classifiers Using DAGAN 595

It is also possible to generate more data from existing data by applying var-
ious transformations [25] to the original dataset. These transformations include
random translations, rotations and flips as well as addition of Gaussian noise.
Such methods capitalize on transformations that we know should not affect the
class. This technique seems to be vital, not only for the low-data cases but for
any size of dataset, in fact even models trained on some of the largest datasets
such as Imagenet [7] can benefit from this practice.

Typical data augmentation techniques use a limited set of known invariances
that are easy to invoke. Here, we recognize that we can learn a model of a
much larger invariance space through training a form of conditional generative
adversarial network (GAN) in some source domain. This can then be applied
in the low-data domain of interest, the target domain. We show that such a
Data Augmentation Generative Adversarial Network (DAGAN) enables effective
neural network training even in low-data target domains. As the DAGAN does
not depend on the classes themselves it captures the cross-class transformations,
moving data-points to other points of equivalent class.

In this paper we train a DAGAN and then evaluate its performance on low-
data tasks using standard stochastic gradient descent neural network training.
We use 3 datasets, the Omniglot dataset, the EMNIST dataset and the more
complex VGG-Face dataset. The DAGAN trained on Omniglot was used for
augmenting both the Omniglot and EMNIST classifiers to demonstrate benefit
even when transferring between substantially different domains. The VGG-Face
dataset provides a considerably more challenging test for the DAGAN. VGG-
Face was used to evaluate whether the DAGAN training scheme could work on
human faces, which are notoriously hard to model using a generator. Furthermore
the usefulness of the generated faces was measured when used as augmentation
data in the classification training.

2 Background

Transfer Learning and Dataset Shift: The term dataset shift [36] generalises
the concept of covariate shift [33,37,38] to multiple cases of changes between
domains. For data augmentation, we may learn a generative distribution that
maintains class consistency on one set of classes and apply that consistency trans-
formation to new unseen classes, on the understanding the the transformations
that maintain consistency generalise across classes.

Generative Adversarial Networks: GANs [11], and specifically Deep Con-
volutional GANs (DCGAN) [29] use the ability to discriminate between true
and generated examples as a learning objective for generative models. GAN
approaches can learn complex joint densities. Recent improvements in the opti-
mization process [1,3,14] have reduced some of the failure modes of the GAN
learning process as well as produced objectives that correlate well with sample
quality [1,14]. Furthermore image conditional GANs have been used to achieve
image to image translation [24], as well as augment datasets [5,34,45]. How-
ever the work relating to the enhancement of datasets only uses the GAN to

596 A. Antoniou et al.

either fine tune simulated data or generate data by attempting to reconstruct
existing data points. Whereas our model is explicitly trained to produce data
augmentations as a manifold of samples around real data samples.

As demonstrated in [14], the Wasserstein formulation for training GANs has
shown superior sample diversity and quality in multiple instances. Additionally
the Wasserstein GANs (WGAN) with Gradient Penalty (GP) have the addi-
tional benefit of being trainable using advanced architectures such as ResNets
[16]. This is especially important since most GAN formulations can only be
successfully trained using very specific and often less expressive model architec-
tures. Furthermore WGAN with GP discriminator losses have been empirically
observed to correlate with sample quality. Taking into consideration available
state of the art methods including standard GAN, LS-GAN, WGAN with clip-
ping and WGAN with Spectral normalization, we focus on the use WGAN with
GP training in this paper due to its versatility in terms of architectures and its
superior qualitative performance. Our own experiments with other approaches
confirm the stated benefits; we found WGAN with GP to produce the most sta-
ble models with the best sample quality both qualitatively and quantitatively.

Data Augmentation: Data augmentation similar to [25] is routinely used in
classification problems. Often it is non-trivial to encode known invariances in
a model. It can be easier to encode those invariances in the data instead by
generating additional data items through transformations from existing data
items. For example the labels of handwritten characters should be invariant to
small shifts in location, small rotations or shears, changes in intensity, changes
in stroke thickness, changes in size etc. Almost all cases of data augmentation
are from a priori known invariance. Various attempts at augmenting features
instead of data are investigated in [8,39]. Moreover, the effectiveness of data
augmentation has also been shown in other domains except images. Two such
domains is sound [32] and text [31]. There has been little previous work that
attempts to learn data augmentation strategies. One paper that is worthy of
note is the work of [15], where the authors learn augmentation strategies on a
class by class basis. Additional papers that attempt to learn models for data
augmentation include [4,9,30]. These approaches do not transfer to the setting
where completely new classes are considered.

3 Model

If we know that a class label should be invariant to a particular transformation
then we can apply that transformation to generate additional data. If we do not
know what transformations might be valid, but we have other data from related
problems, we can attempt to learn valid transformations from those related prob-
lems that we can apply to our setting. This is an example of meta-learning; we
learn on other problems how to improve learning for our target problem.

Augmenting Image Classifiers Using DAGAN 597

3.1 Model Overview

Consider a collection of datasets [(xc
i |i = 1, 2, . . . N c)|c ∈ C], with each dataset

labelled by c, the class, taken from the set of classes C, and with each element
in a dataset c indexed by i and denoted by xc

i . Let xc
i ∈ X, the space of inputs.

In this paper X will be a space of input images.
The goal is to learn a mapping between a conditional sample xc

i of a certain
class c to other samples xc

j from that same class, using training data [(xc
i |i =

1, 2, . . . N c)|c ∈ C]. To do so we learn a differentiable function G which we
call a generator. Given some random standard Gaussian vector z, we require a
mapping G : (xc

i , z) such that, ∀j, xc
j has high probability under the density of

z mapped through G. Since G is differentiable, z maps out a whole manifold in
X space associated with input xc

i in a class consistent way. Yet G does not have
access to the class c itself, thus enabling the DAGAN to generalize to unseen
classes. We parameterize our generator function x̃ = G(xc

i , z) as a neural network
and we train it as a GAN using the WGAN with GP formulation. Training a
GAN also requires a discriminator network, denoted as D, to be trained along
with the generator network. The discriminator network attempts to discriminate
between real and fake samples whilst the generator attempts to minimize the
discriminator’s performance in guessing real from fake.

3.2 Model Objective Definition

We modify the WGAN with GP formulation to account for the fact that we
are using an image-conditional GAN with a discriminator that takes as input
2 images, instead of 1. Figure 1 shows the high level overview of our training
setup. Our generator and discriminator objectives can be expressed as:

Ldiscr = E
x̃∼Pg

[D(xc
i , x̃)] − E

X∼Pr

[D(xc
i , x

c
j)] + λ E

x̂∼Px̂

(||∇x̂D(xc
i , x̂)||2 − 1) (1)

Lgen = − E
x̃∼Pg

[D(xc
i , x̃)], (2)

where x represents real samples, xc
i and xc

j represent two separate instances of
samples from class c, x̃ represents generated samples from the generator G. x̂
is, as defined in [14], randomly sampled points on linear interpolations between
the samples of the real distribution Pr and generated distribution Pg. The only
difference from the original WGAN with GP formulation is the use of 2 entries
in the discriminator arguments, one for the conditional sample xc

i and one for
the target sample xc

j (for real case) or x̃ (for fake case).

3.3 Architectures

We chose to use a state of the art Densenet discriminator and, for the gen-
erator, a powerful combination of two standard networks, UNet and ResNet,
which we henceforth call a UResNet. The code for this paper is available1, and
1 https://github.com/AntreasAntoniou/DAGAN.

https://github.com/AntreasAntoniou/DAGAN

598 A. Antoniou et al.

Fig. 1. DAGAN Architecture. Left: the generator network is composed of an encoder
taking an input image and projecting it to a lower dimensional manifold. A random
vector (z) is transformed and concatenated with the bottleneck vector; these are both
passed to the decoder network which generates a within-class image. Right: the adver-
sarial discriminator network is trained to discriminate between the samples from the
real distribution (two real images from the same class) and the fake distribution (a real
sample and a generated sample). Adversarial training enables the network to generate
within-class images that look different enough to be considered a different sample.

that provides the full implementation of the networks. However we describe the
implementational details here.

The UResNet generator has a total of 8 blocks, each block having 4 convo-
lutional layers (with leaky rectified linear (ReLU) activations and batch renor-
malisation (batchrenorm) [22]) followed by one downscaling or upscaling layer.
Downscaling layers (in blocks 1–4) were convolutions with stride 2 followed by
leaky ReLU, batch normalisation and dropout. Upscaling layers were imple-
mented by employing a nearest neighbour upscale, followed by a convolution,
leaky ReLU, batch renormalisation and dropout. For Omniglot and EMNIST
experiments, all layers had 64 filters. For the VGG-Face experiments the first 2
blocks of the encoder and the last 2 blocks of the decoder had 64 filters and the
last 2 blocks of the encoder and the first 2 blocks of the decoder 128 filters.

In addition each block of the UResNet generator had skip connections. As
with a standard ResNet, we used either a summation skip connection between
layers with equivalent spacial dimensions or a strided 1× 1 convolution for
between layers with different spacial dimensions, thus bypassing the between
block non-linearity to help gradient flow. Finally skip connections were intro-
duced between equivalent sized filters at each end of the network (as with UNet).

We used a DenseNet [21] discriminator, using layer normalization instead
of batch normalization; the latter would break the assumptions of the WGAN
objective function (as mentioned in [14, Chap. 4]). The DenseNet was composed

Augmenting Image Classifiers Using DAGAN 599

of 4 Dense Blocks and 4 Transition Layers, as defined in [21]. We used a growth
rate of k = 64 and each Dense Block had 5 convolutional layers. We removed
the 1× 1 convolutions usually before the 3× 3 convolutions as we observed this
improved sample quality. For the discriminator we used dropout at the last
convolutional layer of each Dense Block; this too improved sample quality.

For each classification experiment we used a DenseNet classifier composed of
4 Dense Blocks and 4 Transition Layers with a k = 64, each Dense Block had
3 convolutional layers within it. The classifiers were a total of 17 layers (i.e. 16
layers and 1 softmax layer). Furthermore we applied a dropout of 0.5 on the last
convolutional layer in each Dense Block.

4 Datasets and Experiments

We tested the DAGAN augmentation on 3 datasets: Omniglot, EMNIST, and
VGG-Face. All datasets were split randomly into source domain sets, validation
domain sets and test domain sets.

For classifier networks, data for each character (handwritten or person) was
further split into 2 test cases (for all datasets), 3 validation cases and a varying
number of training cases depending on the experiment. Classifier training was
done on the training cases for all examples in all domains; hyperparameter choice
used validation cases. Test performance was reported only on the test cases for
the target domain set. Case splits were randomized across each test run.

The Omniglot data [26] was split into source domain and target domain
similarly to the split in [41]. The class ids were sorted in an increasing manner.
The first 1200 were used as a source domain set, 1201–1412 as a validation
domain set and 1412–1623 as a target domain test set.

The EMNIST data was split into a source domain that included classes 0–34
(after random shuffling of the classes), the validation domain set included classes
35–42 and the test domain set included classes 42–47. Since the EMNIST dataset
has thousands of samples per class we chose only a subset of 100 for each class,
so that we could make our task a low-data one.

In the VGG-Face dataset case, we randomly chose 100 samples from each
class that had 100 or more, uncorrupted images, resulting in 2396 of the full 2622
classes available in the dataset. After shuffling, we split the resulting dataset into
a source domain that included the first 1802 classes. The test domain set included
classes 1803–2300 and the validation domain set included classes 2300–2396.

4.1 Training of DAGAN in Source Domain

A DAGAN was trained on Source Omniglot domains using a variety of architec-
tures: standard VGG, U-Net, and ResNet inspired architectures. Increasingly
powerful networks proved better generators, with the UResNet described in
Sect. 3.3 generator being our model of choice. Examples of generated data are
given in Fig. 2. We trained each DAGAN for 200K iterations, using a learning
rate of 0.0001, and an Adam optimizer with Adam parameters of β1 = 0 and

600 A. Antoniou et al.

Fig. 2. An Interpolated spherical subspace [43] of the GAN generation space on
Omniglot and VGG-Face respectively. The only real image (xc

i) in each figure is the
one in the top-left corner, the rest are generated to augment that example using a
DAGAN.

β2 = 0.9. We used a pretrained DenseNet classifier to quantify the performance
of the generated data in terms of how well they classify in real classes. We chose
the model that had the best validation accuracy performance on this classifier.

4.2 Classifiers

The primary question of this paper is how well the DAGAN can augment vanilla
classifiers trained on each target domain. A DenseNet classifier (as described in
Sect. 3.3) was trained first on just real data (with standard data augmentation)
with 5 to 100 examples per class (depending on dataset). In the second case,
the classifier was also trained on DAGAN generated data. The real or fake label
was also passed to the network, via adding 1 filter before each convolution of
either zeros (fake) or ones (real) to enable the network to learn how best to
emphasise true over generated data. This last step proved crucial to maximiz-
ing the potential of the DAGAN augmentations. In each training cycle, varying
numbers of augmented samples were provided for each real example (ranging
from 1–10). The best hyperparameters were selected via performance on the val-
idation domain. The classifier was trained with standard augmentation: random
Gaussian noise was added to images (with 50% probability), random shifts along
x and y axis (with 50% probability), and random 90 degree rotations (all with
equal probability of being chosen). Classifiers were trained for 200 epochs, with
a learning rate of 0.001, and an Adam optimizer with β1 = 0.9 and β2 = 0.99.
The results on the held out test cases from the target domain is given in Table 1.
In every case the augmentation improves the classification.

Augmenting Image Classifiers Using DAGAN 601

Table 1. Classification Results: All results are averages over 5 independent runs. The
DAGAN augmentation improves the classifier performance in all cases. Test accuracy
is the result on the test cases in the test domain. Here for the purposes of compactness
we omit the number of generated samples per real sample hyperparameter since that
would produce more than 100 rows of data. We should note however that the optimal
number of generated samples per real image was found to be 3.

Samples per class Augment with DAGAN Omniglot EMNIST VGG-Face

5 False 68.99% – 04.47%

5 True 82.13% – 12.59%

10 False 79.41% – –

10 True 86.22% – –

15 False 81.97% 73.93% 39.33%

15 True 87.42% 76.07% 42.93%

25 False – 78.35% 57.99%

25 True – 80.26% 58.46%

50 False – 81.51% –

50 True – 82.78% –

100 False – 83.78% –

100 True – 84.80% –

5 Conclusions

Data augmentation is a widely applicable approach to improving performance
in low-data settings. The DAGAN is a flexible model to automatically learn
to augment data. We demonstrate that a DAGAN can improve performance
of classifiers even after standard data-augmentation. Furthermore, it is worth
noting that a DAGAN can be easily combined with other model types, including
few shot learning models. Further work is needed to evaluate the usefulness in
the few shot learning. However the flexibility of the DAGAN makes it a powerful
means of enhancing models working with a small amount of data.

Acknowledgements. This work was supported in by the EPSRC Centre for
Doctoral Training in Data Science, funded by the UK Engineering and Physical Sci-
ences Research Council and the University of Edinburgh as well as by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
732204 (Bonseyes) and by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 16.0159. The opinions expressed and argu-
ments employed herein do not necessarily reflect the official views of these funding
bodies.

602 A. Antoniou et al.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875 (2017)
2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv:1607.06450 (2016)
3. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative

adversarial networks. arXiv:1703.10717 (2017)
4. Bloice, M.D., Stocker, C., Holzinger, A.: Augmentor: an image augmentation

library for machine learning. arXiv:1708.04680 (2017)
5. Choe, J., Park, S., Kim, K., Park, J.H., Kim, D., Shim, H.: Face generation for low-

shot learning using generative adversarial networks. In: 2017 IEEE International
Conference on Computer Vision Workshop (ICCVW). IEEE (2017)

6. Clark, C., Storkey, A.: Training deep convolutional networks to play Go. In:
Proceedings of 32nd International Conference on Machine Learning (ICML2015)
(2015). (arxiv 2014)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: Computer Vision and Pattern Recognition. IEEE
(2009)

8. Dixit, M., Kwitt, R., Niethammer, M., Vasconcelos, N.: AGA: attribute-guided
augmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017)

9. Fawzi, A., Samulowitz, H., Turaga, D., Frossard, P.: Adaptive data augmentation
for image classification. In: 2013 International Conference on Image Processing
(ICIP). IEEE (2016)

10. Foerster, J., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning (2016)

11. Goodfellow, I.J., et al.: Generative adversarial networks, June 2014
12. Gu, J., et al.: Recent advances in convolutional neural networks (2015)
13. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with

model-based acceleration. In: International Conference on Machine Learning (2016)
14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved

training of wasserstein GANs. arXiv:1704.00028 (2017)
15. Hauberg, S., Freifeld, O., Larsen, A.B.L., Fisher, J., Hansen, L.: Dreaming more

data: class-dependent distributions over diffeomorphisms for learned data augmen-
tation. In: Artificial Intelligence and Statistics (2016)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition,
December 2015

17. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification (2015)

18. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

19. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Sig. Process. Mag. 29, 82–97
(2012)

20. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors (2012)

21. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected
convolutional networks. arXiv:1608.06993 (2016)

22. Ioffe, S.: Batch renormalization: towards reducing minibatch dependence in batch-
normalized models (2017)

http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1708.04680
http://arxiv.org/abs/1704.00028
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1608.06993

Augmenting Image Classifiers Using DAGAN 603

23. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift (2015)

24. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks (2016)

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(2012)

26. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning
through probabilistic program induction. Science 350, 1332–1338 (2015)

27. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529 (2015)

28. Nowlan, S.J., Hinton, G.E.: Simplifying neural networks by soft weight-sharing.
Neural Comput. 4, 473–493 (1992). https://doi.org/10.1162/neco.1992.4.4.473

29. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. In: Proceedings of ICLR 2016
(2015)

30. Ratner, A.J., Ehrenberg, H., Hussain, Z., Dunnmon, J., Ré, C.: Learning to com-
pose domain-specific transformations for data augmentation. In: Advances in Neu-
ral Information Processing Systems, vol. 30 (2017)

31. Rosén, B.: Asymptotic theory for order sampling. J. Stat. Plan. Infer. 62, 135–158
(1997)

32. Salamon, J., Bello, J.P.: Deep convolutional neural networks and data augmenta-
tion for environmental sound classification. IEEE Sig. Process. Lett. 24, 279–283
(2017)

33. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. J. Stat. Plan. Infer. 90, 227–244 (2000)

34. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning
from simulated and unsupervised images through adversarial training. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

35. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484 (2016)

36. Storkey, A.: When training and test sets are different: characterising learning trans-
fer. In: Lawrence, C.S.S. (ed.) Dataset Shift in Machine Learning, Chap. 1. MIT
Press (2009)

37. Storkey, A., Sugiyama, M.: Mixture regression for covariate shift. In: Advances in
Neural Information Processing Systems (NIPS2006), vol. 19 (2007)

38. Sugiyama, M., Müller, K.R.: Input-dependent estimation of generalisation error
under covariate shift. Stat. Decis. 23, 249–279 (2005)

39. Takeki, A., Ikami, D., Irie, G., Aizawa, K.: Parallel grid pooling for data augmen-
tation. arXiv:1803.11370 (2018)

40. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: AAAI (2016)

41. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: Advances in Neural Information Processing Systems (2016)

42. Wang, Y., et al.: Tacotron: a fully end-to-end text-to-speech synthesis model. CoRR
abs/1703.10135 (2017)

43. White, T.: Sampling generative networks, September 2016
44. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap

between human and machine translation. arXiv:1609.08144 (2016)
45. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-

shot learning. arXiv preprint arXiv:1712.00981 (2017)

https://doi.org/10.1162/neco.1992.4.4.473
http://arxiv.org/abs/1803.11370
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1712.00981

DeepEthnic: Multi-label Ethnic
Classification from Face Images

Katia Huri1(B), Eli (Omid) David1, and Nathan S. Netanyahu1,2

1 Department of Computer Science, Bar-Ilan University, 5290002 Ramat-Gan, Israel
katiahuri@gmail.com, mail@elidavid.com, nathan@cs.biu.ac.il

2 Center for Automation Research, University of Maryland,
College Park, MD 20742, USA

nathan@cfar.umd.edu

Abstract. Ethnic group classification is a well-researched problem,
which has been pursued mainly during the past two decades via tra-
ditional approaches of image processing and machine learning. In this
paper, we propose a method of classifying an image face into an ethnic
group by applying transfer learning from a previously trained classi-
fication network for large-scale data recognition. Our proposed method
yields state-of-the-art success rates of 99.02%, 99.76%, 99.2%, and 96.7%,
respectively, for the four ethnic groups: African, Asian, Caucasian, and
Indian.

1 Introduction

Ethnic classification from facial images has been studied for the past two decades
with the purpose of understanding how humans perceive and determine an ethnic
group from a given image. The motivation stems, for example, from the fact that
(gender and) ethnicity play an important role in face-related applications, such
as advertising, social insensitive-based systems, etc. Furthermore, while facial
features are subject to change (due to aging, for example), ethnicity is of interest
due to its invariance over time.

Recent works on demographic classification are divided conceptually into
appearance based methods (using, e.g., eigenface methods, fisherface methods,
etc.) and geometry-based methods (relying, e.g., on geometric parameters, such
as the distance between the eyes, face width and length, nose thickness, etc.).
One of the main challenges of automatic demographic classification is to avoid
any “noise”, such as illumination, background distortion, and a subject’s pose.

In this paper, we introduce a deep learning-based method, that achieves
state-of-the-art results for facial image representations and classification for the
four ethnic groups: African, Asian, Caucasian, and Indian.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 604–612, 2018.
https://doi.org/10.1007/978-3-030-01424-7_59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_59&domain=pdf

DeepEthnic: Multi-label Ethnic Classification from Face Images 605

2 Related Work

2.1 Traditional ML-Based Techniques

During the past two decades, there has been enormous progress on the topic
of ethnic group classification, using various classical Machine Learning methods.
These approaches are based mainly on feature extraction and training classifiers;
see Table 1 below.

Hosoi et al. [6] were among the first to achieve promising results. They
employed Gabor wavelet transformations for extracting key facial features, and
then applied SVM classification. They reported classification accuracies of 94.3%,
96.3%, and 93.1%, respectively, for the three ethnic groups: African, Asian, and
Caucasian.

Table 1. Previous work on ethnic group classification using traditional Machine Learn-
ing methods

Authors Approaches Databases Ethnic groups Success rate

Hosoi et al. [6] Gabor Wavelet
and SVM

1,991 face photos African, Asian,
Caucasian

94.3%,
96.3%,
93.1%

Lu et al. [11] LDA Union of DB (2,630
photos of 263
objects)

Asian, non-Asian 96.3%
(Avg)

Yang et al. [26] Real Adaboost
(Haar, LBPH)

FERET and PIE
(11,680 Asian and
1,016 non-Asian)

Asian, non-Asian 92.1%,
93.2%

Lyle et al. [12] Perioucular
regions, LBP,
SVM

FRGC (4,232 faces,
404 objects)

Asian, non-Asian 92% (Avg)

Guo et al. [5] Biologically
inspired
features

MORPH-II (10,530
Africans, 10,530
Caucasians)

African,
Caucasian

99.1%
(Avg)

Xie et al. [25] Kernal class
dependent
feature analysis
(KCFA)

MBGC DB (10,000
African, 10,000
Asian, 20,000
Caucasian)

African, Asian,
Caucasian

97%, 95%,
97%

Lu et al. [11] constructed an ensemble framework, which integrates LDA
applied to the input face images at different scales. The combination strategy
in the ensemble is the product rule [9] to combine the outputs of individual
classifiers at these different scales. Their binary classifier of Asian and non-Asian
classes obtained success rates of 96.3%, on average.

606 K. Huri et al.

Yang et al. [26] used LBPH1 [4] to extract features of texture descriptions,
in order to enhance considerably the human detection algorithm that was previ-
ously suggested by Xiaoyu et al. [22]. Real AdaBoost was then used iteratively to
learn a sequence of best local features to create a strong classifier. Their binary
classifier of Asian and non-Asian classes had success rates of 92.1% and 93.2%,
respectively.

Lyle et al. [12] extracted ethnicity information from the periocular region
images2 using grayscale pixel intensities and periocular texture features com-
puted by LBP. Their binary SVM classifier of Asian and non-Asian classes yields
success rates of 93% and 91%, respectively.

Guo et al. [5] proposed using biologically-inspired features for ethnic classi-
fication, by applying a battery of linear filters to an image and using the fil-
tered images as primary features [8]). Their binary classifier to Africans and
Caucasians achieved 99.1% success rate, on average. However, integrating the
three ethnic groups: Asian, Hispanic, and Indian, result in a sharp success rate
decrease. Specifically, the accuracies recorded were African: 98.3%, Caucasian:
97.1%, Hispanic: 59.5%, Asian: 74.2%, and Indian: 6.9%.

Xie et al. [25] used kernel class-dependent feature analysis for generating
nonlinear features (by mapping them onto a higher-dimensional feature space
which allows higher order correlations [23]) and facial color-based features to
classify large-scale face databases. Their classifier achieved success rates of 97%,
95%, and 97%, respectively, for the three ethnic groups: African, Asian, and
Caucasian.

To summarize, although some of the surveyed methods yield high classifica-
tion results, it appears that they are limited to laboratory conditions, i.e., they
may not perform as well on a diverse, large-scale database, consisting of face
images of different gender, pose, age, illumination conditions, etc. In contrast,
we create in this work a diverse face image database for training and testing.

2.2 Recent Deep Learning Techniques

Ethnic group classification has improved significantly in recent years, due to
the use of deep learning techniques, e.g., CNN architectures, enhanced feature
extraction, etc. (See Table 2 for an overview.)

Ahmed et al. [1] were the first to apply transfer learning for ethnic classi-
fication. Their classifier achieved a success rate of 95.4%, on average, for the
ethnic groups: Asian, Caucasian and “Other”, using the FRGC 2.0 and FERET
databases for training data.

Inzamam et al. [2] performed the classification by extracting features from
a deep neural network followed by SVM classification on 10 datasets (13,394
images in total, including different variations of the FERET, CASPEAL, and

1 LBPH is a combination of local binary pattern (LBP) with the histogram of oriented
gradients (HOG) techniques.

2 A periocular region includes the iris, eyes, eyelids, eye lashes, and part of the eye-
brows.

DeepEthnic: Multi-label Ethnic Classification from Face Images 607

Table 2. DL-based methods for ethnic group classification

Authors Approach Databases Ethnic groups Success rate

Ahmed
et al. [1]

Transfer learning
from pseudo tasks
(CNN + transfer
learning)

FRGC 2.0,
FERET

Asian, Caucasian,
Other

95.4% (avg.)

Inzamam
et al. [2]

Feature extraction
due to ANN and
SVM classification

10 different
DBs

African, Asian,
Caucasian

99.66%, 98.28%,
99.05%

Wang
et al. [21]

CNN Variety of
DBs

African,
Caucasian
Chinese,
non-Chinese Han,
Uyghur,
non-Chinese

99.4%, 100%,
99.62%, 99.38%
99% (avg.)

Yale databases). Their classifier achieved success rates of 99.66%, 98.28%, and
99.05%, respectively, for the ethnic groups: African, Asian, and Caucasian.

Wang et al. [21] used deep CNNs to extract features and classify them simul-
taneously. Three different classifiers were created: (1) The first binary classifier
for African and Caucasian classes, achieving success rates of 99.4% and 100%,
respectively; (2) a binary classifier for Chinese and non-Chinese classes, achiev-
ing success rates of 99.62% and 99.38%, respectively; and (3) a 3-way classifier
for Han, Uyghur, and non-Chinese classes, achieving an average success rate
of 99%.

3 Proposed Method

3.1 Data Source

As previously indicated, the purpose of this research is to distinguish between
the four ethnic groups: African. Asian, Caucasian, and Indian. We created our
dataset by combining 10 different databases, originally proposed for the prob-
lem of face recognition, and then sorting them into the ethnic groups of inter-
est. The databases included IMFDB [16], CNBC [20], Labeled Faces in the
Wild (LFW) [7], the Essex face dataset [18], Face Tracer [10], the Yale face
database [3], SCUT5000 [24], and additional collected image datasets. We also
used the well-known FERET database [14,15], which contains facial images col-
lected under the FERET program, sponsored at the time by the U.S. Department
of Defense (DoD).

Altogether, the collected dataset contains images of various sizes.

608 K. Huri et al.

3.2 Facial Image Preprocessing

As part of preprocessing, the data should be normalized to be compatible with
the network’s architecture. Also, it is denoised to make it as clean as possible.
Thus, we first convert every RGB image to a grayscale one to create a homoge-
neous dataset of grayscale images.

Note that our collection also contains datasets (such as AT&T and CAS-
PEAL) of only grayscale face images. We then use the Face Cascade detector
(part of the OpenCV library), to detect and crop the faces. After detecting and
cropping the faces, the cropped images are downscaled to 80 × 80 pixels and
are denoised using a non-local means denoising algorithm (implemented by the
OpenCV function, fastNlMeansDenoising).

Finally, (grayscale) images are duplicated to create an image size of 80×80×3.
This is done to be compatible with the VGG-16 network, which receives three-
channel images as input.

After preprocessing, the face images were sorted manually into the four ethnic
groups of interest (i.e., African, Asian, Caucasian, and Indian), creating a labeled
face database for ethnic group classification. See Fig. 1 for specific face images
per each ethnic group.

Fig. 1. Examples of preprocessed face images and their ethnic group labels (from left
to right): African, Asian, Caucasian, and Indian.

Since the number of images acquired was rather imbalanced over the four
ethnic groups, we perturbed each image in the smaller training samples with
a minor Gaussian noise, so as to augment these training samples with slightly
different duplicates.

3.3 Transfer Learning

Due to the challenging problems DL has to solve, it takes enormous resources
(mostly training time, but also fast computers, training data storage, and human
expertise) to train such models.

Transfer learning is an ML technique that helps to overcome those issues by
using a model that was trained on a specific task (without any changes to the
weights) to solve other tasks.

Yosinski et al. [27] showed that using transfer learning can solve all of these
issues and create more efficient and accurate models for solving additional prob-
lems. It is important to note that transfer learning only works if the model
features learned from the first task are sufficiently generic.

A pretrained model has been previously trained on a dataset and contains
the weights and biases that represent the features of the data it has seen during

DeepEthnic: Multi-label Ethnic Classification from Face Images 609

training. The most commonly used pre-trained models are VGG16, VGG19 [17],
and Inception V3 [19], due to their high success rate and improvement on the
ImageNet dataset classification problem.

VGG16 is a classification model with 16 layers, which is based on the Ima-
geNet dataset and can classify 1,000 different image types (including animals,
buildings, and humans). The model’s weight file size is 528 MB, and it can be
easily accessed for free.

3.4 Network Architecture

Figure 2 shows the original VGG-16 architecture and our modified architecture,
which inputs a preprocessed 80× 80× 3 image and outputs its predicted ethnic
group.

Fig. 2. (a) Original version of VGG-16, and (b) our modified architecture for partial
transfer learning from VGG-16.

The modified architecture contains the original, previously trained VGG-16
network, without the final three fully-connected layers and the original softmax
layer.

The five layers of the remained network (i.e., max pooling layer, three convo-
lution layers and activation layers, and the final max pooling layer) were selected
after experimenting extensively with a large number of possibilities for retraining
the entire network. Note that running on the original network “as-is” would have
given very poor results. Instead, the idea is to capture universal features (like

610 K. Huri et al.

curves and edges), and further refine these features due to the above modified
layers, by retraining the entire network in the context of our problem.

Specifically, the classification softmax layer was replaced by a fully-connected
layer of size n = 500 and a softmax layer (of size p = 4), which outputs a
probability distribution for the ethnic group classification.

The output of the softmax layer is the probability distribution for the classifi-
cation problem. We train the network with the purpose of minimizing the cross-
entropy loss function. The network is trained using stochastic gradient descent
(SGD), as part of the backpropagation phase.

4 Experiments and Results

We present the datasets used in the experiments, and give detailed empirical
results of the 10-fold cross validation for the four-class ethnic group classification.

To increase the classification success rate, we first experimented with different
network hyper-parameters, e.g., number of epochs, type of activation function,
size of the fully-connected layer to add, type of loss function, etc. After running
a grid search on the hyper parameters options, we selected the following set of
hyper-parameters, which provided the best performance: 50 epochs, a ReLu [13]
activation function (an element-wise operation applied per pixel), an addi-
tional fully-connected layer of 500 neurons, and a categorical cross-entropy loss
function.

We trained and tested the model for each fold, by allocating each time 75%,
10%, and 15% of the data, respectively, to training, validation, and testing.

The training time using TensorFlow and Keras infrastructure on GeForce
GTX 1070 was roughly 4.5 h (compared to nearly 11.5 h for training from scratch
on the same architecture), and the real-time evaluation of an image is about
10 ms.

We ran a 10-fold cross validation using the selected base model, and obtained
classification accuracies of 99.02%, 99.76%, 99.18%, and 96.72%, respectively, for
the categories, African, Asian, Caucasian, and Indian. Bottom-line accuracies
and loss for the Ethnic classes are summarized in Table 3.

Table 3. Summary of total success rate and loss over entire experiments

African Asian Caucasian Indian Total success rate Total loss

99.02% 99.76% 99.18% 96.72% 99.18% 0.03518

5 Conclusions

In this paper we presented a novel approach to the ethnic group classification
problem. By modifying a previously trained classification network (namely VGG-
16) for transfer learning we achieved state-of-the-art performance with respect

DeepEthnic: Multi-label Ethnic Classification from Face Images 611

to four ethnic classes: African, Asian, Caucasian, and Indian. Specifically, we
obtained higher success rate levels for a larger number of classes, while working
with a more diverse dataset than previously reported. Also, our derived scheme
exhibits faster training time then training from scratch with similar results.

Our future work will focus on extending the number of classes, and improving
the robustness of the proposed method to different image conditions, such as
different head poses, illumination change, etc.

References

1. Ahmed, A., Yu, K., Xu, W., Gong, Y., Xing, E.: Training hierarchical feed-
forward visual recognition models using transfer learning from pseudo-tasks. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 69–
82. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7 6

2. Anwar, I., Islam, N.U.: Learned features are better for ethnicity classification.
CoRR 1709.07429 (2017)

3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recog-
nition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell.
19(7), 711–720 (1997)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1, pp. 886–893 (2005)

5. Guo, G., Mu, G.: A study of large-scale ethnicity estimation with gender and
age variations. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition - Workshops, pp. 79–86 (2010)

6. Hosoi, S., Takikawa, E., Kawade, M.: Ethnicity estimation with facial images. In:
6th IEEE International Conference on Automatic Face and Gesture Recognition,
pp. 195–200 (2004)

7. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
a database for studying face recognition in unconstrained environments. In: Work-
shop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008).
https://hal.inria.fr/inria-00321923

8. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-
stage architecture for object recognition? In: 12th IEEE International Conference
on Computer Vision, pp. 2146–2153 (2009)

9. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE
Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

10. Kumar, N., Belhumeur, P., Nayar, S.: FaceTracer: a search engine for large collec-
tions of images with faces. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV
2008. LNCS, vol. 5305, pp. 340–353. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88693-8 25

11. Lu, X., Jain, A.K.: Ethnicity identification from face images. In: SPIE, vol. 5404
(2004)

12. Lyle, J.R., Miller, P.E., Pundlik, S.J., Woodard, D.L.: Soft biometric classifica-
tion using periocular region features. In: 4th IEEE International Conference on
Biometrics: Theory, Applications and Systems-BTAS, pp. 1–7 (2010)

13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of ICML, vol. 27, pp. 807–814 (2010)

https://doi.org/10.1007/978-3-540-88690-7_6
https://hal.inria.fr/inria-00321923
https://doi.org/10.1007/978-3-540-88693-8_25
https://doi.org/10.1007/978-3-540-88693-8_25

612 K. Huri et al.

14. Phillips, P.J., Moon, H., Rauss, P., Rizvi, S.A.: The FERET evaluation method-
ology for face-recognition algorithms. In: Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 137–143 (1997)

15. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database
and evaluation procedure for face-recognition algorithms. Image Vis.
Comput. 16(5), 295–306 (1998). http://www.sciencedirect.com/science/article/
pii/S026288569700070X

16. Setty, S., et al.: Indian movie face database: a benchmark for face recognition
under wide variations. In: 4th National Conference on Computer Vision, Pattern
Recognition, Image Processing and Graphics - NCVPRIPG, pp. 1–5 (2013)

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR 1409.1556 (2014)

18. Spacek, L.: University of Essex Collection of Facial Images (1996). http://cswww.
essex.ac.uk/mv/allfaces/index.html

19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. CoRR 1512.00567 (2015)

20. Tarr, M.J.: CNBC - stimulus image. In: Center for the Neural Basis of Cognition
and Department of Psychology. Carnegie Mellon University. Funding provided by
NSF award 0339122. http://www.tarrlab.org/

21. Wang, W., He, F., Zhao, Q.: Facial ethnicity classification with deep convolutional
neural networks. In: You, Z., et al. (eds.) CCBR 2016. LNCS, vol. 9967, pp. 176–
185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46654-5 20

22. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion
handling. In: 12th IEEE International Conference on Computer Vision, pp. 32–39
(2009)

23. Xie, C., Savvides, M., VijayaKumar, B.V.K.: Kernel correlation filter based redun-
dant class-dependence feature analysis (KCFA) on FRGC2.0 data. In: Zhao, W.,
Gong, S., Tang, X. (eds.) AMFG 2005. LNCS, vol. 3723, pp. 32–43. Springer,
Heidelberg (2005). https://doi.org/10.1007/11564386 4

24. Xie, D., Liang, L., Jin, L., Xu, J., Li, M.: SCUT-FBP: a benchmark dataset for
facial beauty perception. In: IEEE International Conference on Systems, Man, and
Cybernetics, pp. 1821–1826 (2015)

25. Xie, Y., Luu, K., Savvides, M.: A robust approach to facial ethnicity classification
on large scale face databases. In: 5th IEEE International Conference on Biometrics:
Theory, Applications and Systems (BTAS), pp. 143–149 (2012)

26. Yang, Z., Ai, H.: Demographic classification with local binary patterns. In: Lee,
S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 464–473. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74549-5 49

27. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? CoRR (2014)

http://www.sciencedirect.com/science/article/pii/S026288569700070X
http://www.sciencedirect.com/science/article/pii/S026288569700070X
http://cswww.essex.ac.uk/mv/allfaces/index.html
http://cswww.essex.ac.uk/mv/allfaces/index.html
http://www.tarrlab.org/
https://doi.org/10.1007/978-3-319-46654-5_20
https://doi.org/10.1007/11564386_4
https://doi.org/10.1007/978-3-540-74549-5_49

Handwriting-Based Gender Classification
Using End-to-End Deep Neural Networks

Evyatar Illouz1, Eli (Omid) David1(B), and Nathan S. Netanyahu1,2

1 Department of Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel
iluz101@gmail.com, mail@elidavid.com, nathan@cs.biu.ac.il

2 Center for Automation Research, University of Maryland,
College Park, MD 20742, USA

nathan@cfar.umd.edu

Abstract. Handwriting-based gender classification is a well-researched
problem that has been approached mainly by traditional machine learn-
ing techniques. In this paper, we propose a novel deep learning-based
approach for this task. Specifically, we present a convolutional neural
network (CNN), which performs automatic feature extraction from a
given handwritten image, followed by classification of the writer’s gen-
der. Also, we introduce a new dataset of labeled handwritten samples,
in Hebrew and English, of 405 participants. Comparing the gender clas-
sification accuracy on this dataset against human examiners, our results
show that the proposed deep learning-based approach is substantially
more accurate than that of humans.

Keywords: Gender classification · Offline handwriting
HEBIU handwriting dataset · Deep neural network
Convolutional neural network

1 Introduction

Gender classification by handwriting is a well-studied problem, assuming that
one’s gender can be predicted based on their handwriting. Although there has
been a considerable amount of research on this subject, it is still considered a
challenging problem. In fact, neither computerized analysis nor humans, have
achieved highly-accurate results for this task, as of yet.

The common assumption is that various demographic properties can be
learned by studying the discriminative features of a person’s handwriting, e.g.,
gender, handedness (i.e., whether the person is left-/right-handed), age bracket,
ethnicity, etc. Indeed, human handwriting is used to examine and investigate
human characteristics in a variety of applications, such as mail sorting [6], bank
check verification [5,6], personality profiling [12,19], historical document analy-
sis [1], and criminological/forensic investigations [6,7].

Most of the recent approaches to gender classification by handwriting have
evolved mainly around the same few datasets, i.e., the training and testing of
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 613–621, 2018.
https://doi.org/10.1007/978-3-030-01424-7_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_60&domain=pdf

614 E. Illouz et al.

these methods have been confined typically to a handful of datasets, such as the
IAM on-line [15], QUWI [3], KHATT [14], and MSHD [9] datasets. The motiva-
tion in this paper is mainly twofold: (1) Propose an improved gender classification
method, and (2) augment the current pool of handwriting datasets in a signifi-
cant manner. Specifically, we propose a new convolutional neural network (CNN)
variant for the gender classification task, which is relatively simple, efficient, and
accurate. Also, we present a fairly large and diverse dataset, the Hebrew-English
Bar-Ilan University (HEBIU) offline handwriting dataset, which consists of 810
Hebrew and English handwriting samples, collected from a group of 405 par-
ticipants. The newly-generated dataset would allow for extended research and
comparative studies, regarding the classification of various attributes of interest.
Our results are comparable to those reported by previous methods, and they are
substantially better than the accuracy rates obtained by human examiners on
our HEBIU dataset.

2 Related Work

Several machine learning techniques have been applied during the past two
decades to the handwriting gender classification task. These approaches are
based typically on feature extraction and training classifier; see Table 1 below
(extended from Gattal et al. [10]), for an overview.

Cha et al. [8] trained an artificial neural network (ANN) in order to clas-
sify demographic sub-categories (such as gender, handedness, and age group) by
using their own uppercase letter dataset. Later, they extended their work [5]
to train a feed-forward neural network for feature extraction and classification,
using enhancement techniques as bagging and boosting. Their improved gen-
der classifier achieved an accuracy rate of 77.5% using 800 writing samples for
training and 400 samples for testing.

Liwicki et al. [13] applied support vector machines (SVM) and Gaussian
mixture models (GMM) to gender classification on the IAM-OnDB handwriting
dataset. Their classifier achieved accuracy rates of 62% and 67%, respectively,
using SVM and GMM.

Youssef et al. [21] proposed using wavelet domain local binary patterns (WD-
LBP) to train several SVM classifiers on both English and Arabic handwritings.
Their classifier achieved an accuracy rate of 74.3% on (a subset of) the QUWI
dataset.

Al-Maadeed et al. [4] proposed using geometric features to classify age, gen-
der, and nationality. Their proposed method applies random forests and kernel
discriminant analysis for both text-dependent and text-independent classifica-
tions (i.e., same/different texts, respectively, of different writers are used for
training and testing). Their classifier achieved an overall accuracy of 73% on the
QUWI dataset.

Bouadjenek et al. [6] proposed extracting local descriptors, such as histogram
of oriented gradients (HoG), local binary patterns (LBP), and grid features for
offline handwriting, and then classifying them by SVM. Their method achieved

Handwriting-Based Gender Classification Using Deep Neural Networks 615

Table 1. Overview of handwriting gender classification techniques.

Research Features Classifier Dataset Accuracy

Cha et al. [8] A set of macro and
micro features

ANN CEDAR [11] 70.20%

Liwicki et al. [13] Combination of
online & offline
features

GMM IAM-OnDB [15] 65.57%

Youssef et al. [21] Gradient &
WD-LBP

SVM QUWI [3] 74.30%

Al-Maadeed et al. [4] Geometric Random
forests

QUWI [3] 73%

Bouadjenek et al. [6] HoG & LBP SVM IAM-OnDB [15] 74%

Siddiqi et al. [20] Orientation
curvature &
legibility

SVM QUWI [3] &
MSHD [9]

68.75%/73.02%

Mirza et al. [16] Gabor filters &
Fourier transform

ANN QUWI [3] 70%

Akbari et al. [2] Wavelet sub-hands SVM/ANN QUWI [3] &
MSHD [9]

80%

Ahmed et al. [1] Textural Ensemble of
classifiers

QUWI [3] 79%–85%

Gattal et al. [10] Oriented basic
image features

SVM QUWI [3] 68%–76%

Morera et al. [17] Word separation CNN IAM [15] &
KHATT [14]

80.72%/68.9%

an accuracy rate of 74% on the IAM offline dataset. Likewise, Bouadjenek
et al. [7] used local descriptors, such as gradient local binary patterns (GLBP)
and HoG to train an SVM classifier to predict age, gender, and handedness. Their
classifier achieved accuracy rates in the range of 69%–74% on the IAM-OnDB
and KHATT datasets.

Similarly, Siddiqi et al. [20] enhanced handwriting features by computing
local and global features (e.g., inclination, texture, curvature, legibility, etc.),
which are then used in ANN and SVM classifiers to distinguish between genders.
Their classifier achieved accuracy rates of 68.75% and 73.02%, respectively, on
the QUWI and MSHD datasets.

Mirza et al. [16] concentrated on the visual appearance of handwriting to
investigate its effect on a writer’s gender. They extract textural information by
applying a bank of Gabor filters to handwriting images from the QUWI dataset.
They then use the mean and standard deviation of each handwriting plus its
Fourier transform as input features for a feed-forward neural network. Their
classifier achieved an accuracy rate of 70% on the QUWI dataset.

Akbari et al. [2] extracted a feature vector based on a series of wavelet sub-
bands quantized to produce a probabilistic finite state automaton. This feature
vector is then used to train ANN and SVM classifiers on the QUWI and MSHD

616 E. Illouz et al.

datasets, and perform text-dependent and text-independent, as well as script-
dependent and script-independent classifications (i.e., same/different languages,
respectively, used for training and testing). They also introduced cross-database
evaluations.

To enhance accuracy rates on the gender task, Ahmed et al. [1] used bagging,
voting, and stacking of various classifiers based on some of the textural features
mentioned earlier. They achieved accuracy rates in the range of 79%–85% on (a
subset of) the QUWI dataset.

Gattal et al. [10] proposed using textural information from handwriting as
the discriminative attribute between genders. They used image binarization and
oriented basic image features. Their classifier achieved accuracy rates of 71%,
76%, and 68% on the QUWI dataset, according to the protocols of ICDAR
2013, ICDAR 2015, and ICFHR 2016, respectively.

Finally, Morera et al. [17] were the first to apply a deep CNN for classifying a
writer’s demographics. They proposed the same architecture for both gender and
handedness, as well as an architecture for the combined 4-class problem. Their
gender classifier achieved accuracy rates of 80.72% and 68.9%, respectively, on
the IAM-OnDB and KHATT datasets.

To summarize, most of the surveyed methods exploit knowledge about the
domain to extract certain features from the above datasets, and then train a
machine learning module to classify these extracted features. In contrast, we
present in this work a deep learning module, which performs essentially auto-
mated feature extraction and classification, in a rather simple and efficient man-
ner (requires no tedious preprocessing, and is far less complex than the system
reported, e.g., by Morera et al. [17]).

3 Proposed Method

3.1 The HEBIU Offline Handwriting Dataset

Our newly generated dataset, the Hebrew-English Bar-Ilan University (HEBIU)
offline handwriting dataset, contains 810 Hebrew and English handwriting sam-
ples of 405 participants from Israel. Each participant received a standard form,
and was asked to write certain texts in Hebrew and English without any writ-
ing restrictions (e.g., pen type, pressure, etc.). In addition, each contributer was
asked to provide personal data, such as gender, age, height, handedness, native
language, country of birth, religion, education level, and profession.

Each such form was scanned by a 300dpi HP OfficeJet Pro 8710, in color
mode and JPEG format, at a high resolution of 2480 × 3504.

The added value of our newly presented HEBIU dataset lies in the fact that
it contains (also) hundreds of labeled writing samples in Hebrew, as well as
diverse personal information per each participant. Thus, additional tasks, such
as writer identification/verification and the classification of various demographic
characteristics from handwriting samples, can be further pursued with such data.

Handwriting-Based Gender Classification Using Deep Neural Networks 617

3.2 Handwriting Preprocessing

As previously mentioned, our HEBIU dataset contains 810 Hebrew and English
handwriting samples of 214 males and 191 females (i.e., of a total of 405 partic-
ipants). Thus, to keep the data balanced, we excluded from the dataset, as part
of preprocessing, 23 of the male forms.

In addition, the data should be normalized to be compatible with the net-
work’s architecture. Therefore, the first step was to extract a portion of the page
which contains handwritten text, and convert it to a grayscale image. After-
wards, in order to enhance our data, we generated N random patches for each
form, of size K × M , with (possible) overlaps between patches. A patch can
be either a square or a rectangle. A square patch is meant to extract a whole
subsection of words, while a rectangular patch is used to extract a line of text
(or part of it), a single word, a writing sequence, etc. Both cases are illustrated
in Fig. 1.

Having experimented extensively with the number of patches, as well as patch
types and patch sizes, we converged eventually on N = 200 patches per hand-
written sample and squared patches of size 400×400 pixels (i.e., K = M = 400).
To keep the computational effort feasible, the patches were downscaled by 75%
to 100 × 100 pixels. (Similarly, the originally extracted rectangular patches of
size 150 × 500 were downscaled to 30 × 100.)

(a) (b)

(c) (d)

Fig. 1. Examples of resized text patches: (a) + (b) 100 × 100 English and Hebrew
squared patches, and (c) + (d) 30 × 100 English and Hebrew rectangular patches.

Naturally, some of the generated patches were blank or contained small
amounts of data. To overcome the selection of sparse text patches, we conducted
a series of experiments to determine a threshold, based on a minimum ratio
between black pixels and the total amount of pixels in a given patch. This was
then used to select patches which contained a sufficient amount of data. Note
that eventually we extracted 200 valid patches per each form.

618 E. Illouz et al.

3.3 Network Architecture

Our proposed network architecture is a CNN variant which inputs a grayscale,
100× 100 patch and outputs the gender prediction. It is comprised of a total of
four convolutional layers, followed by a single fully-connected layer and a softmax
output layer, where all of the filters used are of size 3 × 3. More precisely, the
first two layers consist of 64 and 128 filters, respectively, followed by a max
pooling layer of 2 × 2 with a dropout of 0.4. The next two layers have the same
structure, followed by a 2 × 2 max pooling layer with a dropout of 0.6. Finally,
a fully-connected layer with 128 neurons was added with a dropout of 0.5. The
following network’s hyper-parameters were picked: 20 epochs, a rectified linear
unit (ReLu) activation function [18], an Adadelta optimizer, and a binary cross
entropy loss function.

3.4 Accuracy Evaluation by Patch Aggregation

We considered the following two classification measures, for a given handwriting
sample:

1. Majority vote: The gender class is determined based on the majority of clas-
sified patches, where the classification of each patch depends on whether the
corresponding softmax value exceeds 0.5.

2. Average softmax : The form is classified according to the average softmax
value over the form’s 200 patches.

4 Experimental Results

We divided the gender classification problem, in the context of this work, into
three main types: (1) Intra-language classification, where training and testing
are conducted on the same language, (2) inter-language classification, where
training is conducted on one language and testing on the other, and (3) mixed
language classification, where both training and testing are conducted on both
languages. For each type, we ran a 10-fold cross validation as follows. A fixed
20% of the data (i.e., the same 76 forms) were set aside for testing, and 70%
(i.e., 268 forms) and 10% (i.e., 38 forms) of the data, respectively, were allocated
at random (from the remaining 80%) for training and validation.

4.1 Intra-language Classification

Regarding intra-language classification, we obtained average accuracy rates of
73.02% and 75.26%, respectively, in the case of Hebrew-Hebrew (i.e., training
and testing performed on Hebrew texts) and English-English (i.e., both training
and testing done on English texts).

Handwriting-Based Gender Classification Using Deep Neural Networks 619

4.2 Inter-language Classification

For inter-language classification, we achieved accuracy rates of 75.65% and
58.29%, respectively, in the case of Hebrew-English classification (i.e., training
on a Hebrew handwriting and testing on an English one) and English-Hebrew
classification (i.e., training on an English handwriting and testing on a Hebrew
one).

One attempt to explain this anomaly might be that since English is a
second natural language in Israel (after Hebrew), the discriminative features
between gender handwritings are less prominent (than in Hebrew), so generaliz-
ing becomes more challenging.

4.3 Mixed Language Classification

Enhancing our data by combining the texts of both languages yields an over-
all test accuracy of 77% for both languages; in particular, 74.61% and 79.34%
accuracy rates when tested on Hebrew and English texts, respectively.

4.4 Summary of Results

Table 2 summarizes the results, providing average accuracy rates and standard
deviations for each method.

Table 2. Accuracy for gender classification types with 10-fold cross-validation (“HE”
stands for Hebrew, and “EN” stands for English).

Experiment Train Test Accuracy
method

Avg Std
Dev

Min
accuracy

Max
accuracy

Intra-language HE HE Majority vote 73.02% 2.42 67.10% 75.00%

Avg. softmax 72.89% 2.34 67.10% 75.00%

EN EN Majority vote 74.47% 2.65 69.74% 77.63%

Avg. softmax 75.26% 2.47 71.05% 77.63%

Inter-language HE EN Majority vote 75.52% 6.86 60.52% 82.89%

Avg. softmax 75.65% 7.40 57.89% 82.89%

EN HE Majority vote 58.29% 5.89 48.68% 65.79%

Avg. softmax 58.29% 6.20 48.68% 68.42%

Mixed-language HE+EN HE Majority vote 74.61% 2.06 72.37% 77.63%

Avg. softmax 73.82% 2.36 68.42% 76.32%

HE+EN EN Majority vote 79.34% 3.29 73.68% 82.89%

Avg. softmax 79.21% 3.15 73.68% 81.58%

HE+EN HE+EN Majority vote 75.13% 2.52 71.05% 78.95%

Avg. softmax 75.13% 2.10 71.05% 77.63%

620 E. Illouz et al.

4.5 Human Test Results

In order to compare our results with those of human examiners, we developed
a mobile application that tests the accuracy of humans on the same task. The
application was distributed among 153 females and 147 males; each of the 300
participants received 15 Hebrew handwritings and 15 English handwritings cho-
sen at random (from our HEBIU dataset), and was asked to predict the writer’s
gender of each examined text. The average classification accuracy for English and
Hebrew handwritings were 63.6% and 66.2%, respectively (both with a standard
deviation of 0.13). Females achieved slightly better results than males in both
cases. Specifically, they obtained an accuracy of 64.8% (vs. 62.2%) for English,
and an accuracy of 67.4% (vs. 65%) for Hebrew. No correlations between the
accuracy and either age group or education level were observed.

5 Concluding Remarks

In this paper, we proposed an automatic deep learning scheme for binary gender
classification from handwriting images. Specifically, we presented a CNN vari-
ant for this task without “manual” feature selection/extraction. Our module is
relatively simple, yet efficient, in terms of training speed and running time. We
considered seven cross-language cases, including training on a Semitic language
(Hebrew) and validation on a non-Semitic one (English), and vice versa. Our
classification results are comparable to those of previous methods, and are sig-
nificantly better than those obtained by human examiners on the same dataset.

In addition, we presented a new offline handwriting dataset (the HEBIU
dataset), which contains hundreds of labeled handwriting samples in both
Hebrew and English, including diverse demographic information.

Our future work will focus on predicting additional attributes of a given
writer, e.g., handedness, age group, whether the text is written in the subject’s
mother tongue, etc. In addition, we plan to apply our approach to other existing
handwriting datasets and aim to enlarge our dataset by collecting more hand-
writing samples, possibly in additional languages.

References

1. Ahmed, M., Rasool, A.G., Afzal, H., Siddiqi, I.: Improving handwriting based
gender classification using ensemble classifiers. Expert Syst. Appl. 85, 158–168
(2017)

2. Akbari, Y., Nouri, K., Sadri, J., Djeddi, C., Siddiqi, I.: Wavelet-based gender detec-
tion on off-line handwritten documents using probabilistic finite state automata.
Image Vis. Comput. 59, 17–30 (2017)

3. Al Maadeed, S., Ayouby, W., Hassäıne, A., Aljaam, J.M.: QUWI: An Arabic and
English handwriting dataset for offline writer identification. In: International Con-
ference on Frontiers in Handwriting Recognition, pp. 746–751. IEEE (2012)

4. Al Maadeed, S., Hassaine, A.: Automatic prediction of age, gender, and nationality
in offline handwriting. EURASIP J. Image Video Process. 2014(1), 10 (2014)

Handwriting-Based Gender Classification Using Deep Neural Networks 621

5. Bandi, K.R., Srihari, S.N.: Writer demographic classification using bagging and
boosting. In: Proceedings of the 12th International Graphonomics Society Confer-
ence, pp. 133–137 (2005)

6. Bouadjenek, N., Nemmour, H., Chibani, Y.: Local descriptors to improve off-line
handwriting-based gender prediction. In: 6th International Conference of Soft Com-
puting and Pattern Recognition, pp. 43–47. IEEE (2014)

7. Bouadjenek, N., Nemmour, H., Chibani, Y.: Age, gender and handedness prediction
from handwriting using gradient features. In: 13th International Conference on
Document Analysis and Recognition, pp. 1116–1120. IEEE (2015)

8. Cha, S.H., Srihari, S.N.: A priori algorithm for sub-category classification analysis
of handwriting. In: Proceedings of the Sixth International Conference on Document
Analysis and Recognition, pp. 1022–1025. IEEE (2001)

9. Djeddi, C., Gattal, A., Souici-Meslati, L., Siddiqi, I., Chibani, Y., El Abed, H.:
LAMIS-MSHD: a multi-script offline handwriting database. In: 14th International
Conference on Frontiers in Handwriting Recognition, pp. 93–97. IEEE (2014)

10. Gattal, A., Djeddi, C., Siddiqi, I., Chibani, Y.: Gender classification from offline
multi-script handwriting images using oriented basic iimage features. Expert Syst.
Appl. 99, 155–167 (2018)

11. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pat-
tern Anal. Mach. Intell. 16(5), 550–554 (1994)

12. King, R.N., Koehler, D.J.: Illusory correlations in graphological inference. J. Exp.
Psychol. Appl. 6(4), 336 (2000)

13. Liwicki, M., Schlapbach, A., Loretan, P., Bunke, H.: Automatic detection of gender
and handedness from on-line handwriting. In: Proceedings of the 13th Conference
of the Graphonomics Society, pp. 179–183 (2007)

14. Mahmoud, S.A., et al.: KHATT: an open arabic offline handwritten text database.
Pattern Recogn. 47(3), 1096–1112 (2014)

15. Marti, U., Bunke, H.: The IAM-database: an English sentence database for off-line
handwriting recognition. Int. J. Doc. Anal. Recogn. 5, 39–46 (2002)

16. Mirza, A., Moetesum, M., Siddiqi, I., Djeddi, C.: Gender classification from offline
handwriting images using textural features. In: 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 395–398. IEEE (2016)

17. Morera, Á., Sánchez, Á., Vélez, J.F., Moreno, A.B.: Gender and handedness pre-
diction from offline handwriting using convolutional neural networks. Complexity
(2018). https://www.hindawi.com/journals/complexity/2018/3891624/

18. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing, pp. 807–814 (2010)

19. Shackleton, V., Newell, S.: European management selection methods: a comparison
of five countries. Int. J. Sel. Assess. 2(2), 91–102 (1994)

20. Siddiqi, I., Djeddi, C., Raza, A., Souici-Meslati, L.: Automatic analysis of hand-
writing for gender classification. Pattern Anal. Appl. 18(4), 887–899 (2015)

21. Youssef, A.E., Ibrahim, A.S., Abbott, A.L.: Automated gender identification for
Arabic and English handwriting (2013)

https://www.hindawi.com/journals/complexity/2018/3891624/

A Deep Learning Approach for Sentiment
Analysis in Spanish Tweets

Gerson Vizcarra1(&) , Antoni Mauricio1 , and Leonidas Mauricio2

1 Research and Innovation Center in Computer Science,
Universidad Católica San Pablo, Arequipa, Peru

{gerson.vizcarra,manasses.mauricio}@ucsp.edu.pe
2 Department of Mechanical Engineering, Artificial Intelligence,

Image Processing and Robotic Lab, Universidad Nacional de Ingeniería,
Bldg. A - Off. A1-221, 210 Tupac Amaru Ave., Lima, Peru

lmauricioc@uni.pe

Abstract. Sentiment Analysis at Document Level is a well-known problem in
Natural Language Processing (NLP), being considered as a reference in NLP,
over which new architectures and models are tested in order to compare metrics
that are also referents in other issues. This problem has been solved in good
enough terms for English language, but its metrics are still quite low in other
languages. In addition, architectures which are successful in a language do not
necessarily works in another. In the case of Spanish, data quantity and quality
become a problem during data preparation and architecture design, due to the
few labeled data available including not-textual elements (like emoticons or
expressions).
This work presents an approach to solve the sentiment analysis problem in

Spanish tweets and compares it with the state of art. To do so, a preprocessing
algorithm is performed based on interpretation of colloquial expressions and
emoticons, and trivial words elimination. Processed sentences turn into matrices
using the 3 most successful methods of word embeddings (GloVe, FastText and
Word2Vec), then the 3 matrices merge into a 3-channels matrix which is used to
feed our CNN-based model. The proposed architecture uses parallel convolution
layers as k-grams, by this way the value of each word and their contexts are
weighted, to predict the sentiment polarity among 4 possible classes. After
several tests, the optimal tuple which improves the accuracy were <1, 2>.
Finally, our model presents %61.58 and %71.14 of accuracy in InterTASS and
General Corpus respectively.

Keywords: Convolutional neural network (CNN) � Sentiment analysis
Spanish tweets

The present work was supported by grant 234-2015-FONDECYT (Master Program) from
Cienciactiva of the National Council for Science, Technology and Technological Innovation
(CONCYTEC-PERU) and the Office Research of Universidad Nacional de Ingeniería (VRI -
UNI).

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 622–629, 2018.
https://doi.org/10.1007/978-3-030-01424-7_61

http://orcid.org/0000-0002-3549-8924
http://orcid.org/0000-0003-3279-7563
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_61&domain=pdf

1 Introduction

Semantic analysis has opened up several fields of research in NLP. In turn, these new
fields have helped the development of comprehension systems, which include, as is
explained in [1], cross- and multi-domain sentiment analysis, aspect-based sentiment
analysis, fake news identification, classification of semantic relations, question
answering of non-factoid questions among others. Liu [9] defines sentiment analysis or
opinion mining as the computational study of people’s opinions, sentiments, emotions,
appraisals, and attitudes towards entities such as products, services, organizations,
individuals, events, topics, and their attributes.

In sentiment analysis tasks, tweets analysis at document level is highlighted and
long addressed one due to the large amounts of information about multiple topics
generated in short time and its easy access (unlabeled data). Specific tasks linked to this
problem has raised the interest of NLP community for several years [16]. The auto-
matic sentiment detection in tweets is a powerful and useful tool for social networks
analysis or advertising analysis and many other applications.

In this paper, we propose a CNN-based model that automatically processes short
texts obtained from task 1 proposed in TASS 2017 [1] using tweets in Spanish and
detects if a tweet expresses any polarity (positive, negative, neutral or none) about an
specific topic. The next sections will be as follows. Section 2, covers related works in
the area. Section 3, exposes our proposals (preprocessing method and architecture
design) in detail. Section 4, includes final results and their analysis, and Sect. 5 pre-
sents our conclusions and future works.

2 Related Studies

Pang et al. [13] and Liu [8] provided an introduction to Sentiment Analysis area. Zhang
et al. [20] have published a very complete state of art in Sentiment Analysis using deep
learning approaches. They explained that sentiment analysis could be represented as a
classification problem (classifying a text document on a bunch of predefined cate-
gories) and therefore addressed with different methods, Zhang et al. also mentions that
black-box models such as neuronal networks and deep neuronal networks have become
increasingly popular. About short texts analysis there are many papers which shows
relevant results in real life applications using tweets in different languages.

Rodrigues Barbosa et al. [15] evaluates Twitter hashtags in sentiment analysis for
Brazilian presidential elections in 2010. To do so, they analyzed 10,173,382 tweets
labeled in 4 labels: Positive, Negative, Ambiguous and Neutral, for hashtags about
candidates or events around the election day. They finally conclude that trends in
Twitter over time were in accordance with the general feeling of the population. They
also verified that information spreads on Twitter following a social graph model and
people make their decisions consciously or not, depending on the feelings and choices
of their contacts in Twitter.

Go et al. [3] introduced a method to classify Twitter messages. Positive and neg-
ative tweets are separated using emoticons labels: “:) /:-)” or “:(/:-(.”. They collected
80,000 positive and 80,000 negative tweets as a training set. In preprocessing step,

A Deep Learning Approach for Sentiment Analysis in Spanish Tweets 623

emoticons were removed on training process because the negative impact on precisions
on the SVM and Maximum Entropy (ME) classifiers, but has insignificant effects on
Naive-Bayes based classifier. Then, they segmented sentences by unigrams (word by
word), bigrams (two words), unigram-bigram, and the Speech features extracted by
well-known descriptors. Their results in accuracy using SVM and unigrams were
82.9%, while using unigram-bigram in ME and Naive-Bayes were 82.7%, being
considered in both cases the best results for each method.

Kin [7] and Wang et al. [19] presented respectively their attempts to use convo-
lutional (CNN) and recursive (RNN) neural networks for polarity classification in short
texts, achieving quite inspiring results that define standard architectures to solve the
problem. CNN architecture allows to get a fast convergence and presents, in most of
cases, a remarkable performance on sentence classification. By other hand, RNN
usually converges slow but it can interpret sequences of words better, that is more
useful applied to text due to it could capture the context in a sentence. Lost memory or
vanishing gradient is a problem for RNN. So a residual network or recurrent Long-
Short Term Memory network (LSTM) [19] is capable of capturing the special functions
of words avoiding lost memory problem.

In sentiment analysis of tweets at document level, Hassan et al. [5] pro- posed to
merge CNN and LSTM-RNN models for shorts texts due LSTM avoid vanishing
gradient problem but depending on the text size while CNN works better for very short
texts, which are normally the tweets size. For IMDB opinions database, they achieved
88.3% using a single word embedding channel in binary classification. While Severyn
et al. [17] explored CNN solutions using Twitter database, getting 84.79% in accuracy
for phases and 64.59% in message level.

As can be seen most of works come from English datasets. In Spanish there are few
works which define the state of art on TASS datasets. Navas-Loro et al. [12], and
Martínez-Cámara et al. [10] resume most of works and methods developed during
TASS 2017 competition. In TASS 2017, best results were obtained by neural network
models. Hurtado Oliver et al. [6] obtained 60.70% in accuracy InterTASS corpus and
72.50% in General Corpus using a fully connected neural network with ReLU func-
tions, dropout layer (p = 0.3) and polarity-specific embeddings.

3 The Problem and Data Description

Sentiment analysis task can be summarized as multi-class classification problem,
considering the polarities as classes (none, neutral, positive or negative attitude
expressed in a tweet). We have used the TASS 2017 database [1] in our experiments.
This database was employed in the ‘Workshop on Semantic Analysis’ during the
International Conference of the Spanish Society for Natural Language Processing
(SEPLN). The competition goal were to classify four types of tweets polarities in task
1, which are: N - negative; P - positive; NEU - neutral and NONE - none classified.
Training data is composed as follows: InterTASS (1008 tweets), General TASS (7219
tweets) and InterTASS development corpus (506 tweets), while testing data contains
InterTASS test (1899 tweets) and General-TASS test (60798 tweets).

624 G. Vizcarra et al.

4 Methodology

In this section, we present the pre-processing methodology realized and the architecture
designed.

4.1 Preprocessing

Based on Severyn et al. [17] and Navas-Loro and Rodríguez-Doncel [12], we create a
tokenizer to handle trivial terms and repeated words following this steps:

– Delete URLs, extra blank spaces, special characters and repeated words.
– Change words to lowercase.
– Replace laugh expressions (like ‘jajaja’, ‘haha’, ‘LOL’, etc.) by ‘ja’.
– Replace colloquialisms by formal expressions (e.g. ‘por’ instead of ‘x’).
– Create a stop words dictionary to delete trivial words.

In addition, we replaced emoticons by words based on emoticons-clusters model
proposed by Wang and Castanon [18], which statistically represents the meaning of
emoticons. Table 1 plots the statistical representation of emoticons.

4.2 Word Vectors

Word vectors are the numerical representation of words, which are encoded using
different criteria. The most successful criteria are based on training of networks using a
corpus. For our case, the corpus for embedding training is composed by “General
Corpus”, “Social TV”, “STOMPOL”, and “InterTASS” datasets [1], and encoded using
GloVe [14], Word2Vec [11], and FastText [2] models. The three models we selected
are considered as top representations which means that related words are close at vector
level.

Table 1. Emoticons clusters and its statistical meaning from [18]

Cluster Emoticons Statistical meaning

A :) :D =) Good thanks happy fantastic lovely wonderful amazing…
B ;) :-) ;-) :-D = D ;

P =] XD
Smile friends face music favorite pic kind coffee pleasure
positive exciting healthy …

C :(:/ :’) :’(:-(D: ;(
:-/ :— :/

Miss sorry bad hate sad omg sick late mad ugh ugly broke

D :P ;D :-P :] :p What lol don’t no know think can’t why ever never look…
E (: Love follow please hey wish goodnight…
F XP Stuck shoot fatally
H 8) Best fun coming week playing top happiness weekend…

A Deep Learning Approach for Sentiment Analysis in Spanish Tweets 625

4.3 Convolutional Neural Network

Convolutional neural networks (CNN) are networks divided into two sections: con-
volution and fully connected section. According to Goodfellow et al. [4], the convo-
lutional section trains to obtain best features which represent input using linear and
non-linear activation functions in ReLU or pooling layers, the last output layer in the
convolution stage is the feature map (a set of complex and hard to interpret descriptors)
which is used by the classifier (the fully connected section). Normally, the fully con-
nected layer is build using a Multilayer Perceptron (MLP).

Preprocessed data is composed by keywords which implies the unigram repre-
sentation (1 � N convolution) of each keyword in global polarity evaluation. Word
vector models are merged into a 3-channels matrix <GloVe, FastText, Word2Vec>,
which is the input of our model.

Figure 1 shows the architecture implemented. The input has <D � E> dimension,
where D is the dictionary size and E is the encoding size. To obtain the k-gram analysis
we apply 4 convolution layers (<k � E> dimension) in parallel. Each convolution layer
needs 100 kernels to train and generates 400 feature maps. MaxPooling layer returns
the maximum value per each feature map, then all outputs are flattening into a 400 � 1
vector, which is used as input for the fully connected layer. In the fully connected layer,
we used a MLP with 200 neurons and ReLU activation function in the hidden layer, 4
neurons with logistic activation function in the output layer. For training, we apply a
categorical cross-entropy loss to maximize the separation between classes, the ADAM
training and a dropout layer (p = 0.25) to reduce complexity and avoid over-fitting.

Fig. 1. Assuming that the dictionary size (D) is 8, the encoding size (E) is 4 and the four
convolution layers are <<1, 2, 3, 4> � E>. Then, the preprocessed tweet ‘me gusta jugar fútbol
mis amigos’ is classified following the pipeline

626 G. Vizcarra et al.

5 Experiments and Results

To run experiments, we used a PC with the following settings: 3,6 GHz Intel Core i7
processor, 16 GB 3000 MHz DDR4 memory and NVIDIA GTX 1070 and for
implementation we used TensorFlow-1.5 Framework.

5.1 Filters Setting

To define the convolution filters size we performed 2 experiments. In the first one, we
combine parallel filters (<<1, 2, 3, 4, 5> � E> dimensions) without repetition into
groups of different sizes. To test all combinations we executed each tuple of filters with
same conditions. The first experiment results are listed in Table 2.

On the second one, we selected the best tuples based on Table 2, then we tuned
parameters per each tuple to get optimal results. We run ten times each tuple in order to
obtain the best, worst and average accuracies. The second experiment results are
showed in Table 3.

5.2 Sentiment Analysis

Table 4 expose results for InterTASS and General corpus. In the contest, testing and
training data were available in different packages, so results presented in Table 4 refers
the testing precision, then we compare our results (CNN-EMOTIC) before the state of
art (*).

Table 2. Best three accuracies per run using InterTASS corpus

Run First Second Third
Combination Result Combination Result Combination Result

1 <1, 2> 0.6182 <2, 4> 0.6131 <1, 2, 3, 4> 0.6125
2 <1, 2, 3> 0.6124 <1, 2, 4> 0.6112 <1, 2> 0.6099
3 <1, 2> 0.6163 <1, 4> 0.6128 <1, 3> 0.6118
4 <1, 2> 0.6156 <1, 3> 0.6120 <1, 2, 3, 5> 0.6114
5 <1, 2> 0.6214 <1, 2, 3, 4> 0.6144 <1, 2> 0.6134

Table 3. Statistical results per tuple using InterTASS corpus

Filters Best run Worst run Average

<1, 2> 0.6219 0.6124 0.6158
<1, 3> 0.6163 0.6035 0.6094
<1, 2, 3> 0.6175 0.6029 0.6126
<1, 2, 3, 4> 0.6118 0.5908 0.6008

A Deep Learning Approach for Sentiment Analysis in Spanish Tweets 627

6 Conclusions and Future Works

The results presented in this paper show that the proposed approach is efficient in
sentiment analysis of tweets at document level in Spanish. Based on experiments, our
CNN-based model presents an accuracy of 61.82% and 73.22% in testing for Inter-
TASS and General Corpus. During architecture design, we used a well-known CNN-
based model of the state of the art but setting a different convolutional tuples. After
many runs we concluded that <1, 2> tuple is the best combination, this could be
explained if we consider unigram (<1>) representation as the weight of each word and
bi-gram (<2>) representation as the weight of context for short texts. The 3-channels
input allows a more accurate word- vector representation of the tweet. Also this
improvement was possible importing the emoticons statistical meaning [18] to our
preprocessing step. During tests, those factors meant a slight but important improve-
ment (from 59.3%–70.7% to 61.58%–74.14% in InterTASS and General corpus
respectively). To improve our current results we have to integrate a semantic windows
and entropy-based model for large texts, considering to break the words/emoticons
according to context (not just for sentiment analysis but aspect-based sentiment
analysis).

References

1. Tass 2017 homepage. http://www.sepln.org/workshops/tass/. Accessed 20 May 2018
2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword

information. arXiv preprint arXiv:1607.04606 (2016)
3. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision.

CS224N Project Report, Stanford 1(12) (2009)
4. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press,

Cambridge (2016)
5. Hassan, A., Mahmood, A.: Deep learning approach for sentiment analysis of short texts. In:

2017 3rd International Conference on Control, Automation and Robotics (ICCAR), pp. 705–
710. IEEE (2017)

Table 4. Comparative results in TASS-2017 for sentiment analysis from [1], (*) are best results
in the contest and our results are in bold

Proposed system Corpus
InterTASS General

CNN-EMOTIC 0.618 0.743
ELiRF-UPV-run1 0.607 0.666
RETUYT-svm cnn 0.596 0.674
ELiRF-UPV-run3 0.597 0.725*
jacerong-run-2 0.602 0.701
jacerong-run-1 0.608* 0.706
INGEOTECevodag-001 0.507 0.514

628 G. Vizcarra et al.

http://www.sepln.org/workshops/tass/
http://arxiv.org/abs/1607.04606

6. Hurtado Oliver, L., Pla, F., González Barba, J.: Elirf-upv en tass 2017: Análisis de
sentimientos en twitter basado en aprendizaje profundo, p. 6, September 2017

7. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:
1408.5882 (2014)

8. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–
167 (2012)

9. Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge
University Press, Cambridge (2015)

10. Martınez-Cámara, E., Díaz-Galiano, M., García-Cumbreras, M., Garcıa-Vega, M., Villena-
Román, J.: Overview of TASS 2017. In: Proceedings of TASS 2017: Workshop on Semantic
Analysis at SEPLN (TASS 2017), vol. 1896 (2017)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

12. Navas-Loro, M., Rodríguez-Doncel, V.: OEG at TASS 2017: Spanish sentiment analysis of
tweets at document level

13. Pang, B., et al.: Opinion mining and sentiment analysis. Foundations and Trends ®. Inf.
Retrieval 2(1–2), 1–135 (2008)

14. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543 (2014)

15. Rodrigues Barbosa, G.A., Silva, I.S., Zaki, M., Meira Jr., W., Prates, R.O., Veloso, A.:
Characterizing the effectiveness of twitter hashtags to detect and track online population
sentiment. In: CHI 2012 Extended Abstracts on Human Factors in Computing Systems,
pp. 2621–2626. ACM (2012)

16. Rosá, A., Chiruzzo, L., Etcheverry, M., Castro, S.: Retuyt en tass 2017: Análisis de
sentimientos de tweets en español utilizando svm y cnn. In: Proceedings of TASS (2017)

17. Severyn, A., Moschitti, A.: Twitter sentiment analysis with deep convolutional neural
networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 959–962. ACM (2015)

18. Wang, H., Castanon, J.A.: Sentiment expression via emoticons on social media. arXiv
preprint arXiv:1511.02556 (2015)

19. Wang, X., Liu, Y., Chengjie, S., Wang, B., Wang, X.: Predicting polarities of tweets by
composing word embeddings with long short-term memory. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1,
pp. 1343–1353 (2015)

20. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley
Interdisc. Rev. Data Min. Knowl. Discov., e1253 (2018)

A Deep Learning Approach for Sentiment Analysis in Spanish Tweets 629

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1511.02556

Location Dependency in Video Prediction

Niloofar Azizi, Hafez Farazi(B), and Sven Behnke

Computer Science Department, Bonn University, Endenicher Allee 19a,
53115 Bonn, Germany

niloofarazizi37@gmail.com, {farazi,behnke}@ais.uni-bonn.de

Abstract. Deep convolutional neural networks are used to address many
computer vision problems, including video prediction. The task of video
prediction requires analyzing the video frames, temporally and spatially,
and constructing a model of how the environment evolves. Convolutional
neural networks are spatially invariant, though, which prevents them from
modeling location-dependent patterns. In this work, the authors propose
location-biased convolutional layers to overcome this limitation. The effec-
tiveness of location bias is evaluated on two architectures: Video Ladder
Network (VLN) and Convolutional Predictive Gating Pyramid (Conv-
PGP). The results indicate that encoding location-dependent features is
crucial for the task of video prediction. Our proposed methods signifi-
cantly outperform spatially invariant models.

Keywords: Video prediction · Deep learning
Location-dependent bias

1 Introduction

The task of video prediction consists of predicting a set of successor frames,
given a sequence of video frames. It is challenging, because the predictor needs
to understand both contents and motion of the scene in order to make good
predictions. In recent years, deep learning approaches became popular for video
prediction. They analyze the video both spatially and temporally and learn hier-
archical representations, which model the image evolution in terms of its content
and dynamics [1,2]. The learned representations can be used for a variety of
applications, including action recognition and anticipating future actions, which
can be utilized for instance in human-robot interaction scenarios.

Convolutional deep learning architectures cannot recognize location-
dependent features, however, due to the location-invariant nature of convolu-
tions. In the task of the video prediction, for instance, learning the location of
static obstacles in the environment leads to better frame forecasting. In this
work, the authors propose three different methods to overcome this limitation:

N. Azizi and H. Farazi—Contributed equally to this work.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 630–638, 2018.
https://doi.org/10.1007/978-3-030-01424-7_62

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_62&domain=pdf

Location Dependency in Video Prediction 631

(a) encoding location features in separate channels of the input,
(b) convolutional layers with learnable location-dependent biases, and
(c) convolutional layers with learnable location-dependent biases and predefined

location encodings.

Fig. 1. Proposed methods for location-dependency. Top row 2D and bottom row 1D.
(a) Three additional input channels, two of which encode location by gradients in x
and y directions (LE); the third contains the occlusion pattern (OP). (b) Learnable
location-dependent biases (LB) are added to the output of convolutions. (c) Learnable
location-dependent biases and predefined location encodings use combined.

These methods are illustrated in Fig. 1 for 1D and two-dimensional
convolutions.

We demonstrate the utility of our approach using two datasets that con-
tain location dependencies. The code and datasets of this paper are publicly
available.1

2 Related Work

Convolutional deep learning architectures are spatially invariant, which leads to
the constraint of not being able to model location-dependent patterns.
1 https://github.com/AIS-Bonn/LocDepVideoPrediction.

https://github.com/AIS-Bonn/LocDepVideoPrediction

632 N. Azizi et al.

To address this issue in various computer vision tasks, different approaches
have been explored. Utilizing fully connected layers leads to learning location-
dependent features, but this has the drawbacks of many parameters and no
spatial weight sharing. In the PixelCNN architecture for conditional image gen-
eration, Oord et al. [3] applied 1× 1 convolutions to map a hidden representation
into a spatial representation. The disadvantage of this approach is that to extract
the spatial features, a very large number of parameters is needed. In saliency
prediction, Kruthiventi et al. [4] proposed adding another set of convolutional
weights with the same size of the original filters. They convolved these addi-
tional weights with predefined fixed channels that encode the image center using
Gaussian blobs with different horizontal and vertical extent. Ghafoorian et al. [5]
applied specific location features to train the model and utilized location depen-
dency for the task of brain MRI image segmentation. They showed that the
results improve in comparison to CNNs that do not use location information.
The above approaches depend all on predefined location feature structures.

For the task of video prediction, different approaches have been explored.
The most successful ones utilize deep learning methods. Cricri et al. [6] proposed
Video Ladder Networks (VLN) by adding recurrent connections to the ladder
network [7]. Similar to ladder networks, VLN employs shortcut connections from
the encoder to the respective decoder part, whereby it relieves the deeper layers
from modeling details. The VLN architecture achieves a result competitive to
VPN [8] which is the state-of-the-art on the synthetic dataset of Moving MNIST.
However, the VLN architecture due to its convolutional layers, cannot deal with
location-dependent features. Another recurrent network for the task of video
prediction was proposed by Michalski et al. [9]. Their PGP network is based on a
gated autoencoder and a bilinear transformation model, to learn transformations
between pairs of consecutive images ([10,11]). PGP is fully connected, which
results in a large number of parameters. Its convolutional variant Conv-PGP
reduces the number of parameters significantly [12], but looses the ability to
learn location-dependent features. For the evaluation of Conv-PGP, the authors
augmented one-pixel padding to the input to learn a bouncing ball motion in
their synthetic dataset.

While VLN and Conv-PGP have shown impressive performance in the task of
video prediction, the above analysis shows that the effect of location-dependent
features on these two architectures requires further investigation.

3 Location Dependency in VLN Model

The VLN model [6] is a neural network architecture that predicts future frames
by encoding the temporal and spatial features of a video. Although it achieves
a competitive result in comparison to the state-of-the-art on Moving MNIST,
due to the location invariant property of convolution operation, it cannot learn
location-dependent features present in the dataset. The network would become
unreasonably huge if we wanted to utilize a fully connected layer to allow for
learning location-dependent features. Using a fully connected layer would also

Location Dependency in Video Prediction 633

violate the assumption of weight sharing in the VLN architecture. The same-
padding property around the border, which is not analyzed in the original paper,
is the reason which allows the network to learn where to mirror digit veloc-
ity despite using only convolutional operations. Such a behavior is accidental,
though, and should not be treated as a feature.

To demonstrate this limitation of the VLN architecture, we modified the
Moving MNIST dataset to Occluded Moving MNIST, similar to what is used
by Prémont-Schwarz et al. [13]. As demonstrated in the experiment section, we
tested the original one-layer VLN with this dataset and it did not achieve an
acceptable result.

To solve this issue, we propose three methods for providing location infor-
mation to the network. In the first method illustrated in Fig. 1(a), we provide
three additional input channels to the network: two gradient channels in x and
y direction, starting from 0 and ending with 1, as well as one channel contain-
ing the occlusion grid pattern. The occlusion channel is 1 in the occlusion areas
and 0 elsewhere. These additional input channels allow the network to infer the
location-dependent feature of the border and to utilize the occlusion pattern.
In contrast to encoding location features in the original input channel, having
additional channels does not alter the original input. Encooding occlusions in a
separate channel can be useful, for example, when they are inferred from modal-
ities other than a camera, like a laser scanner.

In the second method (Figs. 1(b) and 2), we replace the first convolutional
layer in the encoder block with a location-dependent convolutional layer:

LC(x, y) = A

(∑
i,j

(
I(x + i, y + j) ∗ W (i, j) + b

)
+ W

′
1(x, y) + W

′
2(x, y)

)
(1)

where A is the activation function. W and b are the weight and bias of the
specified layer, respectively. Note that b can be omitted, but we kept it to make
the proposed layer easy to implement on top of an existing convolution layer.
I(x, y) is the input vector at the Cartesian position (x, y) and ∗ represents the
convolution operator. Note that W

′
1 and W

′
2 are location-dependent weights

that are learned through the training procedure. W
′
1 and W

′
2 are shared for

all convolutional filters, which is done by broadcasting over channel dimension.
In the third method, illustrated in Fig. 1(c), we added location-dependent

gradients to the W
′
1 and W

′
2:

LC(x,y)=A

(
∑

i,j

(
I(x+i,y+j)∗W (i,j)+b

)
+
(
Lx(x,y)+W

′
1(x,y)

)
+
(
Ly(x,y)+W

′
2(x,y)

))
(2)

where similar to additional input channels, Lx(x, y) and Ly(x, y) encode location
by gradients in x and y directions, respectively. Providing these facilitates the
learning of more complex location-dependent biases.

4 Location Dependency in Conv-PGP Model

PGP [9] is designed based on the assumption that two temporally consecutive
frames can be described as a linear transformation of each other. In the PGP

634 N. Azizi et al.

Fig. 2. One-layer location-dependent VLN architecture consisting of two convolution
layers in the encoder block, a Conv-LSTM block, and one deconvolution followed by
a convolution layer in the decoder part. The trainable location-dependent bias (LB) is
applied after the first convolution layer.

architecture, by using a Gated AutoEncoder (GAE) as bi-linear model, the hid-
den layer of mapping units m encodes the transformation.

The fully connected PGP architecture contains a significant number of
parameters. To deal with this issue, we utilized its convolutional variant (Conv-
PGP), similar to [12], where fully connected layers are replaced by convolutions.

While Conv-PGP reduces the number of parameters significantly, it cannot
learn location-dependent features such as the image border anymore. Using valid
convolutions prevents, e.g., learning the mirroring motion in the Bouncing Ball
dataset. As shown in the experiment section, in the Conv-PGP model, the balls
disappear instead of being reflected at the border which indicates that the model
is incapable of predicting location-dependent motions.

To demonstrate this limitation more clearly, we modified the Bouncing Ball
dataset. In the Occluded Bouncing Ball dataset, we augmented fixed strides
of three pixels to occlude the moving balls as well as invisible lines to mirror
the velocity. As shown in the following section, we trained the Conv-PGP with
this dataset, and it did not achieve a satisfactory result. To resolve this issue,
we applied the three proposed methods for modeling location dependency to
Conv-PGP.

5 Experiment

We tested our modified VLN architectures on the Occluded Moving MNIST
dataset. Each video in the Occluded Moving MNIST dataset contains 10 frames,

Location Dependency in Video Prediction 635

with one MNIST digit moving inside a 64× 64 patch. Digits are chosen ran-
domly from the training set and placed initially at random locations inside the
patch with a random velocity. The frames are filled with occluding vertical and
horizontal bars; the distance between them is eight pixels. In addition to that,
we added invisible lines to mirror the velocity at a distance of ten pixels from
the border.

In our first experiment, we compare the one-layer original VLN architecture
on Occluded Moving MNIST with our three proposed solutions:

– VLN-AI: Two location gradient channels and one occlusion channel as addi-
tional location encoding inputs (Fig. 1(a)),

– VLN-LDC: Location-dependent bias in the encoder block (Fig. 1(b)), and
– VLN-LDCAI: Location-dependent bias in the encoder block and location gra-

dient channels (Fig. 1(c)).

In our experiment, the first eight frames are predicted using the given frame
from the dataset. The last two frames are predicted using the previous network
output. Sample results of one-layer original VLN and VLN-LDCAI are depicted
in Fig. 3. Sample activations of the Conv-LSTM and the encoder block for both
the original VLN and the VLN-LDCAI are shown in Fig. 4. These activations
demonstrate that the original VLN cannot infer the location-dependent features
while the VLN-LDCAI can learn location-dependent features including the bor-
der and the occlusion grid.

Table 1 reports the prediction loss and the number of parameters for the
evaluated model variant. It can be observed that all methods to model location
dependencies improve performance.

Fig. 3. Occluded Moving MNIST. (a) Input frames with visualized occlusion. (b)
Frames given to the network. (c) Predicted frames with the one-layer original VLN.
(d) Predicted frames with VLN-LDCAI. (e) Expected ground truth frames.

636 N. Azizi et al.

a)

b)

c)

d)

e)

f)

Fig. 4. Occluded Moving MNIST activities. (a) Activation layers of Conv-LSTM block
in original VLN. (b) Activation layers of the encoder block in original VLN. Note
that none of the channels can detect the location-dependent features. (c) Activation
layers of Conv-LSTM block in VLN-LDCAI. (d) Activation layers of the encoder block
in VLN-LDCAI. (e) Learned location-bias channels in VLN-LDCAI. (f) Input frame.
Note that the VLN-LDCAI automatically inferred location-dependent features.

Table 1. Results of VLN models on Occluded Moving MNIST test dataset.

Model Prediction test loss (BCE) Number of parameters

VLN 165.9 90K

VLN-AI 150.7 91K

VLN-LDC 154.7 103K

VLN-LDCAI 153.2 103K

In a second experiment, we compared a one-layer Conv-PGP network with
and without the border on the Occluded Bouncing Ball dataset, which is con-
structed similar to Occluded Moving MNIST. In our experiment, the first three

Location Dependency in Video Prediction 637

frames are predicted using the given frame from the dataset. The last seven
frames are predicted using the previous network output. As illustrated in Fig. 5,
learning the location-dependent features is crucial for the prediction task. The
prediction losses reported in Table 2 show that our proposed one-layer location-
dependent Conv-PGP can solve the Occluded Bouncing Ball dataset and yields
a much better result than one-layer Conv-PGP.

Fig. 5. Bouncing Ball results. (a) Conv-PGP. (b) Conv-PGP-AI. (c) Conv-PGP-LDC
and Conv-PGP on Occluded Bouncing Ball dataset.

Table 2. Results of Conv-PGP models on Occluded Bouncing Ball test dataset.

Model Prediction test loss (BCE) Number of parameters

Conv-PGP 266.9 39k

Conv-PGP-AI 148.7 40k

Conv-PGP-LDC 139.4 56k

Conv-PGP-LDCAI 143.3 56k

6 Conclusion

Our experiments indicate that location information is a necessity in convolu-
tional architectures for video prediction tasks as, for example, dealing with
occlusions in the environment is challenging. To test three proposed variants of
learning location-dependent features, we utilized the Occluded Moving MNIST
and Occluded Bouncing Ball datasets which mimic occlusions in the real world.
The proposed location-dependent inputs and biases allow the VLN and Conv-
PGP models to learn more complex location-dependent features than just mir-
roring velocity at the borders. In contrast to previous approaches, our proposed
learnable location-dependent biases do not assume any predefined underlying

638 N. Azizi et al.

feature structure. Our proposed location-dependent convolution layers signifi-
cantly improve on the results of both one-layer VLN and one-layer Conv-PGP
architectures.

In future work, we will explore the proposed methods for general deep con-
volutional neural network architectures, and test the performance on real-world
datasets.

Acknowledgment. This work was funded by grant BE 2556/16-1 (Research Unit
FOR 2535 Anticipating Human Behavior) of the German Research Foundation (DFG).

References

1. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. Preprint arXiv:1511.05440 (2015)

2. Wagner, J., Fischer, V., Herman, M., Behnke, S.: Learning semantic prediction
using pretrained deep feedforward networks. In: 26th European Symposium on
Artificial Neural Networks (ESANN) (2017)

3. van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A.,
Kavukcuoglu, K.: Conditional image generation with PixelCNN decoders. In:
Advances in Neural Information Processing Systems (NIPS) (2016)

4. Srinivas, S.S., Kruthiventi, K.A., Babu, R.V.: DeepFix: a fully convolutional neural
network for predicting human eye fixations. Preprint arXiv:1510.02927 (2015)

5. Ghafoorian, M. et al.: Location sensitive deep convolutional neural networks for
segmentation of white matter hyperintensities. Sci. Reports 7(1), 5110 (2017)

6. Cricri, F., Ni, X., Honkala, M., Aksu, E., Gabbouj, M.: Video ladder networks.
Preprint arXiv:1612.01756 (2016)

7. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised
learning with ladder networks. In: Advances in Neural Information Processing Sys-
tems (NIPS), pp. 3546–3554 (2015)

8. Kalchbrenner, N., et al.: Video pixel networks. Preprint arXiv:1610.00527 (2016)
9. Michalski, V., Memisevic, R., Konda, K.: Modeling deep temporal dependencies

with recurrent grammar cells. In: Advances in Neural Information Processing Sys-
tems (NIPS), pp. 1925–1933 (2014)

10. Memisevic, R.: Learning to relate images. IEEE Trans. Pattern Anal. Mach. Intell.
35(8), 1829–1846 (2013)

11. Memisevic, R., Hinton, G.E., Roland Memisevic and Geoffrey: Learning to repre-
sent spatial transformations with factored higher-order Boltzmann machines. Neu-
ral Comput. 22(6), 1473–1492 (2010)

12. De Roos, F.: Modeling spatiotemporal information with convolutional gated net-
works. Master thesis, Chalmers University of Technology (2016)

13. Ilin, A., Prémont-Schwarz, I., Hao, T.H., Rasmus, A., Valpola, H.: Recurrent ladder
networks. Preprint arXiv:1707.09219 (2017)

http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1510.02927
http://arxiv.org/abs/1612.01756
http://arxiv.org/abs/1610.00527
http://arxiv.org/abs/1707.09219

Brain Neurocomputing Modeling

State-Space Analysis of an Ising Model
Reveals Contributions of Pairwise

Interactions to Sparseness, Fluctuation,
and Stimulus Coding of Monkey V1

Neurons

Jimmy Gaudreault1 and Hideaki Shimazaki2,3(B)

1 Polytechnique Montreal, Montreal, QC, Canada
jimmy.gaudreault@polymtl.ca

2 Graduate School of Informatics, Kyoto University, Kyoto, Japan
h.shimazaki@kyoto-u.ac.jp

3 Honda Research Institute Japan, Wako, Japan

Abstract. In this study, we analyzed the activity of monkey V1 neu-
rons responding to grating stimuli of different orientations using inference
methods for a time-dependent Ising model. The method provides optimal
estimation of time-dependent neural interactions with credible intervals
according to the sequential Bayes estimation algorithm. Furthermore, it
allows us to trace dynamics of macroscopic network properties such as
entropy, sparseness, and fluctuation. Here we report that, in all exam-
ined stimulus conditions, pairwise interactions contribute to increasing
sparseness and fluctuation. We then demonstrate that the orientation
of the grating stimulus is in part encoded in the pairwise interactions
of the neural populations. These results demonstrate the utility of the
state-space Ising model in assessing contributions of neural interactions
during stimulus processing.

Keywords: Neural interactions · Neural coding
Macroscopic network properties
Bayesian inference · Binary time-series

1 Introduction

Since neural population activity is constrained by external stimuli and biophys-
ical mechanisms of the neural networks, understanding the statistical regularity
of the population activity is an important step toward revealing these underlying
mechanisms and further elucidating stimulus coding strategies by the popula-
tions of neurons. In order to understand their complex activity patterns, an
Ising model has been applied frequently (see [5,8,14] and references therein).
This model originally developed in statistical mechanics to describe interacting

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 641–651, 2018.
https://doi.org/10.1007/978-3-030-01424-7_63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_63&domain=pdf

642 J. Gaudreault and H. Shimazaki

magnetic spins is suitable for analyzing the collective behavior of binary patterns.
It is also used in machine learning applications as the Botlzmann machine.

Most of the analyses using the Ising model assumed stationary data in which
firing rates and correlations are expected to be constant in time. The static
model prohibited analyses of in-vivo data, in which firing rates and even corre-
lations are known to evolve over time [1,15]. As a solution, a state-space model
was developed that augmented the stationary Ising model to one that considers
dynamics in both firing rates and correlations [4,9,10]. However, the utility of
the method has not been fully demonstrated yet.

In this study, we analyzed the activity of V1 neurons using the state-space
Ising model. We report that pairwise interactions contribute to increasing tem-
poral sparseness and fluctuation, and encoding stimulus information.

2 Methods

2.1 Data Description and Preprocessing

Population activity of V1 neurons of 3 anesthetized macaque monkeys exposed
to visual stimulus was analyzed. It was recorded by Smith and Kohn [12]. The
data is available at CRCNS.org [6]. The experimental methods used to perform
recordings are briefly explained in [12] and are detailed in [3]. To summarize,
an array of 100 microelectrodes was used to perform simultaneous recordings
of approximately 100 neurons per monkey. The electrodes were implanted in
the primary visual area (V1). The stimuli shown to the monkeys consisted of
sinusoidal gratings at 12 different equally separated orientations from 0◦ (vertical
gratings) to 330◦. The spike data for each trial lasted 1.28 s. During a trial, a
monkey was shown gratings of only one orientation. An isoluminant gray screen
was presented during 1.5 s between trials. Temporal and spacial frequencies of
the gratings were set to those typically preferred by parafoveal V1 neurons. The
experiment was repeated 200 times for every stimulus orientation and for every
monkey.

The timing of spikes of different single neurons in this data set was obtained
by spike sorting based on a mixture decomposition method [11], allowing to
discriminate waveforms from different neurons simultaneously measured by the
microelectrodes. To consider only recordings of good quality, we excluded neu-
rons with a signal-to-noise ratio lower than 2.75 and neurons with a firing rate
lower than 2 spikes/s for all stimuli, as suggested by Smith and Kohn [12]. This
left approximately 40 neurons per monkey.

In the present study, we analyzed nearly simultaneous activity of the neural
populations. For this goal, we constructed binary spike trains by binning the
spike timing sequences. Time bins (Δt) of 10 ms were used, giving a total of 128
time bins (T) for the duration of the stimulus presentation. For a given trial and
neuron, if one or more spikes occurred between times (i − 1)Δt and iΔt s, the
value 1 is attributed to the ith time bin. Otherwise, the value 0 is attributed.

Neural Interactions Contribute to Sparseness, Fluctuation 643

2.2 The State-Space Ising Model for a Neural Population

The model used to analyze neural activity is the Ising model (or the Boltzmann
machine), a model frequently used in statistical physics and machine learning.
For a binary vector of length N , the Ising model is a probability distribution of
all 2N possible patterns. By considering up to pairwise interactions, the Ising
model is given by

p(x1, x2, . . . , xN |θ) = exp

⎡
⎣∑

i

θixi +
∑
i<j

θijxixj − ψ(θ)

⎤
⎦ . (1)

For a neural system, N is the number of neurons and the binary vector x =
(x1, x2, . . . , xN)′ is the activity of the population, where each binary variable xi

is the activity of the ith neuron (1 if the neuron exhibits a spike and 0 if it is
silent). θ = (θ1, θ2, . . . , θN , θ12, . . . , θN−1,N)′ is a parameter vector of the Ising
model. The second-order parameters θij represent pairwise interactions between
neurons. ψ is a log normalization function which serves to ensure the sum of all
probabilities equals to 1. The model in this form is not dependent on time. Hence
fitting this model to the data assumes that samples are generated from the same
distribution independently at every time step. However, since neuronal activity
of in-vivo animals is dynamic [1,15], it is necessary to augment the model by
allowing θ to vary in time. Naively fitting the Ising model at each time step
would result in overfitted models unless we had an excessive amount of data. To
avoid the issue, we used a sequential Bayesian algorithm to estimate the time-
varying parameters. In this framework, we assume the following dynamics for
the state θt:

θt = θt−1 + ξt(Q), (2)

for t = 2, . . . , T . At the first time bin, we consider a Gaussian prior defined by
θ1 ∼ N (μ,Σ). ξt(Q) is a 0-mean Gaussian noise added at every time step to
obtain stochastic dynamics. The covariance matrix of the noise is given by Q =
λ−1I, where λ is the precision and I is the identity matrix. Under the principle
of maximizing the marginal log likelihood, it is possible to obtain the optimal
set of hyperparameters w = [μ,Σ,Q] by using the expectation-maximization
(EM) algorithm. The EM algorithm also provides the posterior density of the
state θt for all time bins given the observed data, namely a distribution of the
underlying process θ1:T :

p(θ1:T |x1:T ,w) =
p(x1:T |θ1:T)p(θ1:T |w)

p(x1:T |w)
. (3)

This posterior density is approximated by a Gaussian distribution. The uncer-
tainty for the parameter estimation is then assessed by its covariance matrix.
See [9,10] for details of the EM algorithm and sequential Bayes method.

We randomly selected 3 populations of 12 neurons for each monkey (a total
of 9 populations). A separate dynamic state-space Ising model was fitted for
each stimulus orientation for each population. To quantitatively determine the

644 J. Gaudreault and H. Shimazaki

effect of pairwise interactions, we compared models fitted to the original data
with models fitted to surrogate data (surrogate models). The surrogate data
was constructed by randomizing the order of the trials for every neuron. This
shuffling of the data destroys correlations between neurons, but preserves their
spike rate dynamics. Thus, by comparing original models with surrogate models,
we can determine if the observed interactions have significant contributions.

2.3 Macroscopic Properties of the Dynamic Ising Model

After fitting the models, we can investigate the dynamics of the macroscopic
properties of the populations during the stimulus exposition. First, the entropy,
or the expectation of the information content, is given by

Spair(t) = 〈− log p(x|θt)〉x|θt
, (4)

where the brackets indicate the expectation by the observation density p(x|θt).
The model containing N binary elements with the maximal entropy is the uni-
form model where each element has a firing rate of 0.5. Such a model has entropy
S0 = N log 2. By adding information about the firing rates, we reduce the entropy
by constraining the model. We call Sind the entropy of the Ising model projected
to an independent model which considers the firing rates of individual neurons,
but does not exhibit any correlation (θij = 0 for i < j). Considering pairwise
interactions also decreases entropy as it constrains the model even more (Spair).
To assess the contribution of the pairwise interactions in the information content
of the population activity, we can compute the fraction of the entropy reduction
caused by considering pairwise interactions in the model as

γ(t) =
Sind(t) − Spair(t)

S0 − Spair(t)
. (5)

Next, the probability that all neurons are silent, i.e., the sparseness, is given by

psilence(t) = p(0, 0, . . . , 0|θt) = exp [−ψ(θt)] . (6)

Finally, the fluctuation of a population, or heat capacity, is the variance of the
information content. It represents the sensitivity of the model to changes in the
state vector θt. It is defined as

C(t) = 〈{− log p(x|θt)}2〉x|θt
− {〈− log p(x|θt)〉x|θt

}2. (7)

2.4 Assessment of Stimulus Coding

We also assessed the contribution of pairwise interactions in encoding the stim-
ulus orientation by comparing the neural responses to different stimulus ori-
entations. To do so, we compared the parameters of Ising models fitted to the
neural activity of monkeys exposed to gratings of different orientations. Since the
EM algorithm provides the posterior density of the state vector approximated

Neural Interactions Contribute to Sparseness, Fluctuation 645

as a Gaussian, we computed the Bhattacharyya distance between the posterior
densities. The Bhattacharyya distance between two Gaussians N (μ1,Σ1) and
N (μ2,Σ2) is given as

DB =
1
8
(μ1 − μ2)

′Σ−1(μ1 − μ2) +
1
2

log
(

det Σ√
det Σ1 det Σ2

)
, (8)

where Σ = Σ 1+Σ 2
2 . We computed this distance at each time bin. The difference

in neural responses is quantified by summing the distances at every time bin.

3 Results

3.1 Contributions of Interactions to Macroscopic Network
Properties

Using the time-dependent Ising model, we analyzed the population activity of
monkey V1 neurons exposed to an oriented grating stimulus. In total, 9 popula-
tions (3 per monkey) were separately analyzed. Results with time bins of 10 ms
will be shown here, but we found similar results with 5 and 20 ms. The Bayesian
algorithm used to fit the model gives the Gaussian-approximated posterior den-
sity of the parameters of the Ising model (Eq. 1) given the data, which allows us
to obtain the most probable state, or a maximum a posteriori (MAP) estimate,
and the credible interval of the estimate (Eq. 3). The fitted model can be used
to calculate dynamics of macroscopic properties of the neural populations.

Figure 1 shows results from one exemplary population of 12 neurons. The
spike data was recorded 200 times from the same neurons under the same stim-
ulus conditions (here the stimulus orientation (φ) is 300◦). Figure 1A Top shows
the time-steps (x-axis) during which each neuron of the population (y-axis)
exhibited spikes (black marks) for 3 exemplary trials. The average spike rate
of this population transiently increased about 60 ms after the stimulus onset,
as expected for V1 neurons [13], and exhibited oscillatory activity in response
to the grating stimulus (Fig. 1A Bottom). It is thus important to take the rate
dynamics into account to assess the correlations among neurons. The state-space
Ising model adequately estimated the rate dynamics. Similar rates were observed
for other stimulus orientations and populations.

Snapshots of the estimated parameters of the Ising model are shown in Fig. 1B
Top. The colors of the nodes and edges show the values of the MAP estimates
for the first-order parameters (θi) and the second-order parameters (θij), respec-
tively. Only significant edges are shown, for which the value 0 is outside of the
95% credible interval of the posterior density. The average MAP estimates of the
first and second order parameters of the dynamic Ising model can be observed
in Fig. 1B Bottom (black lines). While the first order parameters follow a similar
dynamic to that of the firing rate, the interaction parameters only vary on a
small scale and with no apparent oscillation.

Macroscopic measures of the population are shown in Fig. 1C. The black
lines are computed from the MAP estimates of the model parameters. The pale

646 J. Gaudreault and H. Shimazaki

Fig. 1. A (Top) Simultaneous activity of 12 neurons with a 10 ms bin size at exemplary
trials from the total 200 trials. The stimulus (φ = 300◦) is presented from 0 s to 1.28 s
(Bottom) Empirical and estimated population spiking probability. B (Top) Snapshots
of the estimated parameters of the Ising model. The color of the nodes and edges
represent θi and θij . (Bottom) First-order time-dependent parameters averaged over
neurons (Top panel, black line), and second-order parameters averaged over all pairs
(Bottom panel, black line). Red lines correspond to trial-shuffled data. Vertical dashed
bars correspond to the timings of the snapshots. C (From top to bottom) Estimates
of the entropy, entropy reduction due to interactions, sparseness, and heat capacity
(Black lines) and their 90% credible intervals (Pale shaded area). The dark shaded
areas correspond to the 90% credible intervals obtained for trial-shuffled data.

shaded areas correspond to the interval between the 5% and 95% quantiles. To
compute the quantiles, we sampled θt at every time bin 1000 times from the
posterior and computed the macroscopic properties for every sample.

First, the entropy of the pairwise model (Spair) quantifies the information
that the population can carry using rates and pairwise interactions. That is to
say, the effective number of spiking patterns they can represent is 2

1
log2Spair . Typ-

ically, the entropy increases as the probability of spiking increases toward 0.5
(maximum entropy for independent neurons). However, the population activ-
ity is constrained by pairwise interactions, which leads to a reduction of the
entropy from the independent assumption. In order to examine the contribution
of pairwise interactions in the entropy, we computed the fraction of the entropy
reduction caused by considering pairwise interactions in the model γ(t) (Eq. 5).
We found that the pairwise interactions explain approximately 2% of the differ-
ence of entropy between the pairwise Ising model and the uniform distribution.

To determine if the observed fraction of entropy γ is significant, we fitted
Ising models to surrogate data. In the surrogate data, the order of the experi-
mental trials was randomized for every neuron in order to destroy interactions.
Results are reported by the red lines and the dark shaded areas. The average of
the θij parameters (Fig. 1B Bottom) and the γ of the surrogate model being close
to 0 confirms that shuffling the trials effectively removed pairwise interactions.

Neural Interactions Contribute to Sparseness, Fluctuation 647

Fig. 2. Comparison between the properties obtained with original data (y-axis) and
trial-shuffled data (x-axis) from 3 monkeys exposed to gratings at 90◦ and 180◦. (From
top to bottom) Entropy reduction due to interactions, sparseness, and heat capacity.

The surrogate model also accurately estimated the firing rates (see Fig. 1A Bot-
tom). By comparing the γ obtained with the original and surrogate data, we
conclude that there are significant pairwise interactions during the stimulus pre-
sentation, as the credible intervals do not coincide.

We then examined how the pairwise interactions contribute to other macro-
scopic quantities of the population. The third panel of Fig. 1C displays the
sparseness, i.e., the probability of an all silent pattern (Eq. 6), and the fourth
panel displays the heat capacity (Eq. 7). In this example, the heat capacity was
clearly greater for the original model, indicating that interactions of neurons
significantly contribute to increasing the sensitivity of the population activity.
However, the effect on sparseness may not be obvious. To clarify, next we exam-
ined these macroscopic values using all populations.

Figure 2 compares the macroscopic properties computed with the original
and surrogate data. Data points for every populations at every time step are
displayed on this figure. As expected, the original models had a bigger γ. This
is because interactions were destroyed in the surrogate data. The original mod-
els also displayed significantly bigger sparseness and heat capacity (signed-rank
tests). Only results at φ = 90◦ and φ = 180◦ are shown, but the sparseness and
fluctuation were significantly greater for the original data for all orientations.

3.2 Differences in Neural Responses Caused by Different Stimuli

Next we compared models obtained for different stimulus orientations. This
should give an idea of how differently the neurons respond to different grat-
ings orientations. To measure the difference, we computed the Bhattacharyya
distance (Eq. 8) between the estimated distributions of the Ising model parame-
ters fitted to neural activity of monkeys when exposed to two different stimulus

648 J. Gaudreault and H. Shimazaki

Fig. 3. A Average Bhattacharyya distance between distributions of parameters of Ising
models fitted to monkey V1 neural activity when exposed to sinusoidal gratings at
different orientations with respect to the difference of orientation (Δφ). B Comparison
of the Bhattacharyya distances obtained with models fitted to original data (y-axis)
and trial-shuffled data (x-axis) for all pairs of stimulus orientations separated by 90◦.
C Average Bhattacharyya distances with respect to the difference of orientation for
original data (full lines) and trial-shuffled data (dashed lines).

orientations. For a given population, we summed the distances between the Ising
models computed at each time step for all possible pairs of stimulus orientations.
We represent the summed Bhattacharyya distance as a function of the differ-
ence between stimulus orientations (Δφ). We repeated the computations for all
populations (Fig. 3A). The distances exhibited a maximum at Δφ = 90◦ and a
minimum at Δφ = 180. This means that the population activities were maxi-
mally different for two perpendicular stimuli. The stimuli separated by 180◦ have
the same spacial alignment, but their gratings move in opposite directions (e.g.,
right to left or left to right). Hence the minimum distances at 180◦ indicate less
sensitivity of the population activity to the direction of the stimulus gratings,
which is expected from a population of simple cells.

In order to examine contributions of pairwise interactions to theBhattacharyya
distances, the above procedure was also done for surrogate data. Figure 3B shows
a comparison of the distances obtained at Δφ = 90◦ for original and surrogate
data. The distances between original models are significantly greater (signed-rank
test). Significant increases of the distances were found for all Δφ. Figure 3C dis-
plays the Bhattacharyya distances computed from original and surrogate models
for all Δφ. The distances from original data (full lines) are consistently larger than
their corresponding surrogate result (dashed line). From this, we conclude that the
interactions contributed to increasing the differences in neural activity when the
monkeys are exposed to different stimuli. We repeated the same analysis with the
Kullback-Leibler divergence between the estimated observation models at differ-
ent orientations and reached the same conclusions.

Neural Interactions Contribute to Sparseness, Fluctuation 649

Fig. 4. A (Top) Simultaneous activity of 36 neurons with a 10 ms bin size at exemplary
trials from the total 200 trials. The stimulus (φ = 300◦) is presented from 0 s to 1.28 s
(Bottom) Empirical and estimated population spiking probability. B (Top) Snapshots
of the estimated parameters of the Ising model. The color of the nodes and edges
represent θi and θij . (Bottom) First-order time-dependent parameters averaged over
neurons (Top panel), and second-order parameters averaged over all pairs (Bottom
panel). Vertical dashed bars correspond to the timings of the snapshots. C (From top
to bottom) Estimates of the entropy, entropy reduction due to interactions, sparseness,
and heat capacity. Black and red lines correspond to original and trial-shuffled data.

4 Discussion

We found a significant contribution of pairwise interactions to stimulus encod-
ing. Since the neural population activity is more different with respect to the
stimulus in the presence of pairwise interactions, the interactions should improve
the decoding of stimulus information. However, we found a small percentage of
entropy due to pairwise interactions (∼ 2%). While this may be caused by the
small number of neurons or by the use of a simple Gabor artificial stimuli instead
of correlated natural stimuli [5], considering the firing rate dynamics might have
successfully removed spurious correlations. Previous analyses based on the sta-
tionary model may suffer from the spurious spike correlations caused by rate
covariations. Our analysis reveals that neurons exhibit near-independent activ-
ity during stimulus presentation. This result is consistent with the efficient use
of population activity expected from the efficient coding hypothesis [2,7].

Donner et al. [4] introduced approximation methods (pseudo-likelihood com-
bined with TAP or Bethe approximation) to fit the state-space Ising model to
larger networks. We used these methods to fit models to 1 population of 36 neu-
rons per monkey (Fig. 4, the same monkey and stimulus orientations as shown
in Fig. 1). The results were consistent with those obtained in the exact analysis:
pairwise interactions had significant contributions to increasing sparseness and
sensitivity for all monkeys and orientations (signed-rank test). We chose to pro-
vide the results of an analysis without the approximations, but our conclusions
regarding sparseness and heat capacity are robust to the network size.

650 J. Gaudreault and H. Shimazaki

5 Conclusion

The neural interactions significantly contributed to shaping the activity of mon-
key V1 neurons when exposed to sinusoidal gratings. Neuron populations present
significant sparseness and sensitivity due to the neurons’ interactions. Neural
activities are organized differently when neurons respond to different stimulus
orientations, and this difference is enhanced by the presence of neural interac-
tions. From this result, we expect that the decoding of the stimulus orientation
is facilitated by considering pairwise interactions of the neurons.

References

1. Aertsen, A.M., Gerstein, G.L., Habib, M.K., Palm, G.: Dynamics of neuronal firing
correlation: modulation of “effective connectivity”. J. Neurophysiol. 61(5), 900–917
(1989)

2. Barlow, H.B.: Possible Principles Underlying the Transformations of Sensory Mes-
sages. Oxford University Press, Cambridge (1961)

3. Cavanaugh, J.R., Bair, W., Movshon, J.A.: Nature and interaction of signals from
the receptive field center and surround in macaque v1 neurons. J. Neurophysiol.
88(5), 2530–2546 (2002)

4. Donner, C., Obermayer, K., Shimazaki, H.: Approximate inference for time-varying
interactions and macroscopic dynamics of neural populations. PLoS Comput. Biol.
13(1), e1005309 (2017)

5. Ganmor, E., Segev, R., Schneidman, E.: Sparse low-order interaction network
underlies a highly correlated and learnable neural population code. Proc. Natl.
Acad. Sci. USA 108(23), 9679–9684 (2011)

6. Kohn, A., Smith, M.: Utah array extracellular recordings of spontaneous and
visually evoked activity from anesthetized macaque primary visual cortex (v1).
CRCNS.org https://doi.org/10.6080/K0NC5Z4X (2016)

7. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strat-
egy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)

8. Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations
imply strongly correlated network states in a neural population. Nature 440(7087),
1007–1012 (2006)

9. Shimazaki, H., Amari, S.I., Brown, E.N., Grün, S.: State-space analysis on time-
varying correlations in parallel spike sequences. In: IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2009 (2009)

10. Shimazaki, H., Amari, S.I., Brown, E.N., Grün, S.: State-space analysis of time-
varying higher-order spike correlation for multiple neural spike train data. PLoS
Comput. Biol. 8(3), e1002385 (2012)

11. Shoham, S., Fellows, M.R., Normann, R.A.: Robust, automatic spike sorting using
mixtures of multivariate t-distributions. J. Neurosci. Methods 127(2), 111–122
(2003)

12. Smith, M.A., Kohn, A.: Spatial and temporal scales of neuronal correlation in
primary visual cortex. J. Neurosci. 28(48), 12591–12603 (2008)

13. Thorpe, S.J., Fabre-Thorpe, M.: Seeking categories in the brain. Science 291(5502),
260–263 (2001)

https://doi.org/10.6080/K0NC5Z4X

Neural Interactions Contribute to Sparseness, Fluctuation 651

14. Tkac̆ik, G., Marre, O., Amodei, D., Schneidman, E., Bialek, W., Berry, M.J.:
Searching for collective behavior in a large network of sensory neurons. PLoS Com-
put. Biol. 10(1), e1003408 (2014)

15. Vaadia, E., et al.: Dynamics of neuronal interactions in monkey cortex in relation
to behavioral events. Nature 373(6514), 515–518 (1995)

Sparse Coding
Predicts Optic Flow Specifities
of Zebrafish Pretectal Neurons

Gerrit A. Ecke(B), Fabian A. Mikulasch, Sebastian A. Bruijns,
Thede Witschel, Aristides B. Arrenberg, and Hanspeter A. Mallot

Department of Biology, University of Tübingen, Tübingen, Germany
{gerrit.ecke,hanspeter.mallot}@uni-tuebingen.de

Abstract. Zebrafish pretectal neurons exhibit specificities for large-field
optic flow patterns associated with rotatory or translatory body motion.
We investigate the hypothesis that these specificities reflect the input
statistics of natural optic flow. Realistic motion sequences were gener-
ated using computer graphics simulating self-motion in an underwater
scene. Local retinal motion was estimated with a motion detector and
encoded in four populations of directionally tuned retinal ganglion cells,
represented as two signed input variables. This activity was then used
as input into one of two learning networks: a sparse coding network
(competitive learning) and backpropagation network (supervised learn-
ing). Both simulations develop specificities for optic flow which are com-
parable to those found in a neurophysiological study [8], and relative
frequencies of the various neuronal responses are best modeled by the
sparse coding approach. We conclude that the optic flow neurons in the
zebrafish pretectum do reflect the optic flow statistics. The predicted
vectorial receptive fields show typical optic flow fields but also “Gabor”
and dipole-shaped patterns that likely reflect difference fields needed for
reconstruction by linear superposition.

Keywords: Optic flow · Sparse coding · Optimality · Pretectum
Egomotion detection

1 Introduction

Optimality of Visual Receptive Fields. In his “neuron-doctrine for percep-
tual psychology”, Horace Barlow [3] suggests that the “nervous system is orga-
nized to achieve as complete a representation of the sensory stimulus as possible
with the minimum number of active neurons”. This idea also underlies a number
of theoretical approaches to visual processing, such as independent component
analysis, sparse coding, predictive coding, etc.; for an overview see [6]. While
the general approach is widely accepted, specific predictions about the optimal
processing scheme will depend on the choice of the optimality criterion employed
as well as on the information requirements of each species’ life-style. Empirical
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 652–661, 2018.
https://doi.org/10.1007/978-3-030-01424-7_64

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_64&domain=pdf

Learning Optic Flow Specificities of Pretectal Neurons 653

tests of optimal coding theories of visual processing are therefore often limited
to a qualitative level.

For the case of mammalian V1 cortex, Olshausen and Field [11] have sum-
marized the evidence and concluded that for a full understanding of the system,
simultaneous measurements of the activities of a large, unbiased set of neurons
in response to natural stimuli would be required. Two-photon calcium imaging
allows to record activity from large populations of neurons. In Drosophila, simul-
taneous monitoring of more than 100 cells from the mushroom body has proven
robustly sparse, but non-localized responses to varieties of odors [5]. Insights
into functional aspects of memory and learning have been gained that extend
findings from single cell recordings which show that sparsity is implemented by
means of a normalizing feedback loop on a cellular level [14].

a. b. c.

Fig. 1. a. View of the virtual fish tank with muddy water (low viewing distance).
Additional fish and plants will generate optic flow discontinuities. b. Example with
high visibility. c. Mosaic of retinal ganglion cells, used to calculate the motion input.

We attempt an analysis of this type for the area pretectalis (APT) of the
zebrafish, for which the response of thousands of neurons has indeed been
recorded while the fish is presented with optic flow stimuli [8]. Experimentally
found response properties from a large, representative sample of neurons will
be compared to responses predicted from receptive fields of nodes in a artificial
neural network trained with optic flow patterns that were generated by simulat-
ing observer movement in a virtual fish tank. The receptive field predictions will
be based on two theoretical approaches, (i) sparse coding of optic flow patterns
(unsupervised) and, for comparison, (ii) backpropagation learning of ego-motion
parameters from the same optic flow patterns (supervised).

Optic Flow. Like many other animals, zebrafish larvae generate optokinetic
responses of the eyes (OKR) and optomotor responses of the body (OMR) when
exposed to visual stimuli simulating egomotion of the fish [2,8]. Both eye- and
body movements generate space-variant patterns of local motion vectors on the
retina which then have to be analyzed by subsequent processing stages. Neural

654 G. A. Ecke et al.

algorithms suggested for optic flow analysis usually consist of at least two compo-
nents, a local motion detector and a subsequent set of templates or motion mod-
els for identifying typical patterns relating to ego-motion maneuvers or encoun-
ters with obstacles and self-moving objects such as prey or predator [4,15]. Local
motion detection can take place in the retina itself, as is generally the case in
lower vertebrates, or in early areas of visual cortex. Higher brain areas analyz-
ing optic flow patterns such as the focus of expansion, rotational vertices, left or
right yaw rotations, etc., have been identified in mammalian MST cortex [13] or
in the zebrafish area pretectalis, APT [8].

Egomotion estimation from optic flow is subject to a large variety of estab-
lished approaches derived from geometric considerations [16]. More recently,
convolutional neural networks (CNNs) have shown remarkable characteristics,
as they can learn depth, motion fields and camera motion altogether in an unsu-
pervised fashion [21,23]. Currently, CNN architectures are state of the art for
optic flow estimation [7] while other competitive approaches like [20,22] exist
that seek to estimate optic flow from a small (or sparse) number of matched
templates.

In our model, local visual motion is encoded in the direction-specific tuning
curves of retinal ganglion cells and is not subject to learning. Output from the
retinal ganglion cells is then fed into a layer of simulated APT-neurons which
develop optic flow analyzers.

Zebrafish Visual System. Zebrafish retinal ganglion cells (RGCs), as well as
pretectal cells, exhibit clear tuning to the direction and orientation of drifting
gratings [1]. Movement direction is not covered homogeneously, but clustered
around three or four major visual field directions [9]. The larval zebrafish retina
contains some 4000 ganglion cells with an average angular separation of about
2.5 degrees of visual angle.

RGCs project to APT, among other targets. The response characteristics of
APT neurons have been analyzed with visual stripe patterns (drifting gratings)
moving either forward or backward and presented to the left, right, or both
eyes [8]. Activity of monocular neurons depends only on the stimulus delivered
to one eye and can therefore be considered to be directly driven from this eye’s
RGCs. In contrast, binocular neurons combine input from both eyes to gener-
ate specificities to forward or backward translation as well as to clockwise and
counter-clockwise rotation in the horizontal plane.

2 Visual Front End

Realistic optic flow stimuli were generated from a virtual reality simulation of
observer motion in a fish tank, programmed in Blender1. The head of the fish
was modeled by two cameras rigidly moving together with a rotation center
somewhat behind the eyes. The field of view was 160 by 160◦ with a binocular
overlap of 45◦ (see [8]). This results in central viewing directions of ±57.5◦ for
the left and right eye.
1 https://www.blender.org.

https://www.blender.org

Learning Optic Flow Specificities of Pretectal Neurons 655

Fig. 2. Sample binocular receptive fields from the sparse coding network. The red
dotted lines mark the margin of binocular overlap. a. Binocular whole-field neuron
with spiral/rotatory characteristic. b. Left-dominant whole-field neuron with elliptical
focus of expansion in the left eye and a superposition of two curls in the right eye. c.
Monocular Gabor-field

656 G. A. Ecke et al.

The virtual fish-tank contained objects at various distances from the observer
as well as objects in mid-water (floating plants and passing fish) generating optic
flow discontinuities in translational egomotion (Fig. 1a,b). Note that translatory
optic flow depends on object distance whereas rotatory optic flow does not.
Visibility was set either low (muddy water, Fig. 1a) or high (clear water, Fig. 1b).
Overall, the scenery was built to resemble the natural habitat of zebrafish as
described in [19].

Virtual fish were placed randomly in the environment and accelerated by a
short, random impulse both for translation and rotation. Acceleration for all six
degrees of freedom (DoF) were drawn independently from a uniform, zero mean
distribution, with an additional scaling factor for the rotatory DoFs introduced in
order to equalize the average flow vector lengths of rotatory and translatory flow
components. After the acceleration impulse, the motion declined exponentially
and a two-frame motion sequence was recorded from the later (slower) parts of
this relaxation. Optic flow was calculated with FlowNet 2.0 [7].

The fish retina was modeled as a spherical shell covering 160◦ in which 256
sampling points were placed using a simple repellence algorithm (Fig. 1c). The
planar camera images were warped by stereographic projection and sampled at
these points. For each retinal sampling point i the corresponding local motion
vector (ui, vi) was represented by two signed variables modeling the activity of
pairs of RGCs tuned to opposite motion directions (right/left, and up/down).

3 LCA Sparse Coding

For unsupervised learning, we used the locally competitive algorithm (LCA) [10,
17] which can be summarized as follows. Let x = {xn}Nn=1 denote the input
signal, i.e. the output of ganglion cells that encode local retinal motion. In sparse
coding, the goal is to reconstruct x as a linear combination x ≈ ∑K

k=1 akϕk

with dictionary elements {ϕk}Kk=1, and activation coefficients {ak}Kk=1, for which
sparsity is required [10]. The ϕk are vector fields from which the input vector
field can be reconstructed as a linear combination. According to [12,17], each
ϕk can also be considered as the receptive field of the k-th output neuron, if a
specific activation function with lateral feedback is assumed. In our application,
the dictionary elements model the receptive fields of K APT neurons. The vector
a = {ak} contains the coefficients needed to reconstruct a given input pattern
from the receptive fields. In our simulations, we require ak ≥ 0 at all times. If we
write the ϕk as columns of a matrix Φ we obtain the error function E(a,Φ) =
1
2 ‖x−Φa‖22 + S(a), in which the first term penalizes reconstruction errors and
S(a) penalizes non-sparse vectors a. While the original algorithm [10] is based
on the �1-norm, i.e. the total activity of a, the locally competitive algorithm
(LCA) seeks to minimize the �0-norm, i.e. the number of non-zero a-values or
the number of active units [17]. Since ak ≥ 0, this amounts to choosing S(a) =
∑K

k=1 λ H(ak − λ) where H is the Heaviside function.

Learning Optic Flow Specificities of Pretectal Neurons 657

For the optimization algorithm see [10,17]. The algorithm was run in Petavi-
sion2 with K = 512 APT-neurons and 77, 076 motion fields each sampled at
256 retinal points for each eye (N = 1024). Examples of the resulting ϕk are
displayed as vector fields in Fig. 2.

4 Backpropagation

For comparison, we also implemented a supervised learning version of the model
that used the same retinal encoding scheme and input data described above.
Motion sequences were labeled for egomotion by seven continuous variables,
three for the unit-vector of heading (translation), three for the unit vector of
the axis of rotation, and a non-negative one for rotational speed. Note that
translational speed cannot be recovered from optic flow, so we did not attempt
to teach this to the network. The network contained three hidden layers with
1000, 600, and 200 units and an output layer with seven units with the above
encoding. Implementation was carried out in TensorFlow3.

The network was able to recover the heading direction with a mean angular
error of about 15◦ and the axis of rotation with a mean angular error of about 19◦.

5 Results

The simulations produce two types of data, i.e. models of vectorial receptive
fields, and neuronal responses to optic flow stimuli. Receptive fields will be dis-
cussed only for the sparse coding network since no obvious interpretation was
found for the backpropagation case.

Figure 2 shows three typical examples out of the set of 512 ϕk fields. Indi-
vidual vector fields are generally not realizable as optic flow fields in a rigid
environment. For example, Fig. 2a approximates a pitch rotation (nose down) in
both eyes, but the axes in the two eyes are not properly aligned. Flow vectors
are not purely tangential to the pole but involve a spiral component. Figure 2b
shows a left-dominant field with an expansion pattern in the left eye. The focus is
elongated as might be expected if two nearby foci would superimpose. The right
eye field is a superposition of two rotational poles. We conjecture that “dipole”
fields of this type are needed to represent multiple axes of heading and rotation
as linear combinations of vector fields. The two receptive fields of Fig. 2a,b have
high average ak values (rank 4 and 10 of the entire set). Figure 2c shows a field
with low contribution to the reconstruction (ak rank 130) which is representative
of a large number of fields. It is monocular with clearly delineated lobes of motion
preferences in opposite directions, resembling Gabor functions for the horizontal
and vertical motion components. Comparable, spatial frequency selective but
non-localized fields were found by means of a PCA analysis by [22]. Together,
these findings mirror typical results when applied to images directly.

2 https://petavision.github.io and [18].
3 https://tensorflow.org.

https://petavision.github.io
https://tensorflow.org

658 G. A. Ecke et al.

Fig. 3. Summary of neuron response characteristics. The top two panels are redrawn
from [8]. On the left of the “Response type” panel, the little arrows symbolize optic
flow stimulation when the fish is heading towards the left, i.e. the first row shows
forward optic flow stimulation to the left eye, the second row backwards stimulation
to the left eye and so on. The response types are indicated by the columns of black
squares. E.g. the first column refers to neurons responding whenever there is forward
stimulation to the left eye, irrespective of the stimulus delivered to the other eye, and so
on. The histogram on top (“Original data”) shows the frequency per fish of neurons
of a given response type found in a sample of 3015 cells from six zebrafish larva APT.
Most neurons are monocular direction selective (first block). Also, a substantial frac-
tion of neurons specifically responding to global optic flow fields (forward translation
etc.) was found. The third panel (“Sparse Coding”) shows the results of the present
study which are in good general agreement with the fish data. The “Backpropaga-
tion” block shows the responses of the 1,800 units from all three hidden layers of the
supervised learning network, which had been trained to classify optic flow patterns for
egomotion.

Learning Optic Flow Specificities of Pretectal Neurons 659

Binocular receptive fields obtained from either learning scheme were further
analyzed by calculating their response to spherical rotating or translating grat-
ing stimuli as were used for receptive field mapping in the zebrafish study by [8].
Gratings can move either forward or backward and can be presented to the
left, right, or both eyes. Altogether, four monocular and four binocular stimulus
types can be distinguished, see Fig. 3. Each neuron or model neuron was clas-
sified for its reaction to each of the eight stimulus types, resulting in 28 = 256
response types. Of these, 27 optic-flow-related cases are shown in Fig. 3 both for
the zebrafish recordings (upper histogram) and for the two network simulations
(lower histograms). There is also a substantial number of cells not classified into
one of the illustrated 27 response types.

The response-type group “direction selective monocular” is most frequent in
the fish as well as in the sparse coding network, but not in the backpropagation
network. It includes neurons that react to the stimulation of one eye, but ignore
the stimulus of the other eye. On their own, such neurons cannot analyze egomo-
tion because they cannot distinguish between forward translation and rotation
to the contralateral side. However, in the reconstruction approach of sparse cod-
ing, they do seem to play an important role in describing the binocular motion
fields as well.

The next most frequent response type groups comprise binocular neurons
reacting to specific types of binocular optic flow such as translation or rotation.
The specificity of these responses is established by integrating directional infor-
mation across both eyes. Again, the sparse coding network seems to fit the data
better than the backpropagation network.

6 Discussion

In conclusion, receptive fields of zebrafish APT neurons are clearly related to
the statistics of environmental stimuli. The sparse coding network seems to be
closer to the data, but does not include a mechanism of egomotion recovery. This
recovery is implicit in the backpropagation network, but the behavioral relevance
of these patterns is not guaranteed. In any case, more work is needed to identify
the detailed objective functions reflecting the information requirements of the
behaving fish.

Inspection of the vectorial receptive fields learned in the sparse coding net-
work (Fig. 2) suggests that multiple heading directions and axes of rotation are
represented by base fields that are not realizable as optic flow templates but
provide a basis for linear combination. This is in contrast to the coding by large
field templates in the fly [4] and the piecewise construction of optic flow fields
from local templates suggested for mammals [15].

660 G. A. Ecke et al.

References

1. Antinucci, P.: Neural mechanisms generating orientation selectivity in the retina.
Curr. Biol. 26(14), 1802–1815 (2016). https://doi.org/10.1016/j.cub.2016.05.035

2. Bak-Coleman, J., Smith, D., Coombs, S.: Going with, then against the flow: evi-
dence against the optomotor hypothesis of fish rheotaxis. Anim. Behav. 107, 7–17
(2015). https://doi.org/10.1016/j.anbehav.2015.06.007

3. Barlow, H.B.: Single units and sensation: a neuron doctrine for perceptual psy-
chology? Perception 1(4), 371–394 (1972). https://doi.org/10.1068/p010371

4. Franz, M.O., Chahl, J.S., Krapp, H.G.: Insect-inspired estimation of ego-
motion. Neural Comput. 16(11), 2245–2260 (2004). https://doi.org/10.1162/
0899766041941899

5. Honegger, K.S., Campbell, R.A.A., Turner, G.C.: Cellular-resolution population
imaging reveals robust sparse coding in the drosophila mushroom body. J. Neurosci.
31(33), 11772–11785 (2011). https://doi.org/10.1523/JNEUROSCI.1099-11.2011

6. Hyvärinen, A., Hurri, J., Hoyer, P.O.: Natural Image Statistics. Springer, London
(2009). https://doi.org/10.1007/978-1-84882-491-1

7. Ilg, E. et al.: FlowNet 2.0: evolution of optical flow estimation with deep networks.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE (2017). https://doi.org/10.1109/cvpr.2017.179

8. Kubo, F.: Functional architecture of an optic flow-responsive area that drives hor-
izontal eye movements in zebrafish. Neuron 81(6), 1344–1359 (2014). https://doi.
org/10.1016/j.neuron.2014.02.043

9. Nikolaou, N.: Parametric functional maps of visual inputs to the tectum. Neuron
76(2), 317–324 (2012). https://doi.org/10.1016/j.neuron.2012.08.040

10. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996).
https://doi.org/10.1038/381607a0

11. Olshausen, B.A., Field, D.J.: How close are we to understanding V1? Neural Com-
put. 17(8), 1665–1699 (2005). https://doi.org/10.1162/0899766054026639

12. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strat-
egy employed by V1? Vis. Res. 37(23), 3311–3325 (1997). https://doi.org/10.1016/
s0042-6989(97)00169-7

13. Orban, G.A.: Higher order visual processing in macaque extrastriate cortex. Phys-
iol. Rev. 88(1), 59–89 (2008). https://doi.org/10.1152/physrev.00008.2007

14. Papadopoulou, M.: Normalization for sparse encoding of odors by a wide-field
interneuron. Science 332(6030), 721–725 (2011). https://doi.org/10.1126/science.
1201835

15. Perrone, J.A.: Model for the computation of self-motion in biological systems. J.
Opt. Soc. Am. A 9(2), 177 (1992). https://doi.org/10.1364/josaa.9.000177

16. Raudies, F., Neumann, H.: A review and evaluation of methods estimating ego-
motion. Comput. Vis. Image Underst. 116(5), 606–633 (2012). https://doi.org/10.
1016/j.cviu.2011.04.004

17. Rozell, C.J.: Sparse coding via thresholding and local competition in neural cir-
cuits. Neural Comput. 20(10), 2526–2563 (2008). https://doi.org/10.1162/neco.
2008.03-07-486

18. Schultz, P.F., et al.: Replicating kernels with a short stride allows sparse reconstruc-
tions with fewer independent kernels. In: arXiv preprint arXiv:1406.4205 (2014).
http://arxiv.org/abs/1406.4205

https://doi.org/10.1016/j.cub.2016.05.035
https://doi.org/10.1016/j.anbehav.2015.06.007
https://doi.org/10.1068/p010371
https://doi.org/10.1162/0899766041941899
https://doi.org/10.1162/0899766041941899
https://doi.org/10.1523/JNEUROSCI.1099-11.2011
https://doi.org/10.1007/978-1-84882-491-1
https://doi.org/10.1109/cvpr.2017.179
https://doi.org/10.1016/j.neuron.2014.02.043
https://doi.org/10.1016/j.neuron.2014.02.043
https://doi.org/10.1016/j.neuron.2012.08.040
https://doi.org/10.1038/381607a0
https://doi.org/10.1162/0899766054026639
https://doi.org/10.1016/s0042-6989(97)00169-7
https://doi.org/10.1016/s0042-6989(97)00169-7
https://doi.org/10.1152/physrev.00008.2007
https://doi.org/10.1126/science.1201835
https://doi.org/10.1126/science.1201835
https://doi.org/10.1364/josaa.9.000177
https://doi.org/10.1016/j.cviu.2011.04.004
https://doi.org/10.1016/j.cviu.2011.04.004
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1162/neco.2008.03-07-486
http://arxiv.org/abs/1406.4205
http://arxiv.org/abs/1406.4205

Learning Optic Flow Specificities of Pretectal Neurons 661

19. Spence, R.: The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev.
83(1), 13–34 (2007). https://doi.org/10.1111/j.1469-185X.2007.00030.x

20. Timofte, R., Van Gool, L.: Sparse flow: sparse matching for small to large displace-
ment optical flow. In: 2015 IEEE Winter Conference on Applications of Computer
Vision, pp. 1100–1106. IEEE (2015). https://doi.org/10.1109/wacv.2015.151

21. Vijayanarasimhan, S., et al.: SfM-Net: learning of structure and motion from video.
In: arXiv preprint arXiv:1704.07804 (2017). https://arxiv.org/abs/1704.07804

22. Wulff, J., Black, M.J.: Efficient sparse-to-dense optical ow estimation using a
learned basis and layers. In: 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 120–130. IEEE (2015). https://doi.org/10.1109/
cvpr.2015.7298607

23. Zhou, T., et al.: Unsupervised learning of depth and ego-motion from video. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE (2017). https://doi.org/10.1109/cvpr.2017.700

https://doi.org/10.1111/j.1469-185X.2007.00030.x
https://doi.org/10.1109/wacv.2015.151
http://arxiv.org/abs/1704.07804
https://arxiv.org/abs/1704.07804
https://doi.org/10.1109/cvpr.2015.7298607
https://doi.org/10.1109/cvpr.2015.7298607
https://doi.org/10.1109/cvpr.2017.700

Brain-Machine Interface for Mechanical
Ventilation Using Respiratory-Related

Evoked Potential

Sylvain Chevallier1(B) , Guillaume Bao2, Mayssa Hammami1,
Fabienne Marlats1, Louis Mayaud3, Djillali Annane2, Frédéric Lofaso2,

and Eric Azabou2

1 LISV - University of Versailles St Quentin, Versailles, France
sylvain.chevallier@uvsq.fr

2 Garches Neuro-Physio-Lab, Raymond Poincaré Hospital, AP-HP, Inserm 1173,
University of Versailles St Quentin, Versailles, France

eric.azabou@aphp.fr
3 Mensia Technologies, SA, Paris, France

Abstract. The correct ventilation for patients in intensive care units
plays a critical role for the prognostic and the recovery during the stay
in the hospital. Desynchronization between the ventilator and the patient
is an important source of stress, emphasized by the lack of commu-
nication due to intubation or loss of consciousness. This contribution
proposes a novel approach based on electroencephalographic (EEG)
activity to detect breathing effort. Relying both on recent neuroscience
finding on respiratory-related evoked potential and on latest development
of information geometry, the proposed approach elaborates on Rieman-
nian distances between EEG covariance matrices to differentiate among
different respiratory loads. The results demonstrate that this approach
outperform existing state-of-the-art methods quantitatively, in terms of
mean accuracy, and qualitatively, being able to predict level of breathing
discomfort.

Keywords: Brain-machine interface · Electroencephalography
Riemannian geometry · Mechanical ventilation

1 Introduction

Brain-machine interfaces (BMI) allow to interact with a physical system using
only cerebral activity and are mostly of interest in situations where muscle activ-
ity is not reliable or possible [24]. BMI also offer an opportunity for situations
where communication is difficult: it is still possible to measure a brain response
to specific stimulus or situation for unconscious patients [19]. Endotracheal ven-
tilation (“intubation”) is a commonly used intervention in the ICU [8] that
impairs verbal communication. In this context a reliable objective assessment of
ventilators performance is of particular importance both for patient’s quality of
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 662–671, 2018.
https://doi.org/10.1007/978-3-030-01424-7_65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_65&domain=pdf
http://orcid.org/0000-0003-3027-8241

BMI for Mechanical Ventilation Using Respiratory-Related Evoked Potential 663

stay and clinical outcome. In the case of patient-ventilator asynchrony [6], the
ventilator could interfere or impede the autonomous breathing function, which is
an automatic and unconscious process, inducing dyspnea. The dyspnea, that is
the sensation of shortness of breath, could be the cause of stressful experiences,
with psychological or physical consequences [21].

To avoid these situations of asynchrony between a patient and the mechani-
cal ventilation, they should be detected as soon as possible. Common approaches
are relying on measurements of physiological signals, such as pressure, flow or
blood oxygen saturation, and biosignals, such as electromyography. Several algo-
rithms have been proposed to automatically detect these asynchrony, but they
are restricted to certain types of disharmony [2,18]. The cortical networks for
breathing control generate an activity observable on EEG [7] and the discom-
fort level have been reported to be correlated with this neural activity [13]. Two
different kinds of neural activity are reported in the literature: preinspiratory
potentials that are event-related desynchronization [7,10] and respiratory-related
evoked potential which are event-related potential [13].

The detection and classification of these neural activity have been widely
explored in the brain-machine interface community. The event-related desyn-
chronization has been studied in the context of motor imagery-based paradigm
and the event-related potentials are usually employed with oddball paradigm
that elicits a P300 potential. Unfortunately, these signals are difficult to detect
because of the poor signal-to-noise ratio and the variability of EEG signal from
one subject to another. The most common approach is to design a patient-specific
spatial filters to enhance the signal of interest and it is often associated with a
reduction of dimensionality of the input. Unfortunately, these highly parametric
approaches suffer from various levels of overfitting and underperform on new
data [15]. Recent advances and a complete review could be found in [14].

Methods based on Riemannian geometry allows to revisit covariance-based
algorithms by considering the spatial covariance matrices in an adequate space.
Covariance matrices are symmetric and positive definite, they are elements of
manifold with a negative curvature. Euclidean distance is not adequate on these
manifolds; specific distances and divergences should be considered [12]. Rieman-
nian methods achieve state-of-the-art results on multiple BCI paradigm, in depth
reviews are provided in [4,25]. The study of [10,17] is the first attempt to use
Riemannian geometry for the detection of respiratory states, based on preinspi-
ratory potentials. The authors classify two situations, resting unloaded breathing
and inspiratory threshold loading, with a variant of the Minimum Distance to
Mean inspired by the k-mean algorithm.

The contributions described in this paper are the following:

– this is the first attempt to use Riemannian geometry on respiratory-related
evoked potentials (RREP) instead of preinspiratory potentials (PIP),

– classification is done in the tangent space, whereas existing approach use a
variation of a Riemannian k-mean,

– the experimental results goes beyond the binary classification (resting vs res-
piratory load) to perform a multiclass detection of the respiratory load,

664 S. Chevallier et al.

– the obtained results outperform previously reported results, in a more chal-
lenging setup (multiclass instead of two classes).

The next section describes the existing approaches for detecting respiratory-
related evoked potentials and preinspiratory potentials, along the proposed Rie-
mannian framework. Section 3 provides the details concerning the experiment
and the dataset. The described approaches are compared in Sect. 3.2 and the
classification accuracy is estimated in different setups. These results are dis-
cussed in Sect. 4.

2 Methods

We will denote as X ∈ R
C×N an EEG signal recorded with C electrodes during

N time steps. This EEG signal corresponds to a session containing multiple
trials.

2.1 Existing Approaches

When dealing with evoked potentials, XDAWN filters are a robust and widely
employed algorithm [20]. It tries to uncover a stimulus E ∈ R

Nt×C , where Nt

is number of time steps of the stimulus, by exploiting the temporal information
of the session with D ∈ R

N×Nt , a Toeplitz matrix with 0 except for stimulus
timing. Starting from the model that the EEG is XT = DE+η, where η ∈ R

C×N

is non-target signal, the objective of XDAWN is to find a suitable spatial filter
W ∈ R

C×Nf that enhances the stimulus while reducing the non-target signal.
Nf is the number of selected filters. The goal is to find W that maximizes the
SSNR:

Ŵ = argmaxW

tr WT Σ̂1W

tr WT Σ̂XW
, (1)

with Σ̂1 = ÊT DT DÊ, X̂X = XXT and Ê = (DT D)−1DT XT .
Similarly, for motor imagery, the most common preprocessing technique is to

rely on Common Spatial Patterns (CSP) to filter the signal [3]. The EEG signal
X should be centered and scaled and it is customary to bandpass filter the signal
in the frequency of interest. After epoching the signal, two covariance matrices
Σ1 and Σ2 are estimated, that correspond to 2 conditions. CSP is obtained by
the simultaneous diagonalization of:

WT Σ1W = Δ1 and WT Σ2W = Δ2, s.t. Δ1 + Δ2 = I (2)

The common practice is to select only a subset of spatial filters from W .
After this preprocessing, the data are usually well separated, thus a simple

classifier such as Fisher Linear Discriminant Analysis is sufficient to achieve very
high classification results. In this work, we also consider an SVM classifier using
either linear or RBF kernel, chosing the hyperparameters via cross-validation. To
ensure the reproducibility of the results and facilitate the comparison with [17],

BMI for Mechanical Ventilation Using Respiratory-Related Evoked Potential 665

we also consider the One-Class SVM [23] in our experiment. One should note
that a direct comparison with [17] is not possible, their study is restricted to a
two-class model and rely on AUC estimator whereas our study is multiclass and
evaluate models through their accuracy. Accuracy is a basic but correct estimator
in this context as the classes are balanced and the classifer are unbiaised [9].

2.2 Riemannian Geometry

Covariances matrices Σ are symmetric and positive-definite (SPD). Spatial
covariance matrices could directly be estimated from multivariate EEG sig-
nals and we rely on a more robust estimator that sample covariance estimation
Σ̂ = 1

N XXT , that is Schäfer-Strimmer estimator [11,22]. Covariance matri-
ces capture well changes of amplitude characteristic of event-related desynchro-
nization, but should be adapted to be suited to evoked potentials detection.
So-called extended covariance matrices [5] incorporate evoked potential temple
information, here we use XDAWN to build these extended covariance matrices.

The covariance matrices are estimated from the extended signal Xext =
[
ET

X

]
,

Xext ∈ R
2C×Nt .

It is possible to choose a metric such that the inner product on the tangent
space TΣM of each point Σ varies smoothly from one point to another. In that
case, all the points “glued” together are considered as a differentiable manifold
M. For the set of SPD matrices, one could choose the following inner product

〈Θ|Θ′〉Σ = tr(Σ−1ΘΣ−1Θ′) ,

for Θ and Θ′ in TΣM. This inner product allows to compute the path between
any pair of points from M, this path is called a curve and the shortest path
between two points is a geodesic γ(t). The length of the geodesic curve between
Σ1 and Σ2 is the Riemannian distance δ:

δ(Σ1, Σ2) =
∥∥∥log(Σ− 1

2
1 Σ2Σ

− 1
2

1)
∥∥∥

F
. (3)

It is known as the affine-invariant Riemannian metric [16].
Any point Θ of the tangent space TΣM could be mapped on M with

Σ′ = expΣ(Θ) = Σ
1
2 exp(Σ− 1

2 ΘΣ− 1
2)Σ

1
2

and the reverse mapping, from M to TΣM is

Θ = logΣ(Σ′) = Σ
1
2 log(Σ− 1

2 Σ′Σ− 1
2)Σ

1
2 .

The geodesic γ(t) on the manifold could then be defined as:

γ(t) = expΣ1
(t logΣ1

(Σ2)) (4)

666 S. Chevallier et al.

Another important notion is the mean of Σi points, which is computed dif-
ferently in the context of Riemannian manifold. This is the point minimizing the
square of the distance between Σ̄ and a Σi.

Σ̄ = argminΣ

N∑
i=1

δ2(Σi, Σ). (5)

In BMI, two approaches have been proposed for classification. The first one
is simply a classification in the tangent space located at the Riemannian mean
of the whole session [1]. The main interest of this approach is that all Euclidean
algorithm (LDA, SVM and others) could be directly applied in this tangent
space. It should be noted that elements of this space are symmetric matrices,
thus the dimension of the input is C(C + 1)/2 instead of C2.

The other classifier is called Minimum Distance to Mean (MDM), introduced
in [1], is presented for multi-class classification in the manifold. The classification
is decided from the nearest class mean. One of the interest of this approach is
that all the computation are made on the manifold, no computation take place
on the tangent space.

3 Experiments

The study protocol was approved by the local Ethics committee (CPP): num-
ber 11073 on 2011-11-24, and is part of the trial registered in the public trials
registry, http://clinicaltrials.gov, number NCT01548586. All study participants
gave their informed, written consent.

Fig. 1. Evoked potentials found for the subject with the best and the worst classifica-
tion results, that is MIL and DOD subject. The RREP are filtered with XDAWN to
using 8 components.

http://clinicaltrials.gov

BMI for Mechanical Ventilation Using Respiratory-Related Evoked Potential 667

3.1 Setup and Dataset

The subject was seated comfortably and breathed into a mouthpiece connected
to a low-resistance non-rebreathing valve (2600 Medium, Hans Rudolph Inc.,
St Louis, MO). Respiratory flows were recorded using a pneumotacho-Graph
(Fleish no. 2, Lausanne, Switzerland) connected to a differential pressure trans-
ducer (TMSi 45 5cmH2O, Holland). Mouth pressure (MP) was measured using
a differential pressure transducer (Validyne MP 45 100 cmH2O) and end-tidal
pressure of CO2 (PETCO2) using a capnograph (Capnogard 1265, Novametrix,
Wallingford, CT). EEG signal was recording synchronously with the breath-
ing using a 19 electrodes Cap (EasyCap, Brain Products GmbH, Germany).
Active electrodes were placed in equidistant positions (ActiCap, Brain Products
GmbH, Germany) according to the conventional “10–20” topographic system.
The ground electrode was positioned at AFz. The EEG signal was digitized at
2000 Hz and recorded using NeuroRT Studio (Mensiatech, Chantepie, France)
for subsequent processing.

After an adaptation period during which the subjects breathed quietly
through the unloaded circuit, the lowest and highest loads to be investigated
were applied during a few respiratory cycles to familiarize the subjects with the
load range and evaluation scale. The subjects were then exposed to five levels
of inspiratory pressure load conditions (PEEP valve for vital flow 100 set; Vital
Signs Inc., Gamida, France):

– Spontaneous breathing through the unloaded circuit (RS)
– Breathing with a resistive load of 10 cmH2O (R10),
– Breathing with a resistive load of 20 cmH2O (R20),
– Breathing with a resistive load of 30 cmH2O (R30).

Each load was applied for 5 min respiratory cycles, after a 3 min rest. To assess
that the different loads are generating RREP, Fig. 1 shows the average evoked
potentials obtained for each condition (RS, R10, R20 and R30) for two subjects,
those with the best and the worst classification results.

3.2 Results

Five methods are evaluated on this dataset: MDM and Tangent Space classifica-
tion, both introduced in Sect. 2.2, XDAWN+LDA as explained in Eq. (1), One-
Class SVM operating on vectorized covariance matrices (SVMeeg), as proposed
by [17] and a linear SVM (SVMphy) operating input vectors of 6 features from
the MP sensors (peak, average, total volume, flow variance, skewness and kur-
tosis) [17]. An extensive recursive feature selection process is set up for selecting
the best features among the 26 possibility for SVMphy classifier. All the meth-
ods are evaluated through 10-fold validation using accuracy, as the classes are
balanced and the classifer are unbiaised [9].

Figure 2 shows the obtained accuracy for all subjects in the multiclass case.
Classification in the tangent space offers the best results and outperform all other
methods for all subjects. The second method is the SVM based on physiological

668 S. Chevallier et al.

parameters which achieves honorable results. The XDAWN+LDA and the MDM
classifiers yield comparable results, the MDM displaying a larger variance. The
SVM classifying the covariance matrices is performing very poorly, confirming
that Euclidean approaches are not suited to deal correctly with curved manifold.

Fig. 2. Comparison of multiclass detection of RREP for each of the 14 subjects with
Riemannian approaches Minimum Distance to Mean (MDM) and Tangent Space (TS)
and state of the art approaches, that is XDAWN+LDA and SVM based on physiological
(SVMphy) or EEG inputs (SVMeeg).

Table 1. Accuracy values for binary classification, that is detection of normal breathing
vs respiratory load. The accuracies are compared for the proposed Riemannian app-
roach (Tangent Space on EEG) for both evoked potential (RREP) and pre-inspiratory
potential (PIP), and for state-of-the-art approach for physiological input (SVM on
pressure sensors).

Method Input Accuracy (%)

SVM physiological data RREP 71.76 ± 9.83%

Tangent space RREP 93.46 ± 10.04%

SVM physiological data PIP 85.17 ± 12.85%

Tangent space PIP 87.75 ± 12.72%

Figure 3 shows the average accuracy values for the multiclass case (dis-
criminating between RS, R10, R20 and R30) and the two-class case (RS vs
R10/R20/R30). The two-class case allows a comparison with the state-of-the-
art study of [17]: it could be seen that the results of all the methods are slightly

BMI for Mechanical Ventilation Using Respiratory-Related Evoked Potential 669

degraded in the multiclass case. Table 1 summarizes the results of the two-class
case with RREP and compares with the two best methods for PIP. Tangent
space classification on RREP obtains the best results.

Fig. 3. Mean values for RREP classification for all subjects under 3 increasing respira-
tory loads and one control condition, for MDM, Tangent Space, XDAWN+LDA, SVM
based on physiological and EEG data.

4 Discussion and Conclusion

This paper presents a first step towards a closed-loop BMI ventilator. One cur-
rent limitation is that EEG is expensive, cumbersome, sensitive to various sources
of noise, and not suitable for long-term recordings. Nonetheless, these limitations
could be mitigated in a medical and controlled environment. For online process-
ing, the proposed method still needs a physiological channel to extract cues
for inspiration and expiration. This drawback is of limited importance as such
sensors are cheap and already available on existing ventilator devices.

The existing approaches are relying on physiological or behavioral informa-
tion, but lack precision to detect certain asynchronous state. A first attempt
to use EEG information together with Riemannian geometry yield promising
results, but the method proposed by the authors require to tune several param-
eters and is limited to a two-class case.

670 S. Chevallier et al.

The proposed method relies on respiration-related evoked potentials instead
of pre-inspiratory potentials and thanks to an appropriate Riemannian classifier
outperforms current state of the art. The results are more accurate and allow
to detect different respiratory loads, and thus open the possibility quantify the
breathing effort.

References

1. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer
interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4),
920–928 (2012)

2. Blanch, L., et al.: Validation of the better care R© system to detect ineffective efforts
during expiration in mechanically ventilated patients: a pilot study. Intensiv. Care
Med. 38(5), 772–780 (2012)

3. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimiz-
ing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag.
25(1), 41–56 (2008)

4. Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based
brain-computer interfaces; a primer and a review. Brain-Comput. Interfaces 4,
1–20 (2017)

5. Congedo, M., Barachant, A., Andreev, A.: A new generation of brain-computer
interface based on Riemannian geometry. arXiv preprint arXiv:1310.8115 (2013)

6. Dres, M., Rittayamai, N., Brochard, L.: Monitoring patient-ventilator asynchrony.
Curr. Opin. Crit. Care 22(3), 246–253 (2016)

7. Dubois, M., et al.: Neurophysiological evidence for a cortical contribution to the
wakefulness-related drive to breathe explaining hypocapnia-resistant ventilation in
humans. J. Neurosci. 36(41), 10673–10682 (2016)

8. Esteban, A., et al.: How is mechanical ventilation employed in the intensive care
unit? An international utilization review. Am. J. Respir. Crit. Care Med. 161(5),
1450–1458 (2000)

9. Fatourechi, M., Ward, R.K., Mason, S.G., Huggins, J., Schlögl, A., Birch, G.E.:
Comparison of evaluation metrics in classification applications with imbalanced
datasets. In: International Conference on Machine Learning and Applications
(ICMLA), pp. 777–782. IEEE (2008)

10. Hudson, A.L., et al.: Electroencephalographic detection of respiratory-related cor-
tical activity in humans: from event-related approaches to continuous connectivity
evaluation. J. Neurophysiol. 115(4), 2214–2223 (2016)

11. Kalunga, E.K., Chevallier, S., Barthélemy, Q., Djouani, K., Monacelli, E., Hamam,
Y.: Online SSVEP-based BCI using riemannian geometry. Neurocomputing 191,
55–68 (2016)

12. Kalunga, E.K., Chevallier, S., Barthélemy, Q., Djouani, K., Hamam, Y., Mona-
celli, E.: From euclidean to riemannian means: information geometry for SSVEP
classification. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp.
595–604. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25040-3 64

13. Knafelc, M., Davenport, P.W.: Relationship between magnitude estimation of resis-
tive loads, inspiratory pressures, and the rrep p1 peak. J. Appl. Physiol. 87(2),
516–522 (1999)

14. Lotte, F., et al.: A review of classification algorithms for eeg-based brain-computer
interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018). http://stacks.
iop.org/1741-2552/15/i=3/a=031005

http://arxiv.org/abs/1310.8115
https://doi.org/10.1007/978-3-319-25040-3_64
http://stacks.iop.org/1741-2552/15/i=3/a=031005
http://stacks.iop.org/1741-2552/15/i=3/a=031005

BMI for Mechanical Ventilation Using Respiratory-Related Evoked Potential 671

15. Mayaud, L., et al.: Brain-computer interface for the communication of acute
patients: a feasibility study and a randomized controlled trial comparing perfor-
mance with healthy participants and a traditional assistive device. Brain-Comput.
Interfaces 3(4), 197–215 (2016)

16. Moakher, M.: A differential geometric approach to the geometric mean of symmet-
ric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)

17. Navarro-Sune, X., et al.: Riemannian geometry applied to detection of respiratory
states from EEG signals: the basis for a brain-ventilator interface. IEEE Trans.
Biomed. Eng. 64(5), 1138–1148 (2017)

18. Piquilloud, L., et al.: Neurally adjusted ventilatory assist (NAVA) improves patient-
ventilator interaction during non-invasive ventilation delivered by face mask. Inten-
siv. Care Med. 38(10), 1624–1631 (2012)

19. Reuter, B., Linke, D., Kurthen, M.: Cognitive processes in unconscious patients? A
brain mapping study of the p300 potential. Archiv fur Psychologie 141(3), 155–173
(1989)

20. Rivet, B., Souloumiac, A., Attina, V., Gibert, G.: xDAWN algorithm to enhance
evoked potentials: application to brain-computer interface. IEEE Trans. Biomed.
Eng. 56(8), 2035–2043 (2009)

21. Rotondi, A.J., et al.: Patients’ recollections of stressful experiences while receiving
prolonged mechanical ventilation in an intensive care unit. Critical Care Med.
30(4), 746–752 (2002)

22. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol.
4(1) (2005)

23. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

24. Wolpaw, J., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.:
Brain-computer interfaces for communication and control. Clin. Neurophysiol.
113(6), 767–791 (2002)

25. Yger, F., Berar, M., Lotte, F.: Riemannian approaches in brain-computer inter-
faces: a review. IEEE Trans. Neural. Syst. Rehabil. Eng. 25(10), 1753–1762 (2017)

Effectively Interpreting Electroencephalogram
Classification Using the Shapley Sampling

Value to Prune a Feature Tree

Kazuki Tachikawa(&), Yuji Kawai, Jihoon Park, and Minoru Asada

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan

{kazuki.tachikawa,kawai,jihoon.park,

asada}@ams.eng.osaka-u.ac.jp

Abstract. Identifying the features that contribute to classification using
machine learning remains a challenging problem in terms of the interpretability
and computational complexity of the endeavor. Especially in electroen-
cephalogram (EEG) medical applications, it is important for medical doctors and
patients to understand the reason for the classification. In this paper, we thus
propose a method to quantify contributions of interpretable EEG features on
classification using the Shapley sampling value (SSV). In addition, a pruning
method is proposed to reduce the SSV computation cost. The pruning is con-
ducted on an EEG feature tree, specifically at the sensor (electrode) level,
frequency-band level, and amplitude-phase level. If the contribution of a feature
at a high level (e.g., sensor level) is very small, the contributions of features at a
lower level (e.g., frequency-band level) should also be small. The proposed
method is verified using two EEG datasets: classification of sleep states, and
screening of alcoholics. The results show that the method reduces the SSV
computational complexity while maintaining high SSV accuracy. Our method
will thus increase the importance of data-driven approaches in EEG analysis.

Keywords: Electroencephalogram (EEG) � Shapley sampling value (SSV)
Convolutional neural networks (CNN)

1 Introduction

Deep learning, especially via convolutional neural networks (CNNs), is a promising
method of classification of electroencephalogram (EEG) signals. CNNs enable iden-
tification of brain states from raw EEG signals and provide higher classification
accuracy than conventional machine learning techniques [6, 11]. However, under-
standing how the models classify the signals is difficult because CNNs have highly
complex nonlinear functions. Visualization of features, which contribute to their
classification, may engender neurophysiological insights and explanations that can be
applied to medical diagnoses.

To identify the interpretable features of EEG, bandpass filters are often applied to
EEG signals in standard EEG analysis to separate them into five frequency bands:
delta, theta, alpha, beta, and gamma. Waves in each band are then analyzed in terms of

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 672–681, 2018.
https://doi.org/10.1007/978-3-030-01424-7_66

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_66&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_66&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_66&domain=pdf

their amplitude and phase. Therefore, it is useful to quantify the contributions of
amplitude and phase in a specific frequency band in the EEG classification.

Various methods to interpret classification of learning models have been proposed.
They can be categorized into two groups: backpropagation-based methods, and per-
turbation-based methods [1]. Backpropagation-based methods, including layer-wise
relevance propagation (LRP) [3], deep learning important features (DeepLIFT) [13],
integrated gradients (IG) [16], and deep Shapley additive explanations (SHAP) [8],
compute the contributions of all input features in accordance with the backpropagation
of class information from an output layer to an input one (as denoted in orange
characters in Fig. 1). Their computational cost is relatively low. However, these
methods show the contributions only in the input feature space, which is not always
interpretable.

In contrast, perturbation-based methods, including the Shapley sampling value
(SSV) [14], local interpretable model-agnostic explanations (LIME) [10], and kernel
SHAP [8], regard the classifier as a black-box, i.e., they compute the contributions
based on pairs of a perturbed (masked or permuted) input and its output (as denoted in
blue characters in Fig. 1). These methods can display the contributions in a space
representing the perturbation, which differs from the input feature space. By perturbing
the classifiers in an interpretable way, we can obtain the contributions in an interpretive
feature space. However, the computational cost becomes drastically higher as the
number of features increases.

For visualization of signals contributing to EEG classification, several approaches
have been proposed. Sturm et al. [15] applied LRP to EEG classifiers. However, LRP
cannot directly reflect the contributions in the amplitude-phase form because it is based
on backpropagation. Schirrmeister et al. [11] statistically analyzed EEG classifiers
using two methods: input-feature unit-output correlation maps (IFUOCM) and input-
perturbation network-prediction correlation maps (IPNPCM). IFUOCM computes
correlations between the values of output neurons and the input powers of each

Fig. 1. Overview of methods to interpret EEG classification and a hierarchy of EEG features.

Effectively Interpreting Electroencephalogram Classification 673

frequency. IPNPCM calculates correlations of the output values with variations of the
perturbed amplitude or phase [5]. However, the correlations do not always exactly
reflect the impact of individual features on the prediction. In addition to the above three
methods, two other methods were proposed in [7, 18], respectively. However, they
require modifying input features or specifying the classifier architecture.

Recently, IG and SHAP were shown to be theoretically superior to other methods
[8, 16] because they are compatible with the Shapley value (SV) that guarantees the
equitable attribution of contributions. The SV assigns the contributions according to the
impact on the prediction of each feature. In perturbation-based methods, which can
quantify the contributions of any classifier in any feature space, the SSV and kernel
SHAP also satisfy the SV axioms [8].

Based on the above review, the SSV is apparently a prominent method for inter-
preting EEG classification because it can display the contributions in an interpretable
space and it satisfies the SV axioms. However, its computational cost is relatively high.
In this paper, we apply the SSV to EEG classifiers and propose a pruning method to
reduce its computational cost. EEG features form a tree structure comprised of a sensor
(electrode) level, frequency-band level, and amplitude-phase level. If the contribution
of a feature at a higher level (e.g., sensor level) is very small, the contributions of
features at the lower levels of the feature (e.g., frequency-band level of the sensor)
should also be small. Therefore, calculation of the contributions of such features can be
ignored or pruned. We evaluate the proposed method using two benchmark EEG
datasets to confirm the reduction of its computational cost. Furthermore, we demon-
strate the higher interpretability of the proposed method compared to IG, IPNPCM, and
IFUOCM.

2 Method

The SV was originally proposed to fairly assign the gains to players in cooperative
game theory [12]. In its application to classification, the contribution /i f ; xð Þ of the i th
feature out of input feature x in a classifier, f , is given as:

/i f ; xð Þ ¼ P
S�xni

Sj j! M� Sj j�1ð Þ!
M! fS[i S[ið Þ � fS Sð Þ½ �; ð1Þ

where M denotes the number of input features, S denotes all possible subsets of an
input feature space except for feature xi, and fS Sð Þ indicates the output of classifier f for
input S. Basically, the contribution of a feature is defined as how much the output of a
classifier is reduced by removal of the feature. The amount of reduction is then
averaged over all possible combinations of features. This calculation requires com-
putational cost O 2nð Þ for input size n and retraining of the classifier for all possible
combinations. The SSV approximates the SV using a sampling method to reduce its
computational cost [14].

We apply the SSV to EEG classification to identify the contributions of amplitude
and phase in each frequency band in each sensor (electrode). These features, i.e.,
amplitude phase, frequency bands, and sensors, form a tree structure (left side in Fig. 1).

674 K. Tachikawa et al.

We contend that pruning of the tree can reduce the SSV computational cost. First, we
calculate the SSV at the sensor level, specifically to assess the influence of the elimi-
nation of a sensor. The number of features (electrodes) at this level is relatively small.
The sensor signals with small contributions do not contribute to the classification at
frequency-band or amplitude-phase levels. Therefore, it is not necessary to calculate the
contributions of such irrelevant sensors at the lower levels. Similarly, calculation of the
contributions of amplitude and phase can be ignored if the frequency bands do not
contribute to the classification. The pruning can reduce the computational cost, espe-
cially if a few feature branches contribute to the classification.

3 Experimental Settings

We conducted experiments using two EEG datasets to verify the validity of the pro-
posed method. One dataset is the PhysioNet polysomnography (PSG) dataset. It easily
shows the raw waves and applies the perturbation-based methods because it includes
data of only three sensors. Therefore, we applied the proposed method and IG to this
dataset and calculated the computational efficiency of our proposed pruning method.
The other dataset was the UCI EEG dataset. This dataset contains much more sensor
data. Therefore, we empirically compared the proposed method with IPNPCM and
IFUOCM by the input flipping method.

3.1 PhysioNet Polysomnography Dataset

The PhysioNet PSG dataset is a publicly available sleep PSG dataset from PhysioNet
[4]. It includes data of 20 healthy subjects (ten males; ten females) of ages ranging from
25 to 34 years. We employed EEG (Fpz-Cz and Pz-Oz electrodes) and electroocu-
lography (EOG) signals in this dataset. Their sampling rates were 100 Hz, and the
duration of epochs was 30 s. During the first night of the experiment, PSG was used to
train the classifier; during the last night, it was used to test it. We constructed a six-
layered CNN, as shown in Fig. 2, to classify the data into five sleep stages: Rem,
Wake, N1, N2 and N3. Its classification accuracy for test data is 81%. The sleep stages
are officially labeled based on the EEG and EOG signals. For example, the class N3 is
defined as the large low-frequency power (delta band) in EEG. Therefore, the power of
the delta band is expected to contribute to CNN classification for N3.

We compared the results of our proposed method with those of IG [16]. We applied
them to CNN and visualized their results on randomly chosen N3 data. In addition, we
evaluated the proposed pruning method in terms of its accuracy and computational cost
which is the number of calculations of model outputs. We randomly chose 400 data and
computed their SSVs with and without pruning. A branch was pruned when the
contribution was smaller than one-fifth that of the most contributed feature. We
regarded the SSV of 1,000 samples per feature as the true value, i.e., the SV, and
evaluated the difference between the true value and the value estimated by the SSV
with pruning.

Effectively Interpreting Electroencephalogram Classification 675

3.2 UCI EEG Dataset

The UCI EEG dataset is a publicly available event-related EEG dataset in the UCI
Machine Learning Repository [2]. The dataset is comprised of EEG data collected
using 64 electrodes at 256 Hz. It contains 120 data items for one subject, each obtained
within 1 s and labeled as “alcoholic” or “control.” The number of subjects is 122 (77
alcoholics and 45 controls). We evaluated the accuracy of CNN using ten-fold cross-
validation, resulting in 75% accuracy, as shown in Fig. 3. We compared the results of
the SSV and IPNPCM. We applied them on 30 randomly chosen data items. In
addition, we empirically quantified the power of explanation using “frequency-band-
level flipping” based on “pixel flipping” [3]. Then, the output values of the classifier
were evaluated while removing the most highly contributed features. The output
decrease means the power of the explanation.

4 Results

4.1 Results for the PhysioNet PSG Dataset

An example of the SSV result on the randomly chosen N3 data is shown in Fig. 4. The
contributions of features are described as percentages of the SSVs in trees. Orange and
blue percentages denote the contributions with and without pruning, respectively.

Fig. 2. CNN architecture in the PhysioNet experiment.

Fig. 3. CNN architecture in the UCI EEG experiment.

676 K. Tachikawa et al.

The figure shows that the power of the delta band in the Fpz-Cz electrode is the most
important for this classification, which corresponds to the definition of N3. The per-
centages of the features are 78% for the SSV with pruning and 76% for the SSV
without pruning, suggesting that the pruning effect on the accuracy is minimal.
Figure 5 shows an example of the IG result, where the colors on raw EEG signals
indicate their contributions. IG shows the contributions in the input space, i.e., raw
EEG signals. Therefore, this means of visualization is difficult to interpret and requires
additional analysis to identify the important frequency bands.

Figure 6 shows the effects of pruning on the accuracy (left panel) and computa-
tional cost (right panel). The horizontal axes indicate the number of samplings per
feature in both panels. The solid and broken curves indicate the values for the SSV with
and without pruning, respectively. The green, red, and blue curves represent the results
of classification for the N2 class, all classes, and the N3 class, respectively. The left

Fig. 4. Example of the results of the Shapley sampling value (SSV). Orange and blue
percentages indicate the SSVs with and without pruning, respectively. Orange diagonal lines
represent pruning. (Color figure online)

Fig. 5. Example of the results of ingredient gradients [16]. Curves indicate raw EEG signals and
their colors represent their contributions at the given time. (Color figure online)

Effectively Interpreting Electroencephalogram Classification 677

panel shows the approximation errors of the SSVs with respect to the true SVs. The
results show that the errors of the SSVs with pruning are the same level as those
without pruning, especially in the range of samples per feature from 10 to 50. The right
panel shows that pruning reduces the computational cost to approximately two-thirds.
These results suggest that the proposed method realizes effective the SV estimation.

4.2 Results for the UCI EEG Dataset

The results of the proposed SSV and IPNPCM are shown in Figs. 7 and 8. The SSV
demonstrates significant contributions of amplitude in the delta and gamma bands and
of phase in the delta band. IPNPCM contributes amplitude in the beta and gamma
bands and phase in the delta band. The beta band was not addressed by the SSV
because of the already mentioned problem of the correlation. Figure 9 shows the results

Fig. 6. Comparison of the results of the SSV with and without pruning. Left: difference between
the true Shapley value and the SSV. Right: computational cost.

Fig. 7. Averaged contributions for 100 data items, visualized by the SSV with pruning.

678 K. Tachikawa et al.

of the “frequency-band-level flipping” for the SSV methods with pruning (blue curve),
IPNPCM (orange curve), and IFUOCM (green curve). The classification scores of the
SSV (with pruning) significantly decreases compared to those of IPNPCM and
IFUOCM, suggesting that the proposed SSV more appropriately elucidates the
classification.

Fig. 8. Averaged contributions for 100 data items, visualized by IPNPCM [11].

Fig. 9. Result of frequency-band-level flipping for the SSV with pruning, IPNPCM, and
IFUOCM [11]. The classification score is normalized so that the scores of the original input are
1.0.

Effectively Interpreting Electroencephalogram Classification 679

5 Discussion and Conclusion

In this paper, we proposed a pruning method in the SV sampling and demonstrated that
the method can effectively quantify the contributions of features in CNN classifiers. We
verified the proposed method when applied to two tasks: classification of sleep stages
and alcoholic screening. In the first experiment, the SSV assigned the largest contri-
butions to amplitude in the delta band (Fig. 4), which was consistent with the definition
of the N3 sleep stage. In the second experiment, the SSV displayed the contributions of
amplitude in the delta and gamma bands and phase in the delta band (Fig. 7). A recent
review of EEGs of alcoholics demonstrated that many studies focus on the gamma
band for screening the event-related potentials of alcoholics [9]. In addition, Tch-
eslavski and Gonen [17] found significant differences of the power and coherence in
the lower frequency bands between alcoholics and controls. These results correspond to
our visualization, suggesting that the proposed method can explain the contributing
features.

Moreover, the conducted experiments produced the following four results. (1) The
proposed method effectively interpreted the EEG classification in the amplitude-phase
feature space, while gradient-based methods, including IG, could not explain them in
such an interpretable feature space (Fig. 5). (2) Our pruning method reduced the
computational cost while maintaining the estimation accuracy (Fig. 6). (3) The SSV
explanation is superior to the IPNPCM explanation and IFUOCM explanation in terms
of the pixel-flipping evaluation (Fig. 9). (4) The contributions visualized using the
proposed method are consistent with previous findings on EEG biomarkers.

Although pruning reduces the SSV computational cost, the cost is still much greater
than those of backpropagation-based methods. We must address this problem to apply
the SSV to medical data that have a very large number of features. We surmise that
combining our method with a backpropagation-based method, such as IG, can enable a
more feasible visualization technique.

Acknowledgements. This work was supported by the Center of Innovation Program from Japan
Science and Technology Agency and JST CREST Grant Number JPMJCR17A4, Japan.

References

1. Ancona, M., Ceolini, E., Oztireli, C., Gross, M.: Towards better understanding of gradient-
based attribution methods for deep neural networks. In: Proceedings of the 6th International
Conference on Learning Representations (2018)

2. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)
3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Muller, K.R., Samek, W.: On pixel-wise

explanations for non-linear classifier decisions by layer-wise relevance propagation.
PLoS ONE 10(7), e0130140 (2015)

4. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet. Circulation 101(23),
e215–e220 (2000)

5. Hartmann, K.G., Schirrmeister, R.T., Ball, T.: Hierarchical internal representation of spectral
features in deep convolutional networks trained for EEG decoding. In: Proceedings of the
6th International Conference on Brain-Computer Interface, pp. 1–6 (2018)

680 K. Tachikawa et al.

6. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.:
EEGNet: a compact convolutional network for EEG-based brain-computer interfaces. arXiv:
1611.08024 (2016)

7. Li, Y., et al.: Targeting EEG/LFP synchrony with neural nets. In: Advances in Neural
Information Processing Systems, pp. 4623–4633 (2017)

8. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In:
Advances in Neural Information Processing Systems, pp. 4768–4777 (2017)

9. Mumtaz, W., Vuong, P.L., Malik, A.S., Rashid, R.B.A.: A review on EEG-based methods
for screening and diagnosing alcohol use disorder. Cogn. Neurodynamics, 1–16 (2018)

10. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the predictions of
any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

11. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG
decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

12. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)
13. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating

activation differences. arXiv:1704.02685 (2017)
14. Shtrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with

feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)
15. Sturm, I., Lapuschkin, S., Samek, W., Muller, K.R.: Interpretable deep neural networks for

single-trial EEG classification. J. Neurosci. Methods 274, 141–145 (2016)
16. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. arXiv:1703.

01365 (2017)
17. Tcheslavski, G.V., Gonen, F.F.: Alcoholism-related alterations in spectrum, coherence, and

phase synchrony of topical electroencephalogram. Comput. Biol. Med. 42(4), 394–401
(2012)

18. Vilamala, A., Madsen, K.H., Hansen, L.K.: Deep convolutional neural networks for
interpretable analysis of EEG sleep stage scoring. arXiv:1710.00633 (2017)

Effectively Interpreting Electroencephalogram Classification 681

http://arxiv.org/abs/1611.08024
http://arxiv.org/abs/1611.08024
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1710.00633

EEG-Based Person Identification Using
Rhythmic Brain Activity During Sleep

Athanasios Koutras1,2(&) and George K. Kostopoulos2

1 Department of Informatics and Mass Media, Technical Educational
Institute of Western Greece, R. Fereou, 27100 Pyrgos, Greece

koutras@teiwest.gr
2 Neurophysiology Unit, Department of Physiology, Medical School,

University of Patras, Rion, 26504 Patras, Greece

Abstract. In this paper we present a novel approach to the person identification
problem using rhythmic brain activity of spindles from whole night EEG
recordings. The proposed system consists of a feature extraction module and a
K-NN based classifier. Different types of features from time, frequency and
wavelet domain are used to highlight the topographic, temporal, morphological,
spectral and statistical discriminative information of sleep spindles. The feature
set’s efficacy is exhaustively tested in order to find the most significant
descriptors that maximize intra-subject separability. Extensive experiments
resulted in the optimal number of sensors and features that must be used to form
the subject-specific unique descriptors. The proposed system showed significant
identification accuracy of 99% * 90% for 2–20 subjects, and not lower than
86% when identifying 28 persons, indicating that this new type of modality
should be further investigated to be used in EEG based identification
applications.

Keywords: EEG � Sleep spindles � Person identification � Feature selection

1 Introduction

Recognition of individuals using their unique physiological or behavioral character-
istics has already been proposed and examined by many researchers worldwide during
the last decade. Person identification is a pattern recognition problem, where a system
tries to recognize the identity of a person by comparing a set of his/her personal
characteristics with templates already stored in the system’s database during an
enrollment phase. In the previous years, different types of characteristics have been
proposed that include but are not limited to fingerprints, iris, face, emotion, speech,
keystroke typing, and walking sequences. [1, 2].

Recently, a new mode of modality has been proposed for labeling an individual
which is based on the person’s brain signal activity measured by a number of EEG
sensors located on the subject’s sculp. Using brain signals for person identification has
some significant advantages compared to other traditional modalities which are focused
mainly on two points: (a) uniqueness of a person’s brain signal and (b) difficulty of the
on-purpose reproduction of it. During the last years a great number of identification

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 682–692, 2018.
https://doi.org/10.1007/978-3-030-01424-7_67

http://orcid.org/0000-0002-1411-8697
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_67&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_67&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_67&domain=pdf

systems based on EEG signal acquisition have been proposed [3]. Most of them are
based on the extraction of brain activity descriptors in various situations that include
relax rest state (eyes open/closed) [4], visually evoked potentials [5], mental tasks [6],
emotions [6], and motor imagery [7]. The aim of these systems is to increase the intra-
subject separability using feature extraction and pattern recognition algorithms to
improve the performance of the identification.

One of the basic problems in EEG based person identification is the acquisition of
brain signals which in many cases is not a comfortable situation for subjects. Usually
for accurate identification, a great number of EEG electrodes properly placed by an
expert on the subject’s head is required which increases the complexity of the process.
To address this problem, it is crucial to estimate the significance of each sensor and
determine an optimal small subset that will be used instead, without affecting the
recognition accuracy [8]. Another problem often faced in the EEG based identification
task is the dimensionality of the feature vectors that are used to describe the neural
activity in various situations. Again, one should also estimate the significance of each
feature and reduce their dimensionality, which together with the small number of
sensors, will help identification systems to work more efficient [9].

The main contribution of this paper is two-fold: (i) we introduce the problem of
person identification using rhythmic brain activity of spindles from EEG recordings
during sleep, something that to our knowledge hasn’t been presented in the literature
(ii) after extensive experiments, we propose the most efficient set of sensors and
locations, together with a set of the most significant descriptors that should be used for
fast training, low complexity and high accuracy in a person identification system based
on the K-NN classifier. Sleep spindles are micro-events in EEG which is characteristic
of Nonrapid Eye Movement (NREM) stages of sleep. It is a transient waveform with
waxing-waning morphology, particularly present in stage 2 of NREM with frequency
in the range 11–16 Hz with duration at least 0.5 s [10].

This paper is organized as follows: In Sect. 2 we present our proposed method for
person identification using EEG recordings during sleep. In the same Section, we
present the feature extraction module that extracts brain activity descriptors in three
different domains: time, frequency, and wavelets. In Sect. 3 the Experimental Setup
and the database is presented, while in Sect. 4 we discuss the experimental results.
Finally, in Sect. 5 some conclusions are drawn.

2 Method

2.1 Feature Extraction

The main purpose of this work is to examine whether rhythmic brain activity of
spindles during sleep presents different characteristics across persons and therefore can
be used as template for successful identification of different subjects. To study this, we
have selected a set of well-known spindle descriptors extracted from various domains,
previously used in the problem of spindle recognition from EEG recordings with great
success [11]. The extracted descriptors use time, frequency, and wavelet domain rep-
resentations of the signal to describe their morphology, topology, spectral character-
istics as well as their most important statistical properties.

EEG-Based Person Identification Using Rhythmic Brain Activity 683

Time Domain Descriptors (F1-F10). Morphology of sleep spindles in the time
domain has proven to play a significant role in the task of automatic spindle recognition
in all night multichannel EEG recordings of brain activity during sleep. In our work we
have used the following ten (F1 – F10) low level descriptors in the time domain:

F1 - Duration (in sec): Spindle duration is defined as the time between the start
point and the end point of the spindle as this is marked by expert annotators of the
database.
F2 - Mean: The arithmetic mean of the spindle’s amplitude
F3 - Standard deviation: The 2nd order statistical moment (variance) of the spin-
dle’s amplitude.
F4 - Skewness: The 3rd central moment of the amplitude’s envelope. This feature
describes the shift of the spindle’s maximal amplitude and is positive when it shows
shift towards the left, negative when it is shifted towards the right.
F5 - Kurtosis: The 4th order central moment of the amplitude’s envelope. This
feature describes the sharpness of the spindle’s envelope and it is positive for sharp,
negative for flat envelopes compared to the normal distribution.
F6 - Maximum: The maximum peak (positive or negative) of the spindle’s
amplitude.
F7 - Shape Factor:

SF ¼ xrms
1
N

PN
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
x nð Þj jp ð1Þ

Among the features extracted from the time domain representation of the signal, the
following three main Hjorth features were also extracted and used in the experiments.
These parameters were originally proposed by Hjorth [12] and used in many cases of
EEG signal analysis as they measure the second moment of first and second differences
of the signal:

F8 - Activity: The activity parameter describes the power of the spindle, the variance
of the time function. This descriptor indicates the surface of the power spectrum.

Activity xð Þ ¼
ffi
1
N

XN

n¼1
x2 nð Þ

r
ð2Þ

F9 - Mobility: The mobility parameter represents the mean frequency or the pro-
portion of standard deviation of the power spectrum.

Mobility xð Þ ¼ Activity diff xð Þð Þ
Activity xð Þ ð3Þ

684 A. Koutras and G. K. Kostopoulos

F10 - Complexity: The complexity parameter represents the change in frequency by
comparing the signal’s similarity with a pure sine wave, value converges to 1 when
signal is more similar.

Complexity xð Þ ¼
ffi
Mobility2 diff xð Þð Þ �Mobility2 xð Þ

p
ð4Þ

Frequency Domain Descriptors (F11-F27). Spindles like any other rhythmic brain
activity carry important information in the frequency domain. For this case we have
used the Power Spectral Density (PSD) to extract significant descriptors to be included
in our identification task. The PSD was obtained using Welch’s averaged periodogram
method [in ear]. In this work 17 (F11-F27) features in total were extracted from the
frequency domain:

F11 - Peak Frequency in sigma band. We estimate the peak frequency in the sigma
band between 12–16 Hz. Peaks are defined as the frequency points where the first
derivative of the spectrum changes from a positive to a negative value.
F12 - Intra-spindle frequency change: The rate of frequency change using the
instant frequency estimate in the start and the end of the spindle (in Hz/sec).
F13 - Power in lower sigma band: The spindle’s energy in the lower sigma band
ð9� 12HzÞ normalized by total signal’s power.
F14 - Power in higher sigma band: The spindle’s energy descriptors in the higher
sigma band ð12� 16HzÞ normalized by total signal’s power.
F15 - Power in the sigma band: The spindle’s energy descriptors in the sigma band
12� 16Hz½ � normalized by the total signal’s power.
F16-20 - Power in basic bands (alpha, beta, gamma, delta, theta): Using the power
spectral density, we have estimated the spindle’s energy descriptors in five different
frequency bands, namely: (i) the delta (1–4 Hz) (F16), (ii) theta (4–8 Hz) (F17),
(iii) alpha (8–12 Hz) (F18), (iv) beta (13–30 Hz) (F19) and (v) gamma (30–45 Hz)
(F20) by calculating the power of the signal in the band of interest normalized by
the total power of the signal (normalized in-band spectral density).
F21 - Average inter-spindle frequency: To estimate the average inter-spindle
frequency, the S-transform (ST) of the spindle x tð Þ is used as in [13]. From the
s-transformed signal, the time-frequency representation of the spindle S t; fð Þ is
estimated using equation:

S t; fð Þ ¼
Z 1

�1
x sð Þ fj jffiffiffiffiffiffi

2p
p e�

t�sð Þ2 f 2
2 e�i2pf sds ð5Þ

and the average along the frequency axis is computed for every time point using:

faver tð Þ ¼
R1
�1 f S t; fð Þj jdf
R1�1 S t; fð Þj jdf ð6Þ

Using the faver tð Þ we next perform linear regression over the spindle’s duration. The
frequency value of the regression line at the midpoint of the spindle duration window is
the average inter-spindle frequency feature.

EEG-Based Person Identification Using Rhythmic Brain Activity 685

F22 - Slope of inter-spindle frequency change: Using the above linear regression,
the slope of the calculated line is estimated to describe the inter-spindle frequency
change.
F23 - Minimum PSD value: The minimum value of the power spectral densitybPw fð Þ
F24 – Maximum PSD value: The maximum value of the power spectral densitybPw fð Þ
F25 - Mean PSD value: The mean value of the power spectral density bPw fð Þ
F26 - Standard deviation of the PSD value: The standard deviation of the power
spectral density bPw fð Þ
F27 - The Spectral Edge Frequency - 85%: The SEF85 measures the spectral shape
and is the frequency fSEP85 below which the 85% of the signal’s power is present.

Wavelet Domain Descriptors (F28-F32). Wavelet transform has been proposed and
proven to be effective for time frequency representation of signals especially in the field
of biomedical applications. Its main advantage lies in the fact that it can provide
accurate frequency information in low frequencies and at the same time accurate time
information in higher frequencies. In this paper we have used the Discrete Wavelet
Transform (DWT) to analyze the spindles at different frequency bands of interest, by
decomposing the signal using a mother wavelet W tð Þ, low and high pass successive
filtering in levels using digital filters followed by a down sampling factor of 2. The
detail and approximation decomposition signals carry information of the spindle in
different frequency bands (depending on the number of decomposition levels). The
signal’s energy at level j can be estimated from the energy of the coefficients dj;k, while
the energy of the signal at decomposition level N þ 1 can be estimated by the energy of
the scaling coefficients Ck of the transform.

In our experiments we have used the Daubechies-5 (db-5) wavelet function to
decompose the signal in four (4) levels (D1: 22.5–45 Hz, D2: 11.25–22.5 Hz, D3: 5.6–
11.25 Hz, D4: 2.8–5.6 Hz, A4: 0.1–2.8 Hz). The energy of the signal at each level is
calculated by Eq. 7 for levels 1–4, while the total signal energy is given by Eq. 8:

Ej ¼
X

k
dj;k
�� ��2; j ¼ 1; 2; . . .N ENþ 1 ¼

X
k
ckj j2 ð7Þ

Etotal ¼
X

j
Ej ð8Þ

In this work we have used the Relative wavelet energy qj for every decomposition
band given by the following equation (F28–32):

qj ¼
Ej

Etotal
; j ¼ 1; 2; . . .;Nþ 1 ð9Þ

Feature extraction was performed in every EEG channel separately, resulting in 56,
32-dimensional vectors. These vectors were concatenated initially to form the 56 * 32
1792-dimension vector that describes every single spindle.

686 A. Koutras and G. K. Kostopoulos

3 Experiments

3.1 The Sleep Spindles Database

For our experiments the NU Sleep Database collected in the Neurophysiology Unit,
University of Patras was used. The subset of the database that was used in all exper-
iments consists of 34 whole-night polysomnographic recordings of 28 subjects (16
female/12 male) with no reported psychiatric or neurological conditions, obtained
between 2007–2016. The acquired bio signals include 56 channel EEG following the
standard 10–20 montage. Original sampling rate of the recordings is 2500 Hz. Sleep
scoring, artifact rejection and annotation of sleep spindles have been performed by at
least one and usually more than one experts in all cases. The total number of spindles
for the 28 subjects is 25784 with a mean value of 920 spindles per subject (minimum
number of spindles in a class: 832, maximum number: 1480).

3.2 Data Preprocessing

All acquired data were first down sampled from 2500 Hz to 500 Hz by a down
sampling factor of 5 and then a notch filter was applied to eliminate any power line
contamination at 50 Hz frequency. Annotated spindles were then band-pass filtered
using a fourth order Butterworth band-pass filter with lower and upper cutoff fre-
quencies at 0.1 and 45 Hz since all frequencies of interest in this study lie in this band.

3.3 Experimental Setup

In the identification step, we used the K-NN classifier. K-NN’s choice is mainly
attributed to its simplicity and feature flexibility, while at the same time it can naturally
handle multi-class cases and performs well in practice with enough representative data.
K-NN works by comparing the distance between the training and the testing features.
In the testing phase, K-NN finds the K-nearest samples in the training feature and the
classification is made by the voting scheme within the training samples. In all exper-
iments, we have considered the K-NN classifier at level 3 on the extracted features
through all our experiments, as at this level results were constants. For measuring the
distance, the cosine distance was used, which was found to perform significantly better
than other distance measures.

For the evaluation of the proposed method, we performed a 10-fold cross validation
on each subject’s data. All results of this paper present the mean accuracy over 10 folds
using the randomly created sets. In addition, since testing all possible combinations of
the 28 subjects was impossible (the number of possible combinations for n subjects is

given by the binomial coefficient
28
n

� �
), all experiments were repeated for 50 ran-

domly chosen combinations of subjects (except for the case of 27 and 28 subjects
where all possible combinations were formed and tested) and the mean accuracy was
calculated and presented throughout the paper.

EEG-Based Person Identification Using Rhythmic Brain Activity 687

4 Results

4.1 Person Identification Using All Channels

In our first set of experiments, we have tested the efficacy of a simple K-NN based
classifier in the person identification problem using features extracted from all 56
channels (56 * 32 = 1792 dimensions) for variable number of persons from 2 to 28. In
all experiments, 50 different randomly selected combinations of subjects were tested,
following the accuracy measure procedure described in Sect. 3.3.

In Fig. 1 (blue line) we present the identification results of the K-NN classifier for
the case of 2 to 28 subjects using features extracted from all channels. It is evident that
when the number of subjects is small (under 10), the K-NN classifier identifies cor-
rectly the subjects with accuracy over 97%. The accuracy drops slightly as the number
of subjects increases, but even for the case of 28 subjects, the simple K-NN classifier
manages to achieve no less than 92% accuracy.

4.2 Person Identification Using Single Channel

To reduce complexity, we tested the efficacy of the identification system using features
extracted from a single channel. In this case as Fig. 2A shows, the K-NN classifier’s
performance drops drastically, indicating that discriminative information lies in more
than a single electrode. The accuracy of single channel identification system is higher
for the 2-subject case reaching a peak of * 99% for a few specific central channels but
drops below 65% when most of the remaining channels are used. In average, the single
channel system works * 27% worse than the case when all channels are used for a
small number of subjects (70% for single channel and two subjects – 97% all channels).
This decrease is more obvious as the number of subjects increases and surpasses 15,

Fig. 1. Mean identification accuracy for (a) 56 EEG channels/32 features/channel (b) 9 central
channels, 32 features/channel (c) 9 central channels/6 features/channel (Color figure online)

688 A. Koutras and G. K. Kostopoulos

where the identification rate drops under 20% in opposition to the 94% when all
channels are used.

In Fig. 2B we depict the accuracy of the identification system on the electrode
space when single channel descriptors are used for the case of 2 to 28 subjects. The
figure’s color map is relevant to the measured accuracy in the range of 0-(max channel
accuracy) for each of the 56 channels (yellow: higher, blue: lower accuracy).

By visual inspection we can see that the electrodes that are located in the central
brain regions present the highest accuracy compared to electrodes in the frontal,
occipital or parietal regions regardless the number of different subjects under exami-
nation. This finding agrees with physiology as spindles are known to be waves initially
located in the central part of the brain (fast spindles) moving slowly to frontal areas as
they come to end (slow spindles).

4.3 Person Identification Using Significant Channels

Person identification using 56 channels, even though it works well, is very difficult to
implement, as the big number of electrodes and features result in vectors with large
dimensionality. To reduce the complexity of the problem without compromising the
system’s accuracy, we considered the previous section’s results, and tested several
different channel groups to find the most efficient ones. As the central EEG channels
showed better identification accuracy compared to frontal, occipital or temporal ones,
we started our search by selecting channel CZ as “seed” and formed groups of neighbor
electrodes that were tested using the same methodology presented in the previous
section.

After examining different groups with variable number of members (3, 4, …25)
from the central region, we discovered that the group that is formed by {C1, CZ, C2,
C1P, PZA, C2P, C1A, CZA, C2A}, shows top accuracy in the identification task of 2

Fig. 2. (A) Identification accuracy using single channel feature extraction (black line: mean
identification accuracy of all channels, color lines: single channel identification accuracy).
(B) topographic plots of single channel accuracy for 2–28 subjects (yellow: higher accuracy,
blue: lower accuracy) (Color figure online)

EEG-Based Person Identification Using Rhythmic Brain Activity 689

to 28 subjects (Fig. 1 (red line)). Slightly better results were also measured when
considering all central electrodes, but the group size (* 21 channels) couldn’t com-
pensate for the small increase of the accuracy by a mean value of approximately
2 * 3% compared to the group of 9 channels.

Comparing the accuracy of the proposed group with that of a single channel, we
measured a mean increase greater than 60% especially for the case of larger number of
subjects (20 * 28). In these cases, the group formed by the 9 central channels achieves
a mean identification accuracy of over 70%, as opposed to single channel that struggles
to a low 15%.

Further experiments tested neighborhoods in the frontal, occipital and temporal
region, but results showed very low accuracy (increase by only 5 * 10% compared to
the single channel case) and therefore were not further used.

4.4 Person Identification Using Significant Features

In all previous experiments, features F1-F32 were used. To further test the importance
of each individual feature, we have applied the RelieFF [14] feature selection algorithm
on the set extracted from the 9-channel group.

Feature selection using the RelieFF algorithm is a well-known technique based on a
feature weighting approach that considers the interrelationship among features. The
algorithm results in finding a weight factor that is highly correlated to the significance
of each feature in the classification task. By considering only those features with
significant weighting above a threshold, we can achieve dimensionality reduction of the
feature set, thus easing the task of the classifier, while at the same time features with the
largest importance can be singled out and could be used to explain characteristics that
differentiate sleep spindles across subjects.

By examining the most significant features, we found that the first 100 correspond
to a few (6) similar features from different channels and in particular to the Activity,
Mobility, Complexity, Power in Sigma, Average inter-spindle frequency, and Slope of
inter-spindle frequency change. Using this reduced feature set (F8, F9, F10, F15, F21,
F22), we repeated the identification experiments for all subject combinations for the 9-
channel group. The experimental results are presented in Fig. 1 (green line). From this
Figure it is clear that the use of only 6 features instead of 32, results in a significant
improvement of the identifier’s accuracy, greater than 6% especially for the difficult
case when all 28 subjects were tested compared to the 32 full feature vector. In
addition, the proposed combination of features and electrodes approaches the best
recognition results measured when all channels and features were used, but with much
lower complexity in the electrode (9 instead of 54 channels) as well as the feature space
(54 instead of 1792 features). Extensive experiments were further conducted by con-
sidering and testing varying number of significant features from the RelieFF step (50 to
200), but results showed that other feature combinations worsen the efficacy of the
identification system.

690 A. Koutras and G. K. Kostopoulos

5 Conclusions

In this paper we have investigated an EEG-based person identification system that uses
rhythmic brain activity of spindles from sleep to distinguish between 2 to 28 different
subjects. Extensive experiments have proven that sleep spindles show characteristics
that are different across subjects and can be extracted from a small group of nine EEG
channels located in the central region of the subject’s head. Additionally, it was found
that only six features that describe morphology, power and the basic spindle frequency,
include most of the identity’s specific information, and achieve high identification
accuracy over 90% for 20 subjects, and not lower than 86% when identifying 28
persons using a simple K-NN classifier. As future work, more subjects will be included,
while different types of classifiers and feature selection techniques will be tested to fine
tune the system’s performance and reduce further, if possible, the number of channels,
increasing the accuracy at the same time.

References

1. Sivasankari, N., Muthukumar, A.: A review on recent techniques in multimodal biometrics.
In: 2016 International Conference on Computer Communication and Informatics, ICCCI
2016 (2016)

2. Faridah, Y., Nasir, H., Kushsairy, A.K., Safie, S.I.: Survey multimodal biometric algorithm:
a survey (2016)

3. Del Pozo-Banos, M., Alonso, J.B., Ticay-Rivas, J.R., Travieso, C.M.: Electroencephalogram
subject identification: a review (2014)

4. Thomas, K.P., Vinod, A.P.: Toward EEG-based biometric systems: the great potential of
brain-wave-based biometrics. IEEE Syst. Man Cybern. Mag. 3, 6–15 (2017)

5. Reshmi, K.C., Muhammed, P.I., Priya, V.V., Akhila, V.A.: A novel approach to brain
biometric user recognition. Procedia Technol. 25, 240–247 (2016)

6. Vahid, A., Arbabi, E.: Human identification with EEG signals in different emotional states.
In: 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International
Iranian Conference on Biomedical Engineering, ICBME 2016, pp. 242–246 (2017)

7. Jiralerspong, T., Liu, C., Ishikawa, J.: Identification of three mental states using a motor
imagery based brain machine interface. In: IEEE Symposium on Computational Intelligence
in Brain Computer Interfaces, pp. 2081–2089 (2014)

8. Rodrigues, D., Silva, G.F.A., Papa, J.P., Marana, A.N., Yang, X.S.: EEG-based person
identification through binary flower pollination algorithm. Expert Syst. Appl. 62, 81–90
(2016)

9. Kaur, B., Singh, D.: Neuro signals: a future biomertic approach towards user identification.
In: Proceedings 7th International Conference on Cloud Computing, Data Science and
Engineering, pp. 112–117 (2017)

10. Iber, C., Ancoli-Israel, S., Chesson, A.: The AASM manual for the scoring of sleep and
associated events: rules, terminology and technical specifications (2007)

11. ‘t Wallant, D.C., Maquet, P., Phillips, C.: Sleep spindles as an electrographic element:
description and automatic detection methods. Neural Plast. 2016 (2016)

EEG-Based Person Identification Using Rhythmic Brain Activity 691

12. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin.
Neurophysiol. (1970)

13. O’Reilly, C., Nielsen, T.: Assessing EEG sleep spindle propagation. Part 2: experimental
characterization. J. Neurosci. Methods 221, 215–227 (2014)

14. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and
RReliefF. Mach. Learn. (2003)

692 A. Koutras and G. K. Kostopoulos

An STDP Rule for the Improvement
and Stabilization of the Attractor

Dynamics of the Basal
Ganglia-Thalamocortical Network

Jérémie Cabessa1(B) and Alessandro E. P. Villa2

1 Laboratoire d’économie mathématique et de microéconomie appliquée (LEMMA),
University Paris 2 – Panthéon-Assas, 4, Rue Blaise Desgoffe, 75006 Paris, France

jeremie.cabessa@u-paris2.fr
2 NeuroHeuristic Research Group, University of Lausanne, Quartier UNIL-Dorigny,

1015 Lausanne, Switzerland
alessandro.villa@unil.ch

Abstract. The basal ganglia-thalamocortical (BGT) network has been
investigated for many years, in particular in relation to disorders of the
motor system and of the sleep-waking cycle. Its attractor dynamics is
related to significant aspects of processing and coding of information,
the most important of which being associative memories. The consider-
ation of a simplified Boolean model of the BGT network allows for an
exhaustive analysis of its attractor dynamics. In this context, it has been
shown that both global and local changes in the synaptic weights could
strongly influence the attractor-based complexity of the network. We
propose a novel adaptive spike-timing dependent plasticity (STDP) rule
which allows the network to improve and stabilize its attractor complex-
ity during its computational process. The rule is based on an adaptive
learning rate which varies according to the attractor dynamics that the
network continuously visits.

Keywords: Boolean recurrent neural networks · Learning
Attractors · STDP · Plasticity · Interactivity
Basal ganglia-thalamocortical circuit · Limbic system

1 Introduction

The basal ganglia-thalamocortical (BGT) network has been investigated for
many years, in particular in relation to disorders of the motor system and of
the sleep-waking cycle [8,11,13]. Its attractor dynamics is related to significant
aspects of processing and coding of information, the most important of which
being associative memories [2,10]. The consideration of a simplified Boolean
model of the BGT network allows for a complete analysis of its attractor dynam-
ics. Indeed, the attractors of the network correspond precisely to the cycles of
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 693–702, 2018.
https://doi.org/10.1007/978-3-030-01424-7_68

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_68&domain=pdf

694 J. Cabessa and A. E. P. Villa

its corresponding automaton, and therefore, can be computed explicitly and
exhaustively.

It has been shown that local and global changes in the synaptic weights
could strongly influence the attractor-based complexity of the BGT network.
Moreover, modifications of the non-interactive and interactive weights can com-
pensate and/or be combined to each other to drive the network into stable
attractor dynamics of high complexity [4–6].

Based on these considerations, we propose a novel adaptive spike-timing
dependent plasticity (STDP) rule which allows the BGT network to improve
and stabilize its attractor complexity during its computational process. The rule
is based on an adaptive learning rate which varies according to the attractor
dynamics that the network continuously visits.

2 Boolean Model of the Basal Ganglia-Thalamocortical
Network

The basal ganglia-thalamocortical (BGT) network is formed by several parallel
and segregated circuits involving different areas of the cerebral cortex, striatum,
pallidum, thalamus, subthalamic nucleus and midbrain [1,7]. A characteristic of
the pathways of this network is a combination of “open” and “closed” loops,
with ascending sensory afferences reaching the thalamus and the midbrain and
descending motor efferences from the midbrain (the tectospinal tract) and the
cortex (the corticospinal tract).

We consider a Boolean model of the BGT network where each brain area
is modeled by a Boolean node. The Boolean model is formed by 9 nodes:
the superior colliculus (SC), the thalamus (Thalamus), the thalamic reticular
nucleus (NRT), the cerebral cortex (Cerebral Cortex), the striatopallidal and
the striatonigral components of the striatum (Str-D1 and Str-D2), the subthala-
mic nucleus (STN), the external part of the pallidum (GPe), and the output
nuclei of the basal ganglia formed by the GABAergic projection neurons of
the intermediate part of the pallidum and of the substantia nigra pars retic-
ulata (GPi/SNR). The closed-loop architecture of the network is implemented
via feedback connections—or interactive connections—from the efferent output
(OUT) to the input (IN). The network is illustrated in Fig. 1A and its weight
matrix given in Table 1. This pattern of connectivity corresponds to the wealth
of data reported in the literature [1,7].

The context of Boolean neural networks, although relatively simple, has the
advantage of allowing for a complete analysis of the attractor dynamics of the
networks. In fact, Boolean recurrent neural networks are known to be compu-
tationally equivalent to finite state automata [9,12], and the attractors of the
networks correspond precisely to the cycles in the graphs of their corresponding
automata [3]. The attractor dynamics can therefore be computed explicitly and
exhaustively. The finite automaton associated to the BGT network of Fig. 1A is
illustrated in Fig. 1B [3].

An Attractor-Based STDP Rule for the BGT Network 695

An attractor-based measure of complexity for the Boolean model of the BGT
network has been introduced [3]. This complexity measure is related to the num-
ber of attractors of the network as well as to their classification into meaningful
or spurious types. In the present study, we define the attractor-based complexity
of the network to be its number of attractors. The BGT network of Fig. 1 with
weights of Table 1 has an attractor complexity of 22.

Cerebral Cortex

Str STN

NRT
GPe

GPi/SNr

SC

Thalamus

IN

ASCENDING
SENSORY PATHWAY

OUT OUT

int1 int2

A B

Fig. 1. A. Simplified Boolean model of the BGT network. Each brain area is rep-
resented by a single Boolean unit. The network is formed by 9 Boolean nodes: SC,
Thalamus, NRT, Cerebral Cortex, Str-D1, Str-D2, STN, GPe, GPi/SNR. The inputs
from the ascending sensory pathway (IN) is also a Boolean unit and the efferent outputs
(OUT) are coming out of the cerebral cortex and superior colliculus. The excitatory
and inhibitory pathways are labeled in blue and orange, respectively. The interactive
connections int1 and int2 implement the closed-loop architecture. B. Finite automaton
associated to the Boolean model of the BGT network. Each node of the automaton is
a Boolean state of the network. There is a blue or red transition from node i to node j
if and only if the network switches from state i to state j when receiving input 0 or 1,
respectively. The attractors of the network correspond to the cycles in the automaton.

3 Adaptive STDP Rule

We introduce an adaptive spike-timing dependent plasticity (STDP) rule aimed
at improving and stabilizing the attractor-based complexity of the BGT net-
work during its computational process. This STDP rule modifies the connection
strengths of the network not only as a function of the timing between the acti-
vations of the pre- and post-synaptic neurons, but also as a function of the
attractors encountered throughout the computation.

696 J. Cabessa and A. E. P. Villa

Table 1. Adjacency matrix of the Boolean model of the BGT network of Fig. 1A.

Source Target Node #

Node # Name 0 1 2 3 4 5 6 7 8 9

0 IN · 1 1 · · · · · · ·
1 SC int1 · 1 · · · · · · ·
2 Thalamus · · · 1 · 1 1 1 1 1

3 NRT · · −1 · · · · · · ·
4 GPi/SNr · −1 −1 −1 · · · · · ·
5 STN · · · · 2 · 2 · · 2

6 GPe · · · −1/2 −1/2 −1/2 · −1/2 −1/2 ·
7 Str-D2 · · · · · · −1 · · ·
8 Str-D1 · · · · −1/2 · −1/2 · · ·
9 C. Cortex int2 1/2 1 1/2 · 1/2 · 1/2 1/2 ·

Formally, we consider the following adaptive STDP rule bounded by a definite
weight interval I = [I1, I2]:

aij(t + 1) =

⎧
⎪⎨

⎪⎩

I1 if aij(t + 1) < I1

R if I1 ≤ aij(t + 1) ≤ I2

I2 if aij(t + 1) > I2

with
R = aij(t) + λ(t)

[
xi(t + 1)xj(t) − C(xi(t)xj(t + 1))

]
(1)

and where xi(t) and xj(t) are the activation values of cells xi and xj at time t,
aij(t) is the synaptic weight from xj to xi at time t, C is a constant modulating
the weight decrease (with default value equal to 1), and λ(t) is the adaptive
learning rate whose evolution is described below.

The adaptive learning rate λ(t) remains to be defined. Towards this purpose,
given some constant M > 0, we let n(t) be the number of attractors of the
network at time t, and nmin(t) and nmax(t) be the minimal and maximal number
of attractors that the network has encountered during the last M time steps:

n(t) = number of attractors of the network at time t

nmin(t) = min{n(t′) : max(0, t − M) < t′ ≤ t} (2)
nmax(t) = max{n(t′) : max(0, t − M) < t′ ≤ t}.

The constant M is called the memory of the network. It corresponds to the time
window during which the network “remembers” the minimum and maximum
number of attractors that it has encountered.

The adaptive learning rate λ(t) is then defined as the image of n(t) by the
linear interpolation between the two points (nmin(t), λmax) and (nmax(t), λmin),

An Attractor-Based STDP Rule for the BGT Network 697

where λmin, λmax ∈ R are two bounds such that λmin < λmax. Formally,

λ(t) =

⎧
⎨

⎩

λmax + (n(t) − nmin(t))(λmin − λmax)
nmax(t) − nmin(t) if nmin(t) �= nmax(t)

λmax otherwise.
(3)

The computation of λ(t) is illustrated in Fig. 2. The learning rate λ(t) has to
be understood as follows. If n(t) = nmin(t) (resp. n(t) = nmax(t)), it means
that the current number of attractors of the network is at a minimal (resp.
maximal) level. In this case, λ(t) = λmax (resp. λ(t) = λmin). This large (resp.
low) learning rate will induce large (resp. low) variations of the synaptic weights
(cf. Eq. 1) with the aim of destabilizing (resp. stabilizing) the network’s current
dynamics. If nmin(t) < n(t) < nmax(t), then λmax > λ(t) > λmin according
to the linear interpolation. The closer n(t) is to nmin(t) (resp. to nmax(t)), the
closer λ(t) is to λmax(t) (resp. to λmin(t)). If nmin(t) = nmax(t), the network
has settled into the same attractor dynamics during the M last steps. In this
case, we set λ(t) = λmax with the aim of destabilizing the current dynamics.

Observe that, since nmin(t) and nmax(t) are functions of the memory M (cf.
Eq. 2), then so is λ(t) (cf. Eq. 3), and hence so is the STDP rule (cf. Eq. 1). Note
also that if the network has no memory, i.e. M = 1, then nmin(t) = nmax(t)
(cf. Eq. 2), and thus λ(t) = λmax for all t > 0 (cf. Eq. 3), meaning that the
network dynamics is driven by a fixed-rate STDP rule. By contrast, as soon as
the network has a positive memory, i.e. M > 1, the learning rate λ(t) becomes
time dependent, meaning that the network dynamics is driven by an adaptive
STDP rule. This adaptive feature is crucial towards the achievement of reaching
a high and stable attractor-based complexity.

Fig. 2. Computation of the adaptive learning rate λ(.) at two different time steps t (blue
construction) and t′ (red construction). The rate λ(.) is defined as the image of n(.) by
the linear interpolation between the two points (nmin(.), λmax) and (nmax(.), λmin).
(Color figure online)

698 J. Cabessa and A. E. P. Villa

4 Results

We now study the effect of the adaptive STDP rule on the attractor-based com-
plexity of the BGT network. For this purpose, we implemented the adaptive
STDP rule of Eq. 1 for the Boolean BGT network of Fig. 1. The learning interval
of each weight aij of Table 1 was set to Iij = [aij − 0.025; aij + 0.8]. The bounds
of the intervals Iij were chosen on the basis of an empirical analysis. The mini-
mal and maximal learning rates were set to λmin = 0.002 and λmax = 0.12. We
then performed simulations where we first jittered (each weight of) the matrix of
Table 1 by random uniform noise εij ∼ U(−0.025, 0.8), and then submitted the
network to a random input stream and recorded the variation of its attractor-
based complexity throughout its computational process.

In order to emphasise the effect of the network memory on its attractor-
based complexity, we performed 10 simulations (of 300 time steps each) where
memory M = 1, 10 simulations where memory M = 120 and 10 simulations
where memory M = 240. For each lot of 10 simulations, we used the same
seed to ensure that the same random jittering and random input streams were
considered at each time, and therefore, that the differences observed are entirely
due to the variations M . The results are displayed in Fig. 3.

Recall that M = 1 means that the network has non memory and the STDP
rule is fixed-rate rather than adaptive (cf. Sect. 3). In this case of M = 1 (black
dotted trace), the attractor-based complexity is usually unstable, with sporadic
peaks of higher intensities interspersed by plateaus of lower values. This situation
is particularly manifest in simulations 1, 3, 4, 8. Simulations 2, 5. 9, 10 are less
peaky, but still unstable. Simulations 6 and 7 are by contrast very stable, with
long plateaus of 10 and 1 attractors, respectively. The highest peak of complexity
is reached at the beginning of simulation 10, with 154 attractors (pay attention
to the x-axis of simulation 10).

For M = 120 (blue dashed trace), the attractor complexity is clearly more
stable, and in general, it doesn’t get stuck into minimal values. Note that the
length of the plateaus are of the same order as that of the memory, namely 120
time steps. In all simulations, the network is able to maintain a high complexity
during a fairly long period of time. In simulations 2, 6, 7, 9, 10 however, the
network also stabilizes into plateaus of low complexity. In simulations 1, 3, 8 (to
some extent), 9, the complexity is constantly improving along the computation.
Simulations 4 and 5 still alternate between stable and unstable behaviors. The
highest complexity of 377 is reached in simulation 10, and it is maintained during
exactly 120 time steps.

For M = 240 (red solid trace), the attractor complexity is even more stable,
and it almost never gets stuck into minimal values. Here again, the length of the
plateaus are of the same order as the memory length, namely 240 time steps.
In all but the 9-th simulations, the network is able to stabilize in a complexity
that is higher than for M = 120, and for a longer period of time. However, in
simulations 6, 7, 9, 10, the network also stabilizes into plateaus of low complexity.
Simulation 4 is the only one to still presents some instability, at its beginning.
The highest complexity of 377 is reached in simulation 10, and it is maintained

An Attractor-Based STDP Rule for the BGT Network 699

during 193 time steps until the end of the simulation (it but would have probably
be maintained for a longer period of time if the simulation would have continued).
Overall, we see that as M increases, the network becomes more and more able
to stabilize into attractor-based complexities of high intensities.

It has been shown tiny decreases in the weights of the three specific connec-
tions (Thalamus, STN), (GPe, STN) and CCortex, STN) (from their original
values of Table 1) drastically increases the number of attractors of the BGT
network from 22 to 143 [5,6]. Therefore, it is rational to think that a targeted
modification of these weights by the adaptive STDP rule might drive the net-
work dynamics into a higher attractor complexity. This hypothesis is explored
by implementing a larger decrease-update exclusively for those specific connec-
tion strengths. Formally, the value of constant C = 5 in Eq. (1) was set to 5 for
these connections and kept to its default value of 1 for other connections. The
effect of this targeted adaptive STDP rule on the attractor-based complexity of
the network is illustrated in Fig. 4.

In this case, the attractor-based complexity of the network is indeed drasti-
cally higher by few orders of magnitude, but the stabilization process associated
with the increase of M has deteriorated. For M = 1 (black dotted trace), the
complexity is highly unstable, except in simulations 5, 7, 8, where the network
gets trapped into a minimal complexity of 1. The highest complexity of 1170
attractors is reached at the beginning of simulation 9. For M = 120, the com-
plexity is clearly more stable than for M = 1, but the stabilization is not as clear
as it was for the previous case of Fig. 3. We less systematically see plateaus of
stability that are of the same order as the memory length of 120 time steps. This
situation nevertheless occurs in simulations 3 (two plateaus of 25 and 42 attrac-
tors of 120 time steps). in simulations 6 (two plateaus of 89 and 198 attractors
of 120 and 121 time steps) and in simulation 8(two plateaus of 32 attractors of
durations 123 and 129 time steps). The network also sometimes gets trapped into
a minimal complexity of 1, like in simulations 9 and 10. The highest complexity
of 1735 attractors is reached at the beginning of simulation 10 and is maintained
during 11 time steps. For M = 240, the complexity is not significantly more
stable than for M = 120, and this contrasts with the previous case of Fig. 3.
However, except for simulation 1, the network is able to reach complexities that
are always equal or higher than for M = 120. The network remains trapped into
a minimal complexity of 1 in simulations 9 and 10. In simulation 6, the huge
complexity of 6126 attractors is reached maintained during 17 time steps.

5 Conclusion

We have proposed a novel adaptive STDP rule which allows the BGT network
to improve and stabilize its attractor-based complexity during its computational
process. The rule is based on an adaptive learning rate which varies according
to the attractor dynamics that the network continuously visits. We have shown
that the stability of the attractor complexity tends to increase as the network’s
memory becomes larger. We have also shown that a targeted adaptive STDP

700 J. Cabessa and A. E. P. Villa

sim
 1

sim
 2

sim
 3

sim
 4

sim
 5

sim
 6

sim
 7

sim
 8

sim
 9

sim
 10

0 100 200 300

20

40

60

0

30

60

90

120

0

20

40

60

20
30
40
50
60

0

40

80

120

160

4

8

12

2

4

6

10

20

30

40

0

100

200

0

100

200

300

steps

nu
m

be
r o

f a
ttr

ac
to

rs
 (a

ttr
ac

to
r−

ba
se

d
co

m
pl

ex
ity

)

memory M = 1 M = 120 M = 240

Fig. 3. Results of 10 simulations representing the variations of the attractor-based
complexity of the BGT network over time. For each simulation, the weight matrix of
the BGT network is initially randomly jittered. Then, the network is subjected to a
random input stream and its attractor based complexity computed at each time step.
The results for the network memory M = 1, 120, 240 are represented.

rule is able to drastically increase the complexity of the network, but at the
price of a less stable attractor dynamics.

For future work, the relationship between the synaptic patterns and the
attractor dynamics of neural networks is envisioned to be studied in more general
architectures, beyond the case study represented by the Boolean BGT network.

An Attractor-Based STDP Rule for the BGT Network 701

sim
 1

sim
 2

sim
 3

sim
 4

sim
 5

sim
 6

sim
 7

sim
 8

sim
 9

sim
 10

0 100 200 300

0

300

600

900

0

500

1000

1500

0

200

400

600

0

300

600

900

0

500

1000

0

2000

4000

6000

5

10

15

0

10

20

30

0

500

1000

1500

0

50

100

150

steps

nu
m

be
r o

f a
ttr

ac
to

rs

memory M = 1 M = 120 M = 240

Fig. 4. Results of 10 simulations representing the variations of the attractor-based
complexity of the BGT network over time. In this case, the network is subjected to a
targeted adaptive STDP rule where constant C = 5 for the three weights (Thalamus,
STN), (GPe, STN) and CCortex, STN) and C = 1 for all other weights (cf. Eq. 1). The
results for the network memory M = 1, 120, 240 are represented.

References

1. Alexander, G.E., Crutcher, M.D.: Functional architecture of basal ganglia circuits:
neural substrates of parallel processing. Trends Neurosci. 13(7), 266–271 (1990)

2. Beiser, D.G., Hua, S.E., Houk, J.C.: Network models of the basal ganglia. Curr.
Opin. Neurobiol. 7(2), 185–90 (1997)

702 J. Cabessa and A. E. P. Villa

3. Cabessa, J., Villa, A.E.P.: An attractor-based complexity measurement for boolean
recurrent neural networks. PLoS ONE 9(4), e94204+ (2014)

4. Cabessa, J., Villa, A.E.P.: Attractor-based complexity of a boolean model of the
basal ganglia-thalamocortical network. In: 2016 International Joint Conference on
Neural Networks, IJCNN 2016, Vancouver, BC, Canada, 24–29 July 2016, pp.
4664–4671. IEEE (2016)

5. Cabessa, J., Villa, A.E.P.: Attractor dynamics driven by interactivity in boolean
recurrent neural networks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.)
ICANN 2016. LNCS, vol. 9886, pp. 115–122. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44778-0 14

6. Cabessa, J., Villa, A.E.P.: Interactive control of computational power in a model of
the basal ganglia-thalamocortical circuit by a supervised attractor-based learning
procedure. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.)
ICANN 2017. LNCS, vol. 10613, pp. 334–342. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68600-4 39

7. Hoover, J.E., Strick, P.L.: Multiple output channels in the basal ganglia. Science
259(5096), 819–821 (1993)

8. Jones, B.E.: From waking to sleeping: neuronal and chemical substrates. Trends
Pharmacol. Sci. 26(11), 578–586 (2005)

9. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton, NJ (1956)

10. Lansner, A., Fransén, E., Sandberg, A.: Cell assembly dynamics in detailed and
abstract attractor models of cortical associative memory. Theor. Biosci. 122(1),
19–36 (2003)

11. Leblois, A., Boraud, T., Meissner, W., Bergman, H., Hansel, D.: Competition
between feedback loops underlies normal and pathological dynamics in the basal
ganglia. J. Neurosci. 26(13), 3567–3583 (2006)

12. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Englewood Cliffs (1967)

13. Nakahara, H., Amari Si, S., Hikosaka, O.: Self-organization in the basal ganglia
with modulation of reinforcement signals. Neural Comput. 14(4), 819–844 (2002)

https://doi.org/10.1007/978-3-319-44778-0_14
https://doi.org/10.1007/978-3-319-44778-0_14
https://doi.org/10.1007/978-3-319-68600-4_39
https://doi.org/10.1007/978-3-319-68600-4_39

Neuronal Asymmetries
and Fokker-Planck Dynamics

Vitor Tocci F. de Luca1, Roseli S. Wedemann1(B), and Angel R. Plastino2

1 Instituto de Matemática e Estat́ıstica, Universidade do Estado do Rio de Janeiro,
Rua São Francisco Xavier, 524, Rio de Janeiro, RJ 20550-900, Brazil

vitocci 4@hotmail.com, roseli@ime.uerj.br
2 CeBio, Universidad del Noroeste de la Provincia de Buenos Aires,

UNNOBA-Conicet, Roque Saenz Peña 456, Junin, Argentina
arplastino@unnoba.edu.ar

Abstract. Much of our recent work regards the development of sche-
matic, neurocomputational models based on memory associativity to
describe some processes associated with basic structures of mental func-
tioning, such as neurosis, creativity, consciousness/unconsciousness, and
psychoses. We have emphasized associative memory mechanisms, since
they are central in the description of these processes by psychodynamical
theories. In memory neural networks, such as the Hopfield or Boltzmann
Machine models, the symmetry of synaptic connections is a condition
for the existence of stationary states, although this assumption is bio-
logically unrealistic. Many efforts to model stationary states of networks
with asymmetric weights are mathematically complex and can usually
be applied only to specific cases. We thus further explore a possible new
approach to the asymmetry problem, based on studies of some charac-
teristics of the behavior of these networks, which may be modeled by the
Fokker-Planck formalism. Besides considering asymmetric interactions,
we also relaxed other symmetries of our previous models, enriching the
concomitant dynamics. Among other things, we identified the presence
of limit cycles.

Keywords: Mental processes · Memory · Asymmetry
Nonlinear Fokker-Planck dynamics · Curl forces

1 Introduction

We have been developing, for some time now, models [1–4] that investigate emer-
gent states of neuronal network mechanisms to describe mental phenomena tra-
ditionally studied by psychiatry, psychoanalysis and neuroscience [5–10]. These
models are based on two basic hypotheses of neuroscience, that human memory is
encoded in the neural net of the brain, and that the capacity to associate is a key
element in the description of mental processes, both in normal and pathological
functioning. Associative memory mechanisms are therefore important elements
of our artificial neural network (ANN) models of memory [2,4,11].
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 703–713, 2018.
https://doi.org/10.1007/978-3-030-01424-7_69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_69&domain=pdf

704 V. T. F. de Luca et al.

In ANN memory models, such as the Hopfield or Boltzmann Machine (BM)
models [11], the assumption that synaptic connections are symmetric is a neces-
sary mathematical condition for the existence of stationary attractor states, i.e.
memory [11,12]. This is also the case when one employs more recent approaches,
based on the Generalized Simulated Annealing (GSA) algorithm [2,4,13]. As bio-
logical neural networks do not comply with the synaptic symmetry condition,
the main mathematical models of memory are at odds with biological reality.
We have thus been interested in investigating mechanisms where, although the
interaction between elements of a physical system may not be symmetrical, the
dynamics still guarantees that the system reaches stable (stationary) states [14–
16]. Other efforts to model stationary, memory, attractor states with asymmetric
weights can be found in the literature [17,18], but they are mathematically com-
plex and usually applicable only to restricted situations. The (a)symmetry issue
thus remains as a largely unexplored (and almost forgotten) open problem. This
suggests a need to consider alternative approaches to this problem, which has
motivated us to explore similarities between the synaptic symmetry problem and
some aspects of the nonlinear Fokker-Planck (NLFP) dynamics, and to advance
the first steps in the development of a formalism, based on the NLFP equa-
tion [14–16].

In our models [2,4], we have used the BM and GSA [13] to simulate memory.
Both in the BM and GSA, pattern retrieval is achieved by a simulated annealing
(SA) process, where the temperature T is gradually lowered by an annealing
schedule. For a BM or GSA network with N nodes, where each node i has a
discrete state Si in {−1, 1}, synaptic weights between nodes i and j must obey
wij = wji, for the network to have stable states. One can then define an Energy
function, representing the potential energy corresponding to the interactions
between neurons

E({Si}) = −1
2

∑

ij

wijSiSj , (1)

and stored memories correspond to minimum energy attractor (stable) states of
the memory retrieval, SA mechanism. In the SA process, the energy surface is
sampled according to the appropriate transition probabilities [2,4,11,13], which
tend to take the system from a current state towards a final, more favorable,
minimum energy state, although energy may increase at intermediate steps.

In Sect. 2, we briefly review ANN models in light of the basic theory of
Dynamical Systems. We then introduce in Sect. 3, basic aspects of the Fokker-
Planck formalism. In Sect. 4, we review work in [14,15], where we introduced a
drift (force) term not arising from the gradient of a potential, which is related
to asymmetric connections, and the system still evolves to stationary attractor
states of the probability density function, in the phase space describing the
system. In Sect. 5, we present the original contribution of this paper, where we
apply the formalism developed in [14,15] to a system of two different neurons,
connected via asymmetric weights (a non-homogeneous system) by a quadratic
potential and with a linear drift field. The q-Gaussian solutions of the coupled
differential evolution equations reveal individual neural trajectories, exhibiting

Neuronal Asymmetries and Fokker-Planck Dynamics 705

stationary elliptical limit cycles, caused by the asymmetries of the system. We
mention further developments and present our conclusions in the last section.

2 Continuous Neural Networks and Dynamical Systems

For a continuous, deterministic dynamical system with phase space state vari-
ables x = {x1, x2, · · · , xN}, when there is no noise, the equations of motion can
be expressed, for each state variable, xi as

dxi

dt
= Ki(x1, x2, · · · xN) , (2)

which in vector notation is expressed as dx
dt = K(x), with x,K ∈ �N . The time

evolution of x is thus described by a phase space flux, given by the vectorial field
K. Neural networks have been widely studied within this framework [11].

In ANN models, the synaptic weight wij expresses the intensity of the influ-
ence of neuron j on neuron i. So the net input signal to neuron i is

ui =
∑

j

wijVOj
, (3)

where VOj
is the output signal of neuron j. One can generalize the discrete

activation, McCulloch-Pitts neural model, considering continuous state vari-
ables [11,12,19], so that in equilibrium VOi

is updated by a continuous activation
function g(u) of ui ,

VOi
(t + Δt) = g(ui(t)) . (4)

In Eq. (4), g(u) is usually nonlinear and saturates for large values of |u|, such as
a sigmoid or tanh(u). The set of differential equations

dVOi

dt
=

−VOi
+ g(ui)
τi

= Ki(VO1 , VO2 , . . .) , (5)

where τi are suitable time constants, constitutes a possible continuous-time rule
for updating the VOi

[12,19].
In traditional ANN memory models, such as the Hopfield model, BM and

GSA, wij = wji is a necessary condition for reaching stationary states (memory).
This symmetry restriction is not biologically realistic, and we approach this issue,
in this contribution, using the NLFP dynamics and extending work in [14,15].

3 Standard Fokker-Planck Dynamics

When we consider an ensemble of identical systems, each consisting of N ele-
ments, that evolve from different initial conditions, it is described by a time-
dependent probability density in phase space F(x1, · · · , xN , t) which obeys the
Liouville equation

∂F
∂t

+ ∇ · [FK] = 0 . (6)

706 V. T. F. de Luca et al.

It is necessary to add a new diffusion-like term in Eq. (6), when the system
presents noisy behavior, resulting in the Fokker-Planck equation (FPE)

∂F
∂t

= D∇2F − ∇ · [KF] , (7)

where D is the diffusion coefficient, the term involving the field K is referred to
as the drift term, and K is called the drift field. If

K = −∇V (x) (8)

for some potential function V (x), there is a Boltzmann-Gibbs-like stationary
solution FBG to Eq. (7) (satisfying ∂FBG

∂t = 0), given by

FBG =
1
Z

exp
[
− 1

D
V (x)

]
, (9)

where Z is an appropriate normalization constant. The distribution FBG maxi-
mizes the Boltzmann-Gibbs entropy SBG, under the constraints of normalization
and the mean value 〈V 〉 of the potential V .

A dynamical system with a gradient form for the phase space flux, as given
by (8), evolves moving down-hill along the potential energy surface, minimizing
V . For a field K with the form (8) one has

∂Ki

∂xj
=

∂Kj

∂xi
=

∂2V

∂xi∂xj
. (10)

In a Hopfield ANN, if g(u) is linear, for example Ki ∝ ∑
j

wijxj in Eq. (5),

∂Ki

∂xj
= wij , (11)

corresponding to linear forces and, by Eq. (10), wij = wji. Condition (10),
that guarantees that the Fokker-Planck dynamics evolves towards a station-
ary Boltzmann-Gibbs distribution (9), is very similar to the synaptic symmetry
required so that an ANN evolves towards minima of an energy surface. This
similarity is also related to the fact that the SA technique provides an algorithm
to find the minima of the network’s energy landscape. We have shown [14,15]
that, in the Fokker-Planck case, it is possible to relax condition (10), considering
more general drift fields, and still have a dynamics that leads to a stationary
distribution F . This suggests the relevance of the Fokker-Planck scenario, with
non-gradient drift fields, to the treatment of the symmetry problem and, in what
follows, we further explore some basic aspects of this scenario.

4 Generalized Fokker-Planck Dynamics

In this Section, we briefly review a more general Fokker-Planck formalism, based
on a nonlinear evolution equation. Physical systems characterized by long-range

Neuronal Asymmetries and Fokker-Planck Dynamics 707

interactions and/or spatial disorder seem to be natural candidates for this for-
malism, which is recently attracting considerable attention from the complex
systems research community [14–16,20–22].

We thus use the nonlinear Fokker-Planck equation (NLFPE)

∂F
∂t

= D∇2[F2−q] − ∇ · [FK] , (12)

to study systems which may deviate from the linear description. Since we need
to model stable properties of interesting physical systems, such as the stored
memory states in an ANN, we search for possible stationary solutions to Eq. (12).

4.1 Stationary Solution for Drift Fields of Gradient Form

In the most frequently studied case, where the field K is of the gradient form
(8), the stationary solution of the NLFPE is found by solving

D∇2[F2−q] − ∇ · [FK] = 0 , (13)

considering the Tsallis ansatz [22]

Fq = A[1 − (1 − q)βV (x)]
1

1−q

+ , (14)

where A and β are constants to be determined, and Fq = 0 when 1 − (1 −
q)βV (x) < 0. One finds that the ansatz given by Eq. (14), which we call the
q-exponential ansatz, is a stationary solution of the NLFPE, with a K which
satisfies Eq. (8), if

A = [(2 − q)βD]
1

q−1 . (15)

The distribution Fq is also called a q-maxent distribution, because it optimizes
the nonextensive q-entropy Sq, under the constraints of normalization and the
mean value < V > [20,22]. In the limit q → 1, the distribution Fq (14) reduces
to FBG (9), with β = 1/D.

4.2 Stationary Solution for K with Non-Gradient Components

Now we consider the NLFPE, with a drift term not arising from the gradient of
a potential and with the form

K = G + K̃ , (16)

where G is equal to minus the gradient of some potential V (x), while K̃ does
not come from a potential function (that is, we have ∂K̃i/∂xj 	= ∂K̃j/∂xi). The
force K is thus referred to as a curl force. We then substitute this K (16) and
Fq (14) in the stationary NLFP Eq. (13) and obtain

D∇2[F2−q
q] + ∇ · [(∇V)Fq] − ∇[K̃Fq] = 0 . (17)

708 V. T. F. de Luca et al.

The first two terms in Eq. (17) vanish, because we know that Fq is a stationary
solution of Eq. (13), when only the gradient field G is present. In order for Fq

to satisfy (17), we then require ∇[K̃Fq] = 0. If this relation is satisfied, then Fq

is also a stationary solution of the full NLFPE, including the non-gradient term
corresponding to K̃. We therefore require

∇
(
K̃A[1 − (1 − q)βV]

1
1−q

)
= 0 , (18)

This equation constitutes a consistency requirement that the potential V , the
non-gradient field K̃, β, and the entropic parameter q have to satisfy in order
that the NLFPE admits a stationary solution of the q-maxent form. In the
most general β-dependent situation, the condition given by Eq. (18) leads to a
rather complicated relation between K̃ and V . However, there are cases where
a β-independent set of constraints can be obtained. We illustrate this with a
two-dimensional example.

5 A Two-Neuron System Admitting Time-Dependent
q-Gaussian Solutions

In a commonly used framework for neural network modeling (as in the Hopfield
and BM models), flow in phase-space arises from a potential energy function
given by Eq. (1), i.e. the flow is equal to the gradient of a potential. Expanding
the treatment of noisy dynamical systems which can be modeled by the NLFPE
advanced in [14,15], the flow K (16) can be expressed in a more general form,
arising from a potential V and a non-gradient drift K̃

V (x) =
∑

ij

aijxixj , (19a)

K̃i(x) =
∑

j

cijxj , (19b)

where K̃i(x) is the ith component of K̃(x) and the aij and cij are constant
coefficients, representing synaptic interactions among neurons. We can assume
aij = aji, since G = −∇V , although the cij are not necessarily symmetric.
Equation (18) leads to constraints on these coefficients, thus defining V (x) and
K̃(x).

As an example of a time-dependent solution of a NLFPE with a K̃ not
arising from a potential, admitting a q-maxent stationary solution, we consider
here a two-neuron system, submitted to the following elliptical potential and
nongradient linear drift term, which are an instance of Eqs. (19a) and (19b).
Phase-space state variables x1 and x2 represent the continuous valued output
signal (activation function) of neurons 1 and 2, respectively. In order to simplify
the notation, we name the state variables x ≡ x1 and y ≡ x2, and the potential
and drift field are given by

V (x) = a1x
2 + a2y

2 , (20)

K̃(x) = (−by,+bx) , (21)

Neuronal Asymmetries and Fokker-Planck Dynamics 709

where a1, a2 and b are real constants. This form for the potential V (x) and drift
field K̃ can be interpreted, within the usual neural network modeling frame-
work (Eqs. (19a) and (19b)), as a two-neuron system, where the network energy
(Eqs. (19a) and (1)) has only the self-interacting terms and the drift generates
asymmetric interactions between the pair. Since the self-interaction terms are
such that a1 	= a2, in this work we are actually considering a system of two
different types of neurons, connected by asymmetric synapses, which are biolog-
ically realistic assumptions. According to Eq. (16), the total drift is thus

K = −∇V + K̃ = (−2a1x − by,−2a2y + bx) . (22)

The resulting NLFPE (12) for this example can then be written as

∂F
∂t

= D∇2[F2−q] +
∂[(2a1x + by)F]

∂x
+

∂[(2a2y − bx)F]
∂y

. (23)

When we consider the Tsallis ansatz with q-maxent form (see also [14,15])

Fq(x, y, t) = η(t)
[
1 − (1 − q)(α(t)x2 + δ(t)xy + γ(t)y2)

] 1
(1−q)

+
, (24)

where η(t), α(t), δ(t) and γ(t) are time-dependent parameters, it is possible
to show, after some algebra, that it is a solution to Eq. (23), given that these
parameters satisfy an appropriate set of coupled ordinary differential equations,
that we solve numerically.

When we interpret a solution F(x1, · · · , xN , t) of the NLFPE (12) as a prob-
ability density in phase space, or as a physical density of particles or other enti-
ties, we can express the NLFPE so that it has the form of a Liouville continuity
Eq. (6). In fact, Eq. (12) can be expressed in the form

∂F
∂t

+ ∇
[
F

(
K + D

(
q − 2
1 − q

)
∇(F1−q)

)]
= 0 . (25)

We then define

K = K + D

(
q − 2
1 − q

)
∇(F1−q) , (26)

and rewrite Eq. (25) as
∂F
∂t

+ ∇ [FK] = 0 . (27)

In Eq. (27), F is a solution of the NLFPE and K can be interpreted as the
effective force field experienced by the constituents of the system. In our two-
neuron system, Eq. (27) corresponds to the equations of motion, governing the
dynamics of the activation functions of the neurons.

We can then substitute (22) and the expression for the ansatz (24) in (26)
to obtain the components of K = (Kx,Ky) as

Kx = 2[(2 − q)Dη1−qα − a1]x + [(2 − q)Dη1−qδ − b]y , (28a)

Ky = 2[(2 − q)Dη1−qγ − a2]y + [(2 − q)Dη1−qδ + b]x . (28b)

710 V. T. F. de Luca et al.

The dynamics of the activation functions of our two-neuron system can then be
expressed, following Eqs. (2), as

dx

dt
= Kx = 2[(2 − q)Dη1−qα − a1]x + [(2 − q)Dη1−qδ − b]y , (29a)

dy

dt
= Ky = 2[(2 − q)Dη1−qγ − a2]y + [(2 − q)Dη1−qδ + b]x . (29b)

It can be verified, after some algebra, that the q-maxent distributions given by
the form (24), evolving according to Eqs. (23), lead to stationary solutions of the
NLFPE.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y

x

x0 = 1.0, y0 = 0.0
x0 = 1.0, y0 = 0.5
x0 = 1.0, y0 = 0.9

Fig. 1. Dynamical evolution of activation states x and y of two neurons. The initial
parameters for the integration of differential Eqs. (29) are: α0 = 1, γ0 = 2.5, δ0 = 0,
D = 0.5, q = 1.3, a1 = 1, a2 = 2.5, b = 4.

We then have a family of noisy dynamical systems (described by the NLFPE)
that have q-maxent stationary solutions, characterized by the parameters η, α,
γ, δ, D, q, a1, a2, and b, in spite of having a drift field not necessarily arising
from a potential and that therefore does not necessarily comply with the sym-
metry restriction described by Eq. (10), which is akin to the standard symmetry
condition in ANNs. Figure 1 illustrates the numerical solution of the coupled
differential Eqs. (29) for D = 0.5, q = 1.3, a1 = 1, a2 = 2.5, b = 4, the set
of initial values of parameters α0 = 1, γ0 = 2.5, δ0 = 0, and different initial
conditions x0 and y0. The initial value of parameter η (η0) is obtained from the

Neuronal Asymmetries and Fokker-Planck Dynamics 711

condition that Fq, given by Eq. (24), is normalized to one. This figure shows
that the activation functions of the two neurons spiral into limit cycles so that,
in a stationary equilibrium situation, the activation values of the two neurons
rotate in the phase-space plane (x1, x2), following an elliptical orbit. The pres-
ence of these limit cycles constitutes a notable manifestation of the new types
of dynamics arising from the asymmetric interactions.

We are preparing an extended manuscript with a more detailed and general
discussion of the ideas that we presented here briefly, due to space limitations.

6 Conclusions

Still messy, after all these years, is the relationship between theoretical neural
network models and the biological brain. A notorious instance of this situa-
tion is the assumption of symmetric neural synapses, usually made in neural
memory models, which clearly does not correspond to biological reality. Moti-
vated by this symmetry problem, we reported here some recent advances made
on the investigation of a nonlinear Fokker-Planck formalism, exhibiting some
intriguing parallelisms with neural dynamics, that may contribute to clarify the
(a)symmetry issue.

We investigated the NLFPE, with drift fields having a gradient component
arising from a potential function, and a curl component which does not origi-
nate from a potential. In contrast to our previous work [14,15], where we treated
homogeneous networks (a1 = a2), we considered here a non-symmetrical poten-
tial function. This corresponds to networks with different types of neurons.
The curl component of the drift field corresponds to non-symmetric interac-
tions between the system’s constituents. We also studied individual orbits of the
system under consideration (as opposed to statistical densities in phase space).
We have shown that these resulting individual trajectories exhibit limit cycles
of elliptical shape.

The present developments suggest that the NLFP formalism provides a quite
versatile and potentially useful approach to study some aspects of neural dynam-
ics. This approach is still at an embryonic stage and much work remains to be
done. One possible line of further development is to explore connections between
this approach and the empirical and computational evidence for Tsallis q-maxent
distributions in avalanches of neural activity [4]. Any further progress along these
or related lines will be very welcome.

Acknowledgments. We acknowledge financial support from the Brazilian National
Research Council (CNPq), the Rio de Janeiro State Research Foundation (FAPERJ)
and the Brazilian agency which funds graduate studies (CAPES).

712 V. T. F. de Luca et al.

References

1. de Carvalho, L.A.V., Mendes, D.Q., Wedemann, R.S.: Creativity and delusions:
the dopaminergic modulation of cortical maps. In: Sloot, P.M.A., Abramson, D.,
Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds.) ICCS 2003.
LNCS, vol. 2657, pp. 511–520. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-44860-8 53

2. Wedemann, R.S., Donangelo, R., Carvalho, L.A.V.: Generalized Memory Associa-
tivity in a Network Model for the Neuroses. Chaos 19, 015116-(1–11) (2009)

3. Wedemann, R.S., de Carvalho, L.A.V.: Some things psychopathologies can tell Us
about consciousness. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G.
(eds.) ICANN 2012. LNCS, vol. 7552, pp. 379–386. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33269-2 48

4. Siddiqui, M., Wedemann, R.S., Jensen, H.J.: Avalanches and generalized memory
associativity in a network model for conscious and unconscious mental functioning.
Physica A 490, 127–138 (2018)

5. Freud, S.: Introductory Lectures on Psycho-Analysis. Standard Edition. W. W.
Norton and Company, New York - London (1966). First German edition (1917)

6. Kandel, E.: Psychiatry, Psychoanalysis, and the New Biology of Mind. American
Psychiatric Publishing Inc., Washington D.C., London (2005)

7. Shedler, J.: The efficacy of psychodynamic psychotherapy. Am. Psychol. 65(2),
98–109 (2010)

8. Cleeremans, A., Timmermans, B., Pasquali, A.: Consciousness and metarepresen-
tation: a computational sketch. Neural Netw. 20, 1032–1039 (2007)

9. Taylor, J.G., Villa, A.E.P.: The “Conscious I”: a neuroheuristic approach to the
Mind. In: Baltimore, D., Dulbecco, R., Francois, J., Levi-Montalcini, R. (eds.)
Frontiers of Life, pp. 349–368. Academic Press (2001)

10. Taylor, J.G.: A neural model of the loss of self in schizophrenia. Schizophrenia
Bull. 37(6), 1229–1247 (2011)

11. Hertz, J.A., Krogh, A., Palmer, R.G. (eds.): Introduction to the Theory of Neural
Computation. Lecture Notes, vol. I. Perseus Books, Cambridge (1991)

12. Cohen, M.A., Grossberg, S.: Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Trans. Syst., Man,
Cybern. 13, 815–826 (1983)

13. Tsallis, C., Stariolo, D.A.: Generalized simulated annealing. Physica A 233, 395–
406 (1996)

14. Wedemann, R.S., Plastino, A.R.: Asymmetries in synaptic connections and the
nonlinear fokker-planck formalism. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J.
(eds.) ICANN 2016. LNCS, vol. 9886, pp. 19–27. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-44778-0 3

15. Wedemann, R.S., Plastino, A.R., Tsallis, C.: Curl forces and the nonlinear Fokker-
Planck equation. Phys. Rev. E 94, 062105-1-10 (2016)

16. Wedemann, R.S., Plastino, A.R.: q-Maximum entropy distributions and memory
neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P.
(eds.) ICANN 2017. LNCS, vol. 10613, pp. 300–308. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68600-4 35

17. Parisi, G.: Asymmetric neural networks and the process of learning. J. Phys. A:
Math. Gen. 19, L675–L680 (1986)

18. Xu, Z.B., Hu, G.Q., Kwong, C.P.: Asymmetric hopfield-type networks: theory and
applications. Neural Netw. 9(3), 483–501 (1996)

https://doi.org/10.1007/3-540-44860-8_53
https://doi.org/10.1007/3-540-44860-8_53
https://doi.org/10.1007/978-3-642-33269-2_48
https://doi.org/10.1007/978-3-319-44778-0_3
https://doi.org/10.1007/978-3-319-44778-0_3
https://doi.org/10.1007/978-3-319-68600-4_35

Neuronal Asymmetries and Fokker-Planck Dynamics 713

19. Hopfield, J.J.: Neurons with graded responses have collective computational prop-
erties like those of two-state neurons. Proc. Natl. Acad. Sci., USA 81, 3088–3092
(1988)

20. Martinez, S., Plastino, A.R., Plastino, A.: Nonlinear Fokker-Planck equations and
generalized entropies. Physica A 259(1–2), 183–192 (1998)

21. Franck, T.D.: Nonlinear Fokker-Planck Equations: Fundamentals and Applica-
tions. Springer, Heidelberg (2005). https://doi.org/10.1007/b137680

22. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics, Approaching a
Complex World. Springer, New York (2009). https://doi.org/10.1007/978-0-387-
85359-8

https://doi.org/10.1007/b137680
https://doi.org/10.1007/978-0-387-85359-8
https://doi.org/10.1007/978-0-387-85359-8

Robotics/Motion Detection

Learning-While Controlling RBF-NN
for Robot Dynamics Approximation

in Neuro-Inspired Control of Switched
Nonlinear Systems

Sophie Klecker(&), Bassem Hichri, and Peter Plapper

Faculty of Science, Technology and Communication, University of Luxembourg,
6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg, Luxembourg

sophie.klecker@uni.lu

Abstract. Radial Basis Function-Neural Networks are well-established func-
tion approximators. This paper presents an adaptive Gaussian RBF-NN with an
extended learning-while controlling behaviour. The weights, function centres
and widths are updated online based on a sliding mode control element. In this
way, the need for fixing parameters a priori is overcome and the network is able
to adapt to dynamically changing systems. The aim of this work is to present an
extended adaptive neuro-controller for trajectory tracking of serial robots with
unknown dynamics. The adaptive RBF-NN is used to approximate the unknown
robot manipulator dynamics-function. It is combined with a conventional con-
troller and a bio-inspired extension for the control of a robot in the presence of
switching constraints and discontinuous inputs. The controller-extension
increases the robustness and adaptability of the system. Its learned goal-
directed output results from the complementary action of an actuator, A, and a
preventer, P. The trigger is an incentive, I, based on the weighted perception of
the environment. The concept is validated through simulations and implemen-
tation on a KUKA LWR4-robot.

Keywords: RBF-NN � Learning-while controlling � Switching constraints

1 Introduction

Radial Basis Functions, RBFs, were presented as technique for interpolation in mul-
tidimensional space by [1]. Their implementation as activation functions in neural
networks is known as a 3-layer network under the acronym RBF-NN. Its first layer, i.e.
the input layer performs a nonlinear transformation mapping the input signals to the
hidden layer. The single hidden layer consists of an array of computing units, i.e.
hidden nodes which are activated by RBF activation functions. The output layer
consists of linear summing nodes which allow the network’s output to range over a
significant range of values. Compared to multilayer neural networks, their structure is
less coherent with the natural neural network but their advantages include: faster
convergence, more straightforward training and analysis due to a simpler topology and

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 717–727, 2018.
https://doi.org/10.1007/978-3-030-01424-7_70

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_70&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_70&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_70&domain=pdf

easier implementation due to fewer interconnections [2, 3]. [4, 5] i.e. have shown the
universal approximation-capabilities of RBF-NNs.

The choice of the network parameters, i.e. the node-centres and widths of the
function is essential for the accurate performance of the RBF-NN. The network is
locally responsive, i.e. inputs which are close to the centre in the Euclidean sense
strongly affect this node but not the others. The centres should be well selected
according to the scope of the inputs, i.e. the values of the centres are to be suitably fixed
and appropriately distributed in the input domain. The selected width influences the
range over which a node is to have a significant activation. In the vast majority of
research works, a priori selected centres and width are kept fixed. Although it simplifies
the analysis in dynamic systems, this approach presents some drawbacks [2, 5, 6]. First,
fixed parameters and therewith the mapping behaviour of the network do not reflect
changes in the system which leads to suboptimal performance in dynamically changing
environments. Because the parameters of the system under consideration may change
over time, the neural network should be adapted online [2]. Second, the initialization of
the parameters is not straightforward. The arbitrary selection of values often practiced
does not guarantee satisfactory performance. Real-time computation of parameters
based on observed data could be extended from weights to function parameters [3].

One of the challenges of the implementation of neural networks is guaranteeing
stability. Several research works addressed this issue through combinations of neural
networks and robustifying elements. Using sliding mode control to stabilize a neural
network was suggested. The downsides were the occurrence of chattering, i.e. unde-
sired oscillations, high control efforts and the need for a priori knowledge of system
limits [2, 3]. As an extension, [7] suggested merging a neural network with a com-
bination of a PD- and a sliding mode controller (SMC). The aim of the PD and the
SMC was to first bring the system’s output into the targeted regions and to second
provide robustness. The multilayer feedforward NN with input modification was used
to approximate the system’s desired output and improve its global performance.

As serial robot manipulators are illustrative examples of nonlinear and time varying
MIMO-plants, they are at the focus of a number of research works on neural networks
[4, 8]. Also the stabilizing extension for neural networks was applied to robot
manipulators with unknown dynamics [7, 9, 10].

Although the mentioned publications showed promising results for robotic control,
the results have mainly exclusively been obtained in numerical simulations. The
majority of simulations have been performed for n-link-robot arms with n = 2. How-
ever, for n[2, the parameters affect the performance of the system more considerably
and their initialization becomes even more critical [4, 11].

This work presents an extended adaptive neuro-controller for trajectory tracking by
robot manipulators with unknown dynamics. The rest of the paper is structured as
follows: In Sect. 2, the considered application, the experimental setup as well as the
contributions of this work are described. In Sect. 3, the controller is designed. Sec-
tion 4 presents the validation-results. The paper ends with a discussion and conclusion
Sect. 5.

718 S. Klecker et al.

2 Methodology

In this work, the control problem for trajectory tracking of serial robots with unknown
dynamics is addressed. The combination of a Gaussian RBF-NN with a biomimetic
controller based on SMC enables tracking discontinuous trajectories while guaran-
teeing robustness and stability despite uncertainties. Figure 1 graphically summarizes
the suggested control concept.

The RBF-NN is used to estimate the unknown nonlinear robot dynamics-function.
The implementation of adaptive weights, centres and widths enhances the performance
of the system in uncertain dynamically changing environments. No offline training
phase nor any a priori knowledge is needed. The network exhibits a learning-while
controlling behaviour with the online computation of the parameters based on real-time
sensor data. The intelligent extension is based on the biomimetic interplay of an
actuator (A) and a preventer (P) triggered by an incentive (I) based on the environ-
mental perception. This extension, IAP, increases the robustness as well as the
adaptability of the system.

As an illustrative example of a nonlinear, time varying MIMO-system, an n-link
robot arm is considered. Its dynamics in the presence of disturbances and varying
constraints are expressed in Lagrange form 1.

M qð Þ€qþC q; _qð Þ _qþG qð Þ ¼ uþ dþQi ð1Þ

with q; _q; €q 2 Rn link position, velocity and acceleration with index d for the desired
values. M qð Þ 2 Rnxn is the inertia matrix, C q; _qð Þ 2 Rnxn the centripetal/Coriolis terms,
G qð Þ 2 Rn the gravitational torque-vector. u 2 Rn is the applied control-input torque.
External disturbances are represented by the bounded term d 2 Rn. Qi 2 Rn is the
global constraint force, Qi ¼ JT qð ÞDT

i #ð Þk where J qð Þ 2 Rnx6 is the manipulator’s
Jacobian, k 2 Rz is the vector of Lagrange multipliers and DT

i #ð Þ ¼ dð/Þi #ð Þ=d #ð Þ is
the gradient of the task space constraints with /i #ð Þ 2 R6 the ith kinematic constraint.
2 R6 stands for the Cartesian pose and i ¼ 1; 2; . . .z denotes the index of constraints

Fig. 1. Combination and interconnection of SMC, RBF-NN and IAP.

Learning-While Controlling RBF-NN for Robot Dynamics 719

for the case of multiple switching constraints with z the total number of constraints.
The introduced dynamics have the following two relevant properties [12]:

• M qð Þ is a positive definite matrix,
• M qð Þ � 2C q; _qð Þ is a skew symmetric matrix, i.e. xTM qð Þ � 2C q; _qð Þx ¼ 0 for all

x 6¼ 0.

The robot dynamics can be grouped and expressed as a nonlinear function f 2.

f ¼ M qð Þ€qr þC q; _qð Þ _qr þG ð2Þ

with _qr ¼ _qd � qerror and qerror ¼ q� qd . Because of the manufacturers’ reticence
about their robots, their kinematics and dynamics, i.e. M qð Þ, C q; _qð Þ and G qð Þ from 1
are not known in practice. As a consequence the need for approximating robot
dynamics arises. With the idea to avoid estimating M qð Þ, C q; _qð Þ and G qð Þ separately,
the robot function f as defined in 2 is approximated. The considered application is a
trajectory tracking use case where the inputs, i.e. the desired positions are fed to the
system in a discontinuous manner.

The validation of the developed control concept is done through simulation and
experimental work. The simulation is performed on a planar robot with two revolute
joints in the Matlab/Simulink environment. The inputs for the considered path fol-
lowing application are two .csv-files, i.e. lists of successive desired joint positions in
radians. The parameter-values were consciously and arbitrarily selected small and
simple to demonstrate the controller-performance independently of specific parameter-
values. The experiments are performed on a 7 DOF-KUKA LWR 4-robot. The con-
troller is implemented in C++ on an external PC. The communication between the
robot and the PC is assured through UDP-packages in the framework of the Fast
Research Interface, a software add-on provided by KUKA [13]. The inputs for the goal-
reaching application are desired angular positions for all 7 joints.

Compared to previous work, the contributions are:

• In the Gaussian RBF-NN, the learning-while-controlling behaviour is extended.
Adaptive laws are not limited to the online computation of the weights, but are also
implemented to adapt the centres and widths based on real-time sensor data. In this
way, first, the problem of parameter-initialization and required a priori knowledge is
eliminated. Second, the network is able to adapt in case of dynamically changing
systems.

• The biomimetic extension IAP provides adaptive performance. The algorithm of an
actuator-preventer interplay which is triggered by a sensory data-based incentive
signal is intuitive.

• The control concept is applied to switching constraints. Changes in the interactions
between robotic end-effector and surrounding environment result in a switched non-
linear system. The introduction of switching constraints compared to fixed con-
straints severely impacts the global system performance [14]. The tracking appli-
cation for robot manipulators with unknown dynamics is extended from continuous
inputs to discontinuous inputs, i.e. lists (.csv-files) of successive desired joint
positions.

720 S. Klecker et al.

• Next to a validation through simulation on a 2-link robot, the controller is imple-
mented on a 7-DOF KUKA LWR4-robot manipulator.

3 Controller

The suggested control concept 3 is composed of a conventional controller uc and an
adaptive biomimetic controller-extension ue to enhance the system-performance as well
as its robustness.

u ¼ uc þ ue ð3Þ

Sliding mode control is at the base of the suggested controller. The sliding surface
s 2 Rn is defined in 4.

s ¼ _qerror þ qerror ð4Þ

The conventional controller uc 2 Rn is formalized in 5.

uc ¼ f þ ccs ð5Þ

where cc [0 is a constant gain factor.
The conventional controller is complemented by a biomimetic, adaptive control-

extension. ue 2 Rn is inspired on the human learning process based on adaptive
motivation-lifecycles. Neuroscientific foundations as well as computational models of
motivations, rewards and reinforcement learning which inspired this work, can be
found in literature. [15] presented the neuroscientific foundations of model-free and
model-based reward learning. [16] ’s work was on the neurosciences of motivation.
The authors studied the key roles of motivation in learning processes. [17] presented a
computational model of the interplay between amygdala and orbito-prefrontal cortex in
emotional learning of mammalians. [18] studied the goal-lifecycle in reinforcement
learning.

The key-elements of the IAP-concept used in this work are

• the incentive, I, based on the weighted perception of the agent’s environment and
serving as motivation for a learning system,

• the complementary action of an actuator, A, and a preventer, P, resulting in an
adapted goal-directed output.

The structure of the IAP-concept is illustrated in Fig. 2. In equation-form, the
ILAP-concept is expressed by 6–12. The weighted perception of the agent’s envi-
ronment is defined as the positional error 6.

wstate ¼ qerror ¼ q� qd ð6Þ

Learning-While Controlling RBF-NN for Robot Dynamics 721

The incentive, I, i.e. the motivation which serves as input to the learning system of
the agent follows 7. o 2 Rn 12, the meaningful learning output is defined as the dif-
ference between the outputs of the actuator a 2 Rn 8 and the preventer p 2 Rn 10. The
latter are updated according to the learning rates 9 and 11. Learning can be interpreted
as a reorganization of information, as a combination of associating and predicting. The
expectancy of a state and the understanding of an action-perception causation are at the
base of the algorithm.

i ¼ sgnðwstateÞT _wstate: � s� oð Þ ð7Þ

a ¼ wstate: � Da ð8Þ

Da ¼ ca _wstate: � max 0; ið Þ ð9Þ

p ¼ wstate: � Dp ð10Þ

Dp ¼ cp _wstate: � o� ið Þ ð11Þ

o ¼ a� p ð12Þ

where .* denotes element-wise multiplication and ca; cp [0 are constant gain factors.
The output of the controller-extension ue is expressed in 13.

ue ¼ f sð Þ satsþ
Z T

0
o tð Þ dt

� �
ð13Þ

The saturation function sats 2 Rn was introduced by [12] to increase the resistance
to chattering of a sliding mode controller. T is the total time of the process under
consideration. The output of the ILAP-concept is time-dependent in the sense that it
changes as time passes and the robotic manipulator moves.

The stability of the system is proven through Lyapunov theory. The candidate
function and its derivative are chosen in 14 and 15, respectively.

V ¼ 0:5sTMs ð14Þ

Fig. 2. Structure of the IAP-concept.

722 S. Klecker et al.

_V ¼ sTM _sþ 0:5sT _Ms ð15Þ

Making use of the definitions of qerror and qr, the skew-symmetry property (2),
combining with 4, 2, 5, 13 and a reformulation of 1, 15 becomes:

_V ¼ �sTccs� sT f satsð Þs� sT f
Z T

0
o tð Þ dt � sTQi � sT d ð16Þ

To guarantee stability 16 has to be negative. The first term of the right side of 16 is
always negative. For the remaining terms, there are 2 cases to consider. If sn [0, then

fn satsnð Þsn þ fn
R T
0 on tð Þ dtþQi;n þ dn [0. If sn\0, then fn satsnð Þsn þ fn

R T
0 on tð Þ dtþ

Qi;n þ dn\0 with n the respective manipulator-link. In both cases, _V\0 which
guarantees the stability of the analysed system.

f , however is hardly ever known in practice and therefore controllers as developed in
5 and 13 are not directly implementable. To address this problem, an adaptive RBF-NN
with j nodes is implemented to approximate the unknown non-linear robot function f . The
non-linear Gaussian activation function for node j of network input i is defined in 17.

hj xð Þ ¼ e�kx�cijk2=b2j ð17Þ

with x ¼ qTerror; _q
T
error; q

T
d ; _q

T
d ; €q

T
d

� �
the input of the network selected in the scope of f ,

the to be approximated function. cij is the coordinate value of node j’s Gaussian
function’s centre point for input i and bj is the Gaussian function’s width. The
approximation of f , f̂ is computed as output of the RBF-NN 18.

f̂ ¼ Wh xð Þ ð18Þ

where W 2 Rj is the weight matrix which is adapted according to the update law 19.

Fig. 3. Structure of the suggested controller with the interplay of SMC, ILAP and adaptive
RBF-NN.

Learning-While Controlling RBF-NN for Robot Dynamics 723

_W ¼ h xð ÞsT ð19Þ

To overcome the problems associated with a priori fixed centres and widths of the
radial basis functions, they are updated online according to 20 and 21. As illustrated in
Fig. 1, the update laws are based on the defined sliding surface.

_cij ¼ c0:j sj j ð20Þ

bn ¼ bn;0 þ 1=snj j ð21Þ

where b0 2 Rn and c0 2 Rjxi are arbitrarily selected initializations and index n repre-
senting the respective manipulator-link.

The structure of the suggested controller with the interplay of sliding mode control,
adaptive RBF-NN and ILAP is graphically summarized in Fig. 3.

4 Results

For the simulation, the parameters are chosen as follows cc ¼ 10; 10½ �; ca ¼ 5; cp ¼ 5
and for the initialization of c, b:

c0:j ¼ �0:999;�0:666;�0:333; 0; 0:333; 0:666; 0:999½ � and b0 ¼ 1; 1½ �.The simu-
lation results for the path following application are depicted in Figs. 4 and 5. They
show the position tracking error for both robot links and the approximation error of the
norm of the non-linear robot function.

In a next step, the controller is validated for a goal reaching application on a
KUKA LWR 4+ -robot. Figure 6 shows the position error for the joints over time.

Fig. 4. Position tracking error for link 1 (top) and link 2 (bottom).

724 S. Klecker et al.

5 Discussion and Conclusion

In this paper, an extended adaptive neuro-inspired controller for trajectory tracking of
serial robots with unknown dynamics is designed. The suggested control concept is
based on robust sliding mode control and combines an adaptive Gaussian RBF-NN
with a biomimetic controller-extension. First, the implementation of adaptive laws for
updating not only the weights of the RBF-NN, but also the centres and widths of the
function is a promising approach for approximating unknown functions without a priori
determination of fixed parameters. Second, the combination of conventional robust
with adaptive bio-inspired control-elements is a promising approach for robot control
in the presence of varying constraints and uncertainties. It exhibits robustness and
adaptability. The results presented in this paper show promising first experimental
validations of the suggested concept. To fully validate the control scheme however,
more and more advanced experiments should be performed. Examples are path fol-
lowing applications with various input densities and switching between free-space and

Fig. 6. Position tracking error for the 7 robot joints.

Fig. 5. Approximation error of the norm of the non-linear robot function.

Learning-While Controlling RBF-NN for Robot Dynamics 725

in-contact positions. Possible extensions of the suggested concept include the addition
of desired force-signals as inputs or the combination with a Programming by
Demonstration-step to obtain the.csv-files used as inputs [19].

Acknowledgments. This work has been done in the framework of the European Union sup-
ported INTERREG GR-project “ROBOTIX-Academy”.

References

1. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive
definite functions. Constr. Approximation 2, 11–22 (1986)

2. Bass, E., Lee, K.Y.: Robust control of nonlinear systems using norm-bounded neural
networks. In: IEEE World Congress Computer Intelligence (Neural Networks part),
pp. 2524–2529 (1994)

3. Van Cuong, P., Nan, W.Y.: Adaptive trajectory tracking neural network control with robust
compensator for robot manipulators. Neural Comput. Appl. 27(2), 525–536 (2015). https://
doi.org/10.1007/s00521-015-1873-4

4. Yu, L., Fei, S., Huang, J., Gao, Y.: Trajectory switching control of robotic manipulators
based on RBF neural networks. Circuits Syst. Signal Process. 33, 1119–1133 (2014)

5. Tao, Y., Zheng, J., Lin, Y.: A sliding mode control-based on a RBF neural network for
deburring industry robotic systems. Int. J. Adv. Robotic Syst. 13(1), 13–18 (2016). https://
doi.org/10.5772/62002

6. Wang, L., Chai, T., Zhai, L.: Neural-network-based terminal sliding-mode control of robotic
manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304
(2009)

7. Ren, X., Rad, A.B., Lewis, F.L.: Neural network-based compensation control of robot
manipulators with unknown dynamics. In: American Control Conference, pp. 13–18 (2007)

8. Otte, S., Zwiener, A., Butz, M.V.: Inherently constraint-aware control of many-joint robot
arms with inverse recurrent models. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa,
Alessandro E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 262–270. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68600-4_31

9. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using
impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2018)

10. Klecker, S., Hichri, B., Plapper, P.: Neuro-inspired reward-based tracking control for robotic
manipulators with unknown dynamics. In: 2nd International Conference on Robotics and
Automation Engineering, pp. 21–25 (2017)

11. Krabbes, M., Döschner, C.: Modelling of robot dynamics based on a multi-dimensional
RBF-like neural network. In: IEEE International Conference on Information, Intelligence,
and Systems (1999)

12. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)
13. KUKA System Technology, KUKA Roboter GmbH: KUKA FastResearchInterface 1.0

For KUKA System Software 5.6 lr Version: KUKA FRI 1.0 V2 en. (2011)
14. Liberzon, D.: Switching in Systems and Control. Birkauser, Boston (2003)
15. Dayan, P., Berridge, K.C.: Model-based and model-free pavlovian reward learning:

revaluation, revision and revelation. Cogn. Affect. Behav. Neurosci. 14(2), 473–492 (2014)
16. Kringelbach, M.L., Berridge, K.C.: Neuroscience of reward, motivation, and drive. In:

Recent Developments in Neuroscience Research on Human Motivation, Advances in
Motivation and Achievement, vol. 19, pp. 23–35 (2017)

726 S. Klecker et al.

https://doi.org/10.1007/s00521-015-1873-4
https://doi.org/10.1007/s00521-015-1873-4
https://doi.org/10.5772/62002
https://doi.org/10.5772/62002
http://dx.doi.org/10.1007/978-3-319-68600-4_31

17. Balkenius, C., Moren, J.: Emotional learning: a computational model of the amygdala. Int.
J. Cybern. Syst. 32(6), 611–636 (2001)

18. Merrick, K.E.: Intrinsic motivation and introspection in reinforcement learning. IEEE Trans.
Auton. Mental Develop. 4, 315–329 (2012)

19. Racca, M., Pajarinen, J., Montebelli, A., Kyrki, V.: Learning in-contact control strategies
from demonstration. In: IROS (2016)

Learning-While Controlling RBF-NN for Robot Dynamics 727

A Feedback Neural Network for Small
Target Motion Detection in Cluttered

Backgrounds

Hongxin Wang1, Jigen Peng2, and Shigang Yue1(B)

1 The Computational Intelligence Lab (CIL), School of Computer Science,
University of Lincoln, Lincoln LN6 7TS, UK

syue@lincoln.ac.uk
2 School of Mathematics and Information Science, Guangzhou University,

Guangzhou 510006, China
jgpeng@gzhu.edu.cn

Abstract. Small target motion detection is critical for insects to search
for and track mates or prey which always appear as small dim speckles
in the visual field. A class of specific neurons, called small target motion
detectors (STMDs), has been characterized by exquisite sensitivity for
small target motion. Understanding and analyzing visual pathway of
STMD neurons are beneficial to design artificial visual systems for small
target motion detection. Feedback loops have been widely identified in
visual neural circuits and play an important role in target detection.
However, if there exists a feedback loop in the STMD visual pathway or
if a feedback loop could significantly improve the detection performance
of STMD neurons, is unclear. In this paper, we propose a feedback neu-
ral network for small target motion detection against naturally cluttered
backgrounds. In order to form a feedback loop, model output is tem-
porally delayed and relayed to previous neural layer as feedback signal.
Extensive experiments showed that the significant improvement of the
proposed feedback neural network over the existing STMD-based models
for small target motion detection.

Keywords: Small target motion detection · Feedback loop
Neural modeling · Naturally cluttered backgrounds

1 Introduction

In dynamic visual world, the observer (an animal) are more interested in moving
objects, since they are more likely to be mates, predators or prey. Being able
to detect moving objects in a distance and early could endow the observer with
stronger competitiveness for survival. However, when an object is far away from
the observer, it often appears as a small dim speckle whose size may vary from
one pixel to a few pixels in the visual field. Detecting such small targets in visual
cluttered backgrounds has been considered as a challenging problem for artificial
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 728–737, 2018.
https://doi.org/10.1007/978-3-030-01424-7_71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_71&domain=pdf

A Feedback Neural Network for Small Target Motion Detection 729

visual systems. This is not only because shape, color and texture information of
small targets cannot be used for motion detection, but also because the cluttered
background, such as bushes, trees and/or rocks, always contains a great num-
ber of small-target-like features (called background noise). Small target motion
detection means detecting small moving targets, meanwhile discriminating them
from background noise.

Insects exhibit exquisite sensitivity for small target motion [6] and can pur-
sue small flying targets, such as mates or prey, with high capture rates [7]. As
revealed in biological research [5,6], the exquisite sensitivity is coming from a
class of specific neurons in the insects’ visual system, called small target motion
detectors (STMDs). STMD neurons give peak responses to targets subtending
1 − 3◦ of the visual field, with no response to larger bars (typically >10◦) or to
wide-field grating stimuli. The electrophysiological knowledge about STMD neu-
rons and their afferent pathways is helpful for designing artificial visual systems
for small target motion detection.

A few STMD-based models have been proposed for detecting small target
motion in naturally cluttered backgrounds. Elementary small target motion
detector (ESTMD) which was proposed by Wiederman et al. [12], can detect the
presence of small moving targets, but not the motion direction. To detect small
moving targets and their motion directions, three directionally selective models
have been proposed, including EMD-ESTMD [1,11], ESTMD-EMD [1,11] and
directionally selective small target motion detector (DSTMD) [9]. Although these
existing STMD-based models can detect small moving targets, their detection
results often contain a great number of background noise. Further improvement
is needed for filtering out background noise.

Feedback loops exist extensively in animals’ visual systems and can optimize
motion estimation [3,4]. Biological research reveals that feedback loops are able
to simultaneously mediate the synthesis of motion representations and cancel-
lation of distracting signals [3]. However, it is still unclear if a feedback loop
exist in the visual pathway of STMD neurons or if a feedback loop can sig-
nificantly improve detection performance of STMD neurons. In this paper, we
investigate that if a feedback loop exists, can it improve detection performance
of STMD neurons. To answer this question, we propose a feedback neural net-
work (feedback ESTMD) based on the existing ESTMD model [12] for small
target motion detection. In order to form a feedback loop, model output is firstly
temporally delayed and then relayed to previous neural layer (medulla layer) as
feedback signal. The feedback signal is added on the output of medulla layer for
weakening responses to background noise. Systematic experiments demonstrate
that the feedback loop can significantly improve detection performance of the
existing STMD-based models.

The remainder of this paper is organized as follows. In Sect. 2, the pro-
posed feedback neural network is introduced in details. In Sect. 3, experiments
are carried out to test the performance of the proposed feedback neural net-
work. Discussion is also given in this section. In Sect. 4, we give conclusions and
perspectives.

730 H. Wang et al.

2 Formulation of the Model

In this section, we elaborate on the proposed feedback model, called Feed-
back ESTMD. Its schematic illustration is shown in Fig. 1. As can be seen,
I(x, y, t) is the model input, denoting an image sequence where x, y and t are
spatial and temporal field positions, respectively. Model input I(x, y, t) is suc-
cessively processed by four neural layers including retina, lamina, medulla and
lobula. Through the process of four neural layers, we can obtain a model output
F (x, y, t). The output F (x, y, t) is firstly temporally delayed and then relayed
to medulla layer so as to form a feedback loop. The proposed feedback loop can
weaken responses to background noise and significantly improve detection per-
formance. In the following, functionalities of four neural layers and the feedback
loop will be introduced in details.

Medulla Lobula

Time Delay

+I(x,y,t) LaminaRetina F(x,y,t)

Fig. 1. Schematic illustration of the proposed feedback model.

2.1 Retina Layer

In the insect’s visual system, retina layer contains a great number of ommatidia
[10]. These ommatidia are able to receive luminance signals from the natural
world and relay signals to downstream neurons for further process. The received
luminance signal are always highly blurred, due to the extremely low resolution
of ommatidia.

In the proposed feedback neural network, each ommatidium is modeled as a
spatial Gaussian filter for simulating ommatidium’s blur effect. Let I(x, y, t) ∈ R
denote the input image sequence where x, y and t are spatial and temporal field
positions. Then, the output of ommatidium with visual field centered at (x, y)
denoted by P (x, y, t) is defined as,

P (x, y, t) =
∫∫

I(u, v, t)Gσ1(x − u, y − v)dudv (1)

where Gσ1(x, y) is a Gaussian function, given by

Gσ1(x, y) =
1

2πσ2
1

exp(−x2 + y2

2σ2
1

). (2)

A Feedback Neural Network for Small Target Motion Detection 731

2.2 Lamina Layer

In the insect’s visual system, lamina layer contains a great number of large
monopolar cells (LMCs) [2]. LMCs receive signals from ommatidia and are able
to extract motion information from ommatidium output. To be more precise,
LMCs show strong responses to brightness increments and decrements, i.e., lumi-
nance changes.

In the proposed feedback neural network, each LMC is modeled as a tempo-
ral high-pass filter extracting luminance changes, i.e., motion information, from
ommatidium output P (x, y, t). Let L(x, y, t) denote the output of LMC located
at (x, y). Then, L(x, y, t) is defined by convolving ommatidium output P (x, y, t)
with a temporal high-pass convolution kernel H(t). That is,

L(x, y, t) =
∫

P (x, y, s)H(t − s)ds (3)

H(t) = Γn1,τ1(t) − Γn2,τ2(t) (4)

where Γn,τ (t) is a Gamma kernel, defined as

Γn,τ (t) = (nt)n exp(−nt/τ)
(n − 1)!τn+1

. (5)

In the insect’s visual system, before LMC relays its output to downstream
neurons, it receives lateral inhibition from its adjacent neurons. In the proposed
neural network, L(x, y, t) is convolved with an inhibition kernel W1(x, y, t) so as
to implement lateral inhibition mechanism. That is,

LI(x, y, t) =
∫∫∫

L(u, v, s)W1(x − u, y − v, t − s)dudvds (6)

where LI(x, y, t) is the signal after lateral inhibition and W1(x, y, t) is defined
by,

W1(x, y, t) = W
P

S
(x, y)W

P

T
(t) + W

N

S
(x, y)W

N

T
(t) (7)

where W
P

S
(x, y), W

N

S
(x, y), W

P

T
(t), W

N

T
(t) are set as

W
P

S
= [Gσ2(x, y) − Gσ3(x, y)]+ (8)

W
N

S
= [Gσ2(x, y) − Gσ3(x, y)]−, σ3 = 2 · σ2 (9)

W
P

T
=

1
λ1

exp(− t

λ1
) (10)

W
N

T
=

1
λ2

exp(− t

λ2
), λ2 > λ1. (11)

where [x]+, [x]− denote max(x, 0) and min(x, 0), respectively.

732 H. Wang et al.

2.3 Medulla Layer

In the insect’s visual system, medulla layer contains a great number of medulla
neurons, including Tm1, Tm2, Tm3 and Mi1 [2]. These four medulla neurons
receive signals from lamina layer and respond strongly to luminance changes.
More precisely, Mi1 and Tm3 neurons respond selectively to luminance increases,
with the response of Mi1 delayed relative to Tm3. Conversely, Tm1 and Tm2
respond selectively to luminance decreases, with the response of Tm1 delayed
relative to Tm2.

Before modeling the four medulla neurons, we first split the LMC neural
outputs LI(x, y, t) into positive and negative parts denoted by S

ON

(x, y, t) and
S

OFF

(x, y, t), respectively. That is,

S
ON

(x, y, t) = [LI(x, y, t)]+ (12)

S
OFF

(x, y, t) = −[LI(x, y, t)]− (13)

where [x]+, [x]− denote max(x, 0) and min(x, 0), respectively. S
ON

and S
OFF

are
also called ON and OFF signals, which are able to reflect luminance increase and
decrease, respectively.

Since the Tm3 and Tm2 respond strongly to luminance increases and
decreases, we use S

ON

(x, y, t) and S
OFF

(x, y, t) to define the outputs of Tm3
and Tm2, respectively. That is,

S
Tm3

(x, y, t) =
[∫∫

S
ON

(u, v, t)W2(x − u, y − v)dudv
]+

(14)

S
Tm2

(x, y, t) =
[∫∫

S
OFF

(u, v, t)W2(x − u, y − v)dudv
]+

(15)

where S
Tm3

and S
Tm2

denote outputs of Tm3 and Tm2 neurons, respectively;
W2(x, y) is the second-order lateral inhibition kernel, defined as

W2(x, y) = A[g(x, y)]+ + B[g(x, y)]− (16)

where A,B are constant, and g(x, y) is given by

g(x, y) = Gσ4(x, y) − e · Gσ5(x, y) − ρ (17)

where Gσ(x, y) is a Gaussian function and e, ρ are constant.
Since the neural response of the Mi1 (or Tm1) is delayed relative to the

Tm3 (or Tm2), we define the output of the Mi1 (or Tm1) using the temporally
delayed output of the Tm3 (or Tm2). That is,

S
Mi1

(x, y, t) =
∫

S
Tm3

(u, v, t) · Γn
N

,τ
N

(t − s)ds (18)

S
Tm1

(x, y, t) =
∫

S
Tm2

(u, v, t) · Γn
F

,τ
F

(t − s)ds (19)

where S
Mi1

and S
Tm1

represent outputs of Mi1 and Tm1, respectively; n
N

, n
F

are orders of Gamma kernels while τ
N

, τ
F

are time constants.

A Feedback Neural Network for Small Target Motion Detection 733

2.4 Lobula Layer

In the insect’s visual system, STMD neurons integrate signals from medulla
neurons and respond selectively to small target motion.

In the existing ESTMD model [12], the output of STMD neuron F (x, y, t)
with visual field centered at (x, y) is defined by multiplying the Tm3 neural
output S

Tm3
(x, y, t) with the Tm1 neural output S

Tm1
(x, y, t). That is,

F (x, y, t) = S
Tm3

(x, y, t) × S
Tm1

(x, y, t). (20)

In the proposed feedback neural network, the medulla neural outputs and
feedback signal are added together to define the output of the STMD neuron
(see Fig. 1). The temporally delayed model output is used as the feedback signal,
which is obtained by convolving F (x, y, t) with a Gamma kernel. That is,

F (x, y, t) =
{

S
Tm3

(x, y, t) + k · ∫∫∫
F (x, y, s) · Γn

L
,τ

L
(t − s)ds

}

×
{
S

Tm1
(x, y, t) + k · ∫∫∫

F (x, y, s) · Γn
L

,τ
L
(t − s)ds

}
.

(21)

where nL and τ
L

are the order and time constant of the Gamma kernel,
respectively.

3 Results and Discussions

In this section, we test the ability of the proposed feedback neural network
(Feedback ESTMD) for detecting small targets against cluttered backgrounds.
The proposed neural network is tested on a set of image sequences produced
by Vision Egg [8]. The video images are 500 (in horizontal) by 250 (in vertical)
pixels and temporal sampling frequency is set as 1000 Hz.

Before performing experiments, we explain how to determine the location
of a small moving target using model output F (x, y, t). For a given detection
threshold γ, if there is a position (x0, y0) and time t0 which satisfy model output
F (x0, y0, t0) > γ, then we believe that a small target is detected at position
(x0, y0) and time t0. Two metrics are defined to evaluate detection performance.
That is,

DR =
number of true detections
number of actual targets

(22)

FA =
number of false detections

number of images
(23)

where DR and FA represent the detection rate and false alarm rate, respectively.
The detected result is considered correct if the pixel distance between the ground
truth and the result is within a threshold (5 pixels).

In the first experiment, we use an image sequence which shows a small dark
target moving against the naturally cluttered background, as model input. A
representative frame is shown in Fig. 2(a). The background is moving from left

734 H. Wang et al.

BV
(a)

0 5 10 15 20 25 30 35
False alarm rate

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
ra

te

Feedback ESTMD
ESTMD

(b)

Fig. 2. (a) A representative frame of the input image sequence. The small target is
highlighted by the white circle. Arrow VB denote motion direction of the background.
(b) The receiver operating characteristic (ROC) curve.

to right and its velocity VB is set as VB = 250 (pixel/second). A small target
is moving against the cluttered background and its coordinate at time t is set
as (500 − V

T
· t+300

1000 , 125 + 15 · sin(4π t+300
1000)), t ∈ [0, 1000] ms where V

T
denotes

target velocity and is set as V
T

= 500 (pixel/second). The luminance and size of
the small target are set as 50 and 5×5 (pixel × pixel), respectively. The receiver
operating characteristic (ROC) curve is presented in Fig. 2(b).

Figure 2(b) is illustrating that the proposed feedback model (Feedback
ESTMD) outperforms the existing model (ESTMD) at detecting small targets
against naturally cluttered backgrounds. More precisely, for a given false alarm
rate, feedback ESTMD has a higher detection rate than ESTMD. This also indi-
cates that the feedback loop can improve detection performance of the existing
STMD-based models.

We further test these two models under different parameters of the image
sequence, including target luminance, target size, target velocity, background
velocity and background motion direction. In order to compare detection per-
formances, we fix false alarm rate FA as 10 and illustrate detection rates of two
models at this false alarm rate. The corresponding results are shown in Fig. 3.

From Fig. 3(a) and (b), we can see that feedback ESTMD has a better detec-
tion performance than ESTMD under different target luminance and sizes. To
be more precise, the detection rate of feedback ESTMD is much higher than that
of ETMD when target luminance varies (see Fig. 3(a)). Similarly in Fig. 3(b), the
detection rate of feedback ESTMD is higher than that of ETMD under different
target sizes.

From Fig. 3(c), (d) and (e), we can find that detection performance of feed-
back ESTMD is dependent on velocity difference between the background and
the small target. More precisely, as we can see from Fig. 3(c), when target velocity
is larger than background velocity VB = 250 (pixel/second), feedback ESTMD
has higher detection rates than ESTMD. However, when target velocity is smaller
than background velocity, detection rate of feedback ESTMD is slightly lower
than that of ESTMD. Similar variation trend can be seen Fig. 3(d) and (e). To
be more precise, no matter whether the background and the small target are

A Feedback Neural Network for Small Target Motion Detection 735

0 15 30 45 60 75
Target luminance

0

0.2

0.4

0.6

0.8

1
D

et
ec

tio
n

ra
te

Feedback ESTMD
ESTMD

(a)

0 3 6 9 12 15
0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
ra

te

Feedback ESTMD
ESTMD

(b)

100 200 300 400 500 600 700
Target velocity (pixel/second)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
ra

te

Feedback ESTMD
ESTMD

(c)

100 200 300 400 500 600 700
Background velocity (pixel/second)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
ra

te

Feedback ESTMD
ESTMD

(d)

100 200 300 400 500 600 700
Background velocity (pixel/second)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
ra

te

Feedback ESTMD
ESTMD

(e)

Fig. 3. Detection rates of the proposed feedback model (feedback ESTMD) and the
existing model (ESTMD) at a fixed false alarm rate FA = 10 when parameters of
image sequences are changed. In each subplot, horizontal axis denotes the varying
parameter while vertical axis denotes detection rate DR. (a) Varying target luminance.
(b) Varying target size. (c) Varying target velocity. (d) Varying background velocity
when the target and the background are moving along the opposite direction. (e)
Varying background velocity when the target and the background are moving along
the same direction.

moving along the same direction or not, the detection rate of feedback ESTMD
is higher than that of ESTMD when background velocity is smaller than tar-
get velocity VT = 500 (pixel/second). When background velocity is larger than
target velocity, detection rates of these two models show no significant difference.

In the second and third experiment, we test the proposed feedback model in
different cluttered backgrounds. Two image sequences with different backgrounds
are used as model input in these two experiments. Two representative frames
are presented in Figs. 4(a) and 5(a), respectively. In these two image sequences,
backgrounds are all moving from left to right and their velocities are set as 250
(pixel/second). A small target whose luminance, size are set as 50 and 5×5 (pixel
× pixel), is moving against cluttered backgrounds. The coordinate of the small
target at time t equals to (500 − V

T

t+300
1000 , 125 + 15 · sin(4π t+300

1000)), t ∈ [0, 1000]
ms where V

T
is set as 500 (pixel/second).

From Figs. 4(b) and 5(b), we can see that feedback ESTMD has a better
performance than ESTMD. For a given false alarm rate, the detection rate of
feedback ESTMD is higher than that of ESTMD. This indicate that feedback
ESTMD performs better than ESTMD in different cluttered backgrounds.

736 H. Wang et al.

BV

(a)

0 5 10 15 20 25 30 35
False alarm rate

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
ra

te

Feedback ESTMD
ESTMD

(b)

Fig. 4. (a) A representative frame of the input image sequence. The small target is high-
lighted by the white circle. Arrow VB denote motion direction of the background. (b)
The receiver operating characteristic (ROC) curves of feedback ESTMD and ESTMD.

BV

(a)

0 5 10 15 20 25 30 35
False alarm rate

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
ra

te

Feedback ESTMD
ESTMD

(b)

Fig. 5. (a) A representative frame of the input image sequence. The small target is high-
lighted by the white circle. Arrow VB denote motion direction of the background. (b)
The receiver operating characteristic (ROC) curves of feedback ESTMD and ESTMD.

4 Conclusion

In this paper, we proposed a feedback neural network for small target detection
against naturally cluttered backgrounds. In order to form a feedback loop, net-
work output is temporally delayed and then relayed to middle neural layer as
feedback signal. Feedback signal is added on outputs of middle neural layer for
weakening responses to background noise. Systematic experiments showed that
the proposed feedback neural network has a much better performance than the
existing ESTMD model, if there is velocity difference between the background
and the small target. In the future, we will further combine feedback loops with
visual attention mechanisms for improving detection performances of models.

Acknowledgments. This research was supported by EU FP7 Project HAZCEPT
(318907), HORIZON 2020 project STEP2DYNA (691154), ENRICHME (643691) and
the National Natural Science Foundation of China under Grant 11771347.

A Feedback Neural Network for Small Target Motion Detection 737

References

1. Bagheri, Z.M., Wiederman, S.D., Cazzolato, B.S., Grainger, S., O’Carroll, D.C.:
Performance of an insect-inspired target tracker in natural conditions. Bioinspira-
tion Biomim. 12(2), 025006 (2017)

2. Behnia, R., Clark, D.A., Carter, A.G., Clandinin, T.R., Desplan, C.: Process-
ing properties of on and off pathways for drosophila motion detection. Nature
512(7515), 427 (2014)

3. Clarke, S.E., Maler, L.: Feedback synthesizes neural codes for motion. Curr. Biol.
27(9), 1356–1361 (2017)

4. Kafaligonul, H., Breitmeyer, B.G., Öğmen, H.: Feedforward and feedback processes
in vision. Front. Psychol. 6, 279 (2015)

5. Nordström, K.: Neural specializations for small target detection in insects. Curr.
Opin. Neurobiol. 22(2), 272–278 (2012)

6. Nordström, K., Barnett, P.D., O’Carroll, D.C.: Insect detection of small targets
moving in visual clutter. PLoS Biol. 4(3), e54 (2006)

7. Olberg, R., Worthington, A., Venator, K.: Prey pursuit and interception in drag-
onflies. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 186(2),
155–162 (2000)

8. Straw, A.D.: Vision egg: an open-source library for realtime visual stimulus gener-
ation. Front. Neuroinform. 2, 4 (2008)

9. Wang, H., Peng, J., Yue, S.: A directionally selective small target motion detecting
visual neural network in cluttered backgrounds. arXiv preprint arXiv:1801.06687
(2018)

10. Warrant, E.J.: Matched filtering and the ecology of vision in insects. In: von der
Emde, G., Warrant, E. (eds.) The Ecology of Animal Senses, pp. 143–167. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-25492-0 6

11. Wiederman, S.D., O’Carroll, D.C.: Biologically inspired feature detection using
cascaded correlations of off and on channels. J. Artif. Intell. Soft Comput. Res.
3(1), 5–14 (2013)

12. Wiederman, S.D., Shoemaker, P.A., O’Carroll, D.C.: A model for the detection of
moving targets in visual clutter inspired by insect physiology. PloS one 3(7), e2784
(2008)

http://arxiv.org/abs/1801.06687
https://doi.org/10.1007/978-3-319-25492-0_6

De-noise-GAN: De-noising Images
to Improve RoboCup Soccer Ball

Detection

Daniel Speck(B), Pablo Barros, and Stefan Wermter

Department of Informatics, University of Hamburg,
Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany

{2speck,barros,wermter}@informatik.uni-hamburg.de

Abstract. A moving robot or moving camera causes motion blur in the
robot’s vision and distorts recorded images. We show that motion blur,
differing lighting, and other distortions heavily affect the object localiza-
tion performance of deep learning architectures for RoboCup Humanoid
Soccer scenes. The paper proposes deep conditional generative models
to apply visual noise filtering. Instead of generating new samples for a
specific domain our model is constrained by reconstructing RoboCup
soccer images. The conditional DCGAN (deep convolutional generative
adversarial network) works semi-supervised. Thus there is no need for
labeled training data. We show that object localization architectures
significantly drop in accuracy when supplied with noisy input data and
that our proposed model can significantly increase the accuracy again.

Keywords: TensorFlow · Neural networks · DCGAN · GAN
De-noising · RoboCup · Robotics

1 Introduction

With an increasing number of devices that are able to record visual data, the
available information grows exponentially. Although this growing amount of data
covers a huge potential for various fields, it is not very useful without any labels
that categorize this information. In the last couple of years, much attention was
spent for discriminative models that solve complex classification tasks, especially
in deep learning [4,5,10]. However, there is a recent motivation for a more active
development of unsupervised models, since labeling data, like marking object
positions with bounding boxes, is an expansive task in both resources and time.
In this paper we evaluate GANs (generative adversarial networks) for image
de-noising.

In RoboCup Humanoid Soccer the movement of the robot itself and also its
camera is a severe problem for the robot’s vision. Object localization architec-
tures heavily drop in accuracy during such actions, rendering it hard to make use
of the camera input. While this problem could be fixed by enforcing the robot to

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 738–747, 2018.
https://doi.org/10.1007/978-3-030-01424-7_72

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_72&domain=pdf

De-noise-GAN: De-noising Images to Improve RoboCup 739

stop all actions and just stand still this “hot-fix” is not applicable in RoboCup,
since a game of soccer is highly dynamic and robots should continuously move
to get the ball, go to the enemy team’s goal and get an edge over the enemy
team by constantly repositioning on the playfield.

Image De-raining Using a Conditional Generative Adversarial Network by
Zhang et al. [11] proposes an architecture for image de-raining. The generator (G)
is a composition of convolutional and transposed convolutional layers (sometimes
also called de-convolutional layers). The network is trained on rainy images,
while the discriminator (D) is conditioned with clear images to give G feedback
that allows to learn how to de-rain images. Hence, the input can consist of
unlabeled, clear images. The only augmentation needed is applying artificial
rain to the ground truth, i.e. clear images, in order to produce the conditional
input. Another similar approach is the generation of “super-resolution” images
out of low-resolution samples with GANs [6].

Our hypothesis is that a deep convolutional generative adversarial network
(DCGAN) is able to learn the specific characteristics of RoboCup Humanoid
Soccer domain for de-noising real-world images. Due to the fact that real-world
scenes out of this domain are highly complex, e.g. they cover different playfields,
lighting conditions, presence of audience, different robots and referees, it is dif-
ficult to handcraft filter kernels that are able to de-noise high levels of motion
blurring. Hence, the model has to learn domain-specific features to be able to
reconstruct them in its output. This can be achieved by combining typical de-
noising filter kernels and memorizing domain specific features.

Our model, which we call “De-Noise-GAN”, is a conditional DCGAN where
the generator (G) de-noises artificially noised input and discriminator (D) clas-
sifies input images into two different classes“generated” and “real” to supply the
adversarial loss to train G. Despite judging the direct output of G, i.e. deciding if
it produces reasonable, realistically looking output, we use an evaluation metric:
we have a large test dataset for ball localization and use the baseline results of
our ball localization model to compare them to the accuracy of (1) artificially
noised input and (2) de-noised input generated by G.

2 De-noising Generative Adversarial Network

2.1 Generative Models

Originally proposed in 2014 by Goodfellow et al. [3] generative adversarial
networks (GANs) recently became a suitable solution for many unsupervised-
learning tasks. The idea is to have two networks that train each other instead
of one big network for more complex unsupervised learning problems. The dis-
criminator sub-network D tries to categorize input into two classes: generated
and real, where generated is an insufficient solution for the problem’s domain
and should be rejected since it could be distinguished from real samples. Thus,
real is an appropriate solution that fits to the ground truth of the domain. D
is trained with real data (unlabeled training data) and generated data by the
Generator sub-network G. Hence, G is given the feedback of D in order to try

740 D. Speck et al.

to generate output that is “as good as possible” for a certain task. Therefore
D and G efficiently train each other on unlabeled data by playing a two-player
min-max game: D tries to minimize its error on distinguishing samples into real
and generated classes and G tries to maximize D’s error by generating output
that is close to samples of the real class, so that D falsely classifies G’s generated
samples as real.

2.2 DCGANs

Radford et al. proposed generative adversarial networks in combination with up-
to-date deep learning approaches to build deep convolutional generative adver-
sarial networks (DCGANs) [9]. These models were introduced to move on from
tasks like MNIST digit generation to more complex environments. DCGANs are
capable of learning certain conditions and specific representations of a domain.
For example, when DCGANs are trained with faces and different representa-
tions, they can remove or add sunglasses to faces, change the gender of a face
and so forth [9].

In comparison to GANs, the convolutional layers in DCGANs are able to
learn specific filter kernels in order to alter or generate specific features spa-
tially, while the MLPs used in traditional GANs consist of fully-connected layers,
which perform worse at complex, spatial filtering. Basically, it is the descriptive
ability of the (de-)convolutional layers that enables DCGANs to go for more
complex domains compared to vanilla GANs. It is very similar to standard com-
puter vision tasks, where (deep) CNNs outperform MLPs and other traditional
approaches, like at the ImageNet challenge for example [5].

2.3 De-noise-GAN

We propose a conditional DCGAN, called De-Noise-GAN, that is trained with
RoboCup Humanoid Soccer samples and artificial noise to have Generator G
learn how to detect and remove noise like motion blur and occlusions caused by
the robot’s walking or camera movements.

G’s architecture is illustrated in Fig. 1. The first two layers are 1 × 1 convo-
lutions to let the network learn its own color representations for our RoboCup
domain. Feeding raw RGB images instead of pre-processing or other color spaces
like HSV showed interesting results in Mishkin et al.’s work where they eval-
uated different techniques for comparable network types and discovered that
trained color transformation layers could improve results [7]. HSV and other
pre-processing steps also covered worse results for our case. The next step is
downsampling the dimensionality of the input through two convolutional and
max-pooling layers. Instead of pooling and upsampling (nearest-neighbor upscal-
ing), we also evaluated using (de-)convolutions with a stride of 2, but experienced
“checkerboard artifacts” in the output [1,8]. Dahl et al. also dealt with this kind
of problems in their paper on pixel recursive super-resolution [2]. The pooling
and upsampling layers introduce more smoothness for G’s output. Using just
the upsampling part of the network as output often showed incomplete features

De-noise-GAN: De-noising Images to Improve RoboCup 741

co
nv

 1
x1

x3

ba
tc

h
no

rm

co
nv

5x
5x

64

ba
tc

h
no

rm

co
nv

 3
x3

x1
28

ba
tc

h
no

rm

co
nv

 3
x3

x1
28

ba
tc

h
no

rm

co
nv

 3
x3

x2
56

ba
tc

h
no

rm

co
nv

 5
x5

x6
4

ba
tc

h
no

rm

up
sa

m
pl

in
g

2x
2

up
sa

m
pl

in
g

2x
2

co
nv

 5
x5

x3

noisy input

150x200x3

m
ax

 p
oo

l 2
x2

m
ax

 p
oo

l 2
x2

co
nv

 3
x3

x2
56

ba
tc

h
no

rm

co
nv

 1
x1

x9

ba
tc

h
no

rm

transform layer downsampling intermediate

upsampling

de-noised output

150x200x3

co
nv

 5
x5

x6
4

ba
tc

h
no

rm

co
nc

at

Fig. 1. Generator G of our proposed model. The input image is distorted by random
Gaussian noise and translations (to add motion blur effect). Output is a de-noised RGB
image. This Figure shows actual training input and output.

co
nv

 5
x5

x3
2

fla
tte

n

co
nv

 5
x5

x3
2

co
nv

 3
x3

x2
56

co
nv

 3
x3

x1
28

 fu
lly

-c
on

ne
ct

ed
 1

00

fu
lly

-c
on

ne
ct

ed
 2

input (1)

150x200x3

input (2)

150x200x3

co
nc

at

m
ax

 p
oo

l 2
x2

m
ax

 p
oo

l 2
x2

m
ax

 p
oo

l 2
x2

m
ax

 p
oo

l 2
x2

co
nv

 5
x5

x6
4

co
nv

 5
x5

x6
4

Fig. 2. Discriminator D of our proposed model. The input consists of two images:
input (1), which receives clear images, i.e. the ground truth, and input (2), which is the
conditional input for training. The output layer’s two neurons model the probability for
“real” and“generated” classes. Training labels are [0, 1] for generated samples and [1, 0]
for real samples. This Figure shows an actual training iteration for G, hence input (1)
is a clear, real training image and input (2) the de-noised reconstruction of the noised
input for G, which covered a low level of noise for this sample so that the reconstructed
output is of high quality.

742 D. Speck et al.

for bigger objects, so we added two more convolutional layers before the actual
output. Additionally, we added a skip layer combining the output of the upsam-
pling part and the first convolutional layer before the downsampling part, which
led to smoother output.

The Discriminator’s (D) architecture is shown in Fig. 1. It has two inputs:
input (1) always gets fed with the ground truth, i.e. clear images without noise
and input (2) is the conditional input. The conditional input either receives clear
images (training D on real labels) or images de-noised by G. In the case of de-
noised input D is trained with generated labels and G with real labels. These
two images are subsampled separately by two independent convolutional layers,
the resulting feature maps are then concatenated and fed to the subsequent
convolutional layers. Additionally, D has a fully-connected layer at the output
level to classify its input into the two classes generated and real. A graphical
illustration of the Discriminator’s architecture can be seen in Fig. 2.

3 Experimental Results

3.1 Dataset and Acquisition

Our training dataset consists of 66,623 images and was recorded at three dif-
ferent locations, our old lab, RoboCup 2016, Leipzig, Germany and RoboCup
2017, Nagoya, Japan. The test dataset is composed of 2,177 images from two dif-
ferent locations, RoboCup 2017 and German Open footage. The RoboCup 2017
test images are taken from other games and other playfields than the training
images from the same location. The German Open images are only included in
the test dataset. Therefore this location’s features are completely unknown to
the network. During the training, we apply random Gaussian noise and image
translations to the input image in order to add noise and motion blur effects.

Fig. 3. Left image: real noise, right image: artificial noise. Both images are taken
from a sequence of images at RoboCup 2016, Leipzig, Germany. The left image with
real noise was recorded during a sequence with camera movement of the robot’s camera,
while the right image is the last image of the sequence, where the camera stands still
again, and was artificially blurred afterwards.

De-noise-GAN: De-noising Images to Improve RoboCup 743

The image translations (to add the motion effect) and the Gaussian noise kernel
are drawn from separated random numbers. This pre-processing to artificially
noise the image is done with OpenCV and NumPy. We blend together trans-
lated copies of the original image and apply gaussian noise kernels via convo-
lutions using OpenCV. Depending on the random numbers the result of this
process ranges from slightly translated, slightly noised images to heavily trans-
lated, heavily noised images in order to simulate a broad variety of motion blur
effects. A comparison between real and artificial noise of a medium level (non-
moving robot, but moving camera) can be seen in Fig. 3. Since a moving robot
would not produce any clear images, we can not directly compare the high-level
artificial noise to the motion blur of a walking robot due to the lack of clear
images to apply artificial noise on. However, high-level artificial noise also looks
similar to high real-world motion blur caused by walking robots.

3.2 De-noising

Reconstructing noised images in the RoboCup Humanoid Soccer domain is a very
complex scenario. The generator has to reconstruct RBG color images of shape
200× 150 with a vast amount of variations: different balls, robots, humans, play
fields, and so on. Moreover changes in lighting and contrast cause strong differ-
ences for various sceneries. Nonetheless, the current architecture shows promising
de-noising results. In Fig. 4 four highly noised test images were selected to dis-
play the reconstruction abilities of our network. All samples cover a ball and
the first and last image also a robot. G learns about common objects in the
RoboCup Humanoid soccer domain. Thus small balls, for example, are mostly
reconstructed as mostly white spheres. A similar behavior applies for advertis-

no
is

y
in

pu
t

de
-n

oi
se

d
ou

tp
ut

Fig. 4. Upper row displays highly noised test images and lower row the corre-
sponding de-noised output. The first image was recorded in the Hamburg Bit-Bots
Lab, the next two from a WF Wolves test game at RoboCup German Open, and the last
one at RoboCup 2017, Nagoya, Japan. The first two locations are completely unknown
to the network since they are only included in test, but not in training data. The last
image from RoboCup 2017, Nagoya, Japan, covers actual game footage from a game
that is not included in the training data, but other games from RoboCup 2017 are.

744 D. Speck et al.

ing boards or the audience’s clothes: if the noise in the image is too strong,
the generator not only reconstructs the original features but often also mixes
in common logos, shapes, and other objects that often appear in the training
set. We had a significant improvement in accuracy when we moved from our old
training dataset (less than 20,000 images) to our current one (66,000 images).

Figure 5 shows an interesting effect of false positives for our DCGAN. Since
the DCGAN cannot reconstruct a high-level of detail without memorizing the
typical scenery of our domain it sometimes comes to wrong object reconstruc-
tions when the DCGAN is fed an image with a very high-level of noise. In the
case of Fig. 5 the original image only showed a penalty spot on the playfield,
but the network mistakenly classifies this as a ball and therefore reconstructs it
accordingly in the output.

3.3 Ball Localization

For our RoboCup Humanoid Soccer robots, we currently use a Fully-
Convolutional Neural Network (FCNN) for ball localization in raw camera input.
The FCNN maps the raw RGB input onto a heatmap with the same dimension-
ality as the input, effectively creating a voting for each pixel to be considered
“ball” or“no ball”. Out of the heatmap, we calculate clusters and find each
cluster’s center for post-processing the ball’s actual location with respect to the
robot (camera angle, . . .). To allow for easy comparisons, in addition to Jaccard-
index (Intersection of Unions) as well as precision and recall, we measure the
FCNN by a “radius accuracy”, i.e. comparing the center of each cluster with the
ground truth in the original image. This is easily comparable for other teams
who do not use bounding boxes or heatmaps, but only absolute coordinates for
example. Table 1 shows that our FCNN scores accuracies around 90% on our test
images, which consist of over 2,000 images from RoboCup 2017, Nagoya, Japan
and German Open. The Nagoya pictures are again only covering games that are
not included in the training set and German Open data is included in test data
only. When applying artificial noise to our test data the accuracies drop to less
than a third of the original accuracies. After de-noising the noised input with
De-Noise-GAN the accuracies increase again to nearly 80%.

Table 1. Results for FCNN ball localization.

Accuracy type FCNN clear images FCNN noisy input FCNN de-noised input

Radius 3 89.8% 22.4% 73.7%

Radius 5 91.5% 28.3% 77.5%

Radius 10 94.3% 32.4% 78.5%

De-noise-GAN: De-noising Images to Improve RoboCup 745

4 Discussion

The results of De-Noise-GAN for de-noising domain specific real-world scenes
are promising. As expected, the accuracies of object detection frameworks like
our ball localization architecture heavily drop when fed with noisy input. In our
case, the accuracies dropped to less than a third (see Table 1), but when fed
with our de-noised images from our DCGAN the accuracies more than doubled
again, peaking to nearly 80%. In our first models there was still a lot of arti-
facts, due to the comparably high resolution of our output and the features that
need to be reconstructed there, making it easy for D to discriminate, but hard
for G to precisely de-noise images. Also, over-sharpening the output happened
often. The FCNN’s localization accuracy was lower than 70% with these mod-
els. Two steps improved the results up to the proposed results: we introduced a
skip connection and an addition to the loss function. The skip connection caused
smoother output since it keeps some of the more noisy, higher-level features of the
early convolutions. This alone increased the accuracies by nearly 5%. The second
step was an alteration for the loss function. Originally G was only trained in an
adversarial fashion, but we had quite interesting results for (variational) Autoen-
coders. While all of our Autoencoders did not come close to the level of detail of
DCGANs, their output covered considerably fewer artifacts and oversharpening.
The output, as expected, was smoother. For our current model, we tried to com-
bine the DCGAN’s high-level of detail with the Autoencoder’s “smoothness”. In
addition to the min-max game D and G play during training, we simply added
a mean squared error (MSE) to G’s error function between G’s output and the
ground truth (clear image). This approach increased the accuracies by more than
5%, leading to smoother output and fewer artifacts than before. However, there
are still artifacts in some images and also false positives like shown in Fig. 5 due
to the high reconstruction capability of the GAN (we scale down the MSE to
focus on the adversarial loss during learning and only add the MSE to decrease

noisy input de-noised output

Fig. 5. The input image (left) shows a high-level of artificial noise. The de-noised
output (right) clearly shows a ball, reconstructed by the DCGAN. However, in the
input image this object was originally a penalty spot on the playfield, not a ball.

746 D. Speck et al.

oversharpening and artifacts). This behavior suggests that for complex scenes
the Generator always also learns which kind of objects appear in the scenery,
effectively memorizing the given domain. Given this knowledge G de-noises by a
mix of real de-noising and memorizing. This memorizing effect could be observed
best for balls and lights in our domain since many training images show a ball
and lights on the ceiling. Despite the discussed object mis-classifications G some-
times still has mosaic-like patterns in the output if the scenes get too complex,
e.g. when high noise is present in combination with many persons in the back-
ground. Especially for the audience’s clothes G then usually reconstructs some
mix of commonly represented logos, typical clothes, . . . of the training set, which
looks unrealistic. This might be a problem with our learning procedure or the
size of the training dataset: the 66,000 images were only recorded at three dif-
ferent locations: our old Lab, RoboCup 2016 in Leipzig, Germany and RoboCup
2017 in Nagoya, Japan.

5 Conclusion

Our proposed architecture, De-Noise-GAN, showed reasonable and promising
results for complex tasks such as de-noising RoboCup Humanoid Soccer images.
If supplied with enough training samples, the generator can learn the character-
istic features of different objects and reconstruct them in noisy images quite well,
including real-world noise. Although the de-noising quality of unknown objects
is rather poor, i.e. images look unrealistic to humans, they also show that the
generator is not only memorizing different objects but also learning the charac-
teristics of noise in images to generalize de-noising filters. However, the quality
of de-noising is significantly better, if the generator has seen the objects in the
scene during training, like the ball for example. This may suggest that this pro-
cess is somehow comparable to the reconstruction in biology: e.g. a human most
likely recognizes objects behind a window even in heavy rain if the object is
well known to the observer, while it is significantly harder to recognize unknown
objects.

6 Future Work

We plan to continue our work by evaluating new architectures. The mix-in of
MSE to the loss functions, for example, shows interesting results. This suggests
that mixing GANs with Autoencoders is doable and can actually decrease the
downsides of each of the single approaches. Besides that, a deeper look into the
reconstruction abilities of complex scenes could be interesting to understand the
importance of well-known domains for the de-noising process. Moreover, this
could be compared to similar tasks in neuroscience, which might suggest new
alterations for the current architecture to increase the model’s robustness.

De-noise-GAN: De-noising Images to Improve RoboCup 747

Acknowledgements. We are grateful to the NVIDIA corporation for supporting our
research through the NVIDIA GPU Grant Program (https://developer.nvidia.com/
academic gpu seeding). We used the donated NVIDIA Titan X (Pascal) to train our
models. The work was made in collaboration with the TRR 169 “Crossmodal Learning”,
funded by the DFG.

References

1. Aitken, A., Ledig, C., Theis, L., Caballero, J., Wang, Z., Shi, W.: Checkerboard
artifact free sub-pixel convolution: a note on sub-pixel convolution, resize convolu-
tion and convolution resize, July 2017. http://arxiv.org/abs/1707.02937

2. Dahl, R., Norouzi, M., Shlens, J.: Pixel recursive super resolution. arXiv preprint
arXiv:1702.00783 (2017)

3. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, vol. 27, pp. 2672–2680 (2014). http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf

4. Karpathy, A., Leung, T.: Large-scale video classification with convolutional neu-
ral networks. In: Proceedings of 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1725–1732 (2014). https://doi.org/10.1109/CVPR.2014.
223

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances In Neural Information Processing Sys-
tems, pp. 1–9 (2012)

6. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative
adversarial network, September 2016. http://arxiv.org/abs/1609.04802

7. Mishkin, D., Sergievskiy, N., Matas, J.: Systematic evaluation of CNN advances
on the ImageNet, June 2016. http://arxiv.org/abs/1606.02228

8. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts.
Drill 1(10), 1–14 (2016). https://doi.org/10.23915/distill.00003

9. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,
pp. 1–16 (2016)

10. Szegedy, C., Reed, S., Sermanet, P., Vanhoucke, V., Rabinovich, A.: Going deeper
with convolutions, pp. 1–12 (2014)

11. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative
adversarial network. arXiv preprint arXiv:1701.05957, pp. 1–13 (2017)

https://developer.nvidia.com/academic_gpu_seeding
https://developer.nvidia.com/academic_gpu_seeding
http://arxiv.org/abs/1707.02937
http://arxiv.org/abs/1702.00783
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CVPR.2014.223
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1606.02228
https://doi.org/10.23915/distill.00003
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1701.05957

Integrative Collision Avoidance Within
RNN-Driven Many-Joint Robot Arms

Sebastian Otte(B), Lea Hofmaier, and Martin V. Butz

Cognitive Modeling Group, Computer Science Department, University of Tübingen,
Sand 14, 72076 Tübingen, Germany
sebastian.otte@uni-tuebingen.de

Abstract. Robot arm control and motion planning in dynamically
changing environments is a challenging task. It requires an adaptive plan-
ning algorithm that generates solutions on-the-fly, incorporating the cur-
rent environmental conditions. This paper explores an alternative app-
roach. Adaptive planning is realized in a generative Recurrent Neural
Network (RNN) architecture, which produces goal-directed motor com-
mands by means of active-inference-based, model-predictive control. As
the main contribution, in this paper we show how to integrate local col-
lision avoidance gradients into the active inference process. The result
is a control mechanism that avoids arm collisions while concurrently
pursuing arm goal poses. The RNN processes embodied, sensorimotor
dynamics into which proximity signals from locally embedded distance
sensors are injected at the respective joint locations. We demonstrate
that a 3D trunk-like many-joint robot arm with up to 80 articulated
degrees of freedom (DoF) can maneuver collision-free even through very
challenging, dynamic obstacle constellations, evading potential collision
sources while pursuing goal-directed arm pose and end-effector control.

Keywords: Robot arm control · Inverse kinematics
Collision avoidance · Active inference

1 Introduction

In recent studies [12,13] it has been shown that Recurrent Neural Networks
(RNNs) are very well-suited for learning kinematic forward models that can
be used to generate goal-directed control even in many-joint robot arms. The
employed approximate active inference process [4] is implemented via Back-
Propagation Through Time (BPTT) [16]. From the control literature perspec-
tive, the implemented algorithm is essentially a model-predictive control approach
were the involved, sensorimotor-grounded model is learned by an RNN [3]. A great
additional feature of our approach is that all potential target components, includ-
ing the pose (position and orientation) of the end-effector and all other arm seg-
ments, can be selectively turned on and off on-the-fly [12]. Thus, control over the
entire arm is possible, allowing the spontaneous, dynamic imposition of arbitrary
partial constraints.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 748–758, 2018.
https://doi.org/10.1007/978-3-030-01424-7_73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_73&domain=pdf

Integrative Collision Avoidance 749

In this paper we address the question of how to integrate collision avoid-
ance mechanisms in environments with complex obstacle constellations and
even dynamic obstacles. Traditional control and planning mechanisms, includ-
ing many other model-predictive control approaches, require additional, sophis-
ticated mechanisms to maneuver a robot arm through obstacle constellations
without collisions. In contrast, we pair goal-directed control with local collision
avoidance, which is triggered by arm segment-specific distance sensors. This is
achieved by integrating both objectives into an approximate active inference
process, which is implemented by means of BPTT in a generative RNN. That is,
instead of additional, global planning, we exploit the selective constraining capa-
bilities of the RNN-driven robot arm model, integrating locally evasive behavior
into goal-directed pose pursuance.

2 Method

We now first recapitulate the selectively constrainable RNN-based inference
scheme from [12]. Next, we add local distance sensors and explain how their
signals are mapped onto the recurrent active inference-based gradient flow.

2.1 Robot Arm Model and Selective Control

At first, it is required to learn the kinematic forward model M of the robot arm
with an RNN. M can be formalized as a mapping from robot arm configuration
states, that is, a sequence of angle vectors ϕj , onto the corresponding pose chain:

Φ =
(
ϕ1, . . . ,ϕn

) M�−−→ (
0
1A, . . . , 0NA

)
, (1)

where 0
jA ∈ R

4×4 refers to the reference frame transformation of the j-th joint
and N denotes the end-effector frame. Each 0

jA can be contains the joint’s ori-
entation, which is given by the orthonormal base 0

jR ∈ SO(3) ⊂ R
3×3, and its

translation, that is, its relative position from the base, given by 0
jp ∈ R

3.
In order to make this mapping well accessible for an RNN, we consider each

joint transformation as a “computing time-step” within the RNN, which thus
requires only k input neurons, where k is the number of angles per joint. Thus,
the computation is fully independent from the number of joints and the length
of the arm is reflected by the number of RNN computation steps. The angle
vectors ϕj are presented to the network in a sequential manner. Consequently,
the RNN is forced to use its recurrences to handle the repetitive character of
computing kinematic chains of mostly very similar transformations [13]. After
the RNN is trained on a sufficiently rich pool of training examples, it is able to
predict the pose chain of the arm given a sequence of angle vectors.

To control the arm, it is necessary to compute the inverse mapping, that is,
an appropriate angle sequence given a desired pose chain. How this is achieved
can best be explained by considering Fig. 1. First, the current arm configuration
Φ is processed by the RNN sequentially, producing corresponding pose chain

750 S. Otte et al.

estimates (01Ã, . . . , 0NÃ) (black arrows). The discrepancies (loss) L between the
estimated and desired pose chain (01

∗
A, . . . , 0N

∗
A) are back-propagated through

the unfolded RNN (blue arrows). The resulting arm pose gradients are thus
computed via

∂L
∂ϕ

j
i

=
H∑

h=1

[
∂netjh
∂ϕ

j
i

∂L
∂netjh

]

=
H∑

h=1

wihδj
h, (2)

projecting the loss back onto the static pose sequence of the arm segments,
where h indexes the hidden units and netjh denotes the weighted sum of inputs
(or net input) into unit h at computation step j. Starting from any possible arm
configuration, by following the negative gradient through the joint space in an
iterative manner, a possible solution to the inverse mapping is generated. We
thus update the joint angles in the following manner, which is essentially SGD
with momentum:

Φτ+1 ←− Φτ − η∇Φτ L � [sτ]2 + μ
[
Φτ − Φτ−1

]
, (3)

where τ denotes the current iteration step, η ∈ R is a gradient scale factor (cf.
learning rate in gradient descent learning), and the momentum is scaled with
the rate μ ∈ R, which accelerates convergence when the gradient signal is weak
but stable. � is a component-wise multiplication operation. The vector [sτ]2

(component-wise square) realizes a stabilization term that we refer to as sign
damping. Before each update step, sτ is computed by

sτ = αsτ−1 + (1 − α) sign(∇Φτ L), (4)

where α ∈ [0, 1] is a smoothing factor and the sign operator is applied component-
wise as well. Thus, [sτ]2 effectively expresses how strongly the current gradient
signal oscillates. The sign damping significantly stabilizes the movement behavior
of the robot arm and allows to increase η without causing the arm to oscillate.
Note that we also restrict the overall maximum update step size to regularize
relatively high gradients, which results in more uniform movements.

During our recent experiments we figured out that simple gradient descent
with moderate momentum produces a far more smooth and reliable movement
behavior than, e.g., Adam [6] or RMSprop [15]. While the latter mechanisms
work better for training, they have a detrimental effect on action inference – at
least for high-dimensional arms. This is probably the case, because Adam and
RMSprop normalize the individual gradient components independently, whereas
the individual magnitudes of the gradient components and their mutual rela-
tions are highly relevant when optimizing many-joint arm control commands.
Note that this contrasts with findings from [2,11], where Adam was found to
significantly stabilize action inference for low-dimensional dynamical systems.

Additionally, we apply a target correction step, compensating the error of
the forward model [12,13]. Instead of presenting the desired targets, encoded
as vectors zj ∈ R

9, we present “modified” versions z̃j to the network when
computing the loss. Let uj ∈ R

9 be the true current pose (obtained from a visual

Integrative Collision Avoidance 751

· · ·
0
NA

ϕ1 ϕ2 · · · ϕn-1 ϕn

∂L
∂ϕ

1
∂L
∂ϕ

2 · · · ∂L
∂ϕ

n-1
∂L

∂ϕ
n

RNN RNN · · · RNN RNN

0
1Ã

0
2Ã

0
N-1Ã

0
NÃ

0
1

∗
A 0

2

∗
A 0

N-1

∗
A

0
N

∗
A

x1
h

δ2
h

x2
h

δ3
h

xn-2
h

δn-1
h

x2
h

δn
h

xn-1
h

Fig. 1. Illustration of the active inference procedure using BPTT. In the recurrent,
unfolded forward pass, arm state inputs generate pose chain estimates. Discrepancies
between chain pose estimates and desired chain poses are back-propagated through the
network (blue lines), yielding desired arm posture state changes. (Color figure online)

feedback system or a mathematical model) and yj ∈ R
9 the pose prediction of

the RNN. We thus compute z̃j with respect to a given Φ as follows:

z̃j =
[

[yji + γpos(zji − uji)]1≤i≤3

[yjk + γrot(zjk − ujk)]4≤k≤9

]
, (5)

where γpos, γrot ∈ [0, 1] are additional scaling factors, which scale the influence
of the positional and the orientation discrepancy, respectively. This modification
causes the RNN to converge towards the real target pose with high precision,
effectively compensating for remaining forward model errors.

In order to enable the selective induction of constraints, we use “don’t care”
signals [12], which are defined as the respective zero gradients in the uncon-
strained components – zero gradients do not induce any additional gradient
signals to the backward pass, regardless of their forward pass estimates. As a
result, segment-selective control of the robot arm becomes possible.

2.2 Local Distance Sensor Signals

The sensory apparatus of the robot arm consists of several distance sensors dis-
tributed over the arm’s surface. The distance sensors in turn are simulated using a
simple ray-based intersection method, namely, the Möller-Trumbore intersection
algorithm [7]. Specifically, a ray is cast along the principle axis of a particular sensor
and the closest intersection pointwith possibly surrounding geometry is computed.

752 S. Otte et al.

Figure 2 depicts some formal components of the sensory model. Based on the clos-
est intersection point qτ

jk at system time step τ the sensory value of the k-th sensor
of joint j is calculated by

vτ
jk =

⎧
⎨

⎩
max

{
0, 1 − |qτ

jk − oτ
jk|

djk

}
if qτ

jk exists

0 otherwise.
(6)

Thus, vτ
jk effectively represents the strength of a particular sensory signal. It is

0 when no obstacle is detected in the sensor’s range, while it converges towards
1 when an obstacle is right in front of the sensor.

aτ
jk

djk

qτ
jk

oτ
jk

Fig. 2. Illustration of the simple ray-based sensor model (left). Multiple sensors of one
arm segment are circularly aligned (right) orthogonal to the segments principled axis
providing an all-around collision detection.

2.3 Sensory Gradient Injection

To realized obstacle avoidance of the individual arm segments, we integrated
the sensory information into the active inference process as follows: for each
sensor k of a joint j it’s sensory signal is mapped onto the sensor’s main
axis in negative direction, which we refer to as sensory-induced counter vec-
tor (SCV) šτ

jk = −[vτ
jk]β âjk

τ , where β (we use β = 3 throughout all experi-
ments) is an exponential scaling factor. The particular SCVs are summed up
per joint/segment

šτ
j = λšτ−1

j + (1 − λ)γsen

∑

k

šτ
jk, (7)

where γsen is an additional factor weighting the influence of the SCV to the
overall gradient and λ ∈ [0, 1] is another smoothing factor. For all segments j,
ergo, RNN computation steps, the SCVs šτ

j are added to the respective target
positions, following the selective constraining technique from [12]. As a result, the
evasion gradients are injected “locally” where and only when they occur within
the model. In conclusion, this procedure pushes the particular components of
the robot arm in the opposite direction of the sensory distance signals.

Integrative Collision Avoidance 753

3 Experiments

The experiments in this paper are based on a simulated three dimensional 40-
joint robot arm. Each joint can rotate along the x and the y axis. The entire arm
thus has 2 · 40 = 80 DoF. The sensor apparatus, illustrated in Fig. 3, provides
twelve radially arranged distance sensors at each of the 40 segments (including
the tip). Additionally, the end-effector has four forwardly arranged senors. The
entire arm thus has 40 · 12 + 4 = 484 sensors.

The used RNN architecture consists of two hidden layers with 24 Long Short-
Term Memory (LSTM) units [5] with intra-block connected gates [9] each. These
additional connections are advantageous in regression tasks [10]. Each hidden
block contains three inner cells and has variable biases for cells and gates, which
is helpful when the computation involves spatial mappings [13]. Additionally,
each hidden layer is not recurrently connected to itself, but both hidden layers are
mutually fully connected. All experiments were performed using the JANNLab
neural network framework [8].

For training, we applied Adam [6] using the parameters β1 = 0.9, β2 = 0.999
(parameterizing the first two moment estimates), and a learning rate of η = 10−4.
In order to achieve the most accurate model, we used ten training episodes, which
consisted of respective, randomly generated arm configurations, where the joint
angle ranges were limited to 10%, 20%, 30% and so forth of the full range. The
first nine sets contained 2 000 training examples each, whereas the tenth set – in
which the full angle ranges (here ± 45◦) are covered – contained 20 000 examples.
In each training episode, 50 epochs were performed. For controlling the robot
arm, we used simple gradient descent as described in Sect. 2.1 with η = 0.2,
μ = 0.3, and α = 0.9, γpos = 1.0 and γrot = 0.1 to equalize the magnitude of the
position and orientation-induced gradients, as otherwise the orientation gradient
would be numerically dominant. The sensor hyper-parameter were d = 0.1 (the
overall arm length is 1), β = 3, γsen = 2, and λ = 0.5.

Fig. 3. Sensor apparatus of the 40-joint robot arm. Each segment (including the tip)
has twelve radially arranged sensors and the tip has four additional frontal sensors.

754 S. Otte et al.

3.1 Moving Box

In our first experimental scenario, we positioned a moving box close to the arm
within its working area. While the arm tried to approach a target pose with
its end-effector, the box followed a wave-like trajectory crossing the postures
of the robot arm. We discovered that the robot arm successfully evaded the
box, whenever it moved too close towards the arm. Figure 4 shows an image
sequence documenting this behavior. As the box enters the detection range of
several sensors (top center image; sensor activation indicated by red color), the
resulting SCVs push the arm to the right, away from the box, while continuing
to reach the target pose of the end effector.

Fig. 4. Image series of the robot arm evading a moving box, which follows a wave-like
trajectory that crosses the postures of the robot arm. The blue coordinate system is
the target, which is approached by the arm’s end-effector.

3.2 Many Boxes

In the second scenario our aim was to study the behavior of the arm in a highly
occupied environment. For this purpose we distributed 48 static blocks within
the working area of the arm. Due to the obstacles, the arm cannot approach any
target pose freely – it has to take the space required for its own “body” into
account, while exploiting the partially tight, remaining free space. Again, the arm
manages to avoid the obstacles while pursuing end-effector poses. An exemplary
image sequence is shown in Fig. 5: to reach the target without collisions, the arm
bends it early segments lower, effectively avoiding the central block in front of
it while reaching for the target.

Integrative Collision Avoidance 755

In order to analyze this behavior more systematically, we performed 100
trials. In each trial, the particular target was randomly placed into the working
area and we recorded the minimal distance (over all 100 trials and 484 sensors) for
each time step. The results are depicted in Fig. 6. While the average distance to
the target consistently decreased, the sensors responded heavily invoking evasive
behavior. No collision occurred (distance < 0) during any of the 100 movements.
Note that on average the error does not fully drop to 0, since several random
targets were generated within a box, or too close to one, such that these targets
were only reached as close as possible, without causing a collision.

Fig. 5. Image series within a scenario with many boxes. While the robot arm maneuvers
towards the target it successfully circumvents collisions with the boxes and exploits the
available space.

3.3 Wall Opening

In a last scenario, a wall was placed between the arm and the target. There is no
way to circumvent the wall, but there is a small opening within the wall through
which the target is reachable.

This scenario can also be handled by the avoidance-integrating arm control
mechanism, as can be seen in Fig. 7. The arm is attracted by the target but in
turn pushed away from the wall. Since the integrated gradient guides towards
the opening along the wall, the arm ‘finds’ its way through the opening at the
bottom of the wall. Note that this would fail, if the target and obstacle-induced
gradients would not guide the arm towards the opening, e.g., when the target
would be placed far above the opening.

756 S. Otte et al.

 0.001

 0.01

 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 50 100 150 200 250 300

Fig. 6. Minimal detected sensor distance (top) and mean distance to target during 100
runs of approaching a random target in the many blocks scenario.

Fig. 7. Image series of the robot arm approaching a target behind a wall. The arm
senses the wall opening, maneuvers through it, and reaches the target without any
collision.

Integrative Collision Avoidance 757

4 Summary and Conclusion

In this paper we have shown that it is possible to augment RNN-implemented,
model-predictive, active inference-approximating control with local distance
sensor-based gradients, yielding obstacle avoiding, goal-directed robot arm
behavior. As the results have shown, as long as the obstacle signals do not trap
the arm into a local gradient optimum, pose goals can be reached while avoiding
collisions effectively. Trajectory planning mechanisms on top would be necessary
to counteract local optima in behavioral space.

Thus, we intend to combine the model predictive control along the RNN-
based kinematic chain model in the near future with temporal dynamic models,
which enable trajectory planning. Our recent model on controlling flying objects
is a suitable candidate [11]. Moreover, we intend to investigate the option for
event-oriented abstractions, such as when the arm interacts with a surface in
contrast to moving in free-space. As a result, we expect to enable emergent
event-oriented conceptualizations of the experienced environments, as recently
put forward elsewhere [1,2], which could enable event-specific optimizations of
behavioral policies [14], such as manipulating a surface in a particular manner.

References

1. Butz, M.V.: Towards a unified sub-symbolic computational theory of cognition.
Front. Psychol. 7(925) (2016)

2. Butz, M.V., Bilkey, D., Knott, A., Otte, S.: REPRISE: a retrospective and prospec-
tive inference scheme. In: 40th Annual Meeting of the Cognitive Science Society
(2018). (Accepted for publication)

3. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (1999).
https://doi.org/10.1007/978-0-85729-398-5

4. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-
energy formulation. Biol. Cybern. 102(3), 227–260 (2010)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference for Learning Representations abs/1412.6980 (2015)

7. Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. J.
Graph. Tools 2(1), 21–28 (1997)

8. Otte, S., Krechel, D., Liwicki, M.: JANNLab neural network framework for Java.
In: Poster Proceedings MLDM 2013, pp. 39–46. ibai-publishing, New York (2013)

9. Otte, S., Liwicki, M., Zell, A.: Dynamic cortex memory: enhancing recurrent neural
networks for gradient-based sequence learning. In: Wermter, S., et al. (eds.) ICANN
2014. LNCS, vol. 8681, pp. 1–8. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11179-7 1

10. Otte, S., Liwicki, M., Zell, A.: An analysis of dynamic cortex memory networks. In:
International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland,
pp. 3338–3345, July 2015

11. Otte, S., Schmitt, T., Friston, K., Butz, M.V.: Inferring adaptive goal-directed
behavior within recurrent neural networks. In: Lintas, A., Rovetta, S., Verschure,
P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 227–235.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4 27

https://doi.org/10.1007/978-0-85729-398-5
https://doi.org/10.1007/978-3-319-11179-7_1
https://doi.org/10.1007/978-3-319-11179-7_1
https://doi.org/10.1007/978-3-319-68600-4_27

758 S. Otte et al.

12. Otte, S., Zwiener, A., Butz, M.V.: Inherently constraint-aware control of many-
joint robot arms with inverse recurrent models. In: Lintas, A., Rovetta, S., Ver-
schure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 262–270.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4 31

13. Otte, S., Zwiener, A., Hanten, R., Zell, A.: Inverse recurrent models – an application
scenario for many-joint robot arm control. In: Villa, A.E.P., Masulli, P., Pons
Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 149–157. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44778-0 18

14. Stulp, F., Sigaud, O.: Robot skill learning: from reinforcement learning to evolution
strategies. Paladyn J. Behav. Robot. 4, 49–61 (2013)

15. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. In: COURSERA: Neural Networks for Machine
Learning (2012)

16. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc.
IEEE 78(10), 1550–1560 (1990)

https://doi.org/10.1007/978-3-319-68600-4_31
https://doi.org/10.1007/978-3-319-44778-0_18

An Improved Block-Matching Algorithm
Based on Chaotic Sine-Cosine Algorithm

for Motion Estimation

Bodhisattva Dash(B) and Suvendu Rup

Image and Video Processing Laboratory, IIIT Bhubaneswar, Bhubaneswar, India
bdash.fac@gmail.com, suvendu@iiit-bh.ac.in

Abstract. Motion estimation (ME) plays an important role in a video
coding solution to achieve a low bit rate. The selection of the opti-
mal motion vector (MV) has a significant impact on the quality of the
compressed video. Block-matching (BM) algorithm is one of the widely
accepted ME techniques to estimate the motion between the successive
frames. In any BM technique, the motion vectors (MVs) are obtained
for the current frame over a pre-defined search region in the previous
frame by minimizing certain matching criterion. However, the compu-
tation of these matching criteria is highly expensive (in terms of the
computational time). Hence, the block-based ME (BME) can be real-
ized as an optimization problem which aims at finding the best-matched
block within a specified search region. In this context, an improved block-
matching technique is proposed that incorporates a chaotic-based sine-
cosine optimization algorithm along with a fitness approximation (FA)
strategy. The proposed approach has been compared with several other
BM techniques in terms of different parameters, namely, the peak-signal-
to-noise-ratio (PSNR), PSNR degradation ratio (DPSNR), and the num-
ber of search points. The analysis of the results obtained demonstrates
that the proposed method yields potential improvements over other com-
petent schemes.

Keywords: Block-matching · Optimization · Motion estimation
Sine-Cosine algorithm · Motion vector

1 Introduction

Recently, video coding has been extensively used in various applications like
fixed/mobile telephony, video conferencing, HDTV, DVD and so on. Motion
estimation (ME) is considered to be a key module in any video coding solution
since it can acquire a notable amount of compression by exploiting the tem-
poral correlation that exists between the frames of a video sequence. In this
context, various ME techniques have been presented [2,28,33]. Among these,
block-matching (BM) is one of the widely used approaches because of its effi-
cacy and ease in implementation (hardware and software) [11]. In BM technique,
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 759–770, 2018.
https://doi.org/10.1007/978-3-030-01424-7_74

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_74&domain=pdf

760 B. Dash and S. Rup

the frames of a video sequence are segregated into a number of non-overlapping
blocks. Then, a best-matched block for each of the non-overlapping blocks in the
current frame is found within a specified search region in the preceding frame
with the aid of certain matching criterion. Though there exist several matching
criteria, the sum of absolute difference (SAD) is mostly adopted. However, the
evaluation of SAD is highly expensive in terms of the computation time. The
displacement of the best-matched block with respect to the preceding block rep-
resents the motion vector (MV). Hence, a BM approach can be realized as an
optimization problem with the objective of minimizing the SAD value thereby
acquiring the most accurate MVs.

The full search algorithm (FSA) [12] is the basic BM algorithm that can pro-
duce accurate MVs with minimal SAD values. However, it suffers from extremely
high computation time since it matches each block of the current frame with each
and every candidate block within the specified search area in the previous frame.
To mitigate this issue, many algorithms have been presented which includes three
methodologies, namely, use of fixed search pattern [13,15,19,22,36], reducing
the number of search locations [16,18,21,24], and minimizing the computational
complexity of each search points [15,23,29]. However, these approaches suffer
from several limitations like producing false MVs, incapability in matching the
diversified motion behavior, and risk of falling in local minima/maxima. On the
contrary, evolutionary techniques like genetic algorithm [10], particle swarm opti-
mization (PSO) [14], and differential evolution (DE) [30] are the most popular
methods to find the global minima/maxima in a complex optimization problem.
In defiance of this, a very few research investigations have been presented using
the evolutionary approaches for the problem under consideration [5,17,35].

Albeit these techniques can produce accurate MVs, they end up with
high computational complexity since they require their own algorithmic-specific
parameters to be defined. To overcome this, some population and parameter-
free-based approaches, namely, artificial bee colony-based BM (ABC-BM) [6],
harmony search-based BM (HS-BM) [4] have been presented. Further, no free
lunch (NFL) theorem [34] suggests that no algorithm can solve all optimiza-
tion problem specifically with distinct type and characteristics. Therefore, the
aforementioned facts motivate the authors to propose a BM algorithm utiliz-
ing the principles of a recently developed optimization algorithm referred to as
Sine-Cosine algorithm (SCA) by Mirjalili [20]. SCA imitates the mathematical
conceptualization of sine and cosine functions. Moreover, Mirjalili has also exhib-
ited that the SCA algorithm shows a faster convergence rate than that of the
conventional algorithms like GA, PSO, and so forth. Furthermore, it has already
been exploited in several applications and produced satisfactory results [8,9,27].
However, to the best knowledge of the authors, the sine-cosine algorithm has not
been exploited for motion estimation.

The rest of the paper is organized as follows. Section 2 presents a brief descrip-
tion of the block-motion technique and sine-cosine algorithm. The proposed
approach using improved SCA with FA strategy is presented in Sect. 3. The

An Improved Block-Matching Algorithm 761

experimental setup along with the analysis of the results obtained is discussed
in Sect. 4. Finally, a conclusive remark is drawn in Sect. 5.

2 Basic Preliminaries

2.1 Motion Estimation and Block-Matching

To estimate the MVs in a BM approach, the current frame (FT) of a video
sequence is partitioned into non-overlapping blocks (TB) of P × P pixels. For
each TB , a best-matched block (MB) within a predefined search area (SA) of
size (2D + 1) × (2D + 1) in the preceding frame (FT−1) is obtained where ‘D’
denotes the given maximum shift in the pixel location. The difference in the
position of ‘TB ’ and ‘MB ’ represents the motion vector (MV)(Refer to Fig. 1).
Hence, determining the best MV within the defined SA can be viewed as an
optimization problem. Further, to obtain the accurate MV s’, various matching
criteria like mean square error (MSE), the mean absolute difference (MAD), and
SAD are mostly used. In this study, SAD has been used as a matching criterion
and can be defined as

SAD(p̄, q̄) =
P−1∑

i=0

P−1∑

j=0

|Gt(r + i, s + j) − Gt−1(r + p̄ + i, s + q̄ + j)| (1)

where Gt(.) and Gt−1(.) denote the pixel value (gray-level) in frames Ft and
Ft−1, respectively. The ‘MV ’ in (p, q) is expressed as

(p, q) = arg min
(p,q)εSA

SAD(p̄, q̄), (2)

where SA = {A(p̄, q̄)) | − D ≤ p̄, q̄ ≤ D and (r + p̄, s + q̄) is a valid pixel
location in FT−1)}. However, it can be noted that the time consumed to com-
pute the motion vectors is very high which is one of the major drawbacks in a
BM approach.

Fig. 1. Block-based motion estimation procedure

762 B. Dash and S. Rup

2.2 Sine-Cosine Algorithm (SCA)

Sine-Cosine algorithm (SCA) is a population-based optimization technique
which utilizes some random variables, sine, and cosine functions to determine
the best optimal solution (global optima) [20]. The global optima are obtained
by updating a set of randomly initialized candidate population with the help
of an objective function over a predefined number of iterations. To update the
candidate positions the exploration and exploitation phases of SCA can be math-
ematically expressed as

Ci(g + 1) =
{
Ci(g) + (rn1 × sin(rn2) × |(rn3 × Cbest) − Ci(g)|) if rn4 < 0.5
Ci(g) + (rn1 × cos(rn2) × |(rn3 × Cbest) − Ci(g)|) if rn4 ≥ 0.5

(3)
where ‘g’ denotes the current generation (iteration), ‘C(g)’ is the current solu-
tion, ‘Cbest’ is the best solution obtained so far, ‘|.|’ indicates the absolute values.
‘rn1, rn2, rn3, rn4’ represent the random variables.

The random variable rn1 is used to maintain a proper balance between explo-
ration and exploitation phase and can be defined as

rn1 = Co − g(
Co

MI
) (4)

where C0 denotes a constant. MI indicates the total number of generations
(iterations).

Similarly, rn2 decides the movement of the next solution to/from Cbest. rn3

is used as a random weight for Cbest. rn4 is a random parameter in the range
of [0,1] which helps in the transition between the sine and cosine functions. For
better understanding of SCA, the readers can refer to [20].

2.3 Chaotic Maps

It is noticed from many observations that the parameters in any meta-heuristic
algorithms are randomly initialized with uniform or Gaussian distribution. Since
the parameters in a meta-heuristic algorithm are randomly initialized, the algo-
rithm may fall in local optima or have a slow convergence rate. Hence, to further
improve the performance of these algorithms in terms of stability, finding the
global optima, and converge rate, chaotic maps are introduced. Chaotic maps
have the same characteristics as randomness with some inherent properties [31].
The chaotic theory has been employed in various meta-heuristic algorithms and
has shown superior performance as compared to the original algorithms [1,32].
There exist various chaotic maps with distinct properties [31]. The prime objec-
tive of utilizing the chaotic maps is to further improve the performance of the
sine-cosine algorithm by obtaining the global convergence and escaping the local
optima.

An Improved Block-Matching Algorithm 763

3 Proposed Chaotic-Based SCA with Fitness
Approximation Strategy

Although the sine-cosine algorithm (SCA) is capable of maintaining a proper bal-
ance between the exploration and exploitation phases, its performance depends
on four random parameters (Eq. 3) thereby it suffers from downsides like falling
in local optima, and slow convergence rate [7]. It can also be noticed that rn2,
and rn3 are the two random parameters which influence the performance of the
sine-cosine algorithm. It is also learned from Sect. 2.3 that the chaotic maps help
in boosting the performance of any traditional meta-heuristic algorithms. Hence,
these facts motivate the authors to employ chaotic maps over the SCA algorithm
wherein the two random parameters, namely, rn2, and rn3 have been replaced
with the logistic chaotic function [25]. In this work, Eq. 3 has been modified as

Ci(g + 1) =

⎧
⎨

⎩
Ci(g) + (rn1 × sin(l̂g+1) ×

∣∣∣(l̃g+1 × Cbest) − Ci(g)
∣∣∣) if rn4 < 0.5

Ci(g) + (rn1 × cos(l̂g+1) ×
∣∣∣(l̃g+1 × Cbest) − Ci(g)

∣∣∣) if rn4 ≥ 0.5
(5)

where l̂g+1 is the modified rn2, and l̃g+1 denotes the modified rn3 using the
logistic function defined as

lg+1 = alg(1 − lg), a = 4 (6)

Moreover, it is also realized that the evaluation of the SAD values (fitness
function) in a BM algorithm consumes a lot of computational time. Hence to
reduce the overall computational time, the authors utilize a fitness approxima-
tion strategy [4] which helps in determining whether to evaluate or estimate
the fitness values for a particular search location. It follows three basic rules,
namely, exploitation rule, exploration rule, and nearest-neighbor interpolation
(NNI) rule [4]. In the exploitation rule, if the current search location (candidate)
is found nearer than a distance ‘r’ with respect to the location of a previously
visited search point with best fitness value obtained so far, then the SAD is
evaluated for the current search location. In the case of exploration rule, if the
current candidate does not have any other pre-visited candidates within a dis-
tance ‘r’, then the SAD is evaluated for the current candidate. In the case of
NNI rule, the SAD value for the current candidate is assigned with the SAD
value of any one of the previously visited candidates if the current candidate lies
nearer than a distance ‘r’ with respect to the assigned candidate. Additionally,
the assigned SAD value must not correspond to the best fitness values obtained
so far.

Furthermore, it might be possible that the same search locations might be
revisited again and again due to the limited search region. This leads to an
increase in the computational time since the same locations will be evaluated
repeatedly. Hence to deal with this issue, the current candidate is first searched
in a buffer where all the previously visited candidates are stored. If the current

764 B. Dash and S. Rup

candidate is not found in the buffer, then its fitness value will be evaluated else it
will be skipped. For a better understanding of the readers, the flowchart and the
pseudo-code of the proposed technique are illustrated in Fig. 2 and Algorithm 1,
respectively.

Fig. 2. Flowchart of the proposed technique

4 Discussion and Analysis of the Results

To validate the efficacy of the proposed approach for ME, exhaustive simula-
tions are carried out in MATLAB. Various search algorithms, namely, FSA [12],
TSS [13], 4SS [22], NTSS [15], PSO-BM [35], ABC-BM [6], HS-BM [4], and DE-
BM [5] have been considered as the benchmarks. The experiments are carried out
with some of the standard and widely used video sequences, namely, Foreman,
Carphone, Akiyo, Container, Football, and Stefan [3,26]. The details of each of
the video sequences are listed in Table 1. It may be noted that only the Lumi-
nance component of the sequences is considered. Moreover, the main objective
of utilizing all the aforementioned sequences is to demonstrate the efficacy of the
proposed algorithm with diversified motion characteristics and varied resolution.

Several performance measures, namely, peak-signal-to-noise-ratio (PSNR),
search count, PSNR degradation ratio (DPSNR), and computation time are used
to present a detailed comparative analysis of the performance of the proposed
approach along with the benchmark schemes. However, due to the constraint in
page length, some of the performance measures have been discussed. The various
patterns used to obtain the motion vectors are represented in Fig. 3.

An Improved Block-Matching Algorithm 765

Algorithm 1. Pseudocode

input : Bs = block size; Ff (z) = fitness
function=SAD(z); Ck = [−D,D] ∀k = 1, 2, ..., N (constraints);
MI(max iteration)

output: Fsmin (minimum location → best matched block)

1 Begin
2 for each frame do
3 Segregate into (r ∗ c/bs2) non-overlapping blocks. Initialize the

candidate population with fixed pattern of different shapes individually
(Refer fig...).

4 while stopping criteria is not attained do
5 for each candidate do
6 check if available in search history array.
7 if !(found) then
8 Evaluate the objective function (SAD).

9 if IC(current iteration) == 1 then
10 Sort the fitness values in ascending order.
11 Update the candidate positions with respect to the best solution

using Equation 5
12 Check the boundary conditions for each of the update candidate

solutions.
13 Continue.

14 else
15 if SADnew < SADold then
16 update the change and increment the search count.
17 Sort the fitness values in ascending order.
18 Update the candidate positions with respect to the best solution

using Equation 5
19 Check the boundary conditions for each of the update candidate

solutions.

20 Save the motion vector component (p̄, q̄) for the current block.

21 Generate the estimated frames (current frame) using the obtained motion
vector.

Table 1. Details of the video sequences

Video sequence Format Frame rate Total frames Motion characteristic

Container QCIF 176 × 144 300 Smooth and Gentle

Akiyo QCIF 176 × 144 300 Static background and small
motion

Carphone QCIF 176 × 144 381 Moderate

Foreman QCIF 176 × 144 398 Moderate

Stefan CIF 352 × 288 300 High

Football SIF 352 × 240 300 High

766 B. Dash and S. Rup

Fig. 3. Patterns : (a) Hexagon; (b) Square; and (c) Diamond.

4.1 Detailed Analysis with Respect to PSNR and DP SNR

This section deals with the detailed analysis of the results obtained with respect
to each of the aforementioned measures. As aforementioned, the primary goal of
the present work is to estimate accurate motion vectors (p̄, q̄) in the reference
frame for each of the macro-blocks in the current frame, thereby generating a
better quality of the reconstructed frame. In this experiment, the quality of the
reconstructed frame is evaluated in terms of the PSNR (in dB) [5]. A comparative
analysis of the reconstructed frame quality (in terms of PSNR (in dB)) obtained
with the present work and the benchmark schemes are listed in Table 2.

From the Table, it is observed that the proposed approach with different fixed
patterns (see Fig. 3) achieves better PSNR values than that of the benchmark
schemes except for FSA scheme which is considered to be the state-of-the-art
scheme in almost all the literature available. Additionally, a comparison between
the proposed algorithm and the benchmark schemes in terms of an alternate
metric, namely, PSNR degradation ratio (DPSNR) is depicted in Table 3. DPSNR

represents the degree of mismatch (in terms of %) between FSA (reference) and
the other techniques (AT) including the present scheme. It is given as

DPSNR = −
(
PSNRFSA − PSNRAT

PSNRFSA

)
× 100% (7)

From the Table, it is noticed that the present scheme results in a maximum
of 2% and 3% degradation as compared to that of FSA algorithm for Foreman
and Stefan sequence, respectively.

4.2 Detailed Analysis with Respect to the Number of Search
Counts

This section deals with the analysis of the number of search counts made to find
the best-matched block in the reference frame. The computational cost of any BM
algorithm is assessed in terms of the total number of the search made to find the
most accurate MVs. The average number of search counts (SC) made with the
proposed approach and the benchmark schemes for all the test video sequences is
listed in Table 4. It can be noticed that the present technique makes a significantly
less number of search as compared to that of the benchmark schemes.

An Improved Block-Matching Algorithm 767

Table 2. Comparison of PSNR values obtained with the proposed technique and other
benchmark schemes

Methods Video sequences

Carphone Akiyo Container Foreman Stefan Football

FSA 31.51 35.51 43.18 32.5 25.95 23.07

TSS 30.27 32.02 43.1 30.12 21.14 20.03

4SS 30.24 25.5 43.12 30.08 21.41 20.1

NTSS 30.35 33.12 43.12 31.34 25.52 25.4

PSO-BM 31.39 35.01 43.15 32.06 25.39 22.88

ABC-BM 31.5 35.44 43.17 32.43 25.9 23.02

DE-BM 31.47 35.15 43.17 - 25.85 -

HS-BM 31.49 35.44 43.16 32.43 25.89 23.01

Proposed method

SQUARE 31.50 35.51 43.18 32.24 25.9 23.06

DIAMOND 31.51 35.50 43.18 32.15 25.35 23.04

HEXAGON 31.48 35.49 43.18 31.85 25.15 23.02

Table 3. Comparison of DPSNR (in %) of different techniques

Methods Video sequences

Carphone Akiyo Container Foreman Stefan Football

FSA 0 0 0 0 0 0

TSS −3.94 −9.83 −0.19 −7.32 −18.53 −13.18

4SS −4.03 −9.83 −0.14 −7.45 −17.49 −12.87

NTSS −3.68 −6.73 −0.14 −3.57 −13.22 −12.39

PSO-BM −0.38 −1.41 −0.07 −1.35 −2.16 −0.82

ABC-BM −0.03 −0.19 −0.02 −0.22 −0.19 −0.22

DE-BM −0.13 −1.01 −0.02 −0.58 −0.39 -

HS-BM −0.06 −0.19 −0.05 −0.22 −0.23 −0.26

Proposed method

SQUARE −0.031 0 0 −0.8 −0.19 −0.043

DIAMOND 0 −0.031 0 −1.07 −2.31 −0.13

HEXAGON −0.095 −0.063 0 −2 −3.08 -0.21

768 B. Dash and S. Rup

Table 4. Average number of search counts made with different BM algorithms

Methods Video sequences

Carphone Akiyo Container Foreman Stefan Football

FSA 289 289 289 289 289 1089

TSS 25 25 25 25 25 25

4SS 25.5 27.3 19 24.8 25.3 25.6

NTSS 21.8 23.5 17.2 22.1 25.4 26.5

PSO-BM 48.5 48.5 32.5 48.1 52.2 52.2

ABC-BM 11.2 12.5 9 10.2 16.1 16.3

HS-BM 12.2 11.5 8 11.2 17.1 15.2

Proposed method

SQUARE 8.85 5.14 6.38 9.44 15.26 22.47

DIAMOND 9.16 4.77 5.9 11.69 15.56 23.99

HEXAGON 9.62 4.72 5.84 11.51 15.42 18.61

5 Conclusion

This paper proposes an improved block-matching technique embedding the prin-
ciples of chaotic maps over the sine-cosine algorithm with fitness approximation
strategy for block-based motion estimation. The fitness estimation strategy helps
to reduce the overall complexity by determining whether the fitness value (SAD)
of a particular search location is to be evaluated or estimated. The prime objec-
tive of the proposed work is to find the accurate motion vectors(MVs) in the
reference frame with reduced fitness evaluations. The analysis of the experimen-
tal results obtained reveals that the present scheme produces satisfactory results
over the benchmark techniques.

References

1. Arora, S., Anand, P.: Chaotic grasshopper optimization algorithm for global opti-
mization. Neural Comput. Appl. 1–21 (2018)

2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques.
Int. J. Comput. Vis. 12(1), 43–77 (1994)

3. Brites, C.: Advances on distributed video coding. Technical University of Lisbon,
MS Thesis, Lisbon, Portugal (2005)

4. Cuevas, E.: Block-matching algorithm based on harmony search optimization for
motion estimation. Appl. Intell. 39(1), 165–183 (2013)

5. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., Oliva, D.: Block-matching algorithm
based on differential evolution for motion estimation. Eng. Appl. Artif. Intell.
26(1), 488–498 (2013)

6. Cuevas, E., Zald́ıvar, D., Pérez-Cisneros, M., Sossa, H., Osuna, V.: Block matching
algorithm for motion estimation based on artificial bee colony (abc). Appl. Soft
Comput. 13(6), 3047–3059 (2013)

An Improved Block-Matching Algorithm 769

7. Elaziz, M.A., Oliva, D., Xiong, S.: An improved opposition-based sine cosine algo-
rithm for global optimization. Expert Syst. Appl. 90, 484–500 (2017)

8. Abd Elfattah, M., Abuelenin, S., Hassanien, A.E., Pan, J.-S.: Handwritten ara-
bic manuscript image binarization using sine cosine optimization algorithm. In:
Pan, J.-S., Lin, J.C.-W., Wang, C.-H., Jiang, X.H. (eds.) ICGEC 2016. AISC,
vol. 536, pp. 273–280. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
48490-7 32

9. Hafez, A.I., Zawbaa, H.M., Emary, E., Hassanien, A.E.: Sine cosine optimization
algorithm for feature selection. In: 2016 International Symposium on Innovations
in Intelligent Systems and Applications (INISTA), pp. 1–5. IEEE (2016)

10. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT
Press, Cambridge (1992)

11. Huang, Y.W., Chen, C.Y., Tsai, C.H., Shen, C.F., Chen, L.G.: Survey on block
matching motion estimation algorithms and architectures with new results. J. VLSI
Sig. Process. Syst. Sig. Image Video Technol. 42(3), 297–320 (2006)

12. Jain, J., Jain, A.: Displacement measurement and its application in interframe
image coding. IEEE Trans. Commun. 29(12), 1799–1808 (1981)

13. Jong, H.M., Chen, L.G., Chiueh, T.D.: Accuracy improvement and cost reduction
of 3-step search block matching algorithm for video coding. IEEE Trans. Circ. Syst.
Video Technol. 4(1), 88–90 (1994)

14. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning,
pp. 760–766. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-30164-8

15. Li, R., Zeng, B., Liou, M.L.: A new three-step search algorithm for block motion
estimation. IEEE Trans. Circ. Syst. Video Technol. 4(4), 438–442 (1994)

16. Liaw, Y.C., Lai, J.Z., Hong, Z.C.: Fast block matching using prediction and rejec-
tion criteria. Signal Process. 89(6), 1115–1120 (2009)

17. Lin, C.I., Wu, J.L.: A lightweight genetic block-matching algorithm for video cod-
ing. IEEE Trans. Circ. Syst. Video Technol. 8(4), 386–392 (1998)

18. Liu, L.K., Feig, E.: A block-based gradient descent search algorithm for block
motion estimation in video coding. IEEE Trans. Circ. Syst. Video Technol. 6(4),
419–422 (1996)

19. Lu, J., Liou, M.L.: A simple and efficient search algorithm for block-matching
motion estimation. IEEE Trans. Circ. Syst. Video Technol. 7(2), 429–433 (1997)

20. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems.
Knowl.-Based Syst. 96, 120–133 (2016)

21. Nie, Y., Ma, K.K.: Adaptive rood pattern search for fast block-matching motion
estimation. IEEE Trans. Image Process. 11(12), 1442–1449 (2002)

22. Po, L.M., Ma, W.C.: A novel four-step search algorithm for fast block motion
estimation. IEEE Trans. Circ. Syst. Video Technol. 6(3), 313–317 (1996)

23. Saha, A., Mukherjee, J., Sural, S.: New pixel-decimation patterns for block match-
ing in motion estimation. Sig. Process.: Image Commun. 23(10), 725–738 (2008)

24. Saha, A., Mukherjee, J., Sural, S.: A neighborhood elimination approach for block
matching in motion estimation. Sig. Process.: Image Commun. 26(8–9), 438–454
(2011)

25. Sayed, G.I., Khoriba, G., Haggag, M.H.: A novel chaotic salp swarm algorithm for
global optimization and feature selection. Appl. Intell. 48(10), 1–20 (2018)

26. Sequences, S.V.: Standard Video Sequences. https://media.xiph.org/video/derf.
Accessed 3 Feb 2018

https://doi.org/10.1007/978-3-319-48490-7_32
https://doi.org/10.1007/978-3-319-48490-7_32
https://doi.org/10.1007/978-0-387-30164-8
https://media.xiph.org/video/derf

770 B. Dash and S. Rup

27. Sindhu, R., Ngadiran, R., Yacob, Y.M., Zahri, N.A.H., Hariharan, M.: Sine-cosine
algorithm for feature selection with elitism strategy and new updating mechanism.
Neural Comput. Appl. 28(10), 2947–2958 (2017)

28. Skowronski, J.: Pel recursive motion estimation and compensation in subbands.
Sig. Process.: Image Commun. 14(5), 389–396 (1999)

29. Song, Y., Liu, Z., Ikenaga, T., Goto, S.: Lossy strict multilevel successive elim-
ination algorithm for fast motion estimation. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 90(4), 764–770 (2007)

30. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

31. Tavazoei, M.S., Haeri, M.: An optimization algorithm based on chaotic behavior
and fractal nature. J. Comput. Appl. Math. 206(2), 1070–1081 (2007)

32. Tharwat, A., Hassanien, A.E.: Chaotic antlion algorithm for parameter optimiza-
tion of support vector machine. Appl. Intell. 48(3), 670–686 (2018)

33. Tzovaras, D., Kompatsiaris, I., Strintzis, M.G.: 3D object articulation and motion
estimation in model-based stereoscopic videoconference image sequence analysis
and coding1. Sig. Process.: Image Commun. 14(10), 817–840 (1999)

34. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

35. Yuan, X., Shen, X.: Block matching algorithm based on particle swarm optimiza-
tion for motion estimation. In: International Conference on Embedded Software
and Systems ICESS 2008, pp. 191–195. IEEE (2008)

36. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion
estimation. IEEE Trans. Image Process. 9(2), 287–290 (2000)

Terrain Classification with Crawling Robot
Using Long Short-Term Memory Network

Rudolf J. Szadkowski(&) , Jan Drchal , and Jan Faigl

Czech Technical University in Prague, Technicka 2,
16627 Prague, Czech Republic

{szadkrud,drchajan,faiglj}@fel.cvut.cz

Abstract. Terrain classification is a crucial feature for mobile robots operating
across multiple terrains. One way to learn a terrain classifier is to use a stream of
labeled proprioceptive data recorded during a terrain traversal. In this paper, we
propose a new terrain classifier that combines a feature extraction from a data
stream with the long short-term memory (LSTM) network. Features are
extracted from the information-sparse data stream by applying a sliding window
computing three central moments. The feature sequence is continuously clas-
sified by the LSTM network into multiple terrain classes. Furthermore, a
modified bagging method is used to deal with a limited and unbalanced training
set. In comparison to the previous work on terrain classifiers for a hexapod
crawling robot using only servo-drive feedback, the proposed classifier provides
continuous classification with the F1 score up to 0.88, and thus provide better
results than SVM classifier learned on the same input data.

Keywords: Online classification � Proprioception � Recurrent neural networks

1 Introduction

Continuous proprioception processing is essential for crawling robots that adapt their
locomotion to particular terrain type. In the animal world, a proprioceptive signal
carries information about locomotor organs such as muscle stretch or muscle force
output [4, 17]. For multi-legged walking robots, the proprioception describes the state
of joint or servomotor actuators, and since the state of actuators is correlated with the
robot surrounding environment, it is possible to use the proprioception for a local
terrain classification [9, 18]. A terrain classifier can be integrated into locomotion
control of a hexapod, a six-legged walking robot, to improve the performance [1] such
as speed or stability. The robot is controlled in real time, and therefore, the proprio-
ceptive data must be processed continuously to make the terrain classifier synchronous
with the locomotion control.

Two types of terrain classification can be distinguished: local and remote [11]. The
remote classification relies on ranged exteroceptive sensors, e.g., camera [1] and range
sensors such as LiDARs [7, 19]. The local classification relies on proprioception [10] or
local exteroception [12], which measures the environment in the close vicinity of the
robot body that can be used to select an appropriate motion gait [13]. On the other
hand, the primary function of proprioception is to sense the internal state of the body

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 771–780, 2018.
https://doi.org/10.1007/978-3-030-01424-7_75

http://orcid.org/0000-0003-4075-116X
http://orcid.org/0000-0003-0466-275X
http://orcid.org/0000-0002-6193-0792
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_75&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_75&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_75&domain=pdf

(i.e., muscle stretch pressure or a joint angle) and to participate in the locomotion
control. Contrary to local exteroceptive sensors that generate extra costs, the proprio-
ception is usually already on board of multi-legged robots. Therefore proprioceptive
signals can be considered as an alternative to the local exteroception for the immediate
experience of the robot with the terrain the robot is currently traversing [9, 18].

One of the proprioceptive signals generated by a walking hexapod robot is a
sequence of joint angle errors. The joint angle error is a difference between an actual
joint angle and desired joint angle which is given by a repetitive locomotion pattern, a
gait. In [2], authors classified the terrain using sequences of joint angle errors generated
by a simple periodic gait. This simple gait; however, limited the robot to traverse only
the flat terrains. To traverse irregular terrains [9] introduces an adaptive gait that adapts
the motion to irregularities. Even though the adaptive gait is repetitive, it is not peri-
odic; therefore the adaptive gait cannot be used with classifier [2]. The paper [8]
addresses this issue by parsing the gait phases into segments of the same size and then
embedded the segments into a feature vector. However, this method relies on prior
knowledge about the gait phases, which is not always available. Moreover, SVM-based
methods [2, 8] have to wait three gait-cycles to get enough data to produce the feature
vector.

We propose to describe the terrain classification as the continuous classification
conditioned on a periodic stream of proprioceptive signals. We implemented the
continuous classifier as a bagging ensemble [3] combining several Long-Short Term
Memory (LSTM) networks [6]. In the ideal case, such a classifier should be trained
with a sufficiently large and well-balanced dataset. However, each dataset collection is
a costly operation as it requires a complex experimental setup, real robots, and most
importantly a human supervisor. Moreover, datasets collected during usual deploy-
ments (e.g., exploration) are generally not balanced as it depends on the deployment
location. Therefore, in practice, we deal with datasets that are small and unbalanced.
We aggregate several LSTM networks into a bagging predictor [3] to address this issue.
In particular, we use asymmetric bootstrapping [15] that artificially balances the
dataset. We propose a method that exploits the periodic properties of the proprioceptive
signal to generate new datasamples, and thus enlarges the dataset. The performance of
the proposed predictor is statistically compared with the former SVM-based approach
[8]. Regarding the reported results, the proposed method achieves competitive per-
formance while its main benefit is in a continuous prediction.

2 Proprioceptive Signals and Data Collection

The robot classifies the terrain it traverses by processing the stream of proprioceptive
signals. We work with the hexapod depicted in Fig. 1(a) which consists of a body and
six legs each with three joints connecting body, coxa, femur, and tibia, see Fig. 1(b).

When the hexapod traverses a terrain, it moves its joints in a repetitive pattern
called a gait. A single repetition of the pattern is called a gait-cycle. A particular gait is
defined by a motion pattern, e.g., a robot walking with a tripod gait always has at least
three legs on the ground in the supporting phase, and three legs are simultaneously

772 R. J. Szadkowski et al.

moving forward in the swing phase. The gait rules utilized in this paper are conditioned
on the terrain interaction, which makes the gait adaptive [9].

2.1 Adaptive Gait

In [9], the authors take advantage of the proprioceptive signals provided by the ser-
vomotors to detect terrain irregularities. During a single gait-cycle, each leg goes
through four phases: up, forward, down, and support. For each i-th leg and each j-th
joint, two variables are monitored: the current angle hcuri;j : and the desired angle hdesi;j .
The joint angle error is defined as the absolute difference between the current and
desired angle

herri;j ¼ hcuri;j � hdesi;j

���
��� ð1Þ

During the i-th leg swing-down phase, the error of the body-coxa joint, herri;C, is
compared with a predefined threshold. If herri;C is above the threshold, it is assumed the
deviation is caused by the ground reaction force, and therefore, the motion is stopped
and the i-th leg enters into the support phase. Once all moving legs are in the support
phase, the body leveling is initiated and move the robot forward. The process is
repeated for the next subset of moving legs.

2.2 Data Collection and Preprocessing

The herein proposed approach uses the same data source as in [8] where the SVM
classifier processes the angle errors herri;j of the two front legs to classify the terrain. To
collect the dataset, we let the hexapod crawl on seven types of terrain: office, asphalt,
dirt, bricks, obstacles, stairs, and grass (see Fig. 2).

In each session, the hexapod executes up to ten gait-cycles on a single terrain type.
The number of collected gait-cycles for each terrain is shown in Table 1. For each gait-
cycle, we recorded the angle errors of the front leg joints, herr 2 R

6 with the uniform

(a)

Coxa Fe
m
ur

T
ib
ia

θC

θF

θT

(b)

Fig. 1. The utilized hexapod and schema of its leg.

Terrain Classification with Crawling Robot Using LSTM Network 773

sampling rate. Due to the adaptation to the terrain irregularities, the length of each
record of errors may differ. Each gait-cycle record is preprocessed by a sliding window
method which computed the mean, standard deviation, and skewness. The width of the
window is set to 20 units and the window jumps ahead 5 units. Thus, the preprocessing
yielded a sequence of feature vectors x, where each feature vector has 18 dimensions (2
legs � 3 joints � 3 central moments).

3 Proposed Terrain Predictor

The proposed terrain predictor is based on the basic LSTM model using the bagging
extension to deal with the small and unbalanced data. The addressed classification task
can be formalized as follows. Let C be a finite set of terrain classes. Our goal is to find a
predictor /� that predicts a distribution over C for each feature vector x mð Þ in a
continuous feature vector stream. Assuming that at the m-th iteration the distribution is
conditioned on the sequence xm ¼ x mð Þ; x m� 1ð Þ; . . .; x 1ð Þð Þ, we denote the output of
the predictor /� as

y mð Þ ¼ P C ¼ c1jxmð Þ;P C ¼ c2jxmð Þ; . . .;P C ¼ c Cj jjxm
� �� �

; ð2Þ

where P C ¼ cijxmð Þ is probability that the class at the m-th step is ci 2 C. The con-
tinuous prediction over the sequence x mð Þ; x m� 1ð Þ; . . .; x 1ð Þð Þ then yields a sequence
of the probability distributions y mð Þ; y m� 1ð Þ; . . .; y 1ð Þð Þ.

(a) asphalt (b) bricks (c) dirt (d) grass

(e) obstacles (f) office (g) stairs

Fig. 2. The hexapod deployed in various terrains for data collection.

Table 1. Numbers of the sampled gait-cycles and division to train and test sets.

Dataset Asphalt Bricks Dirt Grass Obstacles Office Stairs

Train set 69 26 56 66 61 77 87
Test set 18 9 15 17 16 20 22
Complete set 87 35 71 83 77 97 109

774 R. J. Szadkowski et al.

The terrain prediction (3) can be considered as the sequence-to-sequence problem
where the input sequence is mapped to the output sequence. We propose to approxi-
mate /� by the neural network / composed of a single LSTM hidden layer (see [6] for
equations) with the softmax output layer. In the training phase, each i-th training pair

xi Mið Þ; xi Mi � 1ð Þ; . . .; xi 1ð Þð Þ; dið Þ; ð3Þ

is presented to the neural network /, where Mi is the length of the training sequence.
The desired class di is time-invariant because the terrain class does not change during
the training sequence. For each feature vector xi mð Þ, we get the output yi mð Þ that is
compared with the desired class di using the loss function L yi mð Þ; dið Þ. We followed a
common practice with neural network classifiers, and we chose the cross-entropy error
as the loss function. The loss of the whole i-th training sequence is then evaluated as

L yi; dið Þ ¼
XMi

m¼Mmin
L yi mð Þ; dið Þ; ð4Þ

where Mmin denotes the offset of the first feature vector in the sequence that is being
evaluated. Preliminary experiments showed that it is better to leave several initial
samples unevaluated. The length of the i-th sequence Mi determines how much
information about the terrain di is provided to the predictor.

The problem of small and unbalanced dataset collected by the robot is evident from
Table 1 and it is addressed by implementation of the terrain predictor as a bagging
ensemble [3] with a modified bootstrapping method. The bagging ensemble is denoted as

/B xð Þ ¼
PS

j¼1 / x;Djð Þ
S

; ð5Þ

where Dj is the j-th bootstrap dataset, S is the number of the bootstrap datasets, and
/ x;Djð Þ is the output of the neural network trained on Dj. The bootstrap datasets are
usually generated by taking N random samples with the replacement from the source
dataset D. The distribution of the bootstrap datasets then approximates the probability
distribution of D [3]. However, in our case, this is undesirable because the source
dataset D is unbalanced. Therefore, we propose the modified bootstrapping method
described in Algorithm 1. This algorithm uses asymmetric bootstrapping which bal-
ances the bootstrap dataset [15]. Then the algorithm creates new samples by combining
randomly selected gait-cycle sequences. Note, that by using this random combination
we assume that the gait-cycles from the same terrain are independent. After being
trained, the proposed predictor does not need to parse the input stream into gait-cycles,
i.e., the predictor can work without any knowledge of the gait implementation.

Terrain Classification with Crawling Robot Using LSTM Network 775

4 Experiments

The dataset collected using the method described in Sect. 2.2 is divided into a training
dataset and a testing dataset (see Table 1), the latter is used only for the evaluation. The
Algorithm 1 generates bootstrap datasets with N ¼ 1000 training pairs, and each
training sequence contains L ¼ 3 gait-cycles because it should contain enough infor-
mation to classify the terrain [8]. The average length of the training sequence is 73 and
Mmin is set to 50. We generate 30 bootstrap datasets for 30 neural networks, where each
network consists of 20 hidden LSTM units with forget gate [5], the input layer has 18
units, and the output layer has seven units corresponding to the particular terrain classes.

We use the rmsprop [16] with the learning rate set to 0.01 and decay rate a set to
0.99 to backpropagate the error. During one epoch, each training sequence is forward-
passed and backpropagated. Therefore, the learning algorithm performs 1000 back-
propagation iterations per one epoch, and each network is trained on 100 epochs.
Finally, all 30 trained networks are aggregated into the bagging predictor. For the
evaluation, we generated testing sequences composed of four gait-cycles instead of
three gait-cycles that are used during training, because we aim to study the temporal
generalization of the networks. Two examples of how the terrain distribution prediction
changes in time are shown in Fig. 3.

The performed evolution of the prediction accuracy for each type of the classified
terrain is shown in Fig. 4. Based on the results, it seems that for each terrain, the
accuracy settles up at a different iteration step, and thus each terrain requires a different
amount of the proprioceptive data to be classified with high confidence. Another
observation is that after 40 iterations, which roughly corresponds to one and half a single
gait-cycle, the prediction accuracy of the grass, office, and stairs terrains is almost
perfect. The confusion matrix evaluated on the 70th iteration can be found in Table 2.

776 R. J. Szadkowski et al.

Fig. 3. Example of terrain probability distribution changes generated by the proposed predictor.
On the left, the office (brown) is correctly predicted with high certainty, after 20 iterations. On the
right, dirt (green) is mispredicted as an obstacle (violet) and then as a grass (red). (Color figure
online)

Fig. 4. Evolution of the prediction accuracy for each terrain type. Office floor, stairs, and grass
terrain types are classified at almost 100% at the 40th iteration. The accuracy of each terrain
settles up around the 70th iteration (marked by the vertical line), which roughly corresponds to
the end of the 3rd gait-cycle.

Terrain Classification with Crawling Robot Using LSTM Network 777

Finally, we compared the bagging ensemble with the SVM classifier utilized in [8].
The comparison is not straightforward because both models are qualitatively different.
Our ensemble predicts continuously through iterations as can be seen in Fig. 3 contrary
to the SVM classifier [8] that relies on the well defined gait-cycle phases. Therefore, we
also consider an uninformed variant of the approach [8] where the feature vector does
not contain information about gait-cycle phases. The comparison is shown in Table 3
where we use the weighted F1 score [14] because the testing dataset is unbalanced.

Discussion - The results in Fig. 4 indicate that the prediction accuracy is almost perfect
for office, dirt, and stairs terrains. We hypothesize that it is because these three terrains
are mutually well distinguishable. From the results in Table 2 we can see that the
classifier confuses intuitively similar terrains. An example of such confusion can be seen
in Fig. 3. From Fig. 4, it is also evident that for the classification, each terrain needs a
different number of iterations. This can be exploited by classifiers that process every
feature vector continuously. In that regard, the proposed continuous processing of the
proprioceptive data adds a qualitative advantage over non-continuous approaches [2, 8].

Table 2. Confusion matrix evaluated at the end of the 70th iteration (about the end of 3rd gait-
cycle).

Asphalt Bricks Dirt Grass Obstacles Office Stairs

Asphalt 12 0 2 0 0 0 0
Bricks 0 3 0 0 0 0 2
Dirt 0 0 6 5 0 0 0
Grass 0 0 0 13 0 0 0
Obstacles 0 0 2 0 10 0 0
Office 0 0 0 0 0 16 0
Stairs 0 0 0 0 0 0 18

Table 3. Predictor comparison using the weighted F1 score [14]. All the predictors are trained
and tested using the same training set and test set except for the SVM classifier [8] which uses
information about gait-cycle phases. The predictors are considered for the sequences of different
lengths up to four gait-cycles.

Predictor Gait-cycles
1 2 3 4

Bagging predictor 0.83 0.86 0.87 0.88
SVM uninformed 0.63 0.75 0.79 0.77
Single LSTM predictor 0.66 0.78 0.83 0.82
SVM [8] 0.54 0.78 0.88 0.90

778 R. J. Szadkowski et al.

5 Conclusion

In this paper, we report on the proposed LSTM based terrain predictor suitable for a
hexapod crawling robot using proprioceptive signals to process a stream of the joint
angle errors generated during crawling irregular terrains by the adaptive locomotion.
Due to a small and imbalanced dataset, the basic LSTM methods are not directly
applicable. Therefore, we propose to wrap multiple LSTM predictors into a bagging
ensemble using a modified bootstrapping algorithm to deal with the class imbalance.
The proposed modification takes advantage of the periodicity of the input stream to
enlarge the dataset artificially. The resulted bagging predictor has been statistically
compared with the existing SVM-based predictor utilized in the previous work on the
terrain classification using a real hexapod crawling robot. The main advantage of the
proposed solution is that, unlike the SVM-based predictor, it can provide prediction
each iteration step. The reported results demonstrate that different terrains need a
different amount of the input information to get prediction with high confidence.
Therefore the proposed formulation of the terrain classification task as the sequence-to-
sequence problem seems to be suitable for processing stream of proprioceptive signals.

The main shortcoming of the terrain classification is that it depends on the gait used
for the training. Different gaits have different properties such as the servomotor load,
and thus the particular gait influences the patterns of the proprioceptive signals. The
proposed classifier is designed with the intention to support the locomotion controller,
and therefore, we plan to address the influence of the gait to the classification and thus
improve the transferability to different gait types in our future work.

Acknowledgments. The presented work has been supported by the Czech Science Foundation
(GAČR) under research project No. 18-18858S. The support of grant No. SGS16/235/OHK3/3T/13
to Rudolf Szadkowski is also gratefully acknowledged. Access to computing and storage facilities
owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum pro-
vided under the programme “Projects of Large Research, Development, and Innovations Infras-
tructures” (CESNET LM2015042), is greatly appreciated.

References

1. Bartoszyk, S., Kasprzak, P., Belter, D.: Terrain-aware motion planning for a walking robot.
In: 2017 11th International Workshop on Robot Motion and Control (RoMoCo), pp. 29–34
(2017)

2. Best, G., Moghadam, P., Kottege, N., Kleeman, L.: Terrain classification using a hexapod
robot. In: Australasian Conference on Robotics and Automation (2013)

3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
4. Frigon, A., Rossignol, S.: Experiments and models of sensorimotor interactions during

locomotion. Biol. Cybern. 95(6), 607 (2006)
5. Gers, F.: Long short-term memory in recurrent neural networks. Unpublished Ph.D.

dissertation, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2001)
6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780

(1997)

Terrain Classification with Crawling Robot Using LSTM Network 779

7. McDaniel, M.W., Nishihata, T., Brooks, C.A., Salesses, P., Iagnemma, K.: Terrain
classification and identification of tree stems using ground based lidar. J. Field Robot. 29(6),
891–910 (2012)

8. Mrva, J., Faigl, J.: Feature extraction for terrain classification with crawling robots. Inf.
Technol. Appl. Theory 1422, 179–185 (2015)

9. Mrva, J., Faigl, J.: Tactile sensing with servo drives feedback only for blind hexapod
walking robot. In: 10th International Workshop on Robot Motion and Control (RoMoCo),
pp. 240–245 (2015)

10. Ojeda, L., Borenstein, J., Witus, G., Karlsen, R.: Terrain characterization and classification
with a mobile robot. J. Field Robot. 23(2), 103–122 (2006)

11. Otsu, K., Ono, M., Fuchs, T.J., Baldwin, I., Kubota, T.: Autonomous terrain classification
with co- and self-training approach. IEEE Robot. Autom. Lett. 1(2), 814–819 (2016)

12. Otte, S., Weiss, C., Scherer, T., Zell, A.: Recurrent neural networks for fast and robust
vibration-based ground classification on mobile robots. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 5603–5608 (2016)

13. Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., Johnson, M.J., Pratt, J.E.: A controller for
the littledog quadruped walking on rough terrain. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 1467–1473 (2007)

14. Sasaki, Y., et al.: The truth of the F-measure. Teach. Tutor. Mater 1(5), 1–5 (2007)
15. Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support

vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal.
Mach. Intell. 28(7), 1088–1099 (2006)

16. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of
its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

17. Tóth, T.I., Knops, S., Daun-Gruhn, S.: A neuromechanical model explaining forward and
backward stepping in the stick insect. J. Neurophysiol. 107(12), 3267–3280 (2012)

18. Walas, K., Kanoulas, D., Kryczka, P.: Terrain classification and locomotion parameters
adaptation for humanoid robots using force/torque sensing. In: IEEE-RAS 16th International
Conference on Humanoid Robots, pp. 133–140 (2016)

19. Walas, K., Nowicki, M.: Terrain classification using laser range finder. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 5003–5009 (2014)

780 R. J. Szadkowski et al.

Mass-Spring Damper Array as a Mechanical
Medium for Computation

Yuki Yamanaka1(&) , Takaharu Yaguchi1,2 ,
Kohei Nakajima2,3 , and Helmut Hauser4

1 Kobe University, Kobe, Hyogo, Japan
y-yamanaka@stu.kobe-u.ac.jp

2 JST PRESTO, Kawaguchi, Saitama, Japan
yaguchi@pearl.kobe-u.ac.jp

3 The University of Tokyo, Bunkyo-ku, Tokyo, Japan
k_nakajima@mech.t.u-tokyo.ac.jp

4 University of Bristol, Bristol, UK
helmut.hauser@bristol.ac.uk

Abstract. Recently, it has been reported that the dynamics of mechanical
structures can be used as a computational resource—also referred to as mor-
phological computation. In particular soft materials have been shown to have the
potential to be used for time series forecasting. Although most soft materials can
be modeled by mass-spring systems, a limited number of researches has been
performed on the computational capabilities of such systems. In this paper, we
propose an array of masses linked in a grid-like structure by spring-damper
connections to investigate systematically the influence of structural (size) and
dynamic (stiffness, damping) parameters on the computational capabilities for
time series forecasting. In addition, such a structure gives us a good approxi-
mation of two-dimensional elastic media, e.g., a rubber sheet, and therefore a
direct pathway to potentially implement results in a real system. In particular, we
compared the mass-spring array to echo state networks, which are standard
machine learning techniques for this kind of problems and are also closely
related to the underlying theoretical models applied when exploiting mechanical
structures for computation. Our results suggest a clear connection of morpho-
logical features to computational capabilities.

Keywords: Soft Robotics �Morphological computation � Reservoir computing
Mass-spring system � Recurrent neural network

Supported by JST, PRESTO Grant Number JPMJPR15E7 and JPMJPR16EC, Japan and by the
Leverhulme Trust Research Project Grant RPG-2016-345.
Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/
978-3-030-01424-7_76) contains supplementary material, which is available to authorized users.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 781–794, 2018.
https://doi.org/10.1007/978-3-030-01424-7_76

http://orcid.org/0000-0001-7966-8879
http://orcid.org/0000-0001-9025-6015
http://orcid.org/0000-0001-5589-4054
http://orcid.org/0000-0001-5634-7298
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_76&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_76&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_76&domain=pdf
http://dx.doi.org/10.1007/978-3-030-01424-7_76
http://dx.doi.org/10.1007/978-3-030-01424-7_76
https://doi.org/10.1007/978-3-030-01424-7_76

1 Introduction

In recent years, a new field of robotics, called Soft Robotics, has been risen, see [11]. It
uses materials and actuation systems that go beyond conventional building blocks, i.e.
rigid body parts and electric motors. This includes a wide range of new, soft materials
like silicone, electro-active polymers, gels, and many others, see, e.g. [21]. Despite its
success, the field is still struggling to find corresponding control approaches that work
with the highly nonlinear dynamics of these materials. One possibility could be to use
these, otherwise unwanted morphological features, for our advantage. Instead of con-
trolling every single degree of freedom, we could exploit the underlying complex
dynamics as a computational resource. This is often referred to as Morphological
Computation, see [19, 20]. Hauser et al. demonstrated with the help of randomly
connected networks of nonlinear mass-spring dampers that such dynamics can be
indeed used as a computational resource, see [5, 6]. The underlying theoretical
framework is provided by a machine learning technique called reservoir computing [8,
12, 13, 23]. It uses a high-dimensional nonlinear dynamical system, i.e. the reservoir,
as a computational resource by exploiting it as a temporal kernel in the machine
learning sense. Only the weights in the output layer are trained while the structure of
the reservoir is typically randomly initialized and then fixed. Interestingly, the reservoir
can be implemented by a wide range of dynamical systems leading to various types of
reservoir computing. Typical examples from simulations include the echo state network
[7, 8] and the liquid state machine [13]. Moreover, even real physical systems can serve
as reservoirs as long as they have the necessary properties, see [4]. For example,
reservoirs have been built with lasers [18] or even with a bucket of water [3].

Hauser et al. [5] showed that mechanical structures can be used as reservoirs as
well. Interestingly, the mass-spring damper networks they proposed, are also a good
approximation of soft structures, e.g. elastic sheets, silicone structures, or even bio-
logical tissue. Nakajima et al. used this insight to exploit the dynamics of an octopus-
inspired arm, which was modeled by a mass-spring array, as a computational resource
[10, 15, 24, 25]. In addition, they showed that this approach is also transferable to real
platforms. They used platforms by using an octopus-inspired robot arm build out of
silicone to carry out computation and even control [14, 16, 17]. The same approach has
been applied also to other robotics platforms, e.g., in locomotion [26] and in trajectory
control of a pneumatic arm [2]. However, in the theoretical frameworks as well the
implementations in simulation and real robot platforms, the morphological structures
are typically fixed. Nevertheless, it has been speculated that there is a clear connection
between the morphological features and the computational capabilities of the reservoir,
see [4]. Urbain et al. recently performed studies on the trade-offs between morphology,
efficiency of control and the ability as a computational resource [22]; however, so far,
to the best of the authors’ knowledge, there has been very little work done on sys-
tematically investigating of how morphological features (like size and form of the
network and dynamic properties like stiffness and damping) have influence on the
computational performance.

782 Y. Yamanaka et al.

Therefore, in this paper, we propose a structured mass-spring damper array to
investigate this question systematically. As computational benchmark tasks we use the
approximation of various nonlinear auto regression moving average models (NARMA
models) as proposed and used previously by [16]. Furthermore, we compare the results
to a standard echo state network, which is a standard tool in machine learning for these
kind of tasks.

2 Mass-Spring Damper Array

In this paper, we employed a simulated mass-spring damper array, see Fig. 1(a), as a
reservoir. The use of this mass-spring damper array is motivated by the device that was
introduced in [16]. They used a silicone based arm inspired by an octopus arm. They
added bending sensors and attached it to a motor to actuate the otherwise passive arm.
Using this device, they showed that soft structure can be used as a computational resource.

The motor was located on the top of the body and served as an input device. The 5
sensors on each side functioned as outputs. In this paper, we use a similar device by
using the model shown in Fig. 2. The body made of the soft material is modeled by the
2-dimensional mass-spring damper grid, which consists of r � c mass points. The
position of a mass point in the ith row and the jth column is defined as xij; yij

� �
. The ith

sensor output at time t is denoted by si tð Þ, where s0 is assumed to be the bias; s0 tð Þ ¼ 1

Fig. 1. (a) Is an illustration of the mass-spring damper array. (b) describes the ith sensor node.
The output si tð Þ of the sensor is expressed as follows: when two springs vertically connected to
the node are on a straight line (in this case /i tð Þ ¼ p

2), si tð Þ ¼ 0; when these bend outside of the
mass-spring damper array, /i tð Þ and si tð Þ take positive values (si tð Þ ¼ 1 when /i tð Þ ¼ p

4); when
these bend inside, /i tð Þ and si tð Þ take negative values (si tð Þ ¼ �1 when /i tð Þ ¼ � p

4).

Mass-Spring Damper Array as a Mechanical Medium for Computation 783

for all t. Each si tð Þ is computed from the angle /i tð Þ between the two springs that are
connected to ith sensor in the vertical direction. This angle is obtained by

/i tð Þ ¼ � arccos
li;1 tð Þ2 þ li;2 tð Þ2�li;3 tð Þ2

2li;1 tð Þli;2 tð Þ

 !
ð1Þ

where li;1, li;2 respectively denote the distances from the sensor to the two neighboring
mass points in the vertical direction, and li;3 is that between the two neighboring points.
The sign of /i is determined by the positions of the sensor and the two neighboring
mass points. Each output si tð Þ is defined as si tð Þ ¼ 4

p /i tð Þ to be the normalized value of
/i tð Þ so that si tð Þj j ¼ 1, if /i tð Þ ¼ � p

4 (see Fig. 1(b)). The output OMS tþ 1ð Þ is the
weighted sum of the outputs of the sensors

OMS tþ 1ð Þ ¼
X10
i¼0

wMS
i si tð Þ; ð2Þ

where WMS ¼ wMS
0 ; . . .;wMS

10

� �>
are the weights. The superscript MS on the symbols is

the abbreviation of “Mass-Spring.” This superscript is used for distinction of these
symbols from those by echo state networks, which are introduced in Sect. 4.

We assume that the mass-spring array is under the effect of gravity, which acts in
positive y direction. We also assume that a damping force exists between each
neighbouring pair of the mass points, and that the mass points x1j; y1j

� �
j ¼ 1; . . .; cð Þ

are fixed on the top of the device on line by rigid horizontal connections. For the sake
of simplicity the masses of the all mass points are assumed to be a same value m ¼ 1:0.
The springs are also assumed to be uniform, i.e., they all have the same spring constant
k and the same equilibrium length ls and the same damping coefficient c. Under these
assumptions the equation of motion of each xij is derived in a straightforward way as

Fig. 2. Correspondence between the mass-spring damper system and echo state networks

784 Y. Yamanaka et al.

ð3Þ

and

ð4Þ

3 Approximation of NARMA Models as a Benchmark Test

In order to illustrate the potential effectiveness of the mass-spring damper array as a
mechanical medium for computation, we performed the following tests. We used the
problem of approximation of outputs of NARMA(n) models for n = 2, 10, 20 as
benchmarks:

NARMA2

y tþ 1ð Þ ¼ 0:4y tð Þþ 0:4y tð Þy t � 1ð Þþ 0:6I3 tð Þþ 0:1 t� 0ð Þ
0 t� � 1ð Þ

�
ð5Þ

NARMA10, 20

y tþ 1ð Þ ¼ 0:3y tð Þþ 0:05y tð Þ Pn�1

j¼0
y t � jð Þ

 !
þ 1:5I t � nþ 1ð ÞI tð Þþ 0:1 t� 0ð Þ

0 t� � 1ð Þ

8><
>:

ð6Þ

where n = 10, 20 respectively for NARMA10, 20. These models have been proposed
and used by [1] for the evaluation of recurrent neural networks. However, they have
been used as a benchmark in various other studies, e.g., [5, 7, 16, 23].

Mass-Spring Damper Array as a Mechanical Medium for Computation 785

Following [16], we used

I tð Þ ¼ 0:2 sin 2pf1 t
T

� �
sin 2pf2 t

T

� �
sin 2pf3 t

T

� �
t� 0ð Þ

0 t� � 1ð Þ
�

ð7Þ

with f1; f2; f3ð Þ ¼ 2:11; 3:73; 4:33ð Þ as the input sequence. The parameter T controls the
rate of change of I tð Þ; actually I tð Þ is applied to the mass-spring network as the rotation
angle of the top (see Figs. 1 and 2). We set T = 400 in this paper.

The model Eqs. (3) and (4) are numerically solved by using the 4th order Runge–
Kutta method with a step size of Dt ¼ 0:005. The computational results are visualized
by using WebGL, which is an implementation of OpenGL for Java Script, as shown in
Fig. 3. Figure 3(a) shows the equilibrium state of the mass-spring array only under the
influence of gravity and Fig. 3(b) a snapshot of the typical motion of the array intro-

duced by the input and the effect of gravity. The weights WMS ¼ wMS
0 ; . . .;wMS

10

� �>
are

determined by minimizing the normalized mean square error with y tþ 1ð Þ for
1� t� 5000 as the training data. More precisely, first we performed numerical simu-
lations until the mass-spring systems reach an equilibrium state (see Fig. 3(a)) and we
set t ¼ 0 at this time. Then the weights are determined by minimizing

E ¼
P5000

t¼1 y tþ 1ð Þ � OMS tþ 1ð Þð Þ2P5000
t¼1 y2 tþ 1ð Þ ð8Þ

Fig. 3. Visualization of a mass-spring network using WebGL. (a) is a network under the force of
gravity. Note that connections on the top are more stretched as they carry more weight than
connections at the bottom. (b) is a snapshot of mass-spring system with the top rotated. The input
I tð Þ is applied to the network as the rotational angle of the top (see [16] for details).

786 Y. Yamanaka et al.

so that the squared error between the output of the system and the NARMA models is
minimized. As the output is defined by (2), WMS is obtained by

WMS ¼ Sþ y ð9Þ

where S is the 5000 � 11 matrix of which row vectors are s0 tð Þ; . . .; s10 tð Þ for each
t ¼ 1; . . .; 5000, Sþ is the Moore–Penrose pseudoinverse of S and y ¼ y 2ð Þ; . . .;½
y 5001ð Þ�>.

4 Pretests with Echo State Networks

To get a better understanding of the computational performance of the proposed
mechanical structure we compare it to echo state networks (ESNs), which are standard
tools to learn dynamical systems like the chosen NARMA tasks. The ESNs will serve
as a baseline for comparison. We performed pretests to determine the appropriate
values of the parameters for the ESNs. In what follows, results are evaluated by the
normalized error

E ¼
P10000

t¼5001 y tþ 1ð Þ � O tþ 1ð Þð Þ2P10000
t¼5001 y

2 tþ 1ð Þ : ð10Þ

Figure 4 is a schematic description of ESNs. We denote the numbers of input
nodes, internal nodes and output nodes by K, N and L respectively. We also denote the

N � 1þKð Þ weight matrix from the input layer to the reservoir layer by W in ¼ win
ij

h i
,

the weights between the nodes in the reservoir by N � N matrix W ¼ win
ij

h i
, and the

Fig. 4. Echo state network setup. The new input to the internal nodes of the reservoir layer
caused by propagation from the input layer and the reservoir layer itself is represented by ~x tð Þ.
~x tð Þ flows into the internal nodes at the leaking rate a, and then values of the internal nodes x tð Þ is
obtained.

Mass-Spring Damper Array as a Mechanical Medium for Computation 787

L� 1þK þNð Þ weight matrix from the reservoir layer to the output layer by

Wout ¼ wout
ij

h i
. The bias is denoted by b. We used leaky integrator echo state networks

because the input sequence (7) has low frequency modes and leaky integrator ESNs are
suitable for such sequences (see [9]). The output of leaky integrator ESNs is denoted by
OESN tð Þ in the following update equations:

~x tð Þ ¼ tanh W in b; I tð Þ½ �> þWx t � 1ð Þ
� �

; ð11Þ

x tð Þ ¼ 1� að Þx t � 1ð Þþ a~x tð Þ; ð12Þ

OESN tð Þ ¼ Wout b; I tð Þ; x tð Þ½ �>; ð13Þ

where the vector x tð Þ represents the values of the internal nodes and a is the leaking
rate, which controls the speed of dynamics, and is fixed to 0.3 for simplicity. We use
the hyperbolic tangent function as the activation function, and set K = 1 and L = 1.
Each component of W in is randomly set to one of the three values of 1.0, −1.0, 0 with
probabilities 2.5%, 2.5%, 95% respectively. Similarly, the weights in W are set to w,
−w or 0 with probabilities 2.5%, 2.5%, 95% and with a fixed w > 0.

We performed the benchmark tests, changing the size N of the reservoir (100 or 200
nodes) and the weights. For each choice of the parameters N and w, 20 reservoirs were
randomly generated.

The performance of ESNs is dependent on the spectral radius1 q of the matrix W,
see [7]. The objective of the first test is investigation of the actual dependence of the
performance on the spectral radius. The results of the approximation tests of
NARMA2, 10, 20 are shown in Fig. 5. The horizontal axis shows the spectral radius q
of the weight matrixW, and the vertical axis the normalized squared error. Note that the
spectral radius becomes larger as each of N and w takes a larger value.

Figure 5(a), (b), (c) show the results for NARMA2, 10, 20. In these figures, no
significant difference in the dependence of the accuracy on the spectral radius q is
observed. In all of the figures, the performance of the ESNs with N;wð Þ ¼
200; 2:0ð Þ; 100; 4:0ð Þ; 200; 4:0ð Þ was stable in the sense that the accuracy with these
parameters was almost the same among the 20 trials. Meanwhile, the ESNs with
N;wð Þ 100; 0:4ð Þ; 200; 0:4ð Þ; 200; 0:5ð Þ; 200; 1:0ð Þ; 100; 2:0ð Þ often show a worse per-
formance. In particular, the deviations of the errors by the networks with N;wð Þ ¼
100; 0:4ð Þ; 200; 0:4ð Þ; 200; 0:5ð Þ are quite large.

The ESN with the best accuracy was obtained when the parameters were set to
N;wð Þ ¼ 200; 0:4ð Þ, which gave q ’ 1:32. The errors in this case were about 10−8 for
the NARMA2 test, and about 10−7 for NARMA10 and NARMA20, while when in
most cases with q[3 the errors were around 10−5 for NARMA2, 10−2 for NARMA10

1 The spectral radius of the matrix is the largest absolute value of the eigenvalues of the matrix. The
performance of ESNs strongly depends on if the network has the so-called echo state property, and it
is known that the small spectral radius indicates this property. See [7] for detail.

788 Y. Yamanaka et al.

and 10−3 for NARMA20. This dependence of the performances on q may be due to
whether the generated reservoir had the echo state property or not, see [7].

Despite the fact that approximation of NARMA models with higher degree is
known to be a difficult task, the accuracy of the networks with q[3 was better for
NARMA20 than for NARMA10. This implies that networks with a large q have a
different property from standard ESNs with a small q. When the spectral radius is small
(q\2), the deviation of the order of accuracy was quite large. That for the results for
NARMA2, for example, was from 10−8 to 103. Similar results are also reported in [16].

5 Results of the Benchmark Tests of the Mass-Spring
Damper Array

First, we compared performances of the mass-spring arrays with averaged errors of 20
randomly generated ESNs with N;wð Þ ¼ 200; 4:0ð Þ, which gave the best results in the
previous tests. Table 1 shows the averaged errors over all experiments of the mass-
spring array performed with various physical parameters and the averaged and the
smallest errors of the ESNs with the above parameters. As illustration, we also show in
Fig. 6 the input signal and examples of the outputs of the array with the parameters
r; c;m; l; k; cð Þ ¼ 50; 50; 1:0; 1:0; 3000; 0:05ð Þ for 5001� t� 5500, along with the
results by the ESN with N;wð Þ ¼ 200; 4:0ð Þ.

Next, we investigated relations between parameters of the mechanical structure
(i.e., the size and the dynamical parameters as well) and the performance of the system
through some tests.

Firstly, we observed the dependence of the performance on the size of themass-spring
damper system by performing the tests with various r and c; r ¼ 10; 20; . . .; 100,

Fig. 5. Results of echo state networks with various N and w

Mass-Spring Damper Array as a Mechanical Medium for Computation 789

c ¼ 10; 20; . . .; 100. The results are shown in Fig. 7(a), (b) and (c). These figures show
that there exists a certain dependence between the size of the array and the accuracy of the
mass-spring damper system. For example, in the results of the tests for NARMA2 shown
in Fig. 7(a), the parameters r ¼ 40; c ¼ 80; 90; 100 and r ¼ 100; c ¼ 90; 100 gave better
results than others. The best accuracy was achieved when r ¼ 100; c ¼ 100, and in that
case, the error E was about 0.000027. Interestingly there exist two local optima around
r ¼ 40; c ¼ 80; 90; 100 and r ¼ 100; c ¼ 90; 100. A remarkable conclusion is that out-
puts of larger systems, which have a larger number of degrees of freedom, are not always
more accurate than smaller systems.

Secondly, similarly we investigated the dependence of the performance on the
spring constant k and the damping coefficient c. In the tests we tried various values of
k and c with r; c;m; l fixed to r ¼ 50; c ¼ 50;m ¼ 1:0; l ¼ 1:0. The results for k ¼
500; 1000; . . .; 10000 and c ¼ 0:01; 0:02; . . .; 0:2 are shown in Fig. 7(d), (e) and (f). In
the results of the NARMA2 test shown in Fig. 7(d), larger c gives higher accuracy,
while the best k was around 3500. Figure 7(e) and (f) show the results for the
NARMA10 and NARMA20 tasks.

It is clearly shown in Fig. 7(d), (e) and (f) that smaller k is suitable for these tasks.
In particular, optimal values of k for NARMA10 and NARMA20 tasks are possibly
less than 500, which is the smallest value of k plotted in Fig. 7(e) and (f). Therefore we
performed the additional tests using k ¼ 50; 100; . . .; 500, of which results are shown in
Fig. 7(g) and (h).

Table 1. The averaged errors by the mass-spring damper array (MS) and by the echo state
networks (ESN) along with the best results of echo state networks

Average of MS Average of ESN Best of ESN

NARMA2 3.93 �10−5 3.31 �10−5 3.34 �10−8

NARMA10 2.65 �10−3 1.43 �10−2 1.52 �10−7

NARMA20 1.93 �10−3 4.91 �10−3 2.36 �10−7

Fig. 6. Examples of the results of the NARMA tasks. In the legend, “target” corresponds to the
output of the NARMA model, “MS” to that of the mass- spring array and “ESN” to that of the
echo state network.

790 Y. Yamanaka et al.

6 Discussion

The results presented in Fig. 7(a), (b) and (c) suggest an interesting conclusion. The
pure number of mass points is not enough to determinate the performances of the
system. For example, the accuracy of the system with r ¼ 40; c ¼ 100 was better than
that of the system with r ¼ 100; c ¼ 40. This implies that the performance of the
system depends in some sense on the two dimensional shape of the medium rather than
just the size. This is in so far interesting as the theoretical models proposed by Hauser

Fig. 7. (a), (b) and (c) are the results by the mass-spring damper array with various r and c. The
vertical axis corresponds to the normalized mean squared error between the outputs of the mass-
spring damper array and those of the NARMA models. (d), (e) and (f) are the results by the mass-
spring damper array with various k and c. (g) and (h) are enlarged graphs of the results of the
mass-spring damper array for smaller k.

Mass-Spring Damper Array as a Mechanical Medium for Computation 791

et al. predict that the higher dimensional the reservoir is the more likely the compu-
tational power would increases. The difference here could be mainly due to the exis-
tence of the gravity force. Because of the gravity force, the motion of the system is
larger in the y direction than in the x direction, and hence changes of c, which is the
number of the mass points in the y axis, are more affected by the motion of the system.
In addition, we have artificially introduced asymmetry in the structure by allowing
sensors only on the side and input on the top.

The difference of the dependence of the performance on r and c was also observed
in the results in NARMA10 and NARMA20, which are shown in Fig. 7(b), (c). In
these tests the systems with r ¼ 70; 80; c ¼ 60; 70; 80; 90; 100 yield better results than
the others for both the NARMA10 and the NARMA20 tasks. It should be noted that the
optimal parameters for NARMA2 are different from those of NARMA10 and
NARMA20. This confirms that when the mass-spring array is used as a mechanical
medium for computation, morphological parameters related to the size or the shape of
the array must be carefully chosen when considering a specific computational task.

Regarding the tests where various k and c are investigated, for all of the NARMA2,
10, 20 tests, the performance depended on both parameters. In particular, the results in
Fig. 7(g), (h) show that outputs of systems with larger c are more accurate than those
with smaller c, meanwhile systems with smaller k yield more accurate results than those
with larger k. Moreover, the values of the error in Fig. 7(g), (h) are smoothly dependent
on k and c, thereby implying existence of a simple function that relates the error
function to k and c.

Because c is the damping coefficient, the motion of the mass-spring damper system
can become unstable when c is set to a small value. In contrast, when c is large, the
whole systems tends to act as one rigid block. Similarly, larger k makes the motion of
the system more dynamic (i.e., can move at higher frequencies), and motions of sys-
tems with smaller k are softer (i.e., moves slowly). Hence, for NARMA(n) tasks with
higher n mass-spring damper arrays with stiffer behavior (i.e., move rigidly (larger c)
and slowly (smaller k)) are seemingly more suitable than the systems with more
dynamic behavior.

In the systems with more active motions, a motion of a mass point wields a great
influence on the neighbouring points. In comparison with ESNs, if the mass-spring
damper array is in some sense equivalent to the reservoir of an ESN, links between the
mass points with greater interaction may correspond to strong links between the
neighbouring nodes in the reservoir of the ESN, thereby possibly corresponding to the
weight matrix with large weights. Similarly the mass-spring systems with stiffer
behavior should correspond to reservoirs with small weights. In the previous tests of
ESNs, it was shown that if the spectral radius of the weight matrix is large, the accuracy
of outputs of the systems is feasible, but not excellent, while the deviations of the errors
are small. The spectral radius is dependent on the size and the weights of the reservoir; in
particular large weights yield a large spectral radius. Hence, it is expected that deviations
of the errors with large k and small c must be small, and the outputs are not extremely
accurate. The results in Fig. 7(f), (g), (h) are compatible with this expectation.

792 Y. Yamanaka et al.

In this paper, we used the product of three sinusoidal signals as the input, different
trends may appear when other input time series are imposed (e.g., random input time
series from uniform distribution). These cases with other benchmarks will be investi-
gated in future work.

7 Conclusion

In this paper we have investigated by simulations the performance of the mass-spring
damper array as a computational medium, in particular, to what extent the morpho-
logical parameters affect the overall computational performance.

The errors of the mass-spring damper array for the NARMA tests were almost same
as the averaged errors of the ESNs, but still larger than for the best perform ESNs.
However, considering that the deviation of performances of ESNs with small spectral
radius was very large, the stable performance of the mass-spring damper system was
remarkable. This implies that when the proposed mechanical array can be used as a
medium for computation, it should surely work to a certain extent although the
accuracy may not be excellent. This stability of the performance of the mass-spring
array would be advantageous for real applications in terms of ease-of-use without strict
tuning parameters.

References

1. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms
and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000)

2. Eder, M., Hisch, F., Hauser, H.: Morphological computation-based control of a modular,
pneumatically driven, soft robotic arm. Adv. Robot. 32(7), 375–385 (2018). https://doi.org/
10.1080/01691864.2017.1402703

3. Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J.,
Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 588–
597. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_63

4. Hauser, H., Füchslin, R., Nakajima, K.: Morphological computation—the physical body as a
computational resource. In: Hauser, H.; Füchslin, R.M., Pfeifer, R. (eds.) Opinions and
Outlooks on Morphological Computation, Chap. 20, pp. 226–244 (2014). ISBN 978-3-033-
04515-6

5. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical
foundation for morphological computation with compliant bodies. Biol. Cybern. 105(5),
355–370 (2011)

6. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in
morphological computation with compliant bodies. Biol. Cybern. 106(10), 595–613 (2012).
https://doi.org/10.1007/s00422-012-0516-4

7. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Advances
in Neural Information Processing Systems, pp. 609–616 (2003)

8. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy
in wireless communication. Science 304(5667), 78–80 (2004)

Mass-Spring Damper Array as a Mechanical Medium for Computation 793

http://dx.doi.org/10.1080/01691864.2017.1402703
http://dx.doi.org/10.1080/01691864.2017.1402703
http://dx.doi.org/10.1007/978-3-540-39432-7_63
http://dx.doi.org/10.1007/s00422-012-0516-4

9. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applications of
echo state networks with leaky-integrator neurons. Neural Netw. 20(3), 335–352 (2007)

10. Kang, R., et al.: Dynamic model of a hyper-redundant, octopus-like manipulator for
underwater applications. In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4054–4059 (2011). https://doi.org/10.1109/IROS.2011.6094468

11. Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the
boundaries of robot abilities. Sci. Robot. 1(1), eaah3690 (2016)

12. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network
training. Comput. Sci. Rev. 3(3), 127–149 (2009)

13. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new
framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–
2560 (2002)

14. Nakajima, K., Li, T., Hauser, H., Pfeifer, R.: Exploiting short-term memory in soft body
dynamics as a computational resource. J. R. Soc. Interface 11(100) (2014)

15. Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D., Pfeifer, R.: A soft body
as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front.
Comput. Neurosci. 7, 91 (2013). https://doi.org/10.3389/fncom.2013.00091

16. Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body.
Sci. Rep.5 (2015)

17. Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Exploiting the dynamics of soft materials for
machine learning. Soft Robot. 5(3), 339–347 (2018)

18. Paquot, Y., et al.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)
19. Paul, C., Valero-Cuevas, F.J., Lipson, H.: Design and control of tensegrity robots for

locomotion. IEEE Trans. Robot. 22(5), 944–957 (2006)
20. Pfeifer, R., Gómez, G.: Morphological computation – connecting brain, body, and

environment. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating
Brain-Like Intelligence. LNCS (LNAI), vol. 5436, pp. 66–83. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00616-6_5

21. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553),
467–475 (2015)

22. Urbain, G., Degrave, J., Carette, B., Dambre, J., Wyffels, F.: Morphological properties of
mass-spring networks for optimal locomotion learning. Front. Neurorobotics 11, 16 (2017).
https://doi.org/10.3389/fnbot.2017.00016

23. Verstraeten, D., Schrauwen, B., d’ Haene, M., Stroobandt, D.: An experimental unification
of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

24. Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: Dynamic
model of the octopus arm.I. biomechanics of the octopus reaching movement. J. Neuro-
physiol. 94, 1443–1458 (2005)

25. Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: Dynamic
model of the octopus arm.II. control of reaching movements. J. Neurophysiol. 94, 1459–
1468 (2005)

26. Zhao, Q., Nakajima, K., Sumioka, H., Hauser, H., Pfeifer, R.: Spine dynamics as a
computational resource in spine-driven quadruped locomotion. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2013), pp. 1445–1451. IEEE (2013)

794 Y. Yamanaka et al.

http://dx.doi.org/10.1109/IROS.2011.6094468
http://dx.doi.org/10.3389/fncom.2013.00091
http://dx.doi.org/10.1007/978-3-642-00616-6_5
http://dx.doi.org/10.3389/fnbot.2017.00016

Kinematic Estimation with Neural
Networks for Robotic Manipulators

Michail Theofanidis(B), Saif Iftekar Sayed(B), Joe Cloud, James Brady(B),
and Fillia Makedon(B)

HERACLEIA Human-Centered Computing Laboratory,
Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, USA

{michail.theofanidis,saififtekar.sayed,joe.cloud,
james.brady2}@mavs.uta.edu, makedon@uta.edu

Abstract. In this paper, we focus on estimating the forward kinematic
equation of robots with multilayer feed-forward neural networks. The
effectiveness of this approach is tested on a simulated kinematic model
of the 7-DOF Sawyer Robotic Arm. In the initial sections of the paper, we
discuss related work that associates with the creation of model agnostic
control schemes on a kinematic level. Moreover, we formalize the kine-
matic problem as a supervised problem and we propose an MLP archi-
tecture to solve the problem. Lastly, we present experimental results and
discuss the potential and importance to create model agnostic control
schemes with machine learning.

Keywords: Robot kinematics · Forward kinematics
Neural networks for engineering

1 Introduction

Kinematics is the branch of classical mechanics, which studies the motion of bod-
ies, without consideration of acting forces or moments. Robot kinematics provide
mathematical tools to model and analyze the motion and structure of robotic
manipulators, which is a fundamental component of robot control. In general,
robotic manipulators are composed by a series of links and joints, followed by
a gripper (the end effector). The joints of a robot can be either rotational or
prismatic and they can be controlled by a certain actuator, such as an electric
motor. To move the robot’s end effector along a particular trajectory, actuation
must be caused by the motors of the joints. The equations that describe the rela-
tionship between the position of the end effector and the position of the joints
are addressed as the kinematic equations of the robotic arm.

Specifically, the mapping from the joint space of the robot to the Carte-
sian space of the robot’s end effector is known as forward kinematics, while the
inverse of this relationship is addressed as the inverse kinematics. Traditionally,
the kinematic equations of a robot are derived from the kinematic model of the
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 795–802, 2018.
https://doi.org/10.1007/978-3-030-01424-7_77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_77&domain=pdf

796 M. Theofanidis et al.

robot, which describes the spacial relationship of each link and joint of the robot.
Spacial relationships can be decomposed into rotational and translational and
they can be represented mathematically by homogeneous transformations matri-
ces [3]. In this paper, we focus on estimating the forward kinematic equations of
robots with neural networks.

2 Related Work

A considerable amount of research has been conducted in the fields of both
machine learning and control theory to try and create reliable control algo-
rithms, that enable robotic arms to perform tasks autonomously and adapt to
new environments [1]. Since robotic systems can be abstracted as continuous
time systems that moves along a trajectory given a particular control input in
the joint domain, it is worthwhile to investigate control frameworks based on
neural networks that have the capability to solve nonlinear problems. According
to the relevant literature, two different network architectures have been employed
successfully to solve control problems in robotics [5]. Feed forward neural net-
works and recurrent neural networks.

The architecture of the neural network is based on whereas the system has
full knowledge, partial knowledge or no knowledge of the robot’s plant dynamics
[9]. When the system has full or partial knowledge of the dynamics, feed forward
neural networks have been used to compensate uncertainties due to modeling
or sensor error [6]. In the case of model-free control of robotic systems, neural
networks are used as function approximators that estimate the kinematic and
dynamic equations of the robot. Note though, that both the forward and inverse
kinematic and dynamic equations of robotic arms can not be fully learned by
a single feed forward neural network, but they can be partially learned with
recurrent neural networks [7].

Fig. 1. Learning the forward kinematics with supervised learning.

Estimation of the Forward Kinematics with Neural Networks 797

3 Problem Formulation

As previously explained, the forward kinematics is a function F that connects
the vector of joint positions θ with the Cartesian coordinates of the robot’s end
effector X :

X = F (θ) (1)

A very important property of Eq. 1 is that it is a one-to-one function, regard-
less of the geometrical properties of the robotic arm [7]. This statement holds
true for every possible open loop kinematic chain and thus, every possible joint
configuration can be uniquely mapped to one and only one end effector Cartesian
coordinate [10]. Practically, this means that F can be learned in a supervised
manner by a neural network as Fig. 1 suggests.

In addition, Fig. 1 indirectly suggests that the forward kinematics problem
is independent of the robot geometry. That is not the case with the inverse
kinematics problem, whose goal is to find a set of joint configurations given a
particular end-effector position and orientation [3]. The difficulty of the inverse
kinematics problem arises from its dependence on the physical configuration
of the robot and that is has multiple solutions. Thus, any machine learning
algorithm that tries to learn the inverse kinematics problem, will only be able
to find one solution per kinematic configuration [4,8,11]. Also, the leaner might
learn different inverse kinematics solutions for different kinematic configurations
within the same workspace of a particular robot [2].

4 Experimental Testbed

The fact that the forward kinematics problem can be solved with classical super-
vised learning algorithms, means that the training process can occur off-line with
training samples that are collected from measurements. These training samples
will constitute a dataset whose input is measured from the robot joint encoders,
and the output is the equivalent Cartesian coordinates of the robot end effector.
A problem with this approach is that the Cartesian coordinates must be obtained
from an external sensor and most mechanical manipulators possess only internal
sensors. However, if the geometric characteristics of the robot are known, then
the training dataset can be also generated from a simulated kinematic model of
the robot. In this section, we present how we derived the kinematics of the 7-
DOF Sawyer Robotic arm, and how well a multilayer perceptron neural network
can learn to estimate the equation.

4.1 Kinematics of the Sawyer Robot

Figure 2 illustrates the kinematic model of the Sawyer Robotic Arm. The model
was constructed by reverse engineering the geometrical properties of the physical
robot. According to the homogeneous transformation of the joint frames from
Fig. 2, the DH Table 1 of the model was composed. Note though, that in the
table we do include the elevation of the robot above the world frame, which

798 M. Theofanidis et al.

is estimated to be 0.3160 m. Based on the DH table, the homogeneous coordi-
nate matrix of the frames can be derived according to matrix (2). Finally, we
computed the forward kinematic equations of the robot according to Eq. (2).

Fig. 2. Kinematic model of the sawyer robot.

Table 1. DH Table for the 7DOF sawyer robotic arm

i αi ai di θi

1 −90◦ 0.0810 0 θ1

2 90◦ 0 0.1910 θ2

3 −90◦ 0 0.3990 θ3

4 90◦ 0 −0.1683 θ4

5 −90◦ 0 0.3965 θ5

6 90◦ 0 0.1360 θ6

7 0 0 0.1785 θ7

Ti−1
i =

⎡
⎢⎢⎣

cθi −cαisθi sαisθi aicθi
sθi cαicθi −sαicθi aisθi
0 sαi cαi di
0 0 0 1

⎤
⎥⎥⎦ (2)

T17 = T12 ∗ T23 ∗ T34 ∗ T45 ∗ T56 ∗ T67 (3)

Estimation of the Forward Kinematics with Neural Networks 799

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−175◦ ≤ θ1 ≤ 175◦

−175◦ ≤ θ2 ≤ 175◦

−175◦ ≤ θ3 ≤ 175◦

−170◦ ≤ θ4 ≤ 170◦

−170◦ ≤ θ5 ≤ 170◦

−170◦ ≤ θ6 ≤ 170◦

−180◦ ≤ θ7 ≤ 180◦

(4)

4.2 Network Architecture

To solve the forward kinematics problem of Eq. 3 the multi-layered feed-forward
neural network of Fig. 3 is proposed. The input layer of the network represents
a vector of joint angle values (θ1, θ2, θ3, θ4, θ5, θ6, θ7), while the output of the
network stands for the cartesian coordinates of the robot’s end effector. Both
the input and output units contain linear units for normalization purposes.

Fig. 3. Network architecture.

The network was trained using the backpropagation algorithm with the mean
squared error of the output units as a metric. During the backpropagation pro-
cess, we used adam optimizer. To produce the training dataset of the network,
4 million random kinematic configurations of joint angles with their equivalent
Cartesian positions were utilized. During the creation of the dataset, we made
sure that the joint angle values uniformly cover the ranges of Eq. 4. Because of
the size of the dataset, the network was trained with a batch size of 100 units
and 30 epochs. Also, 10% of the dataset was used for cross validation and 10%
was used for testing purposes.

800 M. Theofanidis et al.

4.3 Experimental Results

After the training was complete, the networks achieved 99.997% validation accu-
racy. To demonstrate the effectiveness of the network, in this section we will
compare the network estimations with the output of the forward equation as
computed by Eq. 3 for the same input joint trajectory samples. Figure 4 shows
the sample trajectory in joint space.

Fig. 4. Experimental joint space trajectories.

Fig. 5. Error between the forward kinematic equation and the network in the x dimen-
sion.

The difference between the estimations of the forward kinematic equations
and the proposed network is shown in Figs. 5, 6 and 7, where every figure repre-
sents one of the cartesian dimensions of the robot’s end effector. Note that the
scale in the vertical axis is in meters.

Estimation of the Forward Kinematics with Neural Networks 801

Fig. 6. Error between the forward kinematic equation and the network in the y dimen-
sion.

Fig. 7. Error between the forward kinematic equation and the network in the z dimen-
sion.

5 Conclusions

In this work, we presented how to estimate the forward kinematic equations of a
kinematically redundant robotic arm with a neural network. The proposed net-
work architecture showed promising results between different kinematic configu-
rations. However, it is worthy to mention that although the forward kinematics
equations can be estimated algebraically in a simple manner, learning the same
equations is an arduous process for a neural network. The proposed architecture
was found after training multiple models with different parameters, such as the
number of units per level and the number of levels, on the same dataset with
different resolution. That was possible to achieve, because the workspace of the
robot can not possibly change.

Acknowledgments. This work is supported in part by the National Science Founda-
tion under award numbers 1338118 and 1719031. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

802 M. Theofanidis et al.

References

1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

2. Bingul, Z., Ertunc, H., Oysu, C.: Comparison of inverse kinematics solutions using
neural network for 6R robot manipulator with offset. In: 2005 ICSC Congress on
Computational Intelligence Methods and Applications, p. 5. IEEE (2005)

3. Craig, J.J.: Introduction to Robotics: Mechanics and Control, vol. 3. Pear-
son/Prentice Hall, Upper Saddle River (2005)

4. Duka, A.V.: Neural network based inverse kinematics solution for trajectory track-
ing of a robotic arm. Procedia Technol. 12, 20–27 (2014)

5. Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: a
survey. Neurocomputing 285, 23–34 (2018)

6. Jin, L., Zhang, Y., Li, S.: Integration-enhanced zhang neural network for real-time-
varying matrix inversion in the presence of various kinds of noises. IEEE Trans.
Neural Netw. Learn. Syst. 27(12), 2615–2627 (2016)

7. Jordan, M.I., Rumelhart, D.E.: Forward models: supervised learning with a distal
teacher. Cogn. Sci. 16(3), 307–354 (1992)

8. Karlik, B., Aydin, S.: An improved approach to the solution of inverse kinematics
problems for robot manipulators. Eng. Appl. Artif. Intell. 13(2), 159–164 (2000)

9. Lin, D., Wang, X., Nian, F., Zhang, Y.: Dynamic fuzzy neural networks modeling
and adaptive backstepping tracking control of uncertain chaotic systems. Neuro-
computing 73(16–18), 2873–2881 (2010)

10. Nguyen, L., Patel, R., Khorasani, K.: Neural network architectures for the forward
kinematics problem in robotics. In: 1990 IJCNN International Joint Conference on
Neural Networks, pp. 393–399. IEEE (1990)

11. Tejomurtula, S., Kak, S.: Inverse kinematics in robotics using neural networks. Inf.
Sci. 116(2–4), 147–164 (1999)

Social Media

Hierarchical Attention Networks for User
Profile Inference in Social Media Systems

Zhezhou Kang, Xiaoxue Li, Yanan Cao(B), Yanmin Shang, Yanbing Liu,
and Li Guo

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
14281111@bjtu.edu.cn,

{lixiaoxue,caoyanan,shangyanmin,liuyanbing,guoli}@iie.ac.cn

Abstract. User profile inference, which aims to portray a user in detail,
is one of fundamental tasks in social network analysis. Existing works still
suffer from the difficulty in modeling user’s explicit attributes and social
links, which is mainly caused by the text diversity and complex commu-
nity structures. In this paper, we propose a hierarchical attention neural
network to infer users’ missing attributes, which handles the user represen-
tation integrating both explicit personal information and social links. The
core module is a hierarchical recurrent neural network which encodes both
attribute-level and user-level information, and the attention mechanism
can adaptively render different attributes and users with different weights.
Extensive empirical studies are conducted on two real-world datasets. The
experimental results show that our model prominently outperform other
comparative deep models in predicting multi-value attributes (especially
occupation), verify the effect of using user social links, and reveal different
effects of different attention mechanism.

Keywords: Recurrent neural network · Social network analysis
Hierarchical attention networks · Attention mechanism
User attributes inference

1 Introduction

As people’s awareness of privacy increases, personal information of social network
users becomes more and more difficult to acquire. However, in most cases, if user
information can be utilized legally and reasonably, it can significantly improve
the quality of user’s life. For example, acquiring a user’s gender, interest and
occupation are very helpful to make more precise advertising or recommendation.
Hence, user attributes inference gets more and more attention in both industry
and academia.

Existing attribute inference works can be roughly classified into two cate-
gories according to the source data. One is based on user content mining and
the other is based on social relationship analysis. Content-oriented methods
mainly focus on mining user’s potential information from their comments on
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 805–816, 2018.
https://doi.org/10.1007/978-3-030-01424-7_78

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_78&domain=pdf

806 Z. Kang et al.

the social network platforms. However, a user’s comments don’t always reflect
his/her implicit attributes. Even so, it is difficult to mine the topic from com-
ments precisely. Relationship-oriented works focus on utilizing the social links
to propagate or predict unknown labels based on the hypothesis that two linked
users may share similar attributes. These methods usually performs poorly in
referring multi-value attributes.

In our opinion, user’s known attributes and social links are both important
information for inferring his/her unknown attributes. So, for each target user u,
we build an ego network to integrate u, his/her direct friends and their attributes.
In an ego network, a user is represented by an attribute vector, and the ego net-
work is represented by several user vectors (forming a matrix). So, how do we
process ego network representation appropriately? How do we figure out the use-
ful users and their attributes exactly? These are still big challenges. To address
these problems, we apply hierarchical attention-based Recurrent Neural Network
(RNN) to automatically extract important features from an ego-network. Firstly,
as the ego network representation consists of users vectors which attributes, the
hierarchical structure can observe both attribute-level and user-level informa-
tion. Secondly, we adopt attribute-level and user level attention mechanism to
select relevant users and attributes which contributes more to the target users
attribute reference.

In this work, we proposed two different structures of hierarchical attention
model. In these two structures, the positions of the attribute-level attention layer
are different. In one structure, we add attention on encoded user representation,
while in the other one we add inner-attention on original user representation. To
evaluate the performance of our different model structures, we carried out sev-
eral experiments on two real-world datasets. Experimental results show that the
hierarchical RNN model with inner-attention mechanism outperforms compara-
tive methods significantly and integrating user links in ego user’s representation
is very effective.

In summary, our key contributions are as follows: (i) we propose a hierar-
chical neural network to infer users missing attributes, which handles the user
representation integrating both explicit personal information and social links.
(ii) We apply two structures of attention mechanism in the hierarchical mod-
els to adaptively select relevant friends and attributes, and experimental results
verified the effectiveness of our models.

2 Related Work

Existing attribute inference works can roughly divide into content-mining
method and social-links analysis method according to the features of source
data.

Content-mining methods mainly focus on contents posted by users on social
network platforms. They try to extract useful information from user’s microblogs
and then use it to predict incomplete user attributes. The concept is feasible,
but the challenge is how to obtain the exact meaning of these microblogs, which

Hierarchical Attention Networks for User Profile Inference 807

are usually short, emotional, colloquial and diverse. However, machine learning
methods have shown great advances in text analysis and image analysis. Work
by [1–5] solved this problem by analyzing a large amount of microblogs of a sin-
gle user. This helps in getting useful information, but it needs a lot computing
resources in analyzing a single user. With the rapid growth in social networks,
the modality of social data consists of not only texts but also photos and videos,
and these data are all used in [3,5]. [3] proposed a semantic attention network
based on image for multimodal sentiment analysis and [5] exploited the multi-
media information to infer user attributes. These works extend the data which
is suitable for user analysis, however, it costs much computing resources, which
makes it hard to be applied in large-scale user analysis.

Relationship-based method. [2,4,9,10] considered the contribution of user’s
social links. Bhattacharya et al. [2] made use of relations between a user and
his/her following topics, which helped in getting a better understanding of what
the ego user truly expressed without costing too much computing resources.
Vidyalakshmi et al. [4] concentrated on the ego network of a certain circle.
They inferred ego user attributes by propagating the known attribute value
of followers. Work by [2] firstly deduce the topical expertise of popular Twitter
users, and then transitively infer the interests of the users who follow them. Li
et al. [9] tried to infer user’s multi-valued attributes in one trained model. Cao
et al. [10] presented an ego-social network model which integrates the tar-
get user’s attributes, social links and their comments. All of these works get
impressive results.

As for models, we apply two structures of hierarchical attention model
to our work. Yang et al. proposed a hierarchical attention network for docu-
ment classification [6]. They designed the model to capture two basic insights
about document structure, one at word level and one at the sentence level.
Wang et al. proposed an inner attention-based recurrent neural network [7].
They analyzed the deficiency of the traditional attention based RNN models
and present three new models which add attention before computing RNN hid-
den representation. Chen et al. proposed a novel attention-based convolutional
neural network (CNN). They applied attention mechanism to CNN [8].

3 Hierarchical Attention Networks

Our work aims to infer a given user’s missing attributes (occupation in particu-
lar), which is regarded as an attribute classification problem. In order to utilize
the user’s known attributes and social links, we define an ego-network [9] for each
user. The input of our model is the target user’s ego-network which is represented
as an (k + 1) ∗ m matrix. The input matrix and model architecture is shown in
Fig. 1. In the input matrix, each column represents one type of attribute and
each row represents one user. The first row is the target user and the following
k rows represent the target user’s friends. Each user has m attributes, such as
gender, age, education and etc. In real application, we extend some attributes
to multi-dimension, which will be discussed in Sect. 4.2.

808 Z. Kang et al.

Each user has attributes

Math

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU
Softmax

iEgo user

1F

2F

kF

1w 2w 3w mw

DoctorFemale 19

m

Fig. 1. An example of ego network

Our model contains several recurrent operations, and we take a hierarchical
GRU network to extract features of input data. We firstly feed the ego-network
matrix to a GRU layer, then we aggregate the representation of all attributes of
a single user to form a user vector. Next, we feed all user vectors to the second
GRU layer. At last, we get an encoded representation of an ego-network and feed
it to the softmax layer to classify the target user to one occupation category.

We design two hierarchical attention network architectures which are respec-
tively shown in Figs. 2 and 3. Both of these architectures consist of several mod-
ules: an attribute sequence encoder, an attribute-level attention layer, a user
sequence encoder and a user-level attention layer. We describe the details of
different components in the following sections.

3.1 GRU-Based Sequence Encoder

Gated recurrent unit (GRU) is a gating mechanism in recurrent neural networks.
It can track the state of sequences without using separate memory cells. GRU
has fewer parameters than LSTM, because it doesn’t contain output gate. GRU
has two types of gates: the reset gate rt and the update gate zt. The reset
gate determines how to combine the new input with the previous memory. The
update gate defines how much of the previous memory to keep around and how
much new information is added. The idea of using a gating mechanism to learn
long-term dependencies is the same as in a LSTM. The GRU computes the new
state as follows:

Hierarchical Attention Networks for User Profile Inference 809

ht = (1 − zt) � ht−1 + zt � h̃t (1)
zt = σ(Wzxt + Uzht−1 + bz) (2)

h̃t = tanh(Wzxt + Uzht−1 + bh) (3)
rt = σ(Wrxt + Urht−1 + br) (4)

3.2 Hierarchical Attention Based GRU Neural Network

As shown in Fig. 2, given a user ui (i ∈ [0, k]), we use wit (t ∈ [0,m]) to represent
the tth attribute of the ith user. We firstly embed the attribute wit into a vector
representation xit through an embedding matrix We. Then we use a forward
GRU layer f to encode the user attribute xit at time t, and got its hidden status
hit.

xit = Wewit (5)
hit = GRU(xit) (6)

In different tasks, we know that not all attributes contribute equally to infer-
ring certain attribute of an ego user. For example, when we aim to predict the

Fig. 2. Structure of hierarchical attention based GRU neural network

810 Z. Kang et al.

ego user’s interests, his/her major and gender may contribute more than his/her
address. So we applied attention mechanism to self-adaptively pick out impor-
tant attributes, which is computed as follows.

ait = tanh(Wwhit + bw) (7)

αit =
exp(aT

itaw)
Σt exp(aT

itaw)
(8)

ui = Σtαithit (9)

In the attention layer, we feed the attribute hidden status hit through a neural
network layer to get ait as a hidden representation of hit. Then we measure the
importance of an attribute as the similarity of ait with an attribute-level context
vector aw and get a normalized importance weight through a soft-max function.
After that, the user vector ui is computed as a weighted sum of the attribute
hidden status.

In the user sequence encoder, we also used a one-layer GRU to encode each
user vector ui:

hi = GRU(ui) (10)

To reward users that contribute more to the ego user’s attribute inference,
we use attention mechanism again and introduce a user-level context vector au

which is used to measure the importance of users in the ego-network.

ai = tanh(Wuhi + bu) (11)

αi =
exp(aT

i au)
Σiexp(aT

i au)
(12)

v = Σiαihi (13)

Where v represents the ego network that summarizes all information of users in
an ego network.

3.3 Hierarchical Inner Attention Based Neural Network

As for inner attention mechanism, we add the attention layer before GRU layer.
The structure is shown in Fig. 3. Firstly, we feed attribute vectors xit through a
one-layer MLP to get ait. Then we measure the importance of the attributes as
the similarity of ait with an attribute-level context vector aw and get a normal-
ized importance weight through a soft-max function. Then we use GRU to get
annotation of attribute.

xit = Wewit (14)
ait = tanh(Wwxit + bw) (15)

αit =
exp(aT

itaw)
Σt exp(aT

itaw)
(16)

hit = GRU(xitαit) (17)
ui = Σthit (18)

Hierarchical Attention Networks for User Profile Inference 811

Fig. 3. Structure of hierarchical inner attention based neural network

For user vector ui, we use attention mechanism and introduce a user-level
context vector au and use the vector to measure the importance of users.

ai = tanh(Wuui + bu) (19)

αi =
exp(aT

i au)
Σi exp(aT

i au)
(20)

hi = GRU(uiαi) (21)
v = Σihi (22)

3.4 Ego Network Classification

The ego network vector v is a high level representation of the ego network and
can be used as features to infer ego user’s attributes.

p = softmax(Wcv + bc) (23)

We use the negative log likelihood of the correct labels as training loss:

L = −Σd log pdj (24)

Where j is the label of ego network d.

812 Z. Kang et al.

4 Experiments

4.1 Datasets

In our experiments, we aim to infer the user occupation which is a multi-valued
attribute and is more difficult to predict than gender, age and etc. There is no
public benchmark in social network user occupation inference problem. So, we
evaluate the effect of our model on two real-world datasets constructed from two
Chinese online social network website Zhihu and Sina weibo. For each user, we
crawled his/her public personal information and social links. For user represen-
tation, we randomly select 5 friends from the downloaded datasets for each user.
We removed some data with few user information, and preprocess the datasets
by deleting special punctuation and symbols. Zhihu dataset consists of 16035
pieces of user information with 9 attributes, including user id, gender, educa-
tion, major, personal brief introduction and some numerical information like
the number of followings, that of followers and etc. Sina Weibo dataset con-
tains 21608 pieces of user basic information with 5 attributes, including gender,
address, education, personal signature and company. For both datasets, we use
80% of them for training, 10% for validation and 10% for testing. According to
these datasets, we divide occupations into 12 categories in advance.

4.2 User Representation and Dimension Selection

Due to expression diversity in Chinese, these are polysemy and ill-formedness
problems, which may result in the sparsity of attribute data. This is a big chal-
lenge for training a good supervised model for user profile inference. For example,
attributes like university, address, organization commonly has several abbrevia-
tions. Taking university as an example, one user’s university is “
(Beijing Jiaotong University)” which is a full name, but others may use abbrevi-
ations “ (Beijing Jiao University)” and “ (Bei Jiao University)”.
In order to identify the similarity between different snippets, there are several
relevant methods which solve this problem in grammatical level (such as using q-
gram to measure the distance between snippets) or semantic level (such as using
topic model or embedding learning to cluster snippets). However, the effective-
ness of these methods are limited when the scale of corpus is not large enough.

In this paper, we conduct a shallow processing of users’ attributes. We use
a matual segmentation tool [11] to divide attribute text into words, and use a
word vector to represent one attribute which extend user information dimension.
In the above example, we use “ (Beijing)”, “ (Jiaotong)” and “
(University) “to be three dimension attributes rather than use “
(Beijing Jiaotong University)” as one attribute. The advantage of this represen-
tation is that the full name, abbreviations “ (Beijing Jiao University)”
and “ (Bei Jiao University)” has common words which are represented
as independent attribute, as shown in Fig. 4. These common attributes will be
utilized to divide users into the same category.

Hierarchical Attention Networks for User Profile Inference 813

Male 22 Department of Computer
Science and Technology ...

female 25 School of Computer Science
and Information technology ...

User1

User2

Before segmentation process After segmentation process

Male 22 computer scienceUser1 technology ...

Female 25 computer scienceUser2 technology ...

... ...
1w 2w 3w 1w 2w 3w 4w 5w

Fig. 4. The preprocessing of user attributes

For each attribute, we choose a fixed number of words as user information.
For example, we choose 3 words to represent the user’s education and choose 5
for self-introduction. As a result, the attributes of users in Zhihu and Sina are
both extended into 21 dimension. Although this method can’t solve the simi-
larity measurement problem perfectly, in some way it extend user’s information
and somehow establishes some connections among users. Most of all, this sub-
stantially significantly promotes the prediction precision, although it is. After
getting the information that can represent users, we embed this information
using word2vec. We set the word embedding dimension to be 256.

4.3 Comparative Methods and Experiment Setting

In our experiments, we test both CNN and RNN model to find out which is
more suitable to abstract user features. We also conduct experiments to discuss
whether to integrate users’ social links with their attributes, whether to use the
hierarchical network structure, whether and where to add attention mechanism.
For this end, we design different model architectures as comparative methods
and baselines in the following.

– GRU without friends (GRU(NF)). This model just contains a single
layer GRU network followed by a soft-max layer. And the user representation
just contains his/her attributes, which doesn’t integrate the social links. This
representation is denoted as NF for short, and we will not explain it repeatedly
in the following.

– GRU with attention without friends (GRU-ATT(NF)). This model
is used to evaluate the effectiveness of attention in GRU, and it is compared
with GRU(UF). This model use an attention mechanism besides the basic
GRU network.

– CNN without attention (CNN(NF)). This model contains three layers
of convolution network which are followed by two max pooling layers. We use
filters of three convolution layers with fields 1 × 3, 1 × 3 and 1 × 2. Max-
pooling is performed over a 1 × 2 window, with stride 2. Then it is followed
by two layers of fully-connected layer and dropout layer. The final layer is the
soft-max layer.

– CNN with attention (CNN-ATT(NF)). This model is similar to
CNN(NF) but adds an attention layer before the first two max-pooling layers.

814 Z. Kang et al.

– Hierarchical GRU with friends (HGRU). In this model, we use the user
representation integrating attributes and social links. This model is a hierar-
chical neural network, it contains two layers of GRU to cope with attribute-
level and user-level information respectively.

– Hierarchical GRU with single layer attention (HGRU-SATT). It
extends HGRU by adding an attention layer to the first GRU layer which
cope with attribute-level information.

– Hierarchical attention-based GRU network (HAGN). This model con-
tains two layers of GRU network and both of these layers are followed by
attention layer.

– Hierarchical inner attention-based GRU networks (HIAGN). This
model has two GRU layers which are similar with HGRU. The difference is
that the attention layer is added before GRU layers.

For each layer of GRU encoder, the dropout is set to be 0.8. For training, the
mini batch size is set as 100. We use adam as the optimizer and cross entropy
as the loss function. The learning rate is set to be 0.001.

4.4 Result and Analysis

The experimental results of comparative models on two datasets are shown in
Table 1. We use accuracy, precision, recall and F1 score as evaluation metrics.
These results are analyzed in detail in the following.

Comparison Between CNN and GRU Architecture. To concern on the
results of CNN(NF) and CNN-ATT(NF), we can find that the F1 score of CNN
architecture is lower than 50%. In comparison, using the same user representation
with CNN, both GRU(NF) and GRU-ATT(NF) reached about 70% F1-score,
which performed much better. GRU uses gate mechanism to prevent vanishing
gradient problem. It can be trained to keep information from long ago, without
washing it through time. However, CNN is not suitable for capturing sequence
information. It can be greatly affected by user order, representation and users’
relevance.

Evaluation of Attention Mechanism. To compare GRU(NF) with GRU-
ATT(NF), CNN(NF) with CNN-ATT(NF), results show that the attention
mechanism is very useful for both CNN and single-layer GRU. The attention
mechanism promotes the effectiveness of CNN more significantly because it can
pay attention to important attributes which are more relevant to the user occu-
pation. However, we note that the F1-score of HGRU-SATT is close to or even
lower than that of HGRU, which demonstrates that the attention used after the
first GRU layer maybe overwhelmed to select from high-dimensional attributes
including the target user’s attributes and his/her friends’ attributes.

Compared with CNN models and GRU baseline models, both HAGN and
HIAGN show great advances in our task. For Zhihu corpus, HAGN achieve the

Hierarchical Attention Networks for User Profile Inference 815

Table 1. Experimental results of comparative models on Zhihu and Sina corpus

Model Zhihu data Sina data

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

CNN(NF) 73.067 38.384 41.474 39.194 56.840 36.066 22.481 23.368

CNN-ATT(NF) 80.423 55.966 54.469 54.413 70.273 72.162 39.885 46.499

GRU(NF) 90.897 76.412 75.064 75.423 83.150 69.364 68.267 68.585

GRU-ATT(NF) 91.022 77.765 75.884 76.500 86.900 74.696 70.997 72.211

HGRU 92.955 82.888 88.817 84.116 88.523 78.430 79.860 78.666

HGRU-SATT 93.079 85.118 83.837 84.067 88.570 77.756 79.836 78.506

HAGN *95.137 86.955 83.805 85.186 89.356 78.528 79.142 78.562

HAIGN 92.830 86.250 88.993 *86.050 *91.254 84.134 82.433 *83.169

highest accuracy but HIAGN achieve the highest F1 score, which means HIAGN
do well in both positive and negative samples. For Sina corpus, HIAGN achieve
highest score in both accuracy and F1 score. In summary, the inner-attention
which used before the GRU layer performs better than that used after the GRU
layer.

Effectiveness of Using Social Links. In Table 1, the first four methods
doesn’t utilize the ego user’s social links, while the last four regard social links
as important information for user profile inference. Experimental results shows
that hierarchical GRU networks which use social links always performs better
than GRU(NF) and CNN(NF). That is because our hierarchical models have
two advantages: (i) we integrate the social friends’ information in the input user
representation which contributes to portraying the ego user; (ii) the hierarchi-
cal GRU networks not only encode the target user’s attributes but also encode
his/her friends’ attributes. In the experiments, we just randomly select 5 social
links for each ego user, which may be not very close to the ego user or contain
useless information. What’s more, integrating friends’ attributes in an ego user’s
representation may cause confusion for the user’s original information. However,
from the results, it can be seen that HAGN and HAIGN improves the perfor-
mance of HGRU, which demonstrates that the addition of attention after the
second GRU layer make the models pay attention to important users which are
close to the ego user.

5 Conclusion

In this paper, we construct the ego network and feed the network to hierarchi-
cal attention based model. We use a brief method to processing users’ irregular
information. We apply two structures of hierarchical attention network to user
attribute inference. The models are tested on two datasets and both show great
results. For future work, we plan to find an effective method to choose rele-
vant friends that should be added to an ego network. This may contribute to
improving the performance.

816 Z. Kang et al.

Acknowledgement. This work was supported by the National Key Research and
Development program of China (No. 2016YFB0801300), the National Natural Science
Foundation of China grants (No. 61602466, No. 61702234).

References

1. Yo, T., Sasahara, K.: Inference of personal attributes from tweets using machine
learning (2017)

2. Bhattacharya, P., Zafar, M.B., Ganguly, N., Ghosh, S., Gummadi, K.P.: Inferring
user interests in the twitter social network, pp. 357–360 (2014)

3. Xu, N.: Analyzing multimodal public sentiment based on hierarchical semantic
attentional network. In: IEEE International Conference on Intelligence and Secu-
rity Informatics, pp. 152–154 (2017)

4. Vidyalakshmi, B.S., Wong, R.K., Chi, C.H.: User attribute inference in directed
social networks as a service. In: IEEE International Conference on Services Com-
puting, pp. 9–16 (2016)

5. Park, M.-H., Hong, J.-H., Cho, S.-B.: Location-based recommendation system
using bayesian user’s preference model in mobile devices. In: Indulska, J., Ma, J.,
Yang, L.T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 1130–1139.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73549-6 110

6. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical atten-
tion networks for document classification. In: Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 1480–1489 (2017)

7. Wang, B., Liu, K., Zhao, J.: Inner attention based recurrent neural networks for
answer selection. In: Meeting of the Association for Computational Linguistics, pp.
1288–1297 (2016)

8. Chen, K., Wang, J., Chen, L.C., Gao, H., Xu, W., Nevatia, R.: ABC-CNN: an
attention based convolutional neural network for visual question answering. Com-
put. Sci. (2015)

9. Li, X., Cao, Y., Shang, Y., Liu, Y., Tan, J., Guo, L.: Inferring user profiles in online
social networks based on convolutional neural network. In: Li, G., Ge, Y., Zhang,
Z., Jin, Z., Blumenstein, M. (eds.) KSEM 2017. LNCS (LNAI), vol. 10412, pp.
274–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63558-3 23

10. Cao, Y., Wang, S., Li, X., Cao, C., Liu, Y., Tan, J.: Inferring Social Network User’s
Interest Based on Convolutional Neural Network (2017)

11. Chinese Words Segementation Tool. https://pypi.org/project/jieba/

https://doi.org/10.1007/978-3-540-73549-6_110
https://doi.org/10.1007/978-3-319-63558-3_23
https://pypi.org/project/jieba/

A Topological k-Anonymity Model Based
on Collaborative Multi-view Clustering

Sarah Zouinina1,2(B), Nistor Grozavu1, Younès Bennani1,
Abdelouahid Lyhyaoui2, and Nicoleta Rogovschi3

1 Université Paris 13, Sorbonne Paris Cité, LIPN UMR 7030 CNRS, Paris, France
zouinina@lipn.univ-paris13.fr,sarahzouinina1@gmail.com

2 Ecole Nationale des Sciences Appliqués de Tanger, LTI, Tangier, Morocco
3 Université Paris 5, Sorbonne Paris Cité, LIPADE, Paris, France

Abstract. Data anonymization is the process of de-identifying sensitive
data while preserving its format and data type. The masked data can be
a realistic or a random sequence of data, dependent on the technique used
for anonymization. Individual privacy can be at risk if a published data
set is not properly de-identified. The most known approach of anonymiza-
tion is k-anonymity that can be viewed as clustering with a constraint
of k minimum objects in every cluster. In this paper, we propose a new
anonymization approach based on multi-view topological collaborative
clustering. The proposed method has the advantage of detecting the k
level automatically. The aim of collaborative clustering is to reveal the
common structure of data using different views on variables, it allows to
take into account other knowledges without recourse to the data in an
unsupervised learning frame. The proposed approach has been validated
on several data sets, and experimental results have shown very promising
performance.

Keywords: Anonymization · Collaborative clustering · Multi-view

1 Introduction

In recent years, with the increase of data volumes created by the social media
and intensive internet use, the protection of individuals privacy had become a
necessity. Many techniques were introduced to study the risk of identity disclo-
sure and the possibility of data anonymization.

The first approaches were mainly based on the randomization method which
consists of adding noise to data [1], this technique was proven to be inefficient
and many data reconstruction approaches were presented [10]. The risk of data
privacy breach using randomization was overtaken by the emergence of the k -
anonymization [17] technique. This group based anonymization method out-
puts a dataset containing at least k identical records and the anonymization is
achieved by firstly removing the key-identifiers like the name and the address
and secondly by generalizing and/or suppressing the pseudo-identifiers which
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 817–827, 2018.
https://doi.org/10.1007/978-3-030-01424-7_79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_79&domain=pdf

818 S. Zouinina et al.

are for example: the date of birth, the ZIP code, the gender and the age. The
k value should be chosen in a way to preserve the information provided by the
database.

The efficiency of this approach was widely studied [2,12,15] and it gave a
strong basis to further works on anonymization. Since the k -anonymity is a
group based method, clustering was considered as one of its strong assets. Cre-
ating small groups of k elements and replacing the data by the group represen-
tatives gives a good tradeoff between the information loss and the potential data
identification risk [3].

In this paper, we are interested in the unsupervised learning and we will use
Kohonen’s Self Organizing Maps [11] as a clustering model. This neural net-
work has given rise to numerous practical applications in order to visualize and
perform the dimension reduction. At the end of this topological learning, the
“similar” data will be collected in clusters, which correspond to the sets of sim-
ilar patterns. These clusters can be represented by a more concise information,
such as their gravity center or different statistical moments. As expected, this
information is easier to manipulate than the original data points.

To improve the clustering quality we build a collaborative model combin-
ing the results of the SOMs already created. The Collaborative Clustering [16]
enables the models to exchange their key indicators with the purpose of making
their clustering more performant [8,16].

The approach proposed in this paper is split into three major steps, the first
is the collaboration step where we apply the collaborative muliview algorithm.
The second is the pre-anonymization step which consists of coding the data set
using the BMUs and the third step is the fine-tuning and anonymization step,
where the information coded and reconstructed is learned through a global SOM,
recoded using the BMUs and evaluated using accuracy.

The rest of this paper is organized as follows: we present the principle of the
anonymization and collaborative clustering models in Sect. 2 and the proposed
anonymization method with discussion of the results in Sect. 3.

2 Related Works

2.1 Clustering and Anonymization

Anonymizing tabular data is not an automatic process, and it is very problem
specific. The k -anonymity model, for example, assumes that person-specific data
are stored in a table of attributes and records. To anonymize a dataset, a tech-
nique that consists of suppressing or/and generalizing the quasi-identifiers was
proposed in a way for each record to have at least (k–1) similar records. As an
example, people in the United States are identified by a set of attributes such
as ZIP, gender, date of birth. Each attribute alone is not significant, but the
combination of them all may explicit a particular individual that is why they
are called quasi-identifiers. The goal of the k-anonymity model is to transform a
table so that associations of elements become improbable, without compromising
the quality of the information enclosed in the dataset.

A Topological k-Anonymity Model 819

The first algorithm that combines clustering and anonymization was intro-
duced by Li et al. [13]. The algorithm measures the data distortion caused by
generalization using a weighted hierarchical distance calculated following the
domain generalization hierarchies. The algorithm forms equivalence classes from
the database by finding an equivalence class with record’s size smaller than k. It
measures the distance between the found equivalence class and the other equiv-
alence classes and fuses it with the nearest equivalence class in order to form a
cluster of at least k element with minimal information distortion. This method
gives good computational results but its very time consuming.

The second algorithm was detailed in [3], it forms intersimilar clusters of at
least k records. The value of k is fixed, looks for the record and the cluster with
the minimal information loss, adds the record to the cluster and iterates until
getting clusters with at least k members. Another approach is the Clustering
based greedy algorithm. Introduced by Loukides et al. [14], it focuses on capturing
the usefulness of the data taking in account the attribute, the tuples diversity
and a clustering algorithm. This algorithm is similar to the previous k-member
clustering algorithms [3] but with the constraint of maximizing the dissimilarity
of sensitive data values (privacy) and minimizing the similarity of the quasi-
identifiers (usefulness).

Our approach consists of anonymizing tabular data using multi-view topo-
logical collaborative clustering [7], to do so, we start by choosing the number of
views to use then, we randomly subset the dataset vertically and we feed each
subset to a SOM to get the codebooks. After getting the first results we increase
the quality of the coding by making the SOMs collaborate between each other.
We code the output data using the codeword parts of each element provided by
each map, we reconstruct the dataset and we add a fine-tuning layer using a
global SOM clustering and we recode the data once again. Lastly we proceed by
evaluating the level of k anonymization and the accuracy of each coded data set
to quantify its utility to further analyses.

2.2 Multi-view Topological Collaborative Clustering

Topological learning aims to develop methods grounded on statistics to recover the
topological invariants from the observed data points [4]. The models we are inter-
ested in are those that both, reduce dimension and achieve clustering. Since SOM
models [11] allow projection in small spaces that are generally two dimensional
and they are often used for visualization and unsupervised topological clustering.
In order to improve the SOM’s clustering quality, we use the topological collabo-
ration approach and we study the collaboration between several clustering results,
specifically the collaboration between several self-organizing maps outputs. Each
dataset is clustered through the SOM approach, and to simplify the formalism,
the maps build from various datasets will have the same dimensions (number of
neurons) and the same structure (the structural topology).

The main idea of the used collaborations is that if an observation from the
ii-th dataset is projected on the j-th neuron in the ii - SOM map, then that
same observation in the jj-th dataset will be projected on the same j neuron of

820 S. Zouinina et al.

the jj-th map or one of its neighboring neurons. In other words, neurons that
correspond to different maps should capture the same observations. Therefore we
added to the classical SOM objective function an additional term reflecting the
principle of collaboration. Based on the works of [8,9], we add a new collaboration
step to estimate the importance of the collaboration, during the collaborative
learning process. Formally, the objective function is composed of two terms:

R[ii] (χ,w) = R
[ii]
SOM (χ,w) + (λ[jj]

[ii])
2R

[ii]
Col (χ,w) (1)

with

R
[ii]
SOM (χ,w) =

N∑

i=1

|w|∑

j=1

K
[ii]
σ(j,χ(xi))

‖x
[ii]
i − w

[ii]
j ‖2 (2)

R
[ii]
Col (χ,w) =

P∑

jj=1,jj �=ii

N∑

i=1

|w|∑

j=1

(
K

[ii]
σ(j,χ(xi))

− K
[jj]
σ(j,χ(xi))

)2

∗ Dij (3)

with Dij = ‖x
[ii]
i − w

[ii]
j ‖2 (4)

where P represents the number of views, N - the number of observations, |w|
is the number of prototype vectors from the ii SOM (the number of neurons).
χ (xi) is the assignment function which allows to find the Best Matching Unit
(BMU), it selects the neuron with the closest prototype from the data xi using
the Euclidean distance.

The value of the collaboration link λ is determined during the first phase of
the collaboration step. This parameter allows to determine the importance of
the collaboration between each two SOMs. Its value is in the interval [1–10], 1 -
for the neutral link, when no importance to collaboration is given, and 10 for the
maximal collaboration within a map. Its value changes for each iteration during
the collaboration step. In the case of the collaborative learning, as it is shown
in the Algorithm 1, this value depends on topological similarity between both
collaboration maps.

This function depends on the distance between two neurons and is defined
as follows:

K
[cc]
σ(i,j) = exp

(
−σ2 (i, j)

T 2

)
(5)

σ(i, j) represents the distance between two neurons i and j from the map, and
it is defined as the length of the shortest path linking cells i and j on the SOM.
K

[cc]
σ(i,j) is the neighborhood function on the SOM [cc] between two cells i and

j. T is the temperature which allows to control the size of the neighborhood
influence of a cell on the map, it decreases with the T parameter. The value of
T can be decreased between two values Tmax and Tmin.

The nature of the neighborhood function K
[cc]
σ(i,j) is identical for all the maps,

but its value changes from one map to another: it depends on the closest proto-
type to the observation that is not necessarily the same for all the SOM maps.

A Topological k-Anonymity Model 821

822 S. Zouinina et al.

3 Proposed Anonymization Model

3.1 Experimental Protocol

The proposed anonymization method uses the multi-view approach with the pur-
pose of treating complex data and multisources data. This technique is also used
to preserve the quality of the dataset to recode and prevent the dimensionality
curse. The number of subsets to be used for collaboration is fixed by the user
and it depends on the size of the data. The algorithm 1 use classical SOM and
collaborative paradigm to form the maps by exchanging the topological infor-
mation between the collaborated maps. In the pre-anonymization step shown
in algorithm 2, the dataset is coded using the prototypes of the best matching
units for each data point. At the end of this step, the output is a pre-anonymized
dataset that will be fine-tuned using a SOM model where the map size is deter-
mined by the Kohonen heuristic [11]. The resulting dataset is recoded using the
prototypes of the closest object to the BMU and we examine the anonymity level
of the dataset. In the proposed experiences we use a simple decision tree model
to classify the original data and the coded data and we compare the accuracy
results.

Algorithm 2: The proposed Anonymization approach.
Input : D dataset to anonymize

P number of views V [ii]
Output: Anonymized dataset

k anonymity level
Collaboration step:
Randomly generate P views V [ii]
Use the collaboration algorithm presented in Algorithm 1 with all V [ii]
Pre-Anonymization:
For each V [ii], ii = 1 to P :
Find the BMU (Best Matching Unit) for each object in V [ii] using corresponding
w[ii]
Code the dataset D using all code V [ii], output result in D′

Fine-tuning and anonymization:
Build a global SOM using the pre-anonymized dataset D′

Find the BMU for each object in D′

Recode the dataset, output results in D′′ and evaluate the k-anonymity level of
D′′

3.2 Data Sets

The approach presented earlier was tested on five real world datasets available
for public use in the UCI Machine learning repository [6]. The DrivFace data set
(606× 6400) is an image sequence of subjects while driving in real scenarios, it
was acquired over different days from 4 drivers (2 women and 2 men) with several
features. Ecoli data (336× 8) contains protein localization sites. The third data

A Topological k-Anonymity Model 823

set is the Glass data set, containing 214 instances and 10 attributes with the aim
of determining the types of glass based on their oxide content. The fourth data
set which is Waveform (5000× 40) describes 3 types of waves with an added
noise. The fifth data set is the Wine data that relates to a chemical analysis
of wines grown in the same region in Italy but derived from different cultivars.
The last experiences were made on Yeast data (1484 × 8) which is also a protein
data.

3.3 Experimental Results

For each dataset we experience the performance of the method by varying the
number of views, the maps sizes and the collaboration method. We then test
the utility of the anonymized data by learning it by a decision tree model using
10 fold cross validation. We compared the accuracy of the original data with
the anonymized one and computed a 95% confidence interval. All these results
are represented in Table 1. In most of the cases, we remark that the accuracy of
the classification model is getting higher or do not change drastically after the
collaboration (it strongly depends on the relevance of the collaborative map).
The same analysis can be made for the DB index which decreases after the
collaboration using a relevant map.

Table 1. Accuracy and confidence interval before and after collaboration with k
anonymity level before fine-tuning.

DrivFace Ecoli Glass

Acc-Init-without-anonym 92.24 82.44 69.63

95% confidence interval [89.86, 94.62] [77.84, 87.04] [61.76, 77.50]

Acc-Before-Collab 92.24 79.46 95.79

95% confidence interval [90.77, 93.71] [75.14, 83.78] [93.15, 98.43]

Acc-After-Collab 91.24 82.14 96.26

95% confidence interval [89.29 , 93.19] [81.40, 87.64] [93.60, 98.92]

Waveform Wine Yeast

Acc-Init-without-anonym 76.88 88.76 83.63

95% confidence interval [75.89, 77.87] [84.72, 92.80] [81.66, 85.60]

Acc-Before-Collab 81.98 89.89 86.05

95% confidence interval [80.37, 83.59] [85.88, 93.90] [85.23, 86.87]

Acc-After-Collab 81.94 88.76 84.30

95% confidence interval [80.67, 83.21] [85.37, 92.15] [82.91, 85.69]

824 S. Zouinina et al.

Before the fine-tuning, the k-anonymity level was equal to 1 and after adding
the last layer of anonymization, the accuracy slightly decreased but we gained
in terms of anonymization. The Fig. 1, is a representation of the results of the
accuracy at each step of the process.

Fig. 1. Comparison of accuracy results before/after collaboration in the pre-
anonymization step and accuracy after the last anonymization step

Table 2. DB index before and after collaboration.

DrivFace Ecoli Glass Waveform Wine Yeast

DB-Before-Collab 7.94 4.23 5.16 5.35 18.74 3.97

DB-After-Collab 7.56 4.16 3.70 5.28 16.71 3.94

K-Anonymity-Level 1 1 1 1 1 1

We choose the Davies Bouldin index [5] as an internal index between two
clusters, we seek clusterings that minimize the DB, and thus have minimum
possible similarity with the clusters. The Table 2 shows that the DB index after
collaboration decreases, so, the collaboration impacts the quality of the clustering
positively.

The Table 3 shows an amelioration of the anonymization process. Indeed,
there is a slight decrease in performance (Accuracy), but a clear improvement
in the quality of anonymization. The value of k is no longer a constant equal
to 1 but variable according to the datasets and this change guarantees a better
quality of data anonymization.

Figure 2 shows a PCA of the Ecoli, Waveform and Yeast data sets before
and after anonymization. The goal of these projections is to illustrate how
the method of anonymization proposed doesn’t change the topological struc-
ture of the dataset. The number of points represented after the anonymization
look fewer than the number of points presented before the anonymization, this
appearance comes from the fact that each point is presented k times, in other

A Topological k-Anonymity Model 825

Table 3. Accuracy, confidence interval and k-anonymity level after Fine tuning.

DrivFace Ecoli Glass

Acc-Init (without anonymization) 92.24 82.44 69.63

95% confidence interval [89.86, 94.62] [77.84, 87.04] [61.76, 77.50]

Acc-After-Fine-Tuning 90.26 84.52 94.39

95% confidence interval [87.43, 93.09] [81.4, 87.64] [91.27, 97.51]

K-Anonymity-Level 10 2 5

Waveform Wine Yeast

Acc-Init (without anonymization) 76.88 88.76 83.63

95% confidence interval [75.89, 77.87] [84.72, 92.80] [81.66, 85.60]

Acc-After-Fine-Tuning 83.00 69.66 86.25

95% confidence interval [82.36, 83.64] [65.48, 73.84] [85.02, 87.84]

K-Anonymity-Level 4 3 3

Fig. 2. PCA on data sets from top to bottom before and after anonymization (from
left to right representations of Ecoli, Waveform and Yeast data sets).

words, after anonymization, the points projected are k times superposed. Also,
in Fig. 2, classes are well defined and the regions are respected before and after
anonymization.

4 Conclusion

In this paper we presented a new anonymization approach based on multi-
view topological collaborative clustering. The algorithm proposed de-identifies
a dataset using multi-view topological collaborative clustering with the purpose

826 S. Zouinina et al.

of treating complex and multisources data. This technique is also used to pre-
serve the quality of the dataset to recode and prevent the dimensionality curse.
In contrast to the k-anonymization models based on clustering, the proposed
method has the advantage of detecting the k level automatically, the k value is
determined from the size of the elements clustered in the same neuron. Also,
it gives good results even with high dimensional datasets. We illustrated the
power of this technique using five real datasets and the obtained coded datasets
give a good tradeoff between the anonymization level and the accuracy results.
As a future work, the collaboration with different datasets can be performed in
order to increase the quality of the anonymized dataset by minimizing the loss
of information.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: ACM Sigmod Record,
vol. 29, pp. 439–450. ACM (2000)

2. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In:
Proceedings of the 21st International Conference on Data Engineering. ICDE 2005,
pp. 217–228. IEEE (2005)

3. Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient k -anonymization using clus-
tering techniques. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat,
E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71703-4 18

4. Cornuéjols, A., Wemmert, C., Gançarski, P., Bennani, Y.: Collaborative clustering:
why, when, what and how. Inf. Fusion 39, 81–95 (2018). https://doi.org/10.1016/
j.inffus.2017.04.008

5. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI 1(2), 224–227 (1979). https://doi.org/10.1109/TPAMI.
1979.4766909

6. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

7. Ghassany, M., Grozavu, N., Bennani, Y.: Collaborative multi-view clustering. In:
The 2013 International Joint Conference on Neural Networks, IJCNN 2013, Dal-
las, TX, USA, August 4–9, 2013, pp. 1–8. IEEE (2013). https://doi.org/10.1109/
IJCNN.2013.6707037

8. Grozavu, N., Bennani, Y.: Topological Collaborative Clustering. In: 17th Inter-
national Conference on Neural Information Processing, LNCS. ICONIP 2010.
Springer (2010)

9. Grozavu, N., Ghassany, M., Bennani, Y.: Learning confidence exchange in collab-
orative clustering. In: IJCNN. pp. 872–879 (2011)

10. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data.
In: Proceedings of the 2005 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 37–48. ACM (2005)

11. Kohonen, T.: Self-organizing Maps. Springer-Verlag, Berlin (1995). https://doi.
org/10.1007/978-3-642-97610-0

12. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-
anonymity. In: Proceedings of the 22nd International Conference on Data Engi-
neering. ICDE 2006, pp. 25–25. IEEE (2006)

https://doi.org/10.1007/978-3-540-71703-4_18
https://doi.org/10.1016/j.inffus.2017.04.008
https://doi.org/10.1016/j.inffus.2017.04.008
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/IJCNN.2013.6707037
https://doi.org/10.1109/IJCNN.2013.6707037
https://doi.org/10.1007/978-3-642-97610-0
https://doi.org/10.1007/978-3-642-97610-0

A Topological k-Anonymity Model 827

13. Li, J., Wong, R.C.-W., Fu, A.W.-C., Pei, J.: Achieving k -anonymity by clustering in
attribute hierarchical structures. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006.
LNCS, vol. 4081, pp. 405–416. Springer, Heidelberg (2006). https://doi.org/10.
1007/11823728 39

14. Loukides, G., Shao, J.: Capturing data usefulness and privacy protection in k-
anonymisation. In: Proceedings of the 2007 ACM Symposium on Applied Com-
puting, pp. 370–374. ACM (2007)

15. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
Privacy beyond k-anonymity 1(1), 3. http://dl.acm.org/citation.cfm?id=1217302

16. Pedrycz, W.: Collaborative fuzzy clustering. Pattern Recognit. Lett. 23(14), 1675–
1686 (2002)

17. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 571–588 (2002)

https://doi.org/10.1007/11823728_39
https://doi.org/10.1007/11823728_39
http://dl.acm.org/citation.cfm?id=1217302

A Credibility-Based Analysis of Information
Diffusion in Social Networks

Sabina-Adriana Floria1, Florin Leon1(&), and Doina Logofătu2

1 Department of Computer Science and Engineering, “Gheorghe Asachi”
Technical University of Iaşi, Iaşi, Romania

{sabina.floria,florin.leon}@tuiasi.ro
2 Faculty of Computer Science and Engineering,

Frankfurt University of Applied Sciences, Frankfurt, Germany
logofatu@fb2.fra-uas.de

Abstract. Social networks have many advantages and they are very popular.
The number of people having at least one account on a certain social network
has grown considerably. Social networks allow people to connect and interact
more easily with one another, leading to a much easier way to obtain infor-
mation. However one major disadvantage of social networks is that some
information may be untrue. In this paper we propose a protocol in which the
network becomes more immune to the diffusion of false information. Our
approach is based on evidence theory with Dempster-Shafer and Yager’s rule
which plays an important role in an individual’s decision whether to send further
the received information or not. We also took into consideration the confidence
degree of the neighbours regarding the information which is spread by a specific
source node. Furthermore, we propose a simulation algorithm that allows us to
observe the diffusion of two contradictory information spread by two different
source nodes. The experimental results show that the true information spreads
more easily if the ground truth is sometimes revealed, even rarely.

Keywords: Information credibility � Information diffusion � Social networks
Confidence degree

1 Introduction

In recent years, social networks have had a quick development and an increase in their
diversity, so people can connect and interact with other users in a very easy way.
A social network is an efficient way of spreading news and facts, but it also has the
disadvantage that some information may be untrue. In this paper we propose a protocol
that makes the network more immune to the diffusion of false information based on
evidence theory with Dempster-Shafer and Yager’s rule. Evidence theory can be
considered an extension of the classical probability model because the single value that
represents a probability is replaced by confidence intervals.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 828–838, 2018.
https://doi.org/10.1007/978-3-030-01424-7_80

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_80&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_80&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01424-7_80&domain=pdf
https://doi.org/10.1007/978-3-030-01424-7_80

1.1 Dempster-Shafer Theory

When we relate to some information, there may be different evidence to support it in
different and possibly contradictory degrees. A first way to combine evidence from
different sources was developed by Dempster and Shafer [1]. Beliefs from different
sources are represented by an interval in which the lower bound is called Belief (de-
noted Bel) and the upper bound is called Plausibility (denoted Pl). For a piece of
information A, the plausibility is determined as follows:

PlðAÞ ¼ 1� BelðAÞ ð1Þ

The values for A and not A (A) are computed independently. Both A and A have a
degree of support between 0 and 1, where 0 means that there is no support and 1 means
that there is total support. If we do not have evidence for either A or A, the confidence
interval is [0, 1].

Let h be the set of all mutually exclusive hypotheses, also called the frame of
discernment. In this case h ¼ fA; Ag, i.e. the information is either true or false.

Let m be a function called the mass function, m : }ðhÞ ! ½0; 1�, where }ðhÞ is the
powerset of h. The values of m(A) are called basic belief masses (BBM). By applying
the properties of the Dempster-Shafer theory, we will always have:

mð/Þ ¼ 0 ð2Þ
X

A2PðhÞ
mðAÞ ¼ 1 ð3Þ

The Dempster-Shafer fundamental equation for combining two pieces of evidence
of m1 and m2 into a new one m3 is:

m3ðZÞ ¼
P

X \ Y¼Zm1ðXÞ � m2ðYÞ
1�P

X \ Y¼£m1ðXÞ � m2ðYÞ ð4Þ

1.2 Yager’s Rule

Unlike Dempster-Shafer rule, mðhÞ� 0. Yager’s rule [2] does not normalize the con-
flict, instead it adds it to the h set. The following relations are used in order to combine
two pieces of evidence:

m3ðZÞ ¼
X

X \Y¼Z 6¼£

m1ðXÞ � m2ðYÞ ð5Þ

m3ðhÞ ¼ m1ðhÞ � m2ðhÞþ
X

X \ Y¼£

m1ðXÞ � m2ðZÞ ð6Þ

A Credibility-Based Analysis of Information Diffusion 829

When more pieces of evidence are combined, Yager’s rule is:

mnþ 1ðZÞ ¼
X

m1ðX1Þ � . . .mnðXnÞ ð7Þ

2 Related Work

In [3], the authors present a sophisticated Knowledge-Based Trust (KBT) method to
evaluate the trustworthiness of web pages with regard to the information they provide.
The first step is to parse data to obtain a certain format: (subject, predicate, object). This
knowledge triplet is provided by various extractors (i.e. methods for information
extraction from web pages). However, this extracted data using the extractors may be
erroneous, but also the information published on the web pages may be untrue. KBT is
a multi-level probabilistic model that can distinguish between these main sources of
error: incorrect data on a web page and incorrect extractions made by the extractor.

A model that evaluates the content of posts posted on a social network, as well as
the interest in a post to determine the credibility of the person which distributed the
news is proposed in [4].

In [5], Dempster-Shafer theory of combined evidence is used to identify the insider
attacker from a wireless sensor network (WSN) by observing the parameters of the
neighbour nodes. To identify the insider attacker the authors took into account the
observations of the neighbour nodes regarding to the behaviour of the suspected
attacker. Data from neighbours is considered evidence. They combined these inde-
pendent pieces of evidence and made a decision based on the Dempster-Shafer theory.

The authors of [6] describe a way to solve the problem of identifying the credible
sources of relevant information in social networks. In order to evaluate the sources of
relevant and credible information in social networks, their approach combines the
analysis of the link structure of social networks with topic content models of messages.
They have developed a method to automatically identify and categorize users based on
relevance and knowledge in a particular domain for any given subject.

There are also several approaches to analyze the credibility of information diffusion
in social networks. For example, in [7] an algorithm to detect the spreading of false
information through the network is presented. It uses the collaborative filtering property
of social networks to measure the credibility of sources of information as well as
quality of news items. Two aspects regarding to the diffusion of misinformation in
social networks are presented in [8]. These problems identify the misinformation
sources and limit its diffusion in the network. Paper [9] analyzes the credibility of
information in tweets corresponding to fourteen high impact news events of 2011
around the globe. To predict the credibility of information in a tweet, they used
regression analysis to identify the most relevant features on the Twitter social network
that can help in assessing the credibility of messages. The top relevant features found
are content based (unique characters, swear words, pronouns, emoticons) and user-
based features (number of followers, length of username). The CredRank algorithm is
proposed in [10] to measure the credibility of social media users based on their online
behaviour by finding those users with similar behaviour and clustering them.

830 S.-A. Floria et al.

The factors that influence individuals’ perceived information credibility are studied in
[11]. Five factors are identified as the most relevant to assess online information:
medium dependency, interactivity, medium transparency, argument strength and
information quality. A learning method, Information Credibility Evaluation (ICE), to
learn representations of information credibility is proposed in [12], where the learning
is based on the user credibility, behaviour types, temporal properties, and comment
attitudes. Other machine learning or simulation models could be used as well [13–15].

3 Model Description

In this paper we analyze the spreading of information starting simultaneously with two
source nodes, but we consider that these nodes will spread two different information.
Let I be one of the two pieces of information, and we consider that it is true. Let I be
the second piece of information that is transmitted by the other source node and which
is considered to be false. Because the pieces of information are contradictory, we
design a probabilistic decision mechanism based on Dempster-Shafer and Yager’s rule
for information diffusion and we compute a confidence degree which is held by a node
for each of its neighbours. The observation of the two information types flow through
the network according to various factors: the credibility of the two messages, the initial
confidence degree of the nodes held by their neighbours, the number of simulation
rounds where we establish which of the two pieces of information is true. Conse-
quently, we develop a mechanism to suppress the transmission of the false information.

3.1 The Information Diffusion Protocol

The protocol of information diffusion is a cascaded one. We initialize a queue with the
two source nodes and update it as follows:

• After a node has transmitted, it is removed from the queue;
• If a node receives a piece of information, it is added to the queue if it is not already

contained;
• A node can be re-added to the queue for retransmission if it has received a piece of

information that is different from the one which it has previously sent.

The information diffusion process stops when the queue no longer contains any
nodes. We will define a round as the action of information diffusion starting with the
moment in which the queue is initialized with the two source nodes until the queue
becomes empty. We will refer to a simulation as the execution of a certain number of
rounds. When a round is completed, the queue is reinitialized with the two source nodes,
but the nodes of the network retain the statistical data: the information type (I or I) and
the number of each of these received information from neighbours.

Regarding the transmission probability of the node, we use Dempster-Shafer or
Yager’s rule together with a Gaussian distribution. When a node sends a type of
information, the receiver node retains the fact that its neighbour has sent that specific
information as well as its confidence degree. From the point of view of the receiver
node, the received confidence degree is taken as a piece of evidence, namely belief.

A Credibility-Based Analysis of Information Diffusion 831

In our model we have no plausibility evidence, so it will have the default value of 1. In
order to keep a statistic for the received information type, some specific counters are
incremented.

The beliefs accumulated by a node which must send are transformed into confi-
dence intervals, where only the plausibility is set by default with value 1. Then, we use
Dempster-Shafer or Yager’s rule to combine the intervals, but only if the node contains
two such intervals and the information type is different. If the node contains only one
interval, then the combining procedure is ignored.

Once two confidence intervals have been combined, we obtain two more different
confidence intervals. At this point we distinguish a few cases in our chosen proba-
bilistic transmission protocol, depending on the newly computed beliefs and plausi-
bilities, as follows:

• If both intervals are equal, the node will transmit the information with the higher
generated number based on the Gaussian distribution and this number shall be also
higher than the send threshold of value 0.5:

• If both the lower and the upper bounds are higher than the other interval limits, the
information that has the interval with the larger limits will always be transmitted:

• If the absolute difference of the means from the two interval limits is less or equal to
a chosen value e = 0.05, both intervals have the chance to further send the infor-
mation. This case is only considered if the above cases are not satisfied:

For all the above cases, we have chosen the Gaussian distribution to have the
variance r = 0.025.

3.2 Computing Confidence Degrees

A node contains a list of confidence degrees, one for each neighbour. Thus, each node
has its own point of view towards a neighbour. For example, the confidence degree of
node 3 towards node 1 may be different from the confidence degree of node 3 towards
node 2. This approach fits well with the real behaviour because each individual has

832 S.-A. Floria et al.

his/her own point of view and it is not totally influenced by the opinion of others on the
same common friend.

We quantify this confidence degree as a real number in the range of [0, 1]. The
higher it is, the higher chance for the receiver node to get information from its
transmitting neighbour, to whom this confidence degree is attached. In the first phase of
the information diffusion through the network, when it is not yet known which of the
two information is true, we consider the confidence degree in all node lists to be
initialized with 0.9. At the moment that the round number has reached to the estab-
lished one, to which the true and false information is specified, the confidence degree in
the node lists will be recomputed using the Laplace correction [16].

After the execution of all rounds until the true information is established, each node
also stores statistics with the received information type from neighbours as well as their
total number.

For the computation of the confidence degrees of each node, the order in which
they are processed is relevant. For this reason, before the main simulation, we establish
the node transmission order considering the simple case in which the diffusion is
permanently possible for all nodes. Thus, we establish a queue in which the nodes are
introduced as they transmit information. This queue is initialized with the two source
nodes and it will be updated until there are no longer transmitting nodes. We expect the
queue to contain all the nodes of the network and we chose to determine it separately,
before the start of the main simulation. In this way, we avoid the case in which it is
possible that some nodes do not transmit or receive information, thus leading to an
incomplete queue.

Once the confidence degree of the nodes has been computed, we let the simulation
run further in order to observe how this impacts the information diffusion process.

The simulation algorithm contains three main phases:

• The execution of k rounds with the initial confidence degrees;
• The computation of confidence degrees after k rounds (i.e. when the ground truth

about the information is revealed);
• The execution of j rounds with the new confidence degrees to observe the effect of

the truth recently found.

4 Simulation Results

To illustrate how the networks become more immune to the diffusion of the false
information, we choose three networks with different sizes and topologies. In the
studied networks we have chosen two source nodes that contain contradictory types of
information. The first network has a very simple topology: 9 chained nodes in which
the sources are the two end nodes of the chain. We have chosen this network not only
for the initial verification of the protocol, but also to test the collision point of the
information, which is easily identified as the mid-chain node. The second network
consists of 5 nodes with a random topology. In this case, the small size of the network
allows us an easier observation of the computed confidence degrees taking into account

A Credibility-Based Analysis of Information Diffusion 833

the topology of the source nodes. The last network consists of 100 nodes with a scale
free topology and we chose the source nodes to be as marginal as possible.

The two selected sources are marked with two different colours: green (S1) and red
(S2). The initial number of rounds chosen for the diffusion of the two information types
through the network is 1000. Source S1 transmits the information I and source S2
transmits the information I. The initial confidence degree of the neighbours is 0.9.

For the visual illustration of the information diffusion we colour the nodes with
different gray intensity levels, where the white colour means the node has received only
the type I information and black colour only I. Let X be the total number of the received
type I information and Y the total number of the received type I information. We
applied the following equation to obtain the gray level intensity for a particular node:

G ¼ X
Xþ Y

�M ð8Þ

The fraction is the normalized quantity of type I information received by a node (in
the range of [0, 1]), and M is the maximum allowed value of the pixel colour repre-
sentation. In our case M = 255.

After we obtain the confidence intervals based on Dempster-Shafer or Yager’s rule,
this information can be transmitted with a probability higher than the transmission
threshold of 0.5. Figure 1 shows the initial information diffusion through all the three
networks.

Fig. 1. The initial diffusion of the two information types through the all three networks

834 S.-A. Floria et al.

After the first 1000 rounds, we establish which of the transmitted information is
true. In our simulations, we chose the information I to be true. In Fig. 2 it can easily be
noticed that the confidence degree of the nodes for this information has increased and it
has been more easily spread through the network, i.e. the greyscale level of the nodes
containing false information has decreased in intensity.

By choosing a higher transmission threshold for the 100-node network of 0.55, it
can be seen in Fig. 3 that when the two information types collide, the diffusion of one
of them is totally or partially inhibited around the collision nodes. We colour the nodes
with orange in case the diffusion of both information types is totally inhibited (Fig. 3a).
Once the ground truth is revealed, i.e. the true information has been established, there
are no longer nodes with totally inhibited diffusion (Fig. 3b).

From a graphical point of view, we cannot see any difference between the usage of
Dempster-Shafer and Yager’s rule, but we can see the small numerical differences in
computing the confidence degree of neighbours. Table 1 shows these differences for
the network with 5 nodes.

These results confirm that those neighbours containing mainly the true information,
spread by the source with information I (i.e., the green node), have higher confidence
degrees.

Fig. 2. The diffusion of the two information types after establishing the ground truth

A Credibility-Based Analysis of Information Diffusion 835

5 Conclusions

In this paper we analyzed a model of information diffusion in social networks based on
evidence theory in order to explicitly take into account the credibility of information
sources, but also that of regular nodes in the network. By updating the credibility
levels, it is possible to block the spread of false information, in time, provided that the
ground truth, i.e. whether a piece of information is true or false, is sometimes, even
rarely, revealed, after the actual transmission of that information. Once the credibility
of a source node is lowered, this creates a phenomenon similar to a positive feedback
that begins to gradually block that source, but also the paths used by that source to
transmit information.

Fig. 3. The information diffusion through the network with a transmission threshold of 0.55:
(a) initial diffusion, (b) diffusion after establishing the ground truth

Table 1. Numerical results

Nodes Confidence degree of neighbour (CD)
Dempster- Shafer rule Yager’s rule

N2 CD(S1): 0.99900
CD(N3): 0.77203
CD(N4): 0.69369

CD(S1): 0.99900
CD(N3): 0.76390
CD(N4): 0.68442

N3 CD(S1): 0.77619
CD(N2): 0.79346
CD(N4): 0.75520
CD(S2): 0.64733

CD(S1): 0.76921
CD(N2): 0.78915
CD(N4): 0.75000
CD(S2): 0. 64364

N4 CD(N2): 0.68056
CD(N3): 0.66500
CD(S2): 0.60105

CD(N2): 0. 67802
CD(N3): 0. 66106
CD(S2): 0. 59787

836 S.-A. Floria et al.

A future direction of investigation is to validate the information diffusion methods
by studying sociological and psychological research about how real users react when
exposed to contradictory information.

References

1. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

2. Yager, R.: On the Dempster-Shafer framework and new combination rules. Inf. Sci. 41, 93–
137 (1987)

3. Dong, X.L., et al.: Knowledge-based trust: estimating the trustworthiness of web sources. In:
Li, C., Markl, V. (eds.) Proceedings of the VLDB Endowment, vol. 8, pp. 938–949. VLDB
Endowment (2015)

4. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G., Previti, M.: Post sharing-based
credibility network for social network. In: Ivanović, M., Bădică, C., Dix, J., Jovanović, Z.,
Malgeri, M., Savić, M. (eds.) IDC 2017. SCI, vol. 737, pp. 149–158. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-66379-1_14

5. Ahmed, M., Huang, X., Sharma, D.: Dempster-Shafer theory to identify insider attacker in
wireless sensor network. In: Park, J.J., Zomaya, A., Yeo, S.-S., Sahni, S. (eds.) NPC 2012.
LNCS, vol. 7513, pp. 94–100. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-35606-3_11

6. Canini, K.R., Suh, B., Pirolli, P.L.: Finding credible information sources in social networks
based on content and social structure. In: 2011 IEEE Third International Conference on
Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social
Computing, Boston, vol. 1, pp. 1–8 (2011)

7. Kumar, K.P.K., Geethakumari, G.: Detecting misinformation in online social networks using
cognitive psychology. Hum. Centric Comput. Inf. Sci. (2014). 13673

8. Amoruso, M., Anello, D., Auletta, V., Ferraioli, D.: Contrasting the spread of misinfor-
mation in online social networks. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems AAMAS 2017, pp. 1323–1331. International Foundation
for Autonomous Agents and Multiagent Systems Richland, São Paulo (2017)

9. Gupta, A., Kumaraguru, P.: Credibility ranking of tweets during high impact events. In:
Proceedings of the 1st Workshop on Privacy and Security in Online Social Media, PSOSM
2012. ACM New York, Lyon (2012)

10. Abbasi, M.-A., Liu, H.: Measuring user credibility in social media. In: Greenberg, A.M.,
Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 441–448. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37210-0_48

11. Li, R., Suh, A.: Factors influencing information credibility on social media platforms:
evidence from Facebook pages. Procedia Comput. Sci. 72, 314–328 (2015)

12. Liu, Q., Wu, S., Yu, F., Wang, L., Tan, T.: ICE: information credibility evaluation on social
media via representation learning. arXiv preprint (2016). https://arxiv.org/pdf/1609.09226.
pdf

13. Muharemi, F., Logofătu, D., Andersson, C., Leon, F.: Approaches to building a detection
model for water quality: a case study. In: Sieminski, A., Kozierkiewicz, A., Nunez, M., Ha,
Q.T. (eds.) Modern Approaches for Intelligent Information and Database Systems. SCI, vol.
769, pp. 173–183. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76081-0_15

A Credibility-Based Analysis of Information Diffusion 837

http://dx.doi.org/10.1007/978-3-319-66379-1_14
http://dx.doi.org/10.1007/978-3-642-35606-3_11
http://dx.doi.org/10.1007/978-3-642-35606-3_11
http://dx.doi.org/10.1007/978-3-642-37210-0_48
https://arxiv.org/pdf/1609.09226.pdf
https://arxiv.org/pdf/1609.09226.pdf
http://dx.doi.org/10.1007/978-3-319-76081-0_15

14. Curteanu, S., Leon, F., Lupu, A.S., Floria, S.A, Logofatu, D.: An evaluation of regression
algorithms performance for the chemical process of naphthalene sublimation. In: Proceed-
ings of the 14th International Conference on Artificial Intelligence Applications and
Innovations (AIAI), pp. 219–230 (2018)

15. Balabanov, K., Logofatu, D., Badica, C., Leon, F.: A simulation-based analysis of
interdependent populations in a dynamic ecological environment. In: Proceedings of the 14th
International Conference on Artificial Intelligence Applications and Innovations (AIAI),
pp. 437–448 (2018)

16. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn., p. 863.
Pearson Education, Inc., Upper Saddle River (2010)

838 S.-A. Floria et al.

Author Index

Abdennour, Najmeddine II-511
Abdullah, S. I-487
Abe, Takeshi II-393
Adams, R. I-579
Agathocleous, Michalis II-444
Ahmetoğlu, Alper I-134
Aiolli, Fabio I-546, I-659
Al Moubayed, Noura III-468
Albert, Silvana II-79
Alhassan, Zakhriya III-468
Alpay, Tayfun III-137
Alpaydın, Ethem I-134
Alshammari, Riyad III-468
Alves, Wonder A. L. I-33
Amar, Chokri Ben II-545
Andreini, Paolo III-522
Anezakis, Vardis-Dimitris I-669
Annane, Djillali III-662
Antoniou, Antreas III-594
Arpit, Devansh III-392
Arrenberg, Aristides B. III-652
Arsiwalla, Xerxes D. II-403
Asada, Minoru III-672
Asai, Yoshiyuki II-393
Azabou, Eric III-662
Aziz, Adnan II-456
Azizi, Niloofar III-630

Baba, Yukino II-596
Bai, Sichen I-814
Balashov, Maksim III-208
Ballas, Nicolas III-392
Bao, Guillaume III-662
Bar-Hillel, Aharon I-706
Barros, Pablo I-791, III-738
Bauckhage, Christian III-3, III-13, III-564
Baxter, Paul II-37
Beel, Joeran III-94
Behnke, Sven III-630
Beigl, Michael I-61
Belanche, Lluís A. II-577
Belzner, Lenz II-240
Benalcázar, Marco E. I-352
Bengio, Yoshua III-392

Bennani, Younès III-817
Bensmail, Chama I-304
Ben-Suliman, Karima II-167
Berendsen, Gerard III-554
Bertrand, Myriam Maumy I-771
Beyazit, Ege I-508
Bhatt, Varun I-263
Bianchini, Monica III-522
Blachnik, Marcin II-56
Blahuta, Jiri II-90
Bo, Xiaochen I-104
Bobrowski, Leon III-574
Bocicor, Maria-Iuliana II-79
Bogdan, Martin I-372
Bohté, Sander I-284, II-250, III-457
Bonechi, Simone III-522
Borodin, Gregory II-179
Bothe, Chandrakant II-304
Botsch, Michael I-423
Bougiouklis, Andreas II-230
Bradley, Steven III-157
Brady, James III-795
Bruijns, Sebastian A. III-652
Budgen, David III-468
Burikov, Sergey I-435
Butz, Martin V. III-748

Cabanes, Guénaël II-501
Cabessa, Jérémie III-693
Cai, Jianping III-105
Cai, Ruichu I-447
Călin, Alina Delia I-589
Campo, Alexandre Brincalepe II-117
Cao, Robin III-447
Cao, Yanan II-263, III-178, III-805
Carregosa, Felipe III-218
Cela, Javier I-346
Chai, Xiangfei II-158
Chandra Sekhar, C. I-556
Chang, Oscar III-41
Chaulwar, Amit I-423
Chen, Feng II-101
Chen, Shengyong II-101
Chen, Xiaojun III-178

Chen, Ying I-115
Cheng, Li I-626
Cheng, Xiyao I-115
Chevallier, Sylvain III-662
Christodoulou, Chris II-444
Cloud, Joe III-795
Collier, Mark III-94
Comet, Jean-Paul I-335
Conradt, Jörg I-244
Coroiu, Adriana Mihaela I-589
Cortez, Paulo III-479
Cosmi, Erich II-148
Coufal, David II-621
Czibula, Gabriela II-79

Daghstani, Tahani III-468
Dai, Dawei I-199
Dang, Jianwu I-782
Das, Debasmit III-342
Dash, Bodhisattva II-14, III-759
Davey, Neil I-304, I-314, I-579
Dawei, Dai II-383
de Abreu de Sousa, Miguel Angelo I-166
de Carvalho, Francisco de Assis Tenorio

I-685, I-695
de Figueiredo, Rodrigo Marques III-147
de Luca, Vitor Tocci F. III-703
de Oliveira de Souza, João Olegário III-147
de Sousa, Mark Cappello Ferreira I-166
de Viña, Pablo I-538
Delibasis, K. I-188
Del-Moral-Hernandez, Emilio I-166
Demertzis, Konstantinos I-669
Despraz, Jérémie I-811
Dhibi, Naziha II-545
Di Caterina, G. I-801
Di Gregorio, Eleonora II-556
Dias, Cleber G. I-33
Diaz, Jose II-195
Dillmann, Rüdiger I-211, I-244
Ding, Meng III-363
Ding, Xinghao II-109
Dionysiou, Antreas II-444
Dirik, Ahmet Emir III-544
Dolenko, Sergey I-435, II-567
Dolenko, Tatiana I-435
Dong, Xiao I-3, I-402
Dora, Shirin III-457
dos Santos, José Vicente Canto III-147
Drchal, Jan III-771

Du, Baolin II-109
Du, Qingfeng II-479
Durr-e-Nayab III-199
Dutta, Sangya I-273

E., Xu II-286
Ecke, Gerrit A. III-652
Edwards, Harrison III-594
Efitorov, Alexander II-567
Elbasiony, Reda III-310
Elkefai, Akram II-545
Eppe, Manfred III-137

Fagot, Arthur I-771
Faigl, Jan III-771
Fan, Yingruo I-84
Fang, Zheng III-178
Farazi, Hafez III-630
Farkaš, Igor III-228
Farkaŝ, Igor III-73
Feigl, Josef I-372
Feng, Xiaobing I-3, I-402
Fenoglio, Enzo III-289
Ferreira, Marcelo R. P. I-685
Filchenkov, Andrey III-208
Fischer, Asja III-392
Floria, Sabina-Adriana III-828
Frikha, Tarek II-511
Frosini, Angelo III-584
Fujita, Takayuki I-235

Gabor, Thomas II-240
Gajbhiye, Amit III-157
Gallicchio, Claudio II-556
Ganguly, Udayan I-263, I-273
Gaona Garcia, Paulo Alonso II-186
Gaudreault, Jimmy III-641
Gelenbe, Erol I-335
Georgakopoulos, S. I-188
Gepperth, Alexander I-487, II-422
Gergel’, Peter III-73
Gewaltig, Marc-Oliver I-211
Gibert, Daniel III-383
Giese, Martin A. III-168
Giunchiglia, Eleonora III-23
Golak, Sławomir II-56
Gołdon, Krzysztof I-648
Gomaa, Walid III-310
Gonçalves, Sérgio III-479

840 Author Index

Goodwin, Morten III-245
Göpfert, Jan Philip I-456
Granados, Ana I-617, II-66
Granmo, Ole-Christopher III-245
Grenet, Ingrid I-335
Grisan, Enrico II-148
Grozavu, Nistor III-817
Grzesiak, L. M. I-294
Gu, Xiaodong I-14
Gu, Yiwei I-14
Guan, Qiu II-101
Guan, Qiuyu III-436
Guckert, Michael II-337
Guo, Li III-805
Guo, Lili I-782

Hadjicharalambous, Myrianthi I-566
Hadriche, Abir II-511
Hamker, Fred H. I-253
Hammami, Mayssa III-662
Hammer, Barbara I-456
Han, Jingfei III-84
Han, Liping II-47
Han, Tianqi III-331
Han, Xue II-219
Hao, Aimin I-760
Hao, Zhifeng I-447
Haralambopoulos, Dias II-587
Hartwig, Waldemar II-456
Haselhoff, Anselm III-33
Hashimoto, Masafumi III-353
Hasuike, Nobuaki I-43
Hauser, Helmut III-781
He, Song I-104
He, Tieke II-326
He, Yu II-479
Hernández-Ruiz, Catalina Maria II-186
Hernández-García, Alex I-95
Hichri, Bassem III-717
Hoffstadt, Dirk II-456
Hofmaier, Lea III-748
Horzyk, Adrian I-648
Hosseini, Matin I-508
Hou, Jian II-286
Hou, Wenjun I-115
Houthuys, Lynn II-205, III-489
Hovaidi-Ardestani, Mohammad III-168
Hu, Haigen II-101
Hu, Qinghua II-469
Hu, Yue II-263

Hua, Hang I-154
Huamán, Samuel G. III-280
Huang, Yue II-109
Huauya, Roger II-195
Huri, Katia III-604
Huve, Gauvain III-353

Iliadis, Lazaros I-669, I-725
Illouz, Evyatar III-613
İrsoy, Ozan I-134
Isaev, Igor I-435
Isakov, Mihailo II-607

Jaf, Sardar III-157
Jama, Anna II-56
James, Anne I-51
Jastrzębski, Stanislaw III-392
Jiang, Na I-637, I-814
Jiang, Wenbin III-321
Jin, Hai III-321
Jmail, Nawel II-511
Johannessen, Kjetil I-392
Jun, Tae Joon II-24

Kabziński, Jacek II-3
Kaiser, Jacques I-211, I-244
Kalloniatis, Christos II-587
Kalra, Gaurav II-24
Kang, Zhezhou III-805
Karakama, Daisuke II-523
Karamanis, Marios II-250
Karatsiolis, Savvas III-425
Karatzoglou, Antonios I-61
Karevan, Zahra III-489
Kashima, Hisashi II-596, III-373
Katamura, Norihito II-523
Kawai, Yuji III-672
Kelleher, John D. I-176, III-189
Keller, Philip I-244
Kenton, Zachary III-392
Kerzel, Matthias III-300
Khan, Gul Mummad III-199
Khan, Muhammad Aamir I-314
Kilian, A. I-487
Kim, Daeyoung II-24
Kinsy, Michel A. II-607
Kirkland, P. I-801
Kitano, Lucas Aparecido Silva II-117
Klecker, Sophie III-717

Author Index 841

Klüver, Christina II-456
Kobayashi, Taisuke II-315, III-116
Kochetov, Kirill III-208
Komodakis, Nikos I-412
Kong, Tao III-270
König, Peter I-95
Kopinski, Thomas II-422
Koprinska, Irena I-528
Korkofigkas, Antonis II-230
Kostopoulos, George K. III-682
Kottari, K. I-188
Koutras, Athanasios III-682
Koutsomplias, Serafeim I-725
Kr Dutta, Ujjal I-556
Král, Pavel I-73, I-608
Kramer, Oliver I-123
Kronenberger, Jan III-33
Krzyżak, Adam II-167
Kuhlmann, Philipp III-232
Kulak, Thibaut II-489
Kůrková, Věra III-534
Kyono, Trent III-260

Lakomkin, Egor III-500
Lam, Jacqueline C. K. I-84
Lamata, Pablo II-148
Laptinskiy, Kirill I-435
Lareo, Angel II-359
Larisch, René I-253
Latapie, Hugo III-289
Lauriola, Ivano I-546
Lavelli, Alberto I-546
Lee, C. S. George III-342
Lei, Yongmei I-362
Lenc, Ladislav I-73, I-608
Lenz, David II-337
Leon, Florin III-828
Li, Anwei II-158
Li, Guangli I-3, I-402
Li, Hongyu II-275, III-331
Li, Jinfen I-447
Li, Jiyi II-596
Li, Kan II-434
Li, Kangjie II-101
Li, Lingling II-434
Li, Saisai III-363
Li, Shuai I-760
Li, Shuqin III-363
Li, Victor O. K. I-84
Li, Xiaoxue III-805

Li, Yang II-127
Li, Zongren I-626
Liang, Bin II-326
Liao, Zhaohui I-447
Limberg, Christian I-518
Lin, Xianghong I-222
Lin, YiQun II-479
Lindh, Annika I-176
Lintas, Alessandra II-393
Lipson, Hod III-41
Liu, Chunfang III-270
Liu, Ji I-760, II-127
Liu, Junyu II-158, III-436
Liu, Lei I-3, I-402
Liu, Liang I-760
Liu, Pai III-321
Liu, Wenpeng II-263
Liu, Yanbing II-263, III-178, III-805
Liu, Yang II-158, III-436
Liu, Yue II-469
Llerena, C. I-579
Lofaso, Frédéric III-662
Logofătu, Doina III-828
López, Jorge II-195
Lopez-Hazas, Jessica I-468, II-296
Løvvik, Ole Martin I-392
Luo, Chunjie I-382
Luo, Guibo II-127
Lv, Chengcong II-286
Lv, Guiwen II-127
Lyhyaoui, Abdelouahid III-817

Ma, Xingkong I-626
Ma, Yingdong I-747
Maciel, Alexandre I-791
Maggini, Marco III-126, III-584
Maglogiannis, Ilias I-188
Mahalunkar, Abhijit I-176, III-189
Maida, Anthony I-508
Makedon, Fillia III-795
Malialis, Kleanthis I-498
Malinovská, Kristína III-228
Malinovský, Ľudovít III-228
Mallot, Hanspeter A. III-652
Marlats, Fabienne III-662
Marra, Giuseppe III-126
Martínek, Jiří I-73, I-608
Martinez, Aleix M. III-168
Martínez-Muñoz, Gonzalo I-538, II-415
Marty, Jean-Marc II-501

842 Author Index

Matei, Basarab II-501
Mateu, Carles III-383
Matich, G. I-801
Mauricio, Antoni II-195, III-622
Mauricio, Leonidas III-622
May, Arne III-300
Mayaud, Louis III-662
McGough, A. Stephen III-157, III-468
Mecocci, Alessandro III-522
Meganck, V. I-294
Mehnert, Jan III-300
Melacci, Stefano III-126, III-584
Meladianos, Polykarpos I-22
Meng, Bowen II-158
Meng, Kun III-363
Micheli, Alessio II-556
Mikulasch, Fabian A. III-652
Mitra, Anirban I-714, III-511
Mohanty, Figlu II-14
Montana, Giovanni II-148
Montero, Aaron I-468, II-66, II-296
Monti, Ricardo Pio III-447
Morales, Giorgio III-280
Moro, Sérgio III-479
Motoche, Cristhian I-352
Moubayed, Noura Al III-157
Müller, D. I-579
Muñoz, Adrián I-598

Nakajima, Kohei III-781
Nakano, Chigusa II-523
Nemchenko, Anton III-23, III-260
Nesky, Amy III-51, III-62
Netanyahu, Nathan S. III-604, III-613
Ng, Hwei Geok III-300
Nguyen, Hoang Minh II-24
Ni, Yicheng II-101
Nikolentzos, Giannis I-22
Nishikawa, Ikuko III-403
Nusselder, Roeland I-284
Nuțu, Maria I-589

Oehmcke, Stefan I-123
Ogata, Tetsuya III-310
Okafor, Emmanuel III-554
Ortiz Guzmán, Johan Enrique II-186
Ortiz, Michael Garcia II-489
Osana, Yuko I-43, I-235, II-523
Otte, Sebastian III-232, III-748
(Omid) David, Eli III-604, III-613

Pacheco, Daniel II-403
Paes, Aline III-218
Palade, Vasile I-51
Panayiotou, Christos G. I-566
Panayiotou, Christos I-498
Pandini, Alessandro II-79
Papachiou, Panagiotis II-587
Papadopoulos, Basil I-736
Park, Jihoon III-672
Paurat, Daniel III-13
Peña-Reyes, Carlos Andrés I-811
Peng, Jigen II-37, III-728
Pennartz, Cyriel III-457
Pereira, Ingryd I-791
Pessin, Gustavo III-147
Petkov, Nicolai III-425
Pfülb, B. I-487
Phan, Thomy II-240
Pinchon, Pierre I-771
Pires, Ricardo II-117
Plagianakos, V. I-188
Planes, Jordi III-383
Plapper, Peter III-717
Plastino, Angel R. III-703
Pogančić, Marin Vlastelica I-211
Polato, Mirko I-546, I-659
Polycarpou, Marios M. I-498, I-566
Potapov, Alexey I-476, III-289
Pozzi, Isabella I-284
Prevost, Lionel I-771
Principe, Alessandro II-403
Promponas, Vasilis II-444
Putin, Evgeny III-208

Qi, Qi II-109
Qin, Hong I-760
Qiu, Juan II-479
Qiu, Junhua II-275
Qu, Leyuan III-500
Qu, Zhenshen III-436

Rajasekaran, Sanguthevar III-414
Ramamurthy, R. III-3
Rasheed, Adil I-392
Rastin, Parisa II-501
Reichard, Daniel I-244
Reitmann, Stefan II-532
Ren, Rui I-382
Ren, Xingzhang I-154
Rinaldi, Fabio I-546

Author Index 843

Ritter, Helge I-518
Rocamora, Rodrigo II-403
Rodionov, Sergey I-476, III-289
Rodriguez, Francisco B. I-468, I-617, II-66,

II-296, II-359
Rodríguez, Sara Inés Rizo I-695
Roennau, Arne I-211, I-244
Rogovschi, Nicoleta III-817
Rong, Wenge III-84
Ross, Robert J. I-176
Roy, Sudip I-714, III-511
Ruiz-Garcia, Ariel I-51
Rup, Suvendu II-14, III-759
Rustad, Anne Marthine I-392

Sabzevari, Maryam II-415
Sagvolden, Espen I-392
Saini, Nitin III-168
Salton, Giancarlo I-176
Santana, Lucas V. C. I-685
Santos, Diego I-791
Santos, Sara Dereste II-117
Sanzenbacher, Paul III-232
Sarasa, Guillermo I-617, II-66
Sarkar, Ayanava II-422
Satar, Burak III-544
Sato, Ryoma III-373
Savioli, Nicoló II-148
Sayed, Saif Iftekar III-795
Sazadaly, Maxime I-771
Scarselli, Franco III-522
Schizas, Christos N. III-425
Schmid, Kyrill II-240
Schnell, Nikolai I-61
Schomaker, Lambert III-554
Schuecker, Jannis III-564
Schultz, Michael II-532
Schulze, Christian II-337
Senyukova, Olga II-179
Seo, Masataka III-403
Shalyto, Anatoly III-208
Shang, Yanmin III-805
Sharma, Arjun I-714, III-511
Sharma, Jivitesh III-245
Sharma, Sumit I-714, III-511
Shcherbakov, Oleg I-476
Schnyder, Stéphane Gomez I-811
Shehu, Yahaya Isah I-51
Shi, Guoyong I-222

Shi, Jing II-137
Shimazaki, Hideaki III-641
Shiroky, Vladimir II-567
Shukla, Shashwat I-273
Sifa, Rafet II-369, III-3, III-13
Silva, Luiz C. I-33
Simonovsky, Martin I-412
Skacel, Jakub II-90
Skianis, Konstantinos I-22
Skorobogatko, Nikolai I-476
Song, Anping II-349
Song, Wenfeng I-760
Song, Xinyu I-104
Soraghan, J. I-801
Soukup, Tomas II-90
Souliotis, Georgios I-736
Sousa, Miguel Angelo Abreu II-117
Speck, Daniel III-738
Stamou, Giorgos II-230
Steffen, Lea I-244
Steuber, Volker I-304, I-314
Storkey, Amos III-392, III-594
Stout, Quentin F. III-51, III-62
Su, Zihao I-199
Suárez, Alberto I-346, I-598, II-415
Sun, Chenxin I-637
Sun, Fuchun III-270
Sun, Lin III-105
Sun, Qiang I-142
Sun, Y. I-579
Suykens, Johan A. K. II-205, III-489
Szadkowski, Rudolf J. III-771

Tabib, Mandar V. I-392
Tachikawa, Kazuki III-672
Takahashi, Kazuhiko III-353
Tan, Chuanqi III-270
Tan, Jianlong II-263, III-178
Tang, Jie III-84
Tang, Wei II-137
Teichmann, Michael I-253
Teletin, Mihai II-79
Telles, Joel III-280
Theofanidis, Michail III-795
Thome-Souza, Sigride II-117
Tieck, Juan Camilo Vasquez I-211, I-244
Tiezzi, Matteo III-584
Tixier, Antoine Jean-Pierre I-22
Tootoonian, Sina III-447

844 Author Index

Topczewska, Magdalena III-574
Trabold, Daniel III-13
Troumbis, Ioannis A. II-587
Tsekouras, George E. II-587
Twiefel, Johannes III-500

Ueda, Takaya III-403
Utschick, Wolfgang I-423

van der Schaar, Mihaela III-23
Van Der Schaar, Mihaela III-260
Varona, Pablo II-359
Vazirgiannis, Michalis I-22
Verschure, Paul II-403
Vervald, Alexey I-435
Villa, Alessandro E. P. II-393, III-693
Villagrán Martínez, Sergio Andrés II-186
Visentin, Silvia II-148
Vizcarra, Gerson III-622

Waissman, Atalya I-706
Wang, Cheng II-158
Wang, Hongxin III-728
Wang, Huatian II-37
Wang, Lei I-382
Wang, Lingfeng II-219
Wang, Longbiao I-782
Wang, Shuqing I-362
Wang, Xueying I-402
Wang, Yijie I-626
Wang, Yuehua I-637
Wang, Zheng I-528
Wang, Zhihua II-37
Weber, Cornelius II-304, III-500
Wedemann, Roseli S. III-703
Wei, Hui I-199
Weihui II-383
Weinland, Jakob I-244
Wermter, Stefan II-304, III-137, III-300,

III-500, III-738
Wersing, Heiko I-456, I-518
Wieczorek, Tadeusz II-56
Wiering, Marco III-554
Witschel, Thede III-652
Wróbel, Borys I-304, I-314, I-322
Wrobel, S. III-3
Wu, Wei I-637, I-814
Wu, Xindong I-508

Wu, Yue I-142
Wulff, Benjamin III-564

Xiang, Chao II-434
Xiao, Xia III-414
Xie, Yonghua II-47
Xing, Y. I-801
Xiong, Zhang III-84
Xu, Quanhua II-349
Xu, Yue I-814
Xue, Xiaohe I-382

Yaguchi, Takaharu III-781
Yamamoto, Takehiro III-373
Yamanaka, Yuki III-781
Yan, Hongping II-219
Yang, Chao III-270
Yang, Chunyu III-436
Yang, Qiang I-382
Yang, Su II-137
Yaqoob, Muhammad I-322
Ye, Geyan III-321
Ye, Wei I-154
Ye, Zhihao I-447
Yin, Kanglin II-479
Yin, Yonghua I-335
Yu, Qiang I-782
Yue, Shigang II-37, III-728

Zambrano, Davide I-284, II-250
Zaverucha, Gerson III-218
Zhan, Jianfeng I-382
Zhang, Aihua II-286
Zhang, Changqing II-469
Zhang, Chun II-37
Zhang, Dongjie III-178
Zhang, Fang III-84
Zhang, Junge II-219
Zhang, Lei I-637
Zhang, Leilei I-154
Zhang, Linjuan I-782
Zhang, Shikun I-154
Zhang, Wenchang III-270
Zhang, Xiaofang II-326
Zhang, Xinmin I-747
Zhang, Yangsong III-321
Zhang, Youcai I-14
Zhang, Yutao III-84
Zhang, Yuxin III-436

Author Index 845

Zhang, Zhongnan I-104
Zhao, Guohong I-626
Zhao, Peng I-3, I-402
Zhdanov, Innokentii I-476
Zheng, Han II-109
Zheng, Xiaoping I-104
Zheng, Zengwei III-105
Zhou, Qian II-326
Zhou, Wenyu II-127
Zhou, Xiaomao II-304
Zhou, Yanzhen III-105

Zhou, Zhong I-637, I-814
Zhu, Fan II-275
Zhu, Jiaye II-479
Zhu, Pengfei II-469
Zhu, Yuesheng II-127
Zielinski, Oliver I-123
Zihao, Su II-383
Zou, Dongsheng II-137
Zouinina, Sarah III-817
Zugarini, Andrea III-126
Zuo, Panli II-158

846 Author Index

	Preface
	Organization
	Keynote Talks
	Cognitive Phase Transitions in the Cerebral Cortex – John Taylor Memorial Lecture
	On the Deep Learning Revolution in Computer Vision
	From Machine Learning to Machine Diagnostics
	Multimodal Deep Learning in Biomedical Image Analysis
	Contents – Part III
	Recurrent ANN
	Policy Learning Using SPSA
	1 Introduction
	2 Simultaneous Perturbation Stochastic Approximation
	3 Learning Policies Using Echo State Networks
	3.1 Partial Observability
	3.2 Echo State Networks
	3.3 Policy Learning Using Echo State Networks
	3.4 Deterministic and Stochastic Policies
	3.5 Three Variants of Echo State Network Training

	4 Experiments and Results
	4.1 Acrobot and Mountain Car
	4.2 Implementation Details
	4.3 Results

	5 Conclusion
	References

	Simple Recurrent Neural Networks for Support Vector Machine Training
	1 Introduction
	2 L2 Support Vector Machines
	3 Frank-Wolfe Training of Support Vector Machines
	4 Neural Training of Support Vector Machines
	5 Practical Examples
	6 Conclusion
	References

	RNN-SURV: A Deep Recurrent Model for Survival Analysis
	1 Introduction
	2 Related Work
	3 Background on Survival Analysis
	4 RNN-SURV
	4.1 The Structure of the Model
	4.2 Training

	5 Experimental Analysis
	5.1 Preprocessing
	5.2 Comparison with Other Models
	5.3 Estimating the Survival Curves
	5.4 Analysis of the Model

	6 Conclusions
	References

	Do Capsule Networks Solve the Problem of Rotation Invariance for Traffic Sign Classification?
	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	3.1 Preparation
	3.2 Augmentation

	4 Approach
	5 Results
	5.1 Accuracy
	5.2 Rotation

	6 Conclusion
	References

	Balanced and Deterministic Weight-Sharing Helps Network Performance
	1 Introduction
	1.1 ArbNet
	1.2 How the Hash Function Affects Network Performance

	2 Common Neural Networks are MLP ArbNets
	2.1 Multi-layer Perceptrons
	2.2 Convolutional Neural Networks
	2.3 Recurrent Neural Networks
	2.4 General Networks

	3 Related Work
	4 Experimental Setup
	4.1 Balance of the Hash Table
	4.2 Noise in the Hash Function
	4.3 Network Specification

	5 Results and Discussion
	5.1 Dirichlet Hash
	5.2 Neighborhood Hash

	6 Conclusion
	References

	Neural Networks with Block Diagonal Inner Product Layers
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments: Speedup and Accuracy
	4.1 Speedup
	4.2 Accuracy Results

	5 Conclusion
	References

	Training Neural Networks Using Predictor-Corrector Gradient Descent
	1 Introduction
	2 Related Work
	3 Methodology
	4 Relationship to Nesterov's Accelerated Gradient
	5 Experimental Results
	5.1 SVHN
	5.2 CIFAR10

	6 Conclusion
	References

	Investigating the Role of Astrocyte Units in a Feedforward Neural Network
	1 Introduction
	2 Related Work
	3 Proposed Models
	3.1 A-MLP
	3.2 A-MLP()
	3.3 A-MLP()
	3.4 A-MLP()
	3.5 A-MLP(,), A-MLP(,,)

	4 Experiments
	4.1 N-parity Problem
	4.2 Two-Spirals Problem

	5 Conclusion
	References

	Interactive Area Topics Extraction with Policy Gradient
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 LITE Model

	4 Experimental Study
	4.1 Experiment Configuration
	4.2 Results and Discussion

	5 Conclusion
	References

	Implementing Neural Turing Machines
	1 Introduction
	2 Neural Turing Machines
	3 Our Implementation
	4 Methodology
	4.1 Tasks
	4.2 Experiments

	5 Results
	5.1 Memory Initialization Comparison
	5.2 Architecture Comparison

	6 Summary
	References

	A RNN-Based Multi-factors Model for Repeat Consumption Prediction
	1 Introduction
	2 Related Works
	3 Methodolody
	3.1 RNN-based Multi-factors Prediction Model
	3.2 Influential Factors Selection

	4 Experiment
	4.1 Dataset
	4.2 Baselines Comparison
	4.3 Influential Factor Analyze

	5 Conclusion
	References

	Practical Fractional-Order Neuron Dynamics for Reservoir Computing
	1 Introduction
	2 Preliminaries
	2.1 Reservoir Computing with Leaky Integrator Neurons
	2.2 Learning of Readout Weights

	3 Fractional-Order Neuron Dynamics
	3.1 Derivation of Fractional-Order Leaky Integrator
	3.2 Approximation to Memory Trace

	4 Performance Evaluation
	4.1 Benchmark Problems
	4.2 Evaluation Criteria
	4.3 Results

	5 Conclusion
	References

	An Unsupervised Character-Aware Neural Approach to Word and Context Representation Learning
	1 Introduction
	2 Related Work
	3 The Character-Aware Neural Model
	3.1 Word and Context Embeddings
	3.2 Learning Algorithm

	4 Experimental Results
	5 Conclusions
	References

	Towards End-to-End Raw Audio Music Synthesis
	1 Introduction
	2 Related Work
	3 A Baseline Neural Model for Raw Audio Synthesis
	4 Data Generation
	5 Results and Evaluation
	5.1 Empirical Evaluation
	5.2 Qualitative Evaluation

	6 Conclusion
	References

	Real-Time Hand Prosthesis Biomimetic Movement Based on Electromyography Sensory Signals Treatment and Sensors Fusion
	Abstract
	1 Introduction
	2 Methodology
	2.1 Electromyography (EMG)
	2.2 EMG Acquisition
	2.3 Signal Treatment
	2.4 The Prosthetic Hand
	2.5 Database and Artificial Neural Networks
	2.6 Sensors Fusion

	3 Preliminary Results
	4 Conclusion
	References

	An Exploration of Dropout with RNNs for Natural Language Inference
	1 Introduction
	2 Related Work
	3 Recurrent Neural Network Model for NLI Task
	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Dropout at Different Layers for NLI Model
	4.3 The Effectiveness of Dropout for Overfitting
	4.4 Dropout Rate Effect on Accuracy and Dropout Location

	5 Recommendations for Dropout Application
	6 Conclusions
	References

	Neural Model for the Visual Recognition of Animacy and Social Interaction
	1 Introduction
	2 Stimulus Synthesis
	3 Model Architecture
	4 Results
	5 Conclusion
	References

	Attention-Based RNN Model for Joint Extraction of Intent and Word Slot Based on a Tagging Strategy
	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Methods
	3.1 The Tagging Strategy
	3.2 Attention-Based RNN Model

	4 Experiments
	4.1 Experimental Settings
	4.2 Intent Detection Task Results
	4.3 Word Slot Extraction Task Results
	4.4 Joint Task Results

	5 Conclusion
	Acknowledgement
	References

	Using Regular Languages to Explore the Representational Capacity of Recurrent Neural Architectures
	1 Introduction
	2 Recurrent Neural Architectures for LDDs
	3 Benchmarking Datasets
	4 Formal Language Theory and Regular Languages
	4.1 Strictly Piecewise Languages

	5 Experiment
	5.1 Generating SP2 dataset
	5.2 Training Task

	6 Analysis
	7 Conclusion
	References

	Learning Trends on the Fly in Time Series Data Using Plastic CGP Evolved Recurrent Neural Networks
	Abstract
	1 Introduction
	2 Literature Review
	3 Plastic Cartesian Genetic Programming Evolved Recurrent Neural Network
	4 Experimental Setup
	5 Results and Analysis
	6 Conclusion and Future Enhancements
	References

	Noise Masking Recurrent Neural Network for Respiratory Sound Classification
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	4.1 Database
	4.2 Experiments Setup
	4.3 Result Evaluation
	4.4 Preprocessing

	5 Results
	6 Conclusion
	References

	Lightweight Neural Programming: The GRPU
	1 Introduction
	2 Preliminaries
	2.1 Gated Recurrent Unit (GRU)
	2.2 Related Work: Neural Programmers

	3 The Gated Recurrent Programmer Unit
	3.1 The Architecture
	3.2 The Arithmetic and Logic Unit (ALU)
	3.3 Expanding the Model

	4 Experimental Results
	4.1 The Adding Problem
	4.2 Other Variations

	5 Conclusions and Future Work
	References

	Towards More Biologically Plausible Error-Driven Learning for Artificial Neural Networks
	References

	Online Carry Mode Detection for Mobile Devices with Compact RNNs
	1 Introduction
	2 Dataset
	2.1 Acquisition
	2.2 Dataset Preparation

	3 Recurrent Neural Networks
	3.1 Data Preprocessing
	3.2 RNN Architecture
	3.3 Training
	3.4 Implementation Details

	4 Experimental Results
	4.1 Network Configurations
	4.2 Results

	5 Conclusion
	References

	Deep Learning
	Deep CNN-ELM Hybrid Models for Fire Detection in Images
	1 Introduction
	2 Related Work
	2.1 CNNs for Fire Detection
	2.2 Hybrid Models for Image Classification

	3 The Fire Detector
	3.1 Deep ConvNet Models
	3.2 The Hybrid Model
	3.3 Paper Contributions

	4 Experiments
	4.1 The Real World Fire Dataset
	4.2 Results

	5 Conclusion
	References

	Siamese Survival Analysis with Competing Risks
	1 Introduction
	1.1 Motivation
	1.2 Related Works
	1.3 Contributions

	2 Problem Formulation
	3 Siamese Survival Prognosis Network
	4 Experiments
	4.1 Hyper-Parameter Optimization
	4.2 SEER
	4.3 Synthetic Data

	5 Conclusion
	References

	A Survey on Deep Transfer Learning
	1 Introduction
	2 Deep Transfer Learning
	3 Categories
	3.1 Instances-Based Deep Transfer Learning
	3.2 Mapping-Based Deep Transfer Learning
	3.3 Network-Based Deep Transfer Learning
	3.4 Adversarial-Based Deep Transfer Learning

	4 Conclusion
	References

	Cloud Detection in High-Resolution Multispectral Satellite Imagery Using Deep Learning
	1 Introduction
	2 Proposed Method
	2.1 CloudPeru Dataset
	2.2 Neural Network Training

	3 Results
	4 Conclusions
	References

	Metric Embedding Autoencoders for Unsupervised Cross-Dataset Transfer Learning
	1 Introduction
	2 Related Work
	2.1 Deep Re-ID Methods
	2.2 Deep Transfer Learning for Re-ID

	3 Metric Embedding Learning
	3.1 Loss Function
	3.2 Network Architecture
	3.3 Embedding Training

	4 Unsupervised Transfer Learning of Embedding
	4.1 Our Solution
	4.2 Model Details

	5 Experiments
	5.1 Score Computation
	5.2 Single Dataset Pre-training
	5.3 Multiple Dataset Pre-training
	5.4 Comparison with PUL

	6 Conclusion
	References

	Classification of MRI Migraine Medical Data Using 3D Convolutional Neural Network
	1 Introduction
	2 Experimental Setup and Neural Network Architecture
	2.1 Dataset Acquisition and Data Preprocessing
	2.2 Network Architecture
	2.3 Discriminative Regions Visualization

	3 Experimental Results
	3.1 Classification Result of CNN
	3.2 Visualisation Result of CAM

	4 Discussion, Conclusion and Future Work
	References

	Deep 3D Pose Dictionary: 3D Human Pose Estimation from Single RGB Image Using Deep Convolutional Neural Network
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Building the 3D Pose Dictionary
	3.2 Preprocessing and Augmentation
	3.3 Training AlexNet for Classification

	4 Experimental Results
	4.1 Discussion

	5 Conclusions
	Acknowledgments
	References

	FiLayer: A Novel Fine-Grained Layer-Wise Parallelism Strategy for Deep Neural Networks
	1 Introduction
	2 Related Works
	3 Inter-layer Parallelism
	3.1 Problem Analysis of Mini-batch Gradient Descent
	3.2 Data Pipeline Algorithm

	4 Intra-layer Parallelism
	4.1 Analysis of Convolution Operation
	4.2 Parallelization of Convolution Layer

	5 Experimental Results
	5.1 Datasets and Environments
	5.2 Evaluating Inter-layer Parallelism
	5.3 Evaluating Intra-layer Parallelism

	6 Conclusions and Future Works
	References

	DeepVol: Deep Fruit Volume Estimation
	1 Introduction
	2 Related Work
	3 DeepVol for Volume Estimation
	3.1 Fruit Detection
	3.2 Volume Estimation

	4 Training Details
	4.1 Loss Functions
	4.2 Training Strategy
	4.3 Optimizer and Regularization

	5 Experimental Results
	5.1 Dataset Collection
	5.2 Performance Evaluation

	6 Conclusion
	References

	Graph Matching and Pseudo-Label Guided Deep Unsupervised Domain Adaptation
	1 Introduction
	2 Proposed Approach
	2.1 Problem Definition
	2.2 Minimizing Domain Discrepancy with Graph Matching
	2.3 Refinement with Pseudo-labels

	3 Experiments and Results
	4 Conclusions
	References

	fNIRS-Based Brain–Computer Interface Using Deep Neural Networks for Classifying the Mental State of Drivers
	1 Introduction
	2 Methods
	2.1 Equipment
	2.2 Data Capture
	2.3 Pre-processing
	2.4 Feature Extraction
	2.5 Classifiers

	3 Experimental Results
	3.1 Comparison of DNN and RNN
	3.2 Comparison with Common Classifiers
	3.3 Changing the Inputs

	4 Conclusions
	References

	Research on Fight the Landlords’ Single Card Guessing Based on Deep Learning
	Abstract
	1 Introduction
	2 Fight the Landlords Games Introduction
	3 Model Overall Frame Design
	3.1 Data Cleaning
	3.2 CNN Network Input and Output
	3.3 The Use of CNN Model
	3.4 The Use of CNN Model Evaluation Program

	4 Model Overall Frame Design Experimental Results and Analysis
	4.1 Single Card Prediction and Refinement Assessment Method
	4.2 All Card Prediction

	5 Conclusion
	Acknowledgment
	References

	Short-Term Precipitation Prediction with Skip-Connected PredNet
	Abstract
	1 Introduction
	2 Related Work
	2.1 Video Generation with DNN
	2.2 Network Architecture of DNN

	3 Model
	3.1 Problem Setting
	3.2 Convolutional GRU
	3.3 Our Model
	3.4 Loss Functions

	4 Experiments
	4.1 MovingMNIST++
	4.2 Kyoto Dataset

	5 Conclusion
	Acknowledgment
	References

	An End-to-End Deep Learning Architecture for Classification of Malware's Binary Content
	1 Introduction
	2 Deep Learning for Malware Classification
	3 Evaluation
	3.1 Microsoft Malware Classification Challenge
	3.2 Experimental Setup
	3.3 State-of-the-art Comparison

	4 Conclusions
	4.1 Future Work

	References

	Width of Minima Reached by Stochastic Gradient Descent is Influenced by Learning Rate to Batch Size Ratio
	1 Introduction
	2 Theory
	2.1 Learning Rate to Batch Size Ratio Determines SGD Dynamics
	2.2 LR/BS Ratio Controls Trace of Hessian at a Minimum

	3 Experiments
	4 Related Work
	5 Conclusion
	References

	Data Correction by a Generative Model with an Encoder and its Application to Structure Design
	1 Introduction
	2 Generative Models by Neural Networks
	2.1 Generative Adversarial Nets
	2.2 Wasserstein GAN
	2.3 Variational Auto-Encoder

	3 Proposed Model of GAN with an Encoder
	3.1 Basic Model of GAN with an Encoder
	3.2 Fine-Tuning with a Classifier on Data Space: Model 1
	3.3 Fine-Tuning with a Classifier on Latent Space: Model 2

	4 Computer Experiments Using Real Building Data
	4.1 MNIST Handwritten Digits
	4.2 Building Members Placement

	5 Present Summary and Future Problems
	References

	PMGAN: Paralleled Mix-Generator Generative Adversarial Networks with Balance Control
	1 Introduction
	2 Related Works
	3 Our Method
	3.1 Loss Functions
	3.2 The Balance Term
	3.3 Structure of PMGAN

	4 Experiments
	4.1 Synthetic Datasets
	4.2 Real World Data
	4.3 Training Time

	5 Conclusions
	References

	Modular Domain-to-Domain Translation Network
	Abstract
	1 Introduction
	2 The Proposed Model
	2.1 Deep Domain to Domain Translation Architecture

	3 Problem Setup
	4 Experimental Results
	5 Conclusions
	References

	OrieNet: A Regression System for Latent Fingerprint Orientation Field Extraction
	Abstract
	1 Introduction
	2 Proposed Method
	2.1 Methods Overview
	2.2 Latent Fingerprint Preprocessing
	2.3 Deep Regression Neural Network

	3 Experiments
	3.1 Database
	3.2 Identification Performance

	4 Conclusion and Future Work
	Acknowledgement
	References

	Avoiding Degradation in Deep Feed-Forward Networks by Phasing Out Skip-Connections
	1 Introduction
	2 Related Work
	3 Variable Activation Networks
	4 Experiments
	4.1 MNIST and Fashion-MNIST
	4.2 CIFAR

	5 Discussion
	References

	A Deep Predictive Coding Network for Inferring Hierarchical Causes Underlying Sensory Inputs
	Abstract
	1 Introductions
	2 Model
	2.1 Architecture
	2.2 Learning Algorithm

	3 Experiments
	3.1 Generative Model
	3.2 Capacity to Represent Novel Input Patterns
	3.3 Robustness Towards Translated Images

	4 Discussion
	5 Conclusion
	Acknowledgement
	References

	Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data Using Deep Learning Models
	1 Introduction
	2 Related Work
	3 Dataset
	3.1 Data Pre-processing

	4 Methods
	5 Experimental Setup
	6 Results
	6.1 Discussion and Conclusion

	References

	A Deep Learning Approach for Sentence Classification of Scientific Abstracts
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Abstract Corpus
	3.2 Neural Networks Models
	3.3 Proposed Architecture
	3.4 Evaluation

	4 Results
	5 Conclusions
	References

	Weighted Multi-view Deep Neural Networks for Weather Forecasting
	1 Introduction
	2 Background: Multi-View LS-SVM Regression
	3 Proposed Method
	4 Experiments
	4.1 Weather Data
	4.2 Model Selection

	5 Conclusion
	References

	Combining Articulatory Features with End-to-End Learning in Speech Recognition
	Abstract
	1 Introduction
	2 Related Work
	2.1 End-to-End Learning in Speech Recognition
	2.2 Domain Knowledge Integration in Speech Recognition

	3 Model Architecture
	3.1 AF Extractor
	3.2 Fine-Tuning Networks
	3.3 Progressive Networks

	4 Experiments
	4.1 Evaluation Metric
	4.2 Data
	4.3 Training

	5 Results and Discussion
	6 Conclusions and Future Work
	Acknowledgements
	References

	Estimation of Air Quality Index from Seasonal Trends Using Deep Neural Network
	1 Introduction
	2 Related Previous Work
	3 Motivation and Problem Statement
	3.1 Motivation
	3.2 Problem Statement

	4 Proposed Method for Estimation of AQI
	4.1 Formation of Sub-indices (Step 1)
	4.2 Aggregation of Sub-indices (Step 2)
	4.3 Proposed Models
	4.4 ARIMA Model
	4.5 RNN-Based Model
	4.6 Seasonal Data Re-configuring
	4.7 Architecture of RNN-Layer

	5 Simulation Results
	5.1 Input Dataset
	5.2 Comparative Results and Discussions

	6 Conclusions
	References

	A Deep Learning Approach to Bacterial Colony Segmentation
	1 Introduction
	1.1 Related Works

	2 Synthetic Petri Plate Generation
	2.1 Background and Token Collection
	2.2 Colony Models
	2.3 Streaking Simulation
	2.4 Rendering and Blending Procedure

	3 Experiments
	3.1 Semantic Segmentation Network
	3.2 Dataset
	3.3 Segmentation Experiments

	4 Conclusions
	References

	Sparsity and Complexity of Networks Computing Highly-Varying Functions
	1 Introduction
	2 Preliminaries
	3 Sparsity, Variational Norm, and Correlation
	4 Lower Bounds on l1 and Variational Norms
	5 Construction of Functions with Large Variations with Respect to Perceptrons
	6 Discussion
	References

	Deep Learning Based Vehicle Make-Model Classification
	1 Introduction
	2 Vehicle Make-Model Classification
	2.1 Data Gathering
	2.2 Annotation
	2.3 Model Training and Testing

	3 Experimental Results
	3.1 A Use Case

	4 Conclusions and Future Works
	References

	Detection and Recognition of Badgers Using Deep Learning
	Abstract
	1 Introduction
	2 Dataset and Preprocessing
	3 Methods
	3.1 SSD with Inception-V2
	3.2 SSD with MobileNet-V1
	3.3 Faster R-CNN with ResNet-50
	3.4 Faster R-CNN with Inception-V2

	4 Experimental Results
	5 Conclusion
	References

	SPSA for Layer-Wise Training of Deep Networks
	1 Introduction
	2 Derivative-Free Optimization and SPSA
	3 SPSA-Based Neural Network Training
	4 Practical Experiments
	4.1 Low-Dimensional Classification Problems
	4.2 MNIST

	5 Conclusion
	References

	Dipolar Data Aggregation in the Context of Deep Learning
	Abstract
	1 Introduction
	2 Partially Structured Data Sets
	3 Separable Layers of Univariate Binary Classifiers
	4 Separation of Selected Data Subsets by Dipolar Layers of Univariate Binary Classifiers
	5 Hierarchical Networks of Separable Layers
	6 Experimental Results
	7 Concluding Remarks
	Acknowledgments
	References

	Video Surveillance of Highway Traffic Events by Deep Learning Architectures
	1 Introduction
	2 Video Surveillance of Highway Traffic
	3 Data Description and Representation
	4 Deep Architectures
	5 Experimental Results
	6 Conclusions
	References

	Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks
	1 Introduction
	2 Background
	3 Model
	3.1 Model Overview
	3.2 Model Objective Definition
	3.3 Architectures

	4 Datasets and Experiments
	4.1 Training of DAGAN in Source Domain
	4.2 Classifiers

	5 Conclusions
	References

	DeepEthnic: Multi-label Ethnic Classification from Face Images
	1 Introduction
	2 Related Work
	2.1 Traditional ML-Based Techniques
	2.2 Recent Deep Learning Techniques

	3 Proposed Method
	3.1 Data Source
	3.2 Facial Image Preprocessing
	3.3 Transfer Learning
	3.4 Network Architecture

	4 Experiments and Results
	5 Conclusions
	References

	Handwriting-Based Gender Classification Using End-to-End Deep Neural Networks
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 The HEBIU Offline Handwriting Dataset
	3.2 Handwriting Preprocessing
	3.3 Network Architecture
	3.4 Accuracy Evaluation by Patch Aggregation

	4 Experimental Results
	4.1 Intra-language Classification
	4.2 Inter-language Classification
	4.3 Mixed Language Classification
	4.4 Summary of Results
	4.5 Human Test Results

	5 Concluding Remarks
	References

	A Deep Learning Approach for Sentiment Analysis in Spanish Tweets
	Abstract
	1 Introduction
	2 Related Studies
	3 The Problem and Data Description
	4 Methodology
	4.1 Preprocessing
	4.2 Word Vectors
	4.3 Convolutional Neural Network

	5 Experiments and Results
	5.1 Filters Setting
	5.2 Sentiment Analysis

	6 Conclusions and Future Works
	References

	Location Dependency in Video Prediction
	1 Introduction
	2 Related Work
	3 Location Dependency in VLN Model
	4 Location Dependency in Conv-PGP Model
	5 Experiment
	6 Conclusion
	References

	Brain Neurocomputing Modeling
	State-Space Analysis of an Ising Model Reveals Contributions of Pairwise Interactions to Sparseness, Fluctuation, and Stimulus Coding of Monkey V1 Neurons
	1 Introduction
	2 Methods
	2.1 Data Description and Preprocessing
	2.2 The State-Space Ising Model for a Neural Population
	2.3 Macroscopic Properties of the Dynamic Ising Model
	2.4 Assessment of Stimulus Coding

	3 Results
	3.1 Contributions of Interactions to Macroscopic Network Properties
	3.2 Differences in Neural Responses Caused by Different Stimuli

	4 Discussion
	5 Conclusion
	References

	Sparse Coding Predicts Optic Flow Specifities of Zebrafish Pretectal Neurons
	1 Introduction
	2 Visual Front End
	3 LCA Sparse Coding
	4 Backpropagation
	5 Results
	6 Discussion
	References

	Brain-Machine Interface for Mechanical Ventilation Using Respiratory-Related Evoked Potential
	1 Introduction
	2 Methods
	2.1 Existing Approaches
	2.2 Riemannian Geometry

	3 Experiments
	3.1 Setup and Dataset
	3.2 Results

	4 Discussion and Conclusion
	References

	Effectively Interpreting Electroencephalogram Classification Using the Shapley Sampling Value to Prune a Feature Tree
	Abstract
	1 Introduction
	2 Method
	3 Experimental Settings
	3.1 PhysioNet Polysomnography Dataset
	3.2 UCI EEG Dataset

	4 Results
	4.1 Results for the PhysioNet PSG Dataset
	4.2 Results for the UCI EEG Dataset

	5 Discussion and Conclusion
	Acknowledgements
	References

	EEG-Based Person Identification Using Rhythmic Brain Activity During Sleep
	Abstract
	1 Introduction
	2 Method
	2.1 Feature Extraction

	3 Experiments
	3.1 The Sleep Spindles Database
	3.2 Data Preprocessing
	3.3 Experimental Setup

	4 Results
	4.1 Person Identification Using All Channels
	4.2 Person Identification Using Single Channel
	4.3 Person Identification Using Significant Channels
	4.4 Person Identification Using Significant Features

	5 Conclusions
	References

	An STDP Rule for the Improvement and Stabilization of the Attractor Dynamics of the Basal Ganglia-Thalamocortical Network
	1 Introduction
	2 Boolean Model of the Basal Ganglia-Thalamocortical Network
	3 Adaptive STDP Rule
	4 Results
	5 Conclusion
	References

	Neuronal Asymmetries and Fokker-Planck Dynamics
	1 Introduction
	2 Continuous Neural Networks and Dynamical Systems
	3 Standard Fokker-Planck Dynamics
	4 Generalized Fokker-Planck Dynamics
	4.1 Stationary Solution for Drift Fields of Gradient Form
	4.2 Stationary Solution for K with Non-Gradient Components

	5 A Two-Neuron System Admitting Time-Dependent q-Gaussian Solutions
	6 Conclusions
	References

	Robotics/Motion Detection
	Learning-While Controlling RBF-NN for Robot Dynamics Approximation in Neuro-Inspired Control of Switched Nonlinear Systems
	Abstract
	1 Introduction
	2 Methodology
	3 Controller
	4 Results
	5 Discussion and Conclusion
	Acknowledgments
	References

	A Feedback Neural Network for Small Target Motion Detection in Cluttered Backgrounds
	1 Introduction
	2 Formulation of the Model
	2.1 Retina Layer
	2.2 Lamina Layer
	2.3 Medulla Layer
	2.4 Lobula Layer

	3 Results and Discussions
	4 Conclusion
	References

	De-noise-GAN: De-noising Images to Improve RoboCup Soccer Ball Detection
	1 Introduction
	2 De-noising Generative Adversarial Network
	2.1 Generative Models
	2.2 DCGANs
	2.3 De-noise-GAN

	3 Experimental Results
	3.1 Dataset and Acquisition
	3.2 De-noising
	3.3 Ball Localization

	4 Discussion
	5 Conclusion
	6 Future Work
	References

	Integrative Collision Avoidance Within RNN-Driven Many-Joint Robot Arms
	1 Introduction
	2 Method
	2.1 Robot Arm Model and Selective Control
	2.2 Local Distance Sensor Signals
	2.3 Sensory Gradient Injection

	3 Experiments
	3.1 Moving Box
	3.2 Many Boxes
	3.3 Wall Opening

	4 Summary and Conclusion
	References

	An Improved Block-Matching Algorithm Based on Chaotic Sine-Cosine Algorithm for Motion Estimation
	1 Introduction
	2 Basic Preliminaries
	2.1 Motion Estimation and Block-Matching
	2.2 Sine-Cosine Algorithm (SCA)
	2.3 Chaotic Maps

	3 Proposed Chaotic-Based SCA with Fitness Approximation Strategy
	4 Discussion and Analysis of the Results
	4.1 Detailed Analysis with Respect to PSNR and DPSNR
	4.2 Detailed Analysis with Respect to the Number of Search Counts

	5 Conclusion
	References

	Terrain Classification with Crawling Robot Using Long Short-Term Memory Network
	Abstract
	1 Introduction
	2 Proprioceptive Signals and Data Collection
	2.1 Adaptive Gait
	2.2 Data Collection and Preprocessing

	3 Proposed Terrain Predictor
	4 Experiments
	5 Conclusion
	Acknowledgments
	References

	Mass-Spring Damper Array as a Mechanical Medium for Computation
	Abstract
	1 Introduction
	2 Mass-Spring Damper Array
	3 Approximation of NARMA Models as a Benchmark Test
	4 Pretests with Echo State Networks
	5 Results of the Benchmark Tests of the Mass-Spring Damper Array
	6 Discussion
	7 Conclusion
	References

	Kinematic Estimation with Neural Networks for Robotic Manipulators
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Experimental Testbed
	4.1 Kinematics of the Sawyer Robot
	4.2 Network Architecture
	4.3 Experimental Results

	5 Conclusions
	References

	Social Media
	Hierarchical Attention Networks for User Profile Inference in Social Media Systems
	1 Introduction
	2 Related Work
	3 Hierarchical Attention Networks
	3.1 GRU-Based Sequence Encoder
	3.2 Hierarchical Attention Based GRU Neural Network
	3.3 Hierarchical Inner Attention Based Neural Network
	3.4 Ego Network Classification

	4 Experiments
	4.1 Datasets
	4.2 User Representation and Dimension Selection
	4.3 Comparative Methods and Experiment Setting
	4.4 Result and Analysis

	5 Conclusion
	References

	A Topological k-Anonymity Model Based on Collaborative Multi-view Clustering
	1 Introduction
	2 Related Works
	2.1 Clustering and Anonymization
	2.2 Multi-view Topological Collaborative Clustering

	3 Proposed Anonymization Model
	3.1 Experimental Protocol
	3.2 Data Sets
	3.3 Experimental Results

	4 Conclusion
	References

	A Credibility-Based Analysis of Information Diffusion in Social Networks
	Abstract
	1 Introduction
	1.1 Dempster-Shafer Theory
	1.2 Yager’s Rule

	2 Related Work
	3 Model Description
	3.1 The Information Diffusion Protocol
	3.2 Computing Confidence Degrees

	4 Simulation Results
	5 Conclusions
	References

	Author Index

