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Torsional vibration of cracked carbon
nanotubes with torsional restraints using
Eringen’s nonlocal differential model

Mustafa €O Yayli1 , Suheyla Y Kandemir2 and Ali E Çerçevik2

Abstract

Free torsional vibration of cracked carbon nanotubes with elastic torsional boundary conditions is studied. Eringen’s

nonlocal elasticity theory is used in the analysis. Two similar rotation functions are represented by two Fourier sine

series. A coefficient matrix including torsional springs and crack parameter is derived by using Stokes’ transformation

and nonlocal boundary conditions. This useful coefficient matrix can be used to obtain the torsional vibration frequen-

cies of cracked nanotubes with restrained boundary conditions. Free torsional vibration frequencies are calculated by

using Fourier sine series and compared with the finite element method and analytical solutions available in the literature.

The effects of various parameters such as crack parameter, geometry of nanotubes, and deformable boundary

conditions are discussed in detail.
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Introduction

The simple beam theory extends to the 18th century while the Timoshenko beam theory that allows for the impact

of transverse shear deformation was developed in the 20th century. When the classical beam theories are used for
the study of micro tubes and nanotubes, they are determined to be insufficient as the theories could not provide

the small-scale impact in mechanical properties.1 Owing to their superior electrical, mechanical, physical, optical,

and chemical properties, a great diversity of nanostructures have been formed as a part of nanoelectromechanical
and microelectromechanical systems. For such nanoscale structures which cannot be captured by the classical

continuum theory. Therefore, a thorough comprehension of the mechanical behavior at nanoscale is
very important.2

Carbon nanotubes were explored in 1991 by Iijima.3 Carbon nanotubes are nanomaterials which have

tremendous potential in design of new sensors, composite materials, and gas detection. The superior properties
of the carbon nanotubes are important instrumental for the improvements in applications.4–16 Other new fields of

application of carbon nanotubes are continuously explored. These nanosized structures17–21 show that the supe-
rior properties such as physical properties, mechanical properties, chemical properties, etc.

Classical continuum theories are frequently used in order to comprehend the mechanical properties of carbon

nanotubes.22–27 The purpose of classical continuum theories may be doubtful in the theoretical analysis of carbon
nanotubes, since the theories lack the responsibility of the small-scale effects.28 Nowadays, many nonclassical

continuum theories that integrate material length scales were suggested in the literature to forecast the
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performance of nanostructures. These consist of nonlocal, gradient elasticity, and couple stress theories or com-

posed of the theories.29–31 Variational formulations and extra boundary conditions within stress gradient elasticity

theory with extensions to beam and plate models have been investigated by Polizzotto.32 Some researchers have

investigated the applications of nonlocal elastic models.33,34

Nonlocal theories have been used to widely in some papers such as bending, buckling, vibrations, etc.

Literature presented that nonlocal elasticity approach35–43 is a significant technique for modeling mechanical

behavior of nanostructures. In the framework of nonlocal elasticity theory, Demir and Civalek44 have examined

the size effects on the torsional vibration of cylindrical tubes,45 based on the theory of nonlocal continuum

mechanics, on the column buckling of multiwalled carbon nanotubes has been investigated. Lu et al.46 have

assessed the multiple shell model and it was improved for the axial buckling of multiwalled carbon nanotubes.

Arda and Aydogdu have investigated the statistical torsional deformation and free vibration behaviors of carbon

nanotubes. Islam et al.47 have examined the size effects on the torsional vibration of cylindrical bars. Pradhan and

Murmu48 have reformulated with nonlocal theories the vibration of Euler–Bernoulli beam resting on Winkler

elastic foundation. Wang et al.49 have studied the beam bending solutions based on nonlocal Timoshenko beam

theory. A multiple shell model is developed for the axial buckling of multiwalled carbon nanotubes under axial

compression by Zhang et al.50 Free torsional response of cracked nanorods has been explored by several research-

ers.51–53 A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation has been pro-

posed by Barretta et al.54 Different theoretical investigations have been performed for the mechanical behaviors of

nanobeams and carbon nanotubes in the literature.55–58

In contrast to the rigid supports in which known as free–fixed and fixed–free are not used to describe the exact

supporting conditions, the present exact method possesses torsional elastic spring parameters for a better descrip-

tion of real boundary conditions. The classical rigid boundary conditions such as clamped–free, clamped–clamped

can be viewed as special cases of the deformable elastic supports.59 For a clamped support, the dimensionless

stiffness value of the torsional spring is infinitely large. For a free edge, the dimensionless stiffness value of the

torsional spring is set to be zero. There is strong scientific need to understand the torsional vibration behavior of

cracked nanorods in considering the effect of deformable boundary conditions. In this study, free torsional

vibration of the cracked nanorods with general elastic spring boundary conditions is investigated on the basis

of nonlocal elasticity theory in conjunction with Stokes’ transformation.60,61 The torsional rotation function is

represented by a Fourier sine series. A coefficient matrix composed of infinite series is computed by applying a

mathematical procedure known as Stokes’ transformation to the nonlocal boundary conditions. The determinant

of this coefficient matrix gives the torsional vibration frequencies for the cracked nanotubes with torsion-

al restraints.

Background of theory

For homogenous isotropic elastic solids, the Eringen’s nonlocal elasticity theory is described by the following

theoretical four equations62

rkl;l þ q fl � @2ul
@t2

� �
¼ 0 (1)

rklðxÞ ¼
Z
V

a x� x0j j; v� �
sklðx0ÞdVðx0Þ (2)

sklðx0Þ ¼ k�mmðx0Þdkl þ 2l�klðx0Þ (3)

�klðx0Þ ¼ 1

2

@ukðx0Þ
@x0l

þ @ulðx0Þ
@x0k

� �
(4)

where rkl denotes the nonlocal stress matrix, q represents the mass density of the body, fl denotes the applied force

density to the elastic media, ul expresses the displacement vector, �klðx0Þ represents the strain tensor, V represents

the volume occupied by the body, sklðx0Þ expresses the Cauchy stress tensor at any point x0, t is the time, l and k
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denote Lame constants, and a x� x0j j expresses the distance form of Euclidean. a xj j can be expressed by a linear

differential operator (#)

#a x� x0j j� � ¼ d x� x0j j� �
(5)

the following equation may be derived from equation (2)

#rkl ¼ skl (6)

Finally, the following equation can be obtained from equation (1)

skl;l þ #ðfl � q€ukÞ ¼ 0 (7)

In equation (7), the differential operator proposed by Eringen and Edelen62 can be written as follows

# ¼ 1� ðe0aÞ2r2
h i

(8)

where a expresses internal length, e0 denotes the material constant, and r2 represents the Laplacian. The follow-

ing constitutive equation can be obtained in terms of nonlocal parameter

1� ðe0aÞ2r2
h i

rkl ¼ skl (9)

For nonlocal elasticity problems formulated in unbounded domains (free–free boundary conditions or elastic

boundaries), differential law model by Eringen and Edelen62 may be considered equivalent to a stress and strain-

driven model, due to the tacit fulfillment of nonlocal boundary conditions of vanishing at infinity. So, differential

equation model by Eringen and Edelen62 is effectively exploited to explore Rayleigh surface waves and screw

dislocations. Using Eringen’s nonlocal elasticity theory with exponential kernel, there are constitutive boundary

conditions and paradoxes in nonlocal elastic nanobeams.63 They have recently showed the ill-posedness of the

Eringen integral model and exact solutions of inflected functionally graded nanobeams in integral elasticity.

Barretta et al.64 have examined the exact solutions of inflected functionally graded nanobeams in inte-

gral elasticity.

Formulation of the problem

The equation of motion of torsional vibration problem in nonlocal elasticity is given as follows44

GJ
@2hðx; tÞ

@x2
� 1� ðe0aÞ2 @2

@x2

� �
qJ

@2hðx; tÞ
@t2

¼ 0 (10)

Due to the fact that the crack separates the carbon nanotube into two parts, rotation function may not be

shown by a single torsional function, so that two rotation functions are used in this section. It can be seen in

Figure 1 that nanotube is assumed to be divided into two parts by the crack. Therefore, equation (10) can be

rewritten as

0 < x < l1 GJ
@2h1ðx; tÞ

@x2
� 1� ðe0aÞ2 @2

@x2

� �
qJ

@2h1ðx; tÞ
@t2

¼ 0 (11)

l1 < x < L GJ
@2h2ðx; tÞ

@x2
� 1� ðe0aÞ2 @2

@x2

� �
qJ

@2h2ðx; tÞ
@t2

¼ 0 (12)
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Modal displacement function

It has been widely accepted that it is very difficult to calculate an exact analytical solution for the cracked
nanorods, except for rigid boundary conditions (clamped–free and clamped–clamped). In this paper, a torsional
spring is utilized to substitute the effect of crack on the free vibration. The rotations are denoted by h1ðx; tÞ and
h2ðx; tÞ. Assuming harmonic vibrations, h1ðx; tÞ and h2ðx; tÞ can be expressed in the following form

h1ðx; tÞ ¼ nðxÞcosðXtÞ (13)

h2ðx; tÞ ¼ fðxÞcosðXtÞ (14)

where nðxÞ and fðxÞ are the rotation functions about the center of twist and X is the natural frequency of the
problem. The modal rotation functions both nðxÞ and fðxÞ can be described in three regions as follows

nðxÞ ¼

n0 x ¼ 0

nl1 x ¼ l1X1
n¼1

AnsinðanxÞ 0 < x < l1

2
66664

3
77775 (15)

fðxÞ ¼

f0 x ¼ l1

fl2 x ¼ LX1
n¼1

BnsinðbnxÞ l1 < x < L

2
66664

3
77775 (16)

where

an ¼ npx
l1

(17)

bn ¼
npx
l2

(18)

The coefficients (An) in equation (15) can be written as

An ¼ 2

l1

Z l1

0

nðxÞsinðanxÞdx (19)

Taking the first derivative of equation (15) yields65

n0ðxÞ ¼
X1
n¼1

anAncosðanxÞ (20)

Fourier cosine series can be used for equation (20) as follows

n0ðxÞ ¼ f0
l1
þ
X1
n¼1

fncosðanxÞ (21)

The following coefficients can be found

f0 ¼ 2

l1

Z l1

0

n0ðxÞdx ¼ 2

l1
nðl1Þ � nð0Þ½ � (22)
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fn ¼ 2

l1

Z l1

0

n0ðxÞcosðanxÞdx n ¼ 1; 2 . . . (23)

By using the integration by parts rule

fn ¼ 2

l1
nðxÞcosðanxÞ½ �l10 þ 2

l1
an

Z l1

0

nðxÞsinðanxÞdx
" #

(24)

fn ¼ 2

l1
ð�1Þnnðl1Þ � nð0Þ� 	þ anAn (25)

The first two derivatives of the selected function can be obtained by employing Stokes’ transformation
as follows

dnðxÞ
dx

¼ nl1 � n0
l1

þ
X1
n¼1

cos anxð Þ 2 ð�1Þnnl1 � n0
� �

l1
þ anAn

 !
(26)

d2nðxÞ
dx2

¼ �
X1
n¼1

ansin anxð Þ 2 ð�1Þnnl1 � n0
� �

l1
þ anAn

 !
(27)

Similarly, the first and second derivatives of equation (16) can be calculated with the use of the above
algorithm66

dfðxÞ
dx

¼ fl2 � f0
l2

þ
X1
n¼1

cos bnxð Þ 2 ð�1Þnfl2 � f0
� �

l2
þ bnBn

 !
(28)

d2fðxÞ
dx2

¼ �
X1
n¼1

bnsin bnxð Þ 2 ð�1Þnfl2 � f0
� �

l2
þ bnBn

 !
(29)

Substituting equations (13), (14), (27), and (29) into equations (11) and (12), the coefficients An and Bn can be
obtained in terms of n0, nl1 , f0, and fl2 as follows

An ¼ 2

l1

ðl21 � -2
1ðe0aÞ2Þan n0 � ð�1Þnnl1

� �
�-2

1 þ ðl21 � -2
1ðe0aÞ2Þa2n

(30)

Bn ¼ 2

l2

ðl22 � -2
2ðe0aÞ2Þbn f0 � ð�1Þnfl2

� �
�-2

2 þ ðl22 � -2
2ðe0aÞ2Þb2n

(31)

where

-2
1 ¼

qX2l21
G

(32)

-2
2 ¼

qX2l22
G

(33)

74 Journal of Low Frequency Noise, Vibration and Active Control 38(1)



The formulations of the rotations for two parts become

h1ðx; tÞ ¼
X1
n¼1

2

l1

D1an n0 � ð�1Þnnl1
� �
�-2

1 þ D1a2n
cosðXtÞsinðanxÞ (34)

h2ðx; tÞ ¼
X1
n¼1

2

l2

D2bn f0 � ð�1Þnfl2
� �
�-2

2 þ D2b
2
n

cosðXtÞsinðbnxÞ (35)

where

D1 ¼ l21 � -2
1ðe0aÞ2 (36)

D2 ¼ l22 � -2
2ðe0aÞ2 (37)

Nonlocal boundary conditions

A carbon nanotube with length L and one crack is located as in Figure 1. Then the following relation can

be written

L ¼ l1 þ l2 (38)

It is assumed that the crack is located at point l1 from the origin of axes. The carbon nanotube is divided into

two segments with lengths l1, l2. Using equations (9) and (10), the nonlocal torque T can be written as

T ¼ GJþ ðe0aÞ2m @

@t2


 �
@hðx; tÞ

@x
(39)

It may be derived from equation (39) that the nonlocal boundary conditions at the torsional spring points can

be expressed as

/0n0 ¼ GJþ ðe0aÞ2m @

@t2


 �
@h1ðx; tÞ

@x
; x ¼ 0 (40)

Figure 1. Modeling of a cracked nanotube with torsional restraints.
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/Lfl2 ¼ � GJþ ðe0aÞ2m @

@t2


 �
@h2ðx; tÞ

@x
; x ¼ L (41)

where /0; /L are the stiffnesses of the torsional springs at the ends of the carbon nanotube. The jump conditions
can be conveniently written as

hðnl1 � f0Þ ¼ � GJþ ðe0aÞ2m @

@t2


 �
@h1ðl1; tÞ

@x
; x ¼ l1 (42)

@h1ðl1; tÞ
@x

¼ @h2ð0; tÞ
@x

; x ¼ l1 (43)

where h is the crack flexibility parameter. After some mathematical operations, the substitution of equations (13),
(14), (26), and (28) into equations (40) to (43) leads to the four equations as follows

�D1U0 þ c2k2 � 1þ
X1
n¼1

2D2
1k

2 � 2c2D2
1k

4

�D2
1k

2 � p2c2k2n2 þ p2n2

 !
n0 þ 1� c2k2 þ

X1
n¼1

2c2D2
1k

4ð�1Þn � 2D2
1k

2ð�1Þn
�D2

1k
2 � p2c2k2n2 þ p2n2

 !
nl1 ¼ 0

(44)

1� c2k2 þ
X1
n¼1

2c2D2
2k

4ð�1Þn � 2D2
2k

2ð�1Þn
�D2

2k
2 � p2c2k2n2 þ p2n2

 !
f0 þ c2k2 � D2UL � 1 þ

X1
n¼1

2D2
2k

2 � 2c2D2
2k

4

�D2
2k

2 � p2c2k2n2 þ p2n2

 !
fl2 ¼ 0

(45)

c2k2 � 1þ
X1
n¼1

2D2
1k

2 � 2c2D2
1k

4

�D2
1k

2 � p2c2k2n2 þ p2n2

 !
n0

þ ð�c2k2 þ d1
K

þ 1þ
X1
n¼1

2c2D2
1k

4ð�1Þn � 2D2
1k

2ð�1Þn
�D2

1k
2 � p2c2k2n2 þ p2n2

Þnl1 �
D1

K
f0 ¼ 0

(46)

� 1

D1
þ
X1
n¼1

2D1k
2ð�1Þn

�D2
1k

2 � p2c2k2n2 þ p2n2

 !
n0 þ

1

D1
�
X1
n¼1

2D1k
2

�D2
1k

2 � p2c2k2n2 þ p2n2

 !
nl1

þ 1

D2
�
X1
n¼1

2D2k
2

�D2
2k

2 � p2c2k2n2 þ p2n2

 !
f0 þ � 1

D2
�
X1
n¼1

2D2k
2ð�1Þn

�D2
2k

2 � p2c2k2n2 þ p2n2

 !
fl2 ¼ 0

(47)

where

c ¼ e0a

L
(48)

K ¼ GJ

hL
(49)

D1 ¼ l1
L

(50)

D2 ¼ l2
L

(51)

U0 ¼ /0L

GJ
(52)
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UL ¼ /LL

GJ
(53)

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2L2

G

r
(54)

and the following system of equations is obtained in a matrix form

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

2
66664

3
77775

n0
nl1
f0
fl2

2
66664

3
77775 ¼ 0 (55)

where

w11 ¼ �D1U0 þ c2k2 � 1þ
X1
n¼1

2D2
1k

2 � 2c2D2
1k

4

�D2
1k

2 � p2c2k2n2 þ p2n2
(56)

w12 ¼ 1� c2k2 þ
X1
n¼1

2c2D2
1k

4ð�1Þn � 2D2
1k

2ð�1Þn
�D2

1k
2 � p2c2k2n2 þ p2n2

(57)

w13 ¼ 0 w14 ¼ 0 w21 ¼ 0 w22 ¼ 0 (58)

w23 ¼ 1� c2k2 þ
X1
n¼1

2c2D2
2k

4ð�1Þn � 2D2
2k

2ð�1Þn
�D2

2k
2 � p2c2k2n2 þ p2n2

(59)

w24 ¼ c2k2 � D2UL � 1þ
X1
n¼1

2d22k
2 � 2c2D2

2k
4

�D2
2k

2 � p2c2k2n2 þ p2n2
(60)

w31 ¼ c2k2 � 1þ
X1
n¼1

2D2
1k

2 � 2c2D2
1k

4

�D2
1k

2 � p2c2k2n2 þ p2n2
(61)

w32 ¼ �c2k2 þ D1

K
þ 1þ

X1
n¼1

2c2d21k
4ð�1Þn � 2D2

1k
2ð�1Þn

�D2
1k

2 � p2c2k2n2 þ p2n2
(62)

w33 ¼ �D1

K
w34 ¼ 0 (63)

w41 ¼ � 1

D1
þ
X1
n¼1

2D1k
2ð�1Þn

�D2
1k

2 � p2c2k2n2 þ p2n2
(64)

w42 ¼
1

D1
�
X1
n¼1

2D1k
2

�D2
1k

2 � p2c2k2n2 þ p2n2
(65)

w43 ¼
1

D2
�
X1
n¼1

2D2k
2

�D2
2k

2 � p2c2k2n2 þ p2n2
(66)
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w44 ¼ � 1

D2
�
X1
n¼1

2D2k
2ð�1Þn

�D2
2k

2 � p2c2k2n2 þ p2n2
(67)

The eigenvalues (kn) are obtained by setting the determinant of the matrix in equation (55) to 0

wij



 

 ¼ 0 ði; j ¼ 1; 2; 3; 4Þ (68)

Numerical results and discussion

In this section, some typical examples are solved to demonstrate the validity of the proposed solution, also

quantifying the effects of the nonlocal parameter c with crack parameter K on the vibrational response of nano-

tubes. The computed results are obtained using 160 terms in series in equation (68).

Verification studies

In order to validate the presented method, as well as to demonstrate their implementation to dynamical analysis, a

cracked nanotube with hard torsional springs is considered. The torsional springs are taken as U0 ¼ UL ¼ 10; 000

(for the higher torsional spring coefficients, this problem turns into the clamped–clamped nanotube). The crack

parameter K is taken as 0.000001 for noncracked nanotube. The comparison results for the torsional vibration

frequencies of the noncracked nanotube for different torsional vibration modes are tabulated in Table 1. It can be

seen that the present results are in good agreement with the finite element method and literature.44 In the second

verification study, crack K and one of the torsional spring U0 parameters are similar to the first example and the

other torsional spring parameter UL is taken as zero. The comparison studies are tabulated in Table 2. The results

are in good agreement with those obtained from previous studies.44

Table 1. Comparison of the first three torsional frequency parameters of a nanotube with
clamped–clamped.

Clamped–clamped S0 ¼ SL ¼ 109

FEM Demir and Civalek44 Present

Mode ki ki ki

1 3,141 3,141 3.14259

2 6.284 6.283 6.28095

3 9.425 9.424 9.42368

FEM: finite element method.

Table 2. Comparison of the first three frequency parameters of nanorod with clamped–
free ends.

Clamped–free S0 ¼ 109, SL¼ 0

FEM Demir and Civalek44 Present

Mode ki ki ki

1 1.571 1.570 1.57539

2 4.712 4.712 4.73481

3 7.854 7.853 7.85398

FEM: finite element method.
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Effect of crack location and severity

In a fixed–fixed nanorod with a crack, according to equations (44) to (47), so equation (68) will be simplified to
following equation

w33 w34

w43 w44










 ¼ 0 (69)

In this section the effect of crack location and severity on the first vibration frequency is investigated by using
equations (68) and (69). It can be seen from Figures 2 to 5 that by decreasing crack severity K (i.e. the carbon
nanotube becomes stiffer), first torsional frequencies decrease for the constant value of nonlocal parameter. It is
clearly shown in Figures 2 to 5 that the effect of crack severity is decreased by increasing small-scale parameter.
Figures 4 and 5 show the effect of the D1 and D2 parameter on the torsional frequencies highly depends on its
location on the carbon nanotube. It can be concluded from these figures that by increasing the values of crack
severity K torsional frequencies increase. When the crack location becomes closer to the fixed–fixed end, a larger
decrease in the torsional frequencies is observed. The effect of the crack severity parameter on the free torsional

Figure 2. First vibration frequencies as a function of crack location parameter D1 for constant value of nonlocal parameter c ¼ 0:2.

Figure 3. First vibration frequencies as a function of crack location parameter D1 for constant value of nonlocal parameter c ¼ 0:2.
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vibration characteristics of the carbon nanotube is also demonstrated in Figures 6 and 7. The increasing value of

crack severity coefficient leads to a decrease in the magnitude of the first torsional frequency. It is also noticed

from Figures 6 and 7 that the increasing value of the crack location parameter (D1Þ decreases the stiffness of the
carbon nanotube.

Effect of nonlocal parameter

In this subsection, to delineate the effect of small-scale parameter, some numerical case studies are implemented

and assessed for the torsional vibration analysis of cracked nanorods, using the derived formulations in the

“Formulation of the problem” section. As it is seen from Figures 8 to 14, the first torsional vibration frequency

is affected by the nonlocal parameter. This observation is rational, because the torsional rotation is neglected in

the clamped–clamped ends and it makes the carbon nanotube behavior invalidly stiffer than the reality. It can be

noted that the results predicted by the nonlocal elasticity theory are always greater than those of the classical beam

theory. It can be said that the difference among the predicted values is diminishing when the length of the carbon

nanotube becomes larger, thereby indicating that the size effect is only significant when the length of the single-

walled carbon nanotube is comparable to the nonlocal parameter.

Figure 4. First vibration frequencies as a function of crack location parameter D1 for different crack parameters.

Figure 5. First vibration frequencies as a function of crack location parameter D2 for different crack parameters.
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Figure 6. First torsional vibration frequency as a function of crack severity for D1 ¼ 0:10; 0:15; 0:20.

Figure 7. First torsional vibration frequency as a function of crack severity for D1 ¼ 0:30; 0:40; 0:50.

Figure 8. First torsional vibration frequency as a function of nonlocal parameter for K¼ 0.25.
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Figure 9. First torsional vibration frequency as a function of nonlocal parameter for K¼ 0.50.

Figure 10. First torsional vibration frequency as a function of nonlocal parameter for K¼ 0.75.

Figure 11. First torsional vibration frequency as a function of nonlocal parameter for D1 ¼ 0:25.
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Effect of elastic boundary conditions

In the following example, the effect of elastic medium parameter on the dimensionless vibration frequencies is
illustrated in Figure 15(a) to (d). The following mathematical relation is introduced to give a better illustration of
the deformable boundary conditions

Ck ¼ XNL
k =XL

k (70)

in which Ck is used as the nondimensional frequencies. The index (L) expresses the local elasticity theory (e0a ¼ 0)
and (NL) indicates the nonlocal elasticity (e0a 6¼ 0). In Figure 15, a comparison between nondimensional torsional
frequencies of the cracked nanorods with elastic torsional springs at both ends, subjected to different elastic spring
parameters U0 ¼ UL ¼ 1; 10; 50; 200 and constant crack parameter (K¼ 0.00001) is presented for various values of
the length and nonlocal parameters based on Fourier series method. It can be observed that the dimensionless first
six frequencies decrease by increasing torsional spring parameters and it can be stated that elastic torsional spring
parameters have a notable effect on the torsional frequencies of the cracked nanorod.

Figure 12. First torsional vibration frequency as a function of nonlocal parameter for D1 ¼ 0:35.

Figure 13. First torsional vibration frequency as a function of nonlocal parameter for D1 ¼ 0:40.
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Conclusion

Due to few detailed studies on the torsional vibration analysis of cracked nanotubes with deformable boundary

conditions are available, in the current work, a transformation known as “Stokes’ transformation” is applied to

the nonlocal elastic boundary conditions. This method gives more flexibility in supporting conditions. It is aimed

to construct an exact method for torsional vibration of cracked nanotubes with deformable boundary conditions.

A useful coefficient matrix including infinite series is presented for the first time in order to calculate the torsional

frequencies. The accuracy of the proposed method, in deriving the torsional vibration frequencies, has been

examined by means of numerical example problems. The effects of different parameters are discussed in detail.
It is found that most of the previous studies on the torsional vibration analysis of cracked nanorods have been

conducted based on the ignorance of the deformable boundary conditions. As a result, the previous works cannot

be utilized in order to thoroughly study the cracked nanorods under investigation. Motivated by this fact, in this

work, torsional vibration characteristics of nanorods considering the effects of elastic spring boundary conditions

Figure 14. First torsional vibration frequency as a function of nonlocal parameter for D1 ¼ 0:45.

Figure 15. The effect of elastic spring coefficients (U0;UL) on the torsional vibration frequencies.
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are analyzed. Finally, through some numerical examples, the effect of nonlocal, crack and elastic spring param-

eters is investigated. It is concluded that various factors such as crack parameter, torsional spring constants, and

nonlocal parameter play important roles in free torsional vibration response of nanorod.
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