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Abstract This article covers three topics. (1) It establishes links between the density
of certain subsets of the set of primes and related subsets of the set of natural num-
bers. (2) It extends previous results on a conjecture of Bruinier and Kohnen in three
ways: the CM-case is included; under the assumption of the same error term as in
previous work one obtains the result in terms of natural density instead of Dedekind–
Dirichlet density; the latter type of density can already be achieved by an error term
like in the prime number theorem. (3) It also provides a complete proof of Sato–Tate
equidistribution for CM modular forms with an error term similar to that in the prime
number theorem.
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1 Introduction

A very significant recent result in pure mathematics is the proof of the Sato–Tate
conjecture for non-CM modular eigenforms (even for Hilbert eigenforms) [2]. It
asserts that for a normalised (A(1) = 1) cuspidal eigenform f = ∑∞

n=1 A(n)qn

(with q = e2πiz) of weight k ≥ 2 on Γ0(N) (some N ) the normalised coefficients
A(p)

2p(k−1)/2 ∈ [−1,1] are equidistributed with respect to the so-called Sato–Tate mea-
sure, when p runs through the set of primes.

The corresponding result for CM forms has been known for a long time and in fact
is quite a simple corollary of the equidistribution of the values of Hecke characters. In
Sect. 3 of this article we include a proof of a form of this result that additionally pro-
vides an error bound like the one in the prime number theorem (see Theorem 3.1.1).
It relies on an error bound for the equidistribution of the values of Hecke characters
given in [15].

A special case of Sato–Tate equidistribution for non-CM eigenforms shows that
the sets of primes

{
p prime : A(p) > 0

}
and

{
p prime : A(p) < 0

}

both have natural density equal to 1/2. A conjecture of Bruinier and Kohnen ([3]
and [9]) asserts that something similar should hold for certain half-integral weight
modular forms f = ∑∞

n=1 a(n)qn; namely, they conjecture that the sets
{
n ∈ N : a(n) > 0

}
and

{
n ∈ N : a(n) < 0

}

have the same natural density, namely, half of the natural density of {n ∈ N :
a(n) �= 0}. The interest in the distribution of signs is explained by a famous theorem
of Waldspurger relating the squares (a(t))2 for squarefree t to the critical values of
the Hecke L-function of the Shimura lift Ft twisted by an explicit quadratic character
(see [23]); this precisely leaves the sign of a(t) undetermined.

The Bruinier–Kohnen conjecture appears to be quite hard. The main contribution
of the previous work [7] is the observation that the Shimura lift Ft allows one to utilise
Sato–Tate equidistribution for the coefficients of the integral weight eigenform Ft in
order to compute the densities of the sets of primes

{
p prime : a(

tp2) > 0
}

and
{
p prime : a(

tp2) < 0
}
.

If the Shimura lift Ft is non-CM, in [7] it is proved that the densities of these two
sets are equal. In this paper we extend this computation to the CM-case, see Theo-
rem 4.1.1. It turns out that in the CM-case the densities can either be both 1/2 or they
can be 1/4 and 3/4 (see Example 4.1.2).



On conjectures of Sato–Tate and Bruinier–Kohnen 457

In order to study the set of natural numbers {n ∈ N : a(tn2) > 0} (and similarly
for ‘<0’) we set up some general theory, that grew out of analysing the rather ad hoc
methods of [7]. We now describe this. Let χ : N → {−1,0,+1} be a multiplicative
arithmetic function and define

S± = {
p prime : χ(p) = ±1

}
and A± = {

n ∈ N : χ(n) = ±1
}
.

Motivated by the Bruinier–Kohnen conjecture (take χ(n) to be the sign of a(tn2)

supposing a(t) > 0), we study the relation between the densities of S± and A±. We
were unable to prove any results without the assumption of some error term in the
convergence of the natural density of S±. If there is a rather weak error term, then the
sets of primes S± are weakly regular; if the error term is strong (often implied by vari-
ations of the Riemann Hypothesis), then we obtain regular sets (see Definition 2.2.1).
Our main results in this abstract context are Propositions 2.2.2, 2.3.1, and 2.5.2. In
this introduction we do not repeat their precise assertions, but we explain what they
imply for the Bruinier–Kohnen conjecture.

In the case that the Shimura lift Ft has CM, we use the error bound from Theo-
rem 3.1.1 in order to obtain the weak regularity of the set {p prime : a(tp2) > 0} (and
similarly for ‘<0’ and ‘= 0’) and to deduce that

{
n ∈ N : a(

tn2) > 0
}

and
{
n ∈ N : a(

tn2) < 0
}

have the same Dedekind–Dirichlet density (see Definition 2.1.3), which is equal to
half the Dedekind–Dirichlet density of {n ∈ N : a(tn2) �= 0}. Maybe at first sight as-
tonishingly, one obtains this result even in the situation when the densities of the
corresponding sets of primes are not equal. Under the assumption of a similar er-
ror bound in the case that Ft has no CM, one obtains the same result. This had al-
ready been established in [7] under the assumption of a stronger error bound. See
Remark 3.1.3 for some relation of this error bound and the Generalised Riemann Hy-
pothesis. If we assume this stronger error bound (whether Ft is CM or not), then one
can use a result of Delange to derive that the previous statement even holds in terms
of natural density.

The study of the densities of S± and A± is done in Sect. 2. Our aim there is to give
a coherent treatment so that we also recall the relevant definitions. Section 3 is de-
voted to proving Sato–Tate equidistribution for CM modular forms (in fact we show
slightly more) with an error term as in the prime number theorem. In the final Sect. 4
the results towards the Bruinier–Kohnen conjecture are derived from the techniques
provided in the other sections.

2 Densities and sets of primes

In this section we are concerned with the sets

S± = {
p prime : χ(p) = ±1

}
and A± = {

n ∈ N : χ(n) = ±1
}

for a multiplicative arithmetic function χ : N → {−1,0,+1}, as explained in the in-
troduction. We found it necessary to assume more than just that S± has a natural
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density in order to conclude something about the density of A±; namely, we obtain
our results under the assumption that S± is (weakly) regular (see below). We also
show that (weak) regularity is a consequence of a sufficiently good error bound for
the convergence of the natural density of S±.

2.1 Notions of density

Definition 2.1.1 Let P⊂ N be the set of all prime numbers. For a set of primes S ⊆ P

we make the following definitions:

• For x ∈ R, denote πS(x) := #{p ≤ x : p ∈ S}. As usual, denote πP by π .
• PS(z) := ∑

p∈S
1
pz . This defines a holomorphic function on {Re(z) > 1}.

• For a multiplicative function χ : N → R we let Dχ(z) := ∑
n≥1

χ(n)
nz be the corre-

sponding Dirichlet series. If |χ | is bounded, it also defines a holomorphic function
on {Re(z) > 1}. In particular, D1 = ζ(z) is the Riemann-zeta function.

• A function χ : N → R is said to be characteristic on S if χ is multiplicative and
its restriction to P is the characteristic function of the set S.

The following lemma links the Dirichlet series Dχ for some χ that is characteristic
on S to PS . This link is the key to relating density statements on subsets of P to
subsets of N.

Lemma 2.1.2 Let χ : N → {−1,0,1} be a multiplicative function. Then on
{Re(z) > 1} one has

log
(
Dχ(z)

) =
∑

p∈P

χ(p)

pz
+ g(z),

where g(z) is a function that is holomorphic on {Re(z) > 1/2}. In particular, if χ is
characteristic on S, the equality becomes log(Dχ(z)) = PS(z) + g(z).

Proof We use the Euler product Dχ(z) = ∏
p∈P(1 + ∑

n≥1
χ(pn)
pnz ), which is abso-

lutely convergent on {Re(z) > 1} in the sense that
∑

p∈P
∑

n≥1
χ(pn)
pnz converges ab-

solutely in this region.
We first treat the following special case. Let S ⊆ P and χ : N → {0,1} be multi-

plicative such that for any prime p one has χ(pn) = 1 if and only if p ∈ S and n = 1.
Then the Euler factor of Dχ at p is either 1 + 1

pz or 1, depending on whether p ∈ S

or not. We take the logarithm of the Euler product

logDχ(z) =
∑

p∈S

log

(

1 + 1

pz

)

=
∑

p∈S

1

pz
+ g(z)

with g(z) :=
∑

p∈S

∑

m≥2

(−1)m+1

m

(
1

pz

)m

.

It is elementary to prove that g(z) defines a holomorphic function on {Re(z) > 1
2 }.
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In order to tackle the general case, let S± := {p ∈ P : χ(p) = ±1} and define the

multiplicative functions χ± on prime powers by χ±(pn) =
{

1 if p ∈ S± and n = 1,

0 otherwise.

Define Φ(z) := Dχ(z)·Dχ− (z)

Dχ+ (z)
. Then we have on {Re(z) > 1}:

log
(
Φ(z)

) = log
(
Dχ(z)

) + log
(
Dχ−(z)

) − log
(
Dχ+(z)

)

= log
(
Dχ(z)

) + PS−(z) − PS+(z) + g(z),

where g(z) is holomorphic on {Re(z) > 1
2 }. On {Re(z) > 1} the function Φ is de-

scribed by an absolutely converging product Φ(z) = ∏
p∈P Φp(z), where Φp(z) sat-

isfies |1 − Φp(z)| ≤ 20
p2z . It easily follows that this product converges absolutely on

{Re(z) > 1
2 }, which implies the assertion. �

The density of a set of prime numbers (if it exists) measures its size. There are
several notions of density, e.g. Dirichlet density and natural density, which in general
are distinct. In a similar way, one can define analogous notions of density for subsets
of N. Here we recall the definitions. By the symbol limz→1+ we denote the limit
defined by letting z tend to 1 on the real interval (1,∞).

Definition 2.1.3 Let S ⊆ P be a set of primes. The set S is said to have Dirichlet
density equal to δ(S) if the limit

lim
z→1+

∑
p∈S

1
pz

∑
p∈P 1

pz

= lim
z→1+

∑
p∈S

1
pz

log(ζ(z))
= lim

z→1+

∑
p∈S

1
pz

log( 1
z−1 )

exists and is equal to δ(S). Moreover, S is said to have natural density equal to d(S)

if the limit

lim
x→∞

πS(x)

π(x)

exists and is equal to d(S). Let now A ⊆ N be a subset. It is said to have Dedekind–
Dirichlet density δ(A) if the limit

lim
z→1+

∑
n∈A

1
nz

∑
n∈N 1

nz

= lim
z→1+

∑
n∈A

1
nz

ζ(z)
= lim

z→1+(z − 1)
∑

n∈A

1

nz

exists and is equal to δ(A). Similarly, A is said to have natural density d(A) if the
limit

lim
x→∞

#{n ≤ x : n ∈ A}
x

exists and is equal to d(A).

The equalities in the statements all follow from Lemma 2.1.2 and the well-known
fact that the Riemann-zeta function has a simple pole of residue 1 at 1. It is well
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known that if a set of prime numbers S (resp. a set of natural numbers A) has a natural
density, then it also has a Dirichlet density (resp. a Dedekind–Dirichlet density) and
they coincide. A function χ : N → {0,1} that is characteristic on S ⊆ P links the set
S to the set of natural numbers A = {n ∈ N : χ(n) = 1}. The following proposition,
the proof of which is evident in view of Lemma 2.1.2, makes clear the nature of the
relation between the Dirichlet density of S and the Dedekind–Dirichlet density of A.

Proposition 2.1.4 Let S be a set of primes and χ : N → {0,1} be a multiplicative
function characteristic on S and let A = {n ∈ N : χ(n) = 1}. Then the Dirichlet den-
sity of S, if it exists, equals

δ(S) = lim
z→1+

logDχ(z)

log ζ(z)

and the Dedekind–Dirichlet density of A, if it exists, equals

δ(A) = lim
z→1+

Dχ(z)

ζ(z)
= exp

(
lim

z→1+
(
logDχ(z) − log ζ(z)

))
.

We now prove a precise relationship between the densities of A and S. This result
will be strengthened below in Proposition 2.2.2 under the extra assumption of weak
regularity, which is introduced in the next section.

Proposition 2.1.5 Let S be a set of primes and χ : N → {0,1} be characteristic on S

and let A = {n ∈ N : χ(n) = 1}. If δ(A) �= 0 (in particular, the limit exists), then
δ(S) = 1.

Proof As δ(A) �= 0, it follows from Proposition 2.1.4 that

lim
z→1+

(
logDχ(z) − log ζ(z)

)

exists. But we have by Lemma 2.1.2 that

logDχ(z) − log ζ(z) =
∑

p∈S

1

pz
−

∑

p∈P

1

pz
+ g(z) = −

∑

p/∈S

1

pz
+ g(z), (2.1)

where g is a function that is holomorphic on {Re(z) ≥ 1}. This implies the conver-
gence of

∑
p/∈S

1
p

, showing that P \ S is a set of Dirichlet density 0, thus S is of
Dirichlet density 1. �

2.2 Regular and weakly regular sets of primes

Definition 2.2.1 Let S ⊆ P be a set of primes. We call S weakly regular if there is
a ∈ R and a function g(z) which is holomorphic on {Re(z) > 1} and continuous (in
particular, finite) on {Re(z) ≥ 1} such that

PS(z) = a log

(
1

z − 1

)

+ g(z).
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As in [13] (and [7]) we say that S is regular if the function g is holomorphic on
{Re(z) ≥ 1}.1

Clearly, every regular set S is weakly regular. If S is weakly regular, it directly fol-
lows that it has a Dirichlet density, namely δ(S) = a. If S is regular (weakly regular)
of density 0, then PS is holomorphic (continuous) on {Re(z) ≥ 1}.

Proposition 2.2.2 Let S be a weakly regular set of primes and χ : N → {0,1} be
a multiplicative function characteristic on primes with respect to S and let A =
{n ∈N : χ(n) = 1}. Then

δ(A) �= 0 ⇔ δ(S) = 1.

Proof The direction ‘⇒’ was proved in Proposition 2.1.5 without the assumption of
weak regularity. Hence, we now assume that S is weakly regular such that δ(S) = 1. It
follows that P\S is weakly regular of density 0, meaning that

∑
p/∈S

1
pz defines a con-

tinuous function on {Re(z) ≥ 1}. From Eq. (2.1) we get that logDχ(z) − log ζ(z) is
continuous on {Re(z) ≥ 1}, in particular the limit limz→1+ exists, whence by Propo-
sition 2.1.4 it follows that δ(A) exists and is nonzero. �

We next show that sets of primes that have a natural density and additionally sat-
isfy certain error bounds for the convergence of the limit defining the natural density
are (weakly) regular. In [7], Proposition 2.2, we proved such a statement. We will
now weaken the assumption on the error term in a way that still allows to conclude
weak regularity instead of regularity.

Proposition 2.2.3 Let S be a set of primes having natural density d(S). Let E(x) :=
πS(x)
π(x)

− d(S) be the error function. If the integral
∫ ∞

2
|E(x)|
x log(x)

dx converges, then S is
a weakly regular set of primes having Dirichlet density δ(S) = d(S).

Proof The proof follows the proof of [7], Proposition 2.2, very closely and the
reader is referred there for some of the calculations. We put g(x) := E(x)π(x) and
f (z) = ∫ ∞

2
g(x)

xz+1 dx. Then PS(z) = d(S)P (z) + zf (z). Hence, it suffices to show that
f is continuous on {Re(z) ≥ 1}. We use π(x) < x

log(x)−4 for x > 55 (by Theorem 29
of [17]) in order to obtain the estimate

∣
∣g(x)

∣
∣ = ∣

∣E(x)π(x)
∣
∣ ≤ x|E(x)|

log(x) − 4
.

We now use this to estimate f (z) for Re(z) ≥ 1:

∣
∣
∣
∣

∫ ∞

56

g(x)dx

xz+1

∣
∣
∣
∣ ≤

∫ ∞

56

|g(x)|
xRe(z)+1

dx ≤
∫ ∞

56

|E(x)|
x(log(x) − 4)

dx ≤ 2
∫ ∞

56

|E(x)|
x log(x)

dx.

1Added in proof: The notion of regular set of primes already appeared in [4].
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The assumption ensures that the last integral is convergent. Let now ε > 0. There
is hence some N such that | ∫ ∞

N
g(x)dx

xz+1 | < ε/4 for any z with Re(z) ≥ 1. Moreover,

fN(z) := ∫ N

2
g(x)dx

xz+1 is continuous in a neighborhood of any such z. In particular, for
any z1 with Re(z1) ≥ 1 close enough to z we have |fN(z1) − fN(z)| < ε/2. This
implies |f (z1) − f (z)| < ε, as required. �

The following corollary for an explicit error function will be applied in the situa-
tion of CM modular forms in Sect. 3 (see also Proposition 2.2.7 below).

Corollary 2.2.4 Let S be a set of primes having natural density d(S). Let E(x) :=
πS(x)
π(x)

− d(S) be the error function. If there are α > 0, C > 0 and B > 0 such that

|E(x)| ≤ C
log(x)α

for all x > B , then S is a weakly regular set of primes having Dirich-
let density δ(S) = d(S).

Proof Note that the derivative of − 1
α log(x)α

is 1
x log(x)1+α . Thus the former is a primi-

tive function for the upper bound of the error term. As it clearly tends to 0 for x → ∞,
it follows that the assumptions of Proposition 2.2.3 are satisfied. �

The Chebotarev Density Theorem, which plays an essential role in Sect. 3, pro-
vides us with examples of (weakly) regular sets of primes (see Proposition 2.2.7
below), which are used in Sect. 4.

Definition 2.2.5 Let K/Q be a finite Galois extension with Galois group G. We will
say that a set S of finite rational primes is a Chebotarev set for K/Q if for all p ∈ S,
p is unramified in K/Q and, moreover, there exists a subset C ⊆ G, invariant under
conjugation, such that S = {p rational prime: Frobp ∈ C}, where Frobp denotes a lift
to G of the Frobenius element of the residual extension of K/Q at a prime p|p.

We quote the effective version of the Chebotarev Density Theorem from [20].

Theorem 2.2.6 (Chebotarev density theorem) Let K/Q be a finite Galois extension,
and let S be a Chebotarev set, which corresponds to C ⊂ Gal(K/Q). Then the fol-
lowing hold:

(a) For all sufficiently large x, πS(x) = |C|
|G|π(x) + O(x exp(−c

√
log(x))) for some

constant c > 0.
(b) If we assume the Riemann Hypothesis for the Dedekind-zeta function of K , then

for all sufficiently large x,πS(x) = |C|
|G|π(x) + O(x1/2 log(x)).

Proposition 2.2.7 Let K/Q be a finite Galois extension and S a Chebotarev set.
Then S is weakly regular. If the Riemann Hypothesis for the Dedekind-zeta function
of K holds, then S is regular.2

2Added in proof: The assumption of the Riemann Hypothesis is not necessary, see [19], Proposition 1.5.
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Proof Let C ⊂ Gal(K/Q) be the set corresponding to S. Then by part (a) of Theo-
rem 2.2.6, and taking into account that x

log(x)+2 < π(x) for x ≥ 55 (see Theorem 29
of [17]), it follows that, for all sufficiently large x,

∣
∣
∣
∣
πS(x)

π(x)
− |C|

|G|
∣
∣
∣
∣ ≤ c1

x exp(−c2
√

log(x))

π(x)
≤ c1(logx + 2) exp

(−c2
√

log(x)
)

for some positive constants c1 and c2. It is clear that this quantity is less than or equal
to c3

log(x)α
for sufficiently large x, where α and c3 are any positive constants. Thus by

Corollary 2.2.4 we can conclude that S is weakly regular.
If we assume that the Dedekind-zeta function of K satisfies the Riemann Hypoth-

esis, then part (b) of Theorem 2.2.6 yields
∣
∣
∣
∣
πS(x)

π(x)
− |C|

|G|
∣
∣
∣
∣ ≤ c1

x1/2 log(x)

π(x)
≤ c1(logx + 2) log(x)x−1/2

for all big enough values of x, where c1 is some positive constant. Proposition 2.2
of [7] implies that S is regular. �

2.3 An application: weak regularity yields Dedekind–Dirichlet density

In this section we derive an equidistribution result, which will allow us to establish
our results towards the Bruinier–Kohnen conjecture in Sect. 4.

Proposition 2.3.1 Let P = P=0 ∪ P>0 ∪ P<0 be a partition of the set of all primes
into three weakly regular sets such that P=0 is of Dirichlet density 0 and the Dirichlet
density of P<0 is not zero. Let ψ : N → {0,1,−1} be a multiplicative arithmetic
function such that, for every prime p, ψ(p) = 0 (resp. ψ(p) = 1, ψ(p) = −1) if and
only if p ∈ P=0 (resp. p ∈ P>0, p ∈ P<0).

Then {n : ψ(n) > 0} and {n : ψ(n) < 0} have a Dedekind–Dirichlet density, which
for both is 1/2 of the Dedekind–Dirichlet density of {n : ψ(n) �= 0}.

Proof Let us record first that the set {n : ψ(n) �= 0} indeed has a positive Dedekind–
Dirichlet density by Proposition 2.2.2, that is, the limit

lim
z→1+(z − 1)

∑

n∈N

|ψ(n)|
nz

= d (2.2)

exists with 0 < d ≤ 1. Lemma 2.1.2 yields

log
(
Dψ(z)

) =
∑

p∈P

ψ(p)

pz
+ g(z) =

∑

p∈P>0

1

pz
−

∑

p∈P<0

1

pz
+ g(z),

where g(z) is a function that is holomorphic on {Re(z) > 1/2}. Using the definition
of weak regularity for the sets P>0 and P<0, we obtain

log
(
Dψ(z)

) = a log

(
1

z − 1

)

+ h(z),
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or, equivalently,

Dψ(z) = 1

(z − 1)a
exp

(
h(z)

)
,

where a is δ(P>0) − δ(P<0), which is strictly less than 1 by assumption, and h(z) is
a function that is continuous on {Re(z) ≥ 1}. Taking the exponential yields

Dψ(z) =
∑

n∈N,ψ(n)=1

1

nz
−

∑

n∈N,ψ(n)=−1

1

nz
= 1

(z − 1)a
φ(z), (2.3)

where φ(z) = exp(h(z)) is also continuous on {Re(z) ≥ 1}. Adding Eqs. (2.2)
and (2.3) yields

lim
z→1+(z − 1)

(

2
∑

n∈N,ψ(n)=1

1

nz

)

= d,

which is the claimed formula. �

2.4 Towards natural density

In this section we show that regularity of density 1 for a set S ⊆ P suffices to con-
clude that the set of natural numbers corresponding to a function that is characteristic
on S has a positive natural density, and not only a Dedekind–Dirichlet density, whose
existence was shown in Proposition 2.2.2. In fact, one sees that a slightly weaker as-
sumption than regularity works, however, we are unable to prove that weak regularity
is sufficient.

Proposition 2.4.1 Let S ⊆ P be a set of primes of density 1 and let χ : N → {0,1} be
a multiplicative function characteristic on S. We assume that S satisfies the following
condition (which is implied by regularity but not weak regularity):

The function

g(z) :=
∑

p∈S

1

pz
− log

(
1

z − 1

)

,

which is holomorphic on {Re(z) > 1}, is once differentiable at z = 1 in the
sense that ϕ(z) := g(z)−g(1)

z−1 can be continued to a continuous function on
{Re(z) ≥ 1}.

Then there are 0 < a ∈R and a continuous function h on {Re(z) ≥ 1} such that

Dχ(z) = a

z − 1
+ h(z).

Proof Lemma 2.1.2 yields

logDχ(z) = PS + g1(z),
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where g1(z) is holomorphic on {Re(z) ≥ 1}. Combining this with the assumption
yields

logDχ(z) = log
1

z − 1
+ k(z), (2.4)

where k(z) is continuous on {Re(z) ≥ 1} and satisfies that the difference quotient
ψ(z) := k(z)−k(1)

z−1 also defines a continuous function on {Re(z) ≥ 1}. An elementary
calculation yields

exp
(
k(z)

) = exp
(
k(1)

) + (z − 1) exp
(
k(1)

)
( ∞∑

n=1

(z − 1)n−1ψ(z)n

n!

)

.

Note that the series on the right-hand side defines a continuous function on
{Re(z) ≥ 1}. Putting a = exp(k(1)) and combining the previous calculation with
Eq. (2.4) finishes the proof. �

We now use the following version of the famous Wiener–Ikehara theorem taken
from [8] in order to conclude the existence of natural density instead of ‘only’
Dedekind–Dirichlet density in some cases.

Theorem 2.4.2 (Wiener–Ikehara) Let (an)n be a sequence of real numbers satisfy-
ing:

1. an ≥ 0 for all n ∈ N.
2.

∑
n≥1

an

nz converges for Re z > 1.
3. There exist a ∈ C, g(z) continuous on {Re z ≥ 1} such that

∑

n≥1

an

nz
= a

z − 1
+ g(z) for all z ∈ {Re z > 1}.

4. There exists C > 0 such that, for all n ∈N,
∑n

k=1 ak ≤ Cn.

Then

lim
n→∞

∑n
k=1 ak

n
= a.

The hard assumption in our case is 3; it is a strong form of Dedekind–Dirichlet
density. The conclusion of Proposition 2.4.1 is that this strong form holds under
the assumptions of that proposition. Thus we obtain from the Wiener–Ikehara Theo-
rem 2.4.2:

Corollary 2.4.3 Assume the set-up of Proposition 2.4.1. Let A := {n ∈N : χ(n) �= 0}.
Then A has a natural density, which is equal to a > 0.

2.5 An application: regularity yields natural density

In this section, we utilise the following theorem of Delange in order to strengthen
Proposition 2.3.1 to natural density under the assumption of regularity.
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Theorem 2.5.1 ([5]) Let f : N → C be a multiplicative arithmetic function, satisfy-
ing:

1. |f (n)| ≤ 1 for all n ∈N.

2. There exists a ∈C, a �= 1, such that limx→∞
∑

p≤x,p prime f (p)

π(x)
= a.

Then

lim
x→∞

∑
n≤x f (n)

x
= 0.

Proposition 2.5.2 Let P = P=0 ∪P>0 ∪P<0 be a partition of the set of all primes into
three sets with natural density, such that P=0 is regular of density 0 and the natural
density of P<0 is not zero. Let ψ : N → {0,1,−1} be a multiplicative arithmetic
function such that, for every prime p, ψ(p) = 0 (resp. ψ(p) = 1, ψ(p) = −1) if and
only if p ∈ P=0 (resp. p ∈ P>0, p ∈ P<0).

Then {n : ψ(n) > 0} and {n : ψ(n) < 0} have a natural density, which for both is
1/2 of the natural density of {n : ψ(n) �= 0}.
Proof We want to apply Delange’s Theorem 2.5.1 with f = ψ . The first condition is
trivially satisfied. Concerning the second condition, note that

∑

p≤x,p prime

f (p) = #{p ≤ x : p ∈ P>0} − #{p ≤ x : p ∈ P<0},

thus

lim
x→∞

∑
p≤x,p prime f (p)

π(x)
= lim

x→∞

(
#{p ≤ x : p ∈ P>0}

π(x)
− #{p ≤ x : p ∈ P<0}

π(x)

)

exists because both P>0 and P<0 have natural density by hypothesis, and since the
natural density of P<0 is not zero, the limit does not equal 1. Therefore the second
condition is also satisfied. As a conclusion, we obtain that

lim
x→∞

∑
n≤x ψ(n)

x
= 0.

In other words,

lim
x→∞

#{n ≤ x : ψ(n) > 0} − #{n ≤ x : ψ(n) < 0}
x

= 0. (2.5)

Note that |ψ | is characteristic on P\P=0, thus by Corollary 2.4.3 the set {n : ψ(n) �= 0}
has a natural density, call it a. Therefore

lim
x→∞

#{n ≤ x : ψ(n) > 0} + #{n ≤ x : ψ(n) < 0}
x

= a. (2.6)

Adding and subtracting (2.5) and (2.6), we obtain that both limits

lim
x→∞

#{n ≤ x : ψ(n) > 0}
x

and lim
x→∞

#{n ≤ x : ψ(n) < 0}
x

exist, and by (2.5) they coincide. �
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3 Sato–Tate conjecture with error terms

In this section we collect some known results about the distribution of Fourier coef-
ficients of modular eigenforms and for the CM-case we provide a proof of an error
bound similar to the one in the prime number theorem.

3.1 Statements

A sequence (xn)n∈N ⊆ [−1,1] is said to be μ-equidistributed (see [10], Chap. 3,
Definition 1.1) for a nonnegative regular normed Borel measure μ on [−1,1] if for
all continuous functions f : [−1,1] → R,

lim
N→∞

1

N

N∑

n=1

f (xn) =
∫ 1

−1
f dμ.

Let k,N ∈ N, and let f ∈ Sk(Γ0(N)) be a normalised cuspidal modular eigenform.
Let f (z) = ∑∞

n=1 anq
n be the Fourier expansion of f at infinity. Since f has trivial

character, an ∈ R for all n ∈ N and by the Ramanujan–Petersson bounds, |ap| ≤
2p(k−1)/2. It is then natural to study the distribution of ap

2p(k−1)/2 in the interval [−1,1]
as p runs through the prime numbers. It turns out that these values are equidistributed,
but the distribution is quite different according to whether the modular eigenform has
complex multiplication or not. The Sato–Tate measure, denoted μST, and the Sato–
Tate measure in the CM case, denoted μCM, are the probability measures defined on
[−1,1] by the following expressions: for every Borel-measurable set A,

μST(A) := 2

π

∫

A

√
1 − t2 dt and μCM(A) := 1

2
δ0(A) + 1

2π

∫

A

1√
1 − t2

dt,

where δ0 denotes the Dirac measure at zero.
The Sato–Tate conjecture, now a theorem (cf. [2]), asserts that if f has no CM, the

real numbers ap

2p(k−1)/2 are equidistributed in [−1,1] with respect to the measure μST

as p runs through the primes. Instead of equidistribution in the sense of its definition,
we are rather interested in the set of primes defined by the condition

SI :=
{

p ∈ P : ap

2p(k−1)/2
∈ I

}

,

where I ⊆ [−1,1] is a subinterval (open, closed or half-open) of [−1,1]. The Sato–
Tate conjecture implies that SI has a natural density equal to μST(I ). If f has CM
it follows from the equidistribution of the values of Hecke characters that SI has
a natural density equal to μCM(I ). Theorem 1.2 in Chap. 3 of [10] can be used to
show that also in this case the values ap

2p(k−1)/2 are μCM-equidistributed in the sense of
the definition; but note that from μCM-equidistribution alone one may not conclude
anything on the natural density of SI if the boundary of I has positive mass.

In Sect. 4 we need some knowledge of the speed of the convergence of the quotient

#{p ∈ P : p ≤ x and p ∈ SI }
π(x)

(3.1)



468 S. Arias-de-Reyna et al.

to its limit. In the CM-case the following theorem provides such an error term, which
follows from the work of Hecke on equidistribution of the values of Hecke characters.
Since we did not find a reference with the precise statement as above (the result of
equidistribution of the values of Hecke characters with an error term only seems to
have been published in 1998 in [15]), we include a proof in this section with and
without assuming the Generalised Riemann Hypothesis.

Theorem 3.1.1 Let k,N ∈N and let f ∈ Sk(Γ0(N)) be a normalised cuspidal mod-
ular eigenform with Fourier expansion f (z) = ∑∞

n=0 anq
n. Assume that f has CM.

(a) Then there exists a constant c1 > 0 (depending only on f ) such that, for all
subintervals (open, closed, or half-open) I ⊆ [−1,1],

#

{

p prime : p ≤ x,
ap

2p(k−1)/2
∈ I

}

= μCM(I )π(x) + O
(
x exp(−c1

√
logx)

)
,

where the implied constant depends only on f .
(b) Assume the Generalised Riemann Hypothesis for all powers of the Hecke char-

acter underlying f (see Sect. 3.2). Then for all subintervals (open, closed, or
half-open) I ⊆ [−1,1] and all ε > 0,

#

{

p prime : p ≤ x,
ap

2p(k−1)/2
∈ I

}

= μCM(I )π(x) + O
(
x1/2+ε

)
.

Very recently, the following theorem covering the case of non-CM modular forms
of squarefree level was proved.

Theorem 3.1.2 (Rouse, Thorner) Let k,N ∈ N with squarefree N , and let f ∈
Sk(Γ0(N)) be a normalised cuspidal modular eigenform with Fourier expansion
f (z) = ∑∞

n=0 anq
n. Assume that f does not have CM. Assume that all the symmet-

ric power L-functions of f are automorphic and satisfy the Generalised Riemann
Hypothesis. Then for all subintervals (open, closed, or half-open) I ⊆ [−1,1],

#

{

p prime : p ≤ x,
ap

2p(k−1)/2
∈ I

}

= μST(I )π(x) + O
(
x3/4).

Proof This is an easy consequence of Theorem 1.3 of [18]. �

Remark 3.1.3 For non-CM modular forms f we have not found in the literature any
unconditional result for the error term in the convergence of the quotient (3.1) to the
natural density of SI .

When f is attached to an elliptic curve E/Q, if we assume analytic continuation,
functional equation, and the Generalised Riemann Hypothesis for the L-function at-
tached to the mth symmetric power of E for every m ∈ N, then V. Kumar Murty
(cf. [12]) states the error bound

#

{

p prime : p ≤ x,
ap

2p(k−1)/2
∈ I

}

= μST(I )π(x) + O
(
x1/2+ε

)
. (3.2)
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Akiyama and Tanigawa proved a converse of this statement. Namely, they prove
that, if formula (3.2) holds for an elliptic curve E/Q without CM, then the Gener-
alised Riemann Hypothesis holds for the L-function L(s,E) (cf. Theorem 2 of [1]).

Jeremy Rouse informed us that he expects that a statement similar to Theo-
rem 3.1.2 should hold in non-squarefree level.

Corollary 3.1.4

(a) In the set-up of Theorem 3.1.1 part (a), the set {p prime : ap

2p(k−1)/2 ∈ I } is weakly

regular.
(b) In the set-up of Theorem 3.1.1 part (b) or of Theorem 3.1.2, the set {p prime :

ap

2p(k−1)/2 ∈ I } is regular.

Proof This follows respectively from Corollary 2.2.4 and [7], Proposition 2.2. �

Remark 3.1.5 If f is a Hecke eigenform with real Fourier coefficients an, a natural
question to study is the distribution of the signs of the an as n runs through the set
of natural numbers. For f of half-integral weight, this study is the content of the
Bruinier–Kohnen conjecture (see Sect. 4). Here we include the easier case of f ∈
Sk(Γ0(N)) of integral weight. We can combine the results of the previous sections
with those in this section in order to address this question. Define the sets P>0 (resp.
P<0, P=0, P�=0) as the set of primes such that ap > 0 (resp. ap < 0, ap = 0, ap �= 0).

(a) Assume that f has CM. By Corollary 3.1.4, the set P=0 is weakly regular of
natural density equal to 1/2, and the sets P>0 and P<0 are both weakly regular
of density 1/4. Consider the character χ : N → {0,1} defined as χ(n) = 1 if and
only if an �= 0. We can apply Proposition 2.2.2 and conclude that {n ∈ N : an �= 0}
cannot have a positive Dedekind–Dirichlet density.

(b) Assume now that f satisfies the assumptions of Theorem 3.1.2. Then by Corol-
lary 3.1.4 the sets P=0, P>0, and P<0 are regular of natural density equal
to 0, 1/2, 1/2, respectively. Thus by Proposition 2.5.2, {n ∈ N : an > 0} and
{n ∈ N : an < 0} have the same natural density, which equals 1/2 of the natural
density of {n ∈ N : an �= 0}.

We devote the rest of this section to explaining in detail how the equidistribution
of the values of the Hecke characters implies Theorem 3.1.1.

3.2 Hecke characters

We first set up some general notation that will below be specialised to imaginary
quadratic fields. Let K be a number field of degree g, and let OK the ring of integers
of K . As usual, we denote g = r1 + 2r2, where r1 is the number of real embeddings
of K , and 2r2 is the number of complex embeddings. We will write the embeddings as
τ1, . . . , τg : K →C, where the first r1 are the real embeddings, and τν is the complex
conjugate of τν+r2 for all ν ∈ {r1, . . . , r1 + r2}. For any fractional ideal a of K , we
denote by vp(a) the exponent of p in the factorisation of a into prime ideals. Let I be
the group of fractional ideals of K , and let us fix an integral ideal m (not necessarily
a maximal ideal) of the ring of integers of K .
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Definition 3.2.1 Let a, b ∈ K×. We say that a ≡ b mod×m if, for all p|m,
vp(a − b) ≥ vp(m).

Definition 3.2.2 Let I (m) := {a ∈ I : (a,m) = 1}. A character ξ : I (m) → {z ∈ C :
|z| = 1} is called a Hecke character mod m if there exists a set of pairs of real numbers
{(uν, vν), ν = 1, . . . , r1 + r2}, satisfying:

• uν ∈ Z; moreover, uν ∈ {0,1} if ν ≤ r1.
• ∑r1+r2

ν=1 vν = 0.

• For all a ∈ K× such that a ≡ 1 mod×m, ξ((a)) = ∏r1+r2
ν=1 (

τν(a)
|τν (a)| )

uν |τν(a)|ivν .

The values of the Hecke characters are equidistributed on the unit circle: the
probability that they lie on an arc is proportional to the length of the arc. This
fact was already known to Hecke (cf. [6]). The explicit version we state below
are Theorem 1 and Proposition 4 of [15]. We use the standard notation πK(x) =
#{p prime ideal of K : NormK(p) ≤ x}.

Theorem 3.2.3 Let K be a number field, m an integral ideal of K and ξ : I (m) →
{z ∈C : |z| = 1} a Hecke character of infinite order.

(a) There exists a constant c1 > 0 (depending only on K) such that, for all α,β ∈
[−π,π] with β ≤ α,

#
{
p prime ideal of OK : (p,m) = 1,NK(p) ≤ x, arg

(
ξ(p)

) ∈ [β,α)
}

= 1

2π
(α − β)πK(x) + O

(
x exp(−c1

√
logx)

)
,

where the implicit constant depends only on K .
(b) Assume in addition that the L-functions of all powers of ξ satisfy the Generalised

Riemann Hypothesis. Then for all ε > 0 and all α,β ∈ [−π,π] with β ≤ α,

#
{
p prime ideal of OK : (p,m) = 1,NK(p) ≤ x, arg

(
ξ(p)

) ∈ [β,α)
}

= 1

2π
(α − β)πK(x) + O

(
x1/2+ε

)
.

We may replace the interval [β,α) by [β,α], (β,α] or (β,α) in the statement of
Theorem 3.2.3.

Remark 3.2.4 It is straightforward to translate Theorem 3.2.3 into the following state-
ment on the distribution of the projections of ξ(p) to the real axis: For all subintervals
I ⊆ [−1,1] (open, closed, or half-open), one has

#
{
p prime ideal of OK : (p,m) = 1,NK(p) ≤ x,Re

(
ξ(p)

) ∈ I
}

=
(

1

π

∫

I

1√
1 − t2

dt

)

πK(x) + O
(
x exp(−c1

√
logx)

)
.

Under the assumption of part (b) the error term is O(x1/2+ε).
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Assume now that K = Q(
√

d) is an imaginary quadratic field. In this case g = 2,
r1 = 0 and r2 = 1. Thus in this particular case, given an integral ideal m of K as
above, a Hecke character is a character ξ : I (m) → {z ∈ C : |z| = 1} such that, for
all a ∈ K× such that a ≡ 1 mod×m, it holds that ξ((a)) = (

τ(a)
|τ(a)| )

u for some u ∈ Z,
which we may assume positive by changing the choice of the embedding τ by its con-
jugate, if necessary. The next result (cf. Theorem 4.8.2 of [11]) attaches CM modular
forms to such characters:

Theorem 3.2.5 Let K , m, ξ , u as above. Assume u �= 0. Then the expression

f (z) :=
∑

a

ξ(a)NK/Q(a)u/2qNK/Q(a) (3.3)

defines a modular form f ∈ Su+1(N,χ), where a runs through all integral ideals
of K with (a,m) = 1, N = |d|NormK(m) and where χ is the Dirichlet character
defined as

χ(m) =
(

d

m

)

ξ
(
(m)

)
sgn(m)u for all m ∈ Z. (3.4)

Conversely, any modular form with CM arises in this way from some Hecke char-
acter of an imaginary quadratic field (cf. [16], Theorem 4.5).

3.3 Equidistribution of Fourier coefficients of CM modular forms

Assume now that we have a normalised eigenform f ∈ Sk(Γ0(N)) such that f has
CM by the imaginary quadratic field K . Let ξ be the Hecke character that gives rise
to f as in Theorem 3.2.5. Then the Fourier expansion of f looks like Eq. (3.3). In
particular, for all primes p � N , we have

ap =
{

ξ(p1)NK(p1)
k−1

2 + ξ(p2)NK(p2)
k−1

2 if (p) = p1p2 with p1 �= p2;
0 if (p) is inert in K.

Since f has trivial nebentypus, Eq. (3.4) implies that ξ((p)) = 1 whenever p splits
in K . Thus if (p) = p1p2, then ξ(p1) and ξ(p2) are complex conjugates. Therefore

ap

2p(k−1)/2
= Re

(
ξ(p1)

)
. (3.5)

We introduce the notation

πK/Q,split(x) := #
{
p rational prime : p ≤ x and (p) splits in K/Q

}

and similarly πK/Q,inert(x) and πK/Q,ram(x).

Lemma 3.3.1 We have that

#
{
p prime ideal of OK : NormK/Q ≤ x and p/(p∩Z) is not split

} = O(
√

x)

and πK(x) = 2πK/Q,split(x) + O(
√

x).
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Proof The number of elements in the set of the first claim is clearly at most
#{p prime : p ≤ √

x} = O(
√

x). The second claim follows from the equality

πK(x) = 2πK/Q,split(x) + πK/Q,inert(
√

x) + πK/Q,ram(x)

and the fact that only finitely many primes ramify in K/Q. �

Proof of Theorem 3.1.1 We only prove part (a), since the arguments in part (b) are
entirely analogous. Let I ⊆ [−1,1] be a subinterval. We want to count how many
primes p satisfy that ap

2p(k−1)/2 ∈ I . We count the split and the inert primes separately
and start with the inert ones:

#

{

p prime inert in K : p ≤ x,p � N,
ap

2p(k−1)/2
∈ I

}

=
{

#{p prime inert in K : p ≤ x,p � N} if 0 ∈ I ;
0 if 0 /∈ I.

This implies

#

{

p prime inert in K : p ≤ x,p � N,
ap

2p(k−1)/2
∈ I

}

= 1

2
δ0(I )π(x) + O

(
x exp(−c

√
logx)

)
, (3.6)

where we have used that #{p prime inert in K : p ≤ x,p � N} = 1
2π(x) +

O(x exp(−c
√

logx)) for some constant c > 0, which follows from part (a) of The-
orem 2.2.6. The split primes are counted using Remark 3.2.4 and Lemma 3.3.1 as
follows:

#

{

p prime split in K : p ≤ x,p � N,
ap

2p(k−1)/2
∈ I

}

= 1

2
#
{
p prime of OK : NormK/Q(p) ≤ x,p/(p∩Z) is split ,Re

(
ξ(p)

) ∈ I
}

= 1

2
#
{
p prime of OK : NormK/Q(p) ≤ x,Re

(
ξ(p)

) ∈ I
} + O(

√
x)

= 1

2

(
1

π

∫

I

1√
1 − t2

dt

)

πK(x) + O
(
x exp(−c

√
logx)

)

=
(

1

π

∫

I

1√
1 − t2

dt

)

πK/Q,split(x) + O
(
x exp(−c

√
logx)

)

= 1

2

(
1

π

∫

I

1√
1 − t2

dt

)

π(x) + O
(
x exp(−c

√
logx)

)
(3.7)

for some constant c > 0. The theorem follows by adding Eqs. (3.6) and (3.7). �
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4 Application to the Bruinier–Kohnen conjecture

4.1 Equidistribution of signs of half-integral weight modular forms: the prime case

In this section, we state an analogue of the Bruinier–Kohnen sign equidistribu-
tion conjecture for the family {a(tp2)} where t is a squarefree number such that
a(t) �= 0 and p runs through the primes for a half-integral weight modular form
whose Shimura lift is without CM or with CM. The proof will be carried out in
Sect. 4.2. Furthermore, we will give some properties of these coefficient sets. Note
that the following theorem is an improvement of Theorems 4.1 and 4.2 of [7].

We start by summarising some known facts about half-integral weight modular
forms and the Shimura lift. Let k ≥ 2. According to Shimura [21] and Niwa [14], if f

is a Hecke eigenform of weight k + 1/2 with Fourier expansion f = ∑∞
n=1 a(n)qn ∈

Sk+1/2(N,χ) then there is a corresponding modular form Ft ∈ S2k(N/2, χ2) for
fixed t ≥ 1 squarefree such that a(t) �= 0, named the Shimura lift of f with re-
spect to t , such that the Tn2 -Hecke eigenvalue on f agrees with the Tn-Hecke eigen-
value on Ft . For k = 1 suppose that f is contained in the orthogonal complement
with respect to the Petersson scalar product of the subspace Sk+1/2(N,χ) gener-
ated by unary theta functions as in [3]. The Fourier expansion of Ft is given by
Ft(z) = ∑

n≥1 At(n)qn where

At(n) :=
∑

d|n
χt,N (d)dk−1a

(
tn2

d2

)

, (4.1)

where χt,N denotes the character χt,N (d) := χ(d)(
(−1)kN2t

d
). Moreover, the Fourier

coefficients are multiplicative in the sense

a
(
tm2)a

(
tn2) = a(t)a

(
tm2n2) (4.2)

for (n,m) = 1. If Ft has CM, then let μ denote μCM, otherwise put μ = μST. We
assume throughout that χ is trivial or quadratic and that f has real coefficients. This
implies that Ft also has real coefficients.

The following is our main theorem about the distribution of signs of the coeffi-
cients a(tp2), when p runs through the primes. In the statement we understand by an
equality of two Dirichlet characters the equality of the underlying primitive charac-
ters (i.e. we allow them to differ at finitely many primes).

Theorem 4.1.1 Assume the set-up above and define the set of primes

P>0 := {
p ∈ P : a(

tp2) > 0
}

and similarly P<0 and P=0 (depending on f and t).

(a) If Ft has no complex multiplication then the sets P>0 and P<0 have natural
density 1/2 and the set P=0 has natural density 0.

(b) (i) If Ft has complex multiplication and χt,N = 1 then the set P=0 has natural
density equal to zero, and the sets P>0 and P<0 have natural densities, re-
spectively 1/4 and 3/4 if a(t) > 0, and respectively 3/4 and 1/4 if a(t) < 0.
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(ii) If Ft has complex multiplication and χt,N = δ, where δ is the quadratic
Dirichlet character corresponding to the imaginary quadratic field by which
f has CM, then the set P=0 has natural density equal to zero, and the sets
P>0 and P<0 have natural densities, respectively 3/4 and 1/4 if a(t) > 0,
and respectively 1/4 and 3/4 if a(t) < 0.

(iii) If Ft has complex multiplication and χt,N /∈ {1, δ} then the set P=0 has nat-
ural density equal to zero, and the sets P>0 and P<0 have the same natural
density which is equal to 1/2.

(c) If Ft has no complex multiplication then we additionally assume that there are
C > 0 and α > 0 such that for all subintervals [a, b] ⊆ [−1,1] one has

∣
∣
∣
∣

#{p ≤ x prime | At (p)

a(t)2pk−1/2 ∈ [a, b]}
π(x)

− μ
([a, b])

∣
∣
∣
∣ ≤ C

log(x)α
.

Then the sets P>0, P<0, and P=0 are weakly regular sets of primes.
(d) Assume here that there are C > 0 and α > 0 such that for all subintervals [a, b] ⊆

[−1,1] one has

∣
∣
∣
∣

#{p ≤ x prime | At (p)

a(t)2pk−1/2 ∈ [a, b]}
π(x)

− μ
([a, b])

∣
∣
∣
∣ ≤ C

xα

(note that this condition is satisfied if Ft/a(t) fulfills the assumptions of Theo-
rem 3.1.2, see also Remark 3.1.3). Then the sets P>0, P<0, and P=0 are regular
sets of primes.

Example 4.1.2 Consider the elliptic curve defined by the equation

y2 = x3 − x.

This elliptic curve has conductor 32 and has CM by Z[i]. Let F = ∑∞
n=1 A(n)qn ∈

S2(32) be the associated cuspidal eigenform. We have that, for all p ≡ −1 (mod 4),
A(p) = 0, that is, F has CM by Q(i). In [22], Tunnell has shown that there exist mod-
ular forms f1 ∈ S3/2(128) (trivial character) and f2 ∈ S3/2(128, χ2), where χ2 = ( 2

· ),
such that their Shimura lifts with t = 1 coincide with F .

• For f1, we have χ1,128(p) = (−1·4
p

), which coincides with the character by which
F has CM. Thus, P>0 has natural density 3/4 and P<0 has natural density 1/4.

• For f2, we have χ1,128(p) = (−2
p

), which is different from the trivial character
and the character by which F has CM. In this case the densities of P>0 and P<0

coincide and they are equal to 1/2.

Remark 4.1.3

(a) For fixed squarefree t such that a(t) �= 0 we use the notation:

A(p) := a(tp2)

a(t)2pk−1/2
and B(p) := At(p)

a(t)2pk−1/2
.
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Note that Eq. (4.1) implies

A(p) = B(p) − χt,N (p)

2
√

p
. (4.3)

The main point in our approach is that we view the sequence A(p) as a ‘per-
turbed’ version of the sequence B(p).

(b) We remark that ‘small’ perturbations preserve the property of a sequence to be
equidistributed. More precisely, let μ be a nonnegative regular normed Borel
measure on [−1,1] and (xn)n∈N ⊆ [−1,1] be a μ-equidistributed sequence. Let
(yn)n∈N ⊆ [−1,1] be a sequence such that

lim
n→∞|xn − yn| = 0.

Then also (yn)n∈N is μ-equidistributed.
This follows from a straightforward calculation using the definition of μ-

equidistribution and the compactness of [−1,1].
(c) Returning to our set-up of modular forms, we first remark that the set S of

primes p such that a(tp2)

2a(t)pk−1/2 /∈ [−1,1] has natural density 0 (this is an easy
consequence of Theorem 4.2.1 below).

Part (b) above together with Eq. (4.3) thus implies that the elements

(
a(tp2)

2a(t)pk−1/2 )p∈P\S are μ-equidistributed.

We stress that equidistribution of a(tp2)

2a(t)pk−1/2 is not sufficient to imply equidis-
tribution of signs if the measure has points of positive mass (like μCM). See
for instance Example 4.1.2. This is the reason why we are not only interested
in equidistribution in the sense of the definition, but, are studying the limits
limN→∞ #{n≤N :xn∈I }

N
for all intervals I , even those having a boundary of posi-

tive measure.

4.2 Densities of perturbed sequences

In this section we provide a treatment of an abstract setting modelled on the rela-
tion between coefficients of half-integral and integral weight modular forms under
the Shimura lift (see, in particular, Remark 4.1.3), and we will use it to prove Theo-
rem 4.1.1.

Theorem 4.2.1 Let χ be a Dirichlet character of order dividing 2. Let B : P →R

be a map and define A : P → R by the formula A(p) := B(p) − χ(p)
y
√

p
for some

0 �= y ∈R. Let D = {x1, . . . , xn} ⊂ [−1,1]. For any I ⊆ [−1,1] define

SI := {
p ∈ P : B(p) ∈ I

}
and T ′

I := {
p ∈ P : A(p) ∈ I,B(p) /∈ D

}
.

Let f : (−1,1) → R≥0 be an integrable function and w1, . . . ,wn ≥ 0. Define a
measure on [−1,1] by μ(I) = ∫

I
f (t) dt + ∑n

i=1 wiδxi
(I ), where δxi

is the Dirac
measure at the point xi , for any Borel measurable subset I ⊆ [−1,1]. Assume that
μ([−1,1]) = 1 and that for all intervals I ⊆ [−1,1] (open, closed or half-open) the
set SI has natural density μ(I).
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(a) Then for any interval I ⊆ [−1,1] (open, closed or half-open), the set T ′
I has

natural density
∫
I
f (t) dt .

(b) Assume that there are m ∈ N≥1 and M > 0 such that for all ε > 0 small enough

the integrals | ∫ 1
1−ε

f (t) dt | and | ∫ −1+ε

−1 f (t) dt | are bounded above by Mε1/m.
Assume, moreover, that there is a function E(x) tending to 0 as x → ∞ such that
for all intervals I ⊆ [−1,1],

∣
∣
∣
∣
πSI

(x)

π(x)
− μ(I)

∣
∣
∣
∣ ≤ E(x).

Then for any interval I ⊆ [−1,1] (open, closed or half-open), there is C > 0
such that for all big enough x,

∣
∣
∣
∣

πT ′
I
(x)

π(x)
−

∫

I

f (t) dt

∣
∣
∣
∣ ≤ C ·

(

E(x) + 1

x1/(2m+2)

)

.

Proof For any interval I ⊆ [−1,1] define

S′
I (x) := {

p ∈ P : B(p) ∈ I,B(p) /∈ D
} = SI\D.

By assumption the set S′
I has natural density

∫
I
f (t) dt . Let a be the start point and

b the end point of I . Let ε > 0 be small enough. For all p > 1
y2ε2 one has |χ(p)

y
√

p
| < ε.

One observes the inequalities

πS′[a+ε,b−ε](x) − π(1/(yε)2)

π(x)
≤

πT ′[a,b](x)

π(x)
≤

πS′[max{−1,a−ε},min{1,b+ε}](x) + π(1/(yε)2)

π(x)
.

(4.4)
(a) From Eq. (4.4) we obtain the inequalities

∫ b−ε

a+ε

f (t) dt ≤ lim inf
x→∞

πT ′[a,b](x)

π(x)
and lim sup

x→∞

πT ′[a,b](x)

π(x)
≤

∫ min{1,b+ε}

max{−1,a−ε}
f (t) dt.

Letting ε tend to 0 we obtain

lim sup
x→∞

πT ′[a,b](x)

π(x)
≤

∫ b

a

f (t) dt ≤ lim inf
x→∞

πT ′[a,b](x)

π(x)
,

implying the result.
(b) Eq. (4.4) yields

−
∫ a+ε

a

f (t) dt −
∫ b

b−ε

f (t) dt − (n + 1)E(x) − π(1/(yε)2)

π(x)

≤
πT ′[a,b](x)

π(x)
−

∫ b

a

f (t) dt

≤
∫ a

max{−1,a−ε}
f (t) dt +

∫ min{1,b+ε}

b

f (t) dt + (n + 1)E(x) + π(1/(yε)2)

π(x)
,
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which is valid for all (small enough) ε > 0 and all (big enough) x. Using the assump-
tions we obtain

∣
∣
∣
∣

πT ′[a,b](x)

π(x)
−

∫ b

a

f (t) dt

∣
∣
∣
∣ ≤ 2Mε1/m + π(1/(yε)2)

π(x)
+ (n + 1)E(x).

We may (and do) assume that E(x) ≥ 1
x1/(2m+2) for large enough x. Let ε := E(x)m.

One finds

π(1/(yε)2)

π(x)
= π(1/(y2E(x)2m))

π(x)
∼ log(x)

y2 · E(x)2m · log(1/(y2E(x)2m)) · x ≤ C ·E(x)

for x big enough and suitable C > 0. Thus we obtain the claimed inequality. �

Remark 4.2.2 For the applications below we remark that for I ⊆ [−1,1] we have

{
p ∈ P : A(p) ∈ I

} = T ′
I �

n⊔

i=1

{
p ∈ P : B(p) = xi,A(p) ∈ I

}

= T ′
I �

n⊔

i=1

(
{
p ∈ P : B(p) = xi

} ∩
{

p ∈ P : xi − χ(p)

y
√

p
∈ I

})

.

Note that we have

{

p ∈ P : xi − χ(p)

y
√

p
∈ I

}

=
{

finite set if xi /∈ I ,

P \ finite set if xi ∈ ◦
I ,

where I denotes the closure and
◦
I the interior of I . If I = [xi, b] with b > xi , then,

moreover,

{

p ∈ P : xi − χ(p)

y
√

p
∈ I

}

=
{

p ∈ P : χ(p) = − y

|y|
}

\ finite set,

and analogously for I = [a, xi] with a < xi ,

{

p ∈ P : xi − χ(p)

y
√

p
∈ I

}

=
{

p ∈ P : χ(p) = y

|y|
}

\ finite set.

The same formulas hold if the intervals are open or half-open. In particular, for any
interval I , the set {p ∈ P : xi − χ(p)

y
√

p
∈ I } has a density, which is one of 0, 1

2 ,1.

Proof of Theorem 4.1.1 We use the notation introduced in Remark 4.1.3(a).

(a) See [7], Theorem 4.1.
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(b) Assume that Ft has complex multiplication. Put D = {0}, f = 1
2π

1√
1−t2

, I =
(0,1] and J = [−1,0). Take

SI (x) := {
p ∈ P : B(p) ∈ I

}
, T ′

I := {
p ∈ P : A(p) ∈ I,B(p) �= 0

}

and similarly

SJ (x) := {
p ∈ P : B(p) ∈ J

}
, T ′

J := {
p ∈ P : A(p) ∈ J,B(p) �= 0

}
.

The sets SI and SJ have natural densities, respectively μCM(I) and μCM(J ) by
Theorem 3.1.1, so that we can apply Theorem 4.2.1. For simplicity we assume
a(t) > 0. The arguments in the other case a(t) < 0 are exactly the same. We have
{p ∈ P : A(p) > 0} = P>0. By Remark 4.2.2, we conclude that

P>0 = T ′
I �

(
{
p ∈ P : B(p) = 0

} ∩
{

p ∈ P : −χt,N (p)

2
√

p
∈ I

})

, (4.5)

P<0 = T ′
J �

(
{
p ∈ P : B(p) = 0

} ∩
{

p ∈ P : −χt,N (p)

2
√

p
∈ J

})

. (4.6)

In order to compute d(P>0), we compute the sum of d(T ′
I ) and the density

of the intersection, and similarly for d(P<0). We have d(T ′
I ) = μ(I) = 1

4 and
d(T ′

J ) = μ(J ) = 1
4 by Theorem 4.2.1.

(bi) Assume that χt,N = 1 (recall that by an equality of Dirichlet characters
we understand that the underlying primitive characters agree). In this case,
since the intersection in Eq. (4.5) is finite and therefore has density 0, we
conclude that the set P>0 has density 1/4. Similarly, the intersection in
Eq. (4.6) has density 1/2, therefore P<0 has density 3/4. It is clear that the
set P=0 has natural density equal to zero.

(bii) We will do the same computation as above. Note that in this case we have
{
p ∈ P : B(p) = 0

} = {
p ∈ P : δ(p) = −1

}

up to finitely many primes. These sets have natural density 1/2. Suppose
that χt,N = δ. Then the density of the intersection in Eq. (4.5) is 1/2 by
Remark 4.2.2. So we conclude that P>0 has natural density 3/4. Similarly,
from Eq. (4.6) we obtain that P<0 has natural density 1/4.

(biii) Suppose that χt,N �= 1, δ. By Chebotarev’s theorem, the intersections in
Eqs. (4.5) and (4.6) have natural density 1/4. So we conclude that the sets
P>0 and P<0 have the same natural density, which is equal to 1/2.

(c) By assumption in the non-CM case and by Theorem 3.1.1 in the CM-case, we
have for all intervals I ⊆ [−1,1],

∣
∣
∣
∣
πSI

(x)

π(x)
− μ(I)

∣
∣
∣
∣ ≤ C

log(x)α
.

For the CM-case we need
∫ 1

1−ε
f (t) dt = ∫ 1

1−ε
1

2π
√

1−t2
dt ≤ √

ε, as a simple

calculation shows. The corresponding check in the non-CM case is trivial since
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the density function of the measure is continuous on [−1,1]. Thus, in both cases
Theorem 4.2.1(b) yields

∣
∣
∣
∣

πT ′
I
(x)

π(x)
−

∫

I

f (t) dt

∣
∣
∣
∣ ≤ C̃

log(x)α

for some C̃ > 0, where f is the density function in the CM or non-CM case.
Corollary 2.2.4 shows that T ′

I is weakly regular.
Since P=0 = T ′

I for I = [0,0] = {0}, P≥0 = T ′[0,1] and P>0 = T ′
(0,1] in the

non-CM case, it follows that the sets P=0, P≥0 and P>0 are weakly regular set
of primes. By a similar argument, it is easily seen that the sets P≤0 and P<0 are
weakly regular sets of primes.

Let us consider the CM-case. Then P=0 is a weakly regular set of primes,
since T ′[0,0] is. We have to show that the intersections in Eqs. (4.5) and (4.6) are
weakly regular sets, since finite disjoint unions of weakly regular sets are weakly
regular.

So, assume that χt,N = 1. In this case the intersection in Eq. (4.5) is finite and
therefore weakly regular of density 0. Since the set {p ∈ P : B(p) = 0} is weakly
regular of density 1/2 by Proposition 2.2.7 and {p ∈ P : −χt,N (p)

2
√

p
∈ [−1,0)} is P

(except for a finite set), we conclude that the intersection in Eq. (4.6) is weakly
regular of density 1/2.

For the case χt,N = δ, the intersection in Eq. (4.5) is {p ∈ P : B(p) = 0} up to
finitely many primes, hence weakly regular of density 1/2 by Proposition 2.2.7.
The intersection in Eq. (4.6) is finite and hence also weakly regular.

In the last case χt,N �= 1, δ, the intersections in Eqs. (4.5) and (4.6) are weakly
regular of density 1/4 by Proposition 2.2.7.

(d) Similar arguments as in part (c) prove the assertions, using Proposition 2.2 of [7]
instead of Corollary 2.2.4 and replacing weak regularity by regularity through-
out. �

4.3 Equidistribution of signs of half-integral weight modular forms: the general case

We now apply the results from Sect. 2 and Theorem 4.1.1 to obtain an equidistribution
statement for the signs of a(tn2) for n ∈N, as well as many subsets of N.

In order to give a uniform description of the results, let χ : N → {0,1} be a mul-
tiplicative arithmetic function such that χ(p) = 1 for all primes p ∈ P. Then define
Nχ = {n ∈N : χ(n) = 1}. For example, for k ∈ N∪ {∞} one can take χk such that

χk

(
pn

) =
{

1 if n ≤ k,

0 otherwise.

Then Nk := Nχk
is the set of (k + 1)-free integers if k ∈N and N∞ = N.

Corollary 4.3.1 Let χ be as above. Assume the setting of part (c) of Theorem 4.1.1.
Then the sets

{
n ∈ N | n ∈ Nχ and a

(
tn2) > 0

}
and

{
n ∈ N | n ∈ Nχ and a

(
tn2) < 0

}
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have equal positive Dedekind–Dirichlet densities, that is, both are precisely half of
the density of the set

{
n ∈N | n ∈Nχ and a

(
tn2) �= 0

}
.

Proof Note that without loss of generality we can assume a(t) > 0. Define the arith-
metic function ψ :N → {−1,0,1} as follows:

ψ(n) := χ(n) ·

⎧
⎪⎨

⎪⎩

1 if a(tn2) > 0,

−1 if a(tn2) < 0,

0 if a(tn2) = 0.

Equation (4.2) implies that ψ is a multiplicative function. Note that P>0 = {p ∈ P :
ψ(p) = 1}, P<0 = {p ∈ P : ψ(p) = −1}, and P=0 = {p ∈ P : ψ(p) = 0}. Theo-
rem 4.1.1 shows that these sets are weakly regular and allows us to conclude due
to Proposition 2.3.1. �

Corollary 4.3.2 Let χ be as above. Assume the setting of part (d) of Theorem 4.1.1.
Then the sets

{
n ∈ N | n ∈ Nχ and a

(
tn2) > 0

}
and

{
n ∈ N | n ∈ Nχ and a

(
tn2) < 0

}

have equal positive natural densities, that is, both are precisely half of the density of
the set

{
n ∈N | n ∈Nχ and a

(
tn2) �= 0

}
.

Proof The proof proceeds precisely as that of Corollary 4.3.1, except that in the end
we appeal to Proposition 2.5.2. �
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