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Correspondence should be addressed to Şahsene Altınkaya; sahsenealtinkaya@gmail.com

Received 1 December 2014; Accepted 9 February 2015

Academic Editor: Alberto Fiorenza
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We introduce two subclasses of biunivalent functions and find estimates on the coefficients |𝑎
2
| and |𝑎

3
| for functions in these new

subclasses. Also, consequences of the results are pointed out.

1. Introduction and Definitions

Let 𝐴 denote the class of analytic functions in the unit disk

𝑈 = {𝑧 ∈ C : |𝑧| < 1} (1)

that have the form

𝑓 (𝑧) = 𝑧+

∞

∑
𝑛=2

𝑎
𝑛
𝑧
𝑛
. (2)

Further, by 𝑆 we will denote the class of all functions in 𝐴

which are univalent in 𝑈.
The Koebe one-quarter theorem [1] states that the image

of 𝑈 under every function 𝑓 from 𝑆 contains a disk of radius
(1/4). Thus every such univalent function has an inverse 𝑓−1
which satisfies

𝑓
−1
(𝑓 (𝑧)) = 𝑧, (𝑧 ∈ 𝑈) ,

𝑓 (𝑓
−1
(𝑤)) = 𝑤, (|𝑤| < 𝑟0 (𝑓) , 𝑟0 (𝑓) ≥

1

4
) ,

(3)

where

𝑓
−1
(𝑤) = 𝑤 − 𝑎

2
𝑤
2
+ (2𝑎
2

2
− 𝑎
3
)𝑤
3

− (5𝑎
3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
)𝑤
4
+ ⋅ ⋅ ⋅ .

(4)

A function 𝑓(𝑧) ∈ 𝐴 is said to be biunivalent in 𝑈 if both
𝑓(𝑧) and 𝑓−1(𝑧) are univalent in 𝑈. Let Σ denote the class of
biunivalent functions defined in the unit disk 𝑈.

If the functions 𝑓 and 𝑔 are analytic in 𝑈, then 𝑓 is said
to be subordinate to 𝑔, written as

𝑓 (𝑧) ≺ 𝑔 (𝑧) , (𝑧 ∈ 𝑈) (5)

if there exists a Schwarz function 𝑤(𝑧), analytic in 𝑈, with

𝑤 (0) = 0, |𝑤 (𝑧)| < 1 (𝑧 ∈ 𝑈) (6)

such that

𝑓 (𝑧) = 𝑔 (𝑤 (𝑧)) (𝑧 ∈ 𝑈) . (7)

Lewin [2] studied the class of biunivalent functions,
obtaining the bound 1.51 formodulus of the second coefficient
|𝑎
2
|. Subsequently, Netanyahu [3] showed that max |𝑎

2
| =

4/3 if 𝑓(𝑧) ∈ Σ. Brannan and Clunie [4] conjectured that
|𝑎
2
| ≤ √2 for 𝑓 ∈ Σ. Brannan and Taha [5] introduced

certain subclasses of the biunivalent function class Σ similar
to the familiar subclasses of univalent functions consisting
of strongly starlike, starlike, and convex functions. They
introduced bistarlike functions and obtained estimates on
the initial coefficients. Bounds for the initial coefficients of
several classes of functions were also investigated in [6–15].

Not much is known about the bounds on the general
coefficient |𝑎

𝑛
| for 𝑛 ≥ 4. In the literature, there are only a

few works determining the general coefficient bounds |𝑎
𝑛
| for

the analytic biunivalent functions ([16–20]). The coefficient
estimate problem for each of |𝑎

𝑛
| (𝑛 ∈ N \ {1, 2};N =

{1, 2, 3, . . .}) is still an open problem.
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By 𝑆∗(𝜙) and 𝐶(𝜙) we denote the following classes of
functions:

𝑆
∗
(𝜙) = {𝑓 : 𝑓 ∈ 𝐴,

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
≺ 𝜙 (𝑧) ; 𝑧 ∈ 𝑈} ,

𝐶 (𝜙) = {𝑓 : 𝑓 ∈ 𝐴, 1 +
𝑧𝑓
󸀠󸀠
(𝑧)

𝑓󸀠 (𝑧)
≺ 𝜙 (𝑧) ; 𝑧 ∈ 𝑈} .

(8)

The classes 𝑆∗(𝜙) and 𝐶(𝜙) are the extensions of classical
sets of starlike and convex functions and in such form were
defined and studied by Ma and Minda [21].

In [22], Sakaguchi introduced the class 𝑆∗
𝑆
of starlike

functionswith respect to symmetric points in𝑈, consisting of
functions 𝑓 ∈ 𝐴 that satisfy the condition Re(𝑧𝑓󸀠(𝑧)/(𝑓(𝑧) −
𝑓(−𝑧))) > 0, 𝑧 ∈ 𝑈. Similarly, in [23], Wang et al. introduced
the class 𝐶

𝑆
of convex functions with respect to symmetric

points in 𝑈, consisting of functions 𝑓 ∈ 𝐴 that satisfy the
condition Re((𝑧𝑓󸀠(𝑧))󸀠/(𝑓󸀠(𝑧) + 𝑓󸀠(−𝑧))) > 0, 𝑧 ∈ 𝑈. In the
style of Ma and Minda, Ravichandran (see [24]) defined the
classes 𝑆∗

𝑆
(𝜙) and 𝐶

𝑆
(𝜙).

A function 𝑓 ∈ 𝐴 is in the class 𝑆∗
𝑆
(𝜙) if

2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
≺ 𝜙 (𝑧) , 𝑧 ∈ 𝑈, (9)

and in the class 𝐶
𝑆
(𝜙) if

2 (𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧) + 𝑓󸀠 (−𝑧)
≺ 𝜙 (𝑧) , 𝑧 ∈ 𝑈. (10)

In this paper, we introduce two new subclasses of biuniva-
lent functions. Further, we find estimates on the coefficients
|𝑎
2
| and |𝑎

3
| for functions in these subclasses.

2. Coefficient Estimates for the Function
Class 𝑆∗

𝑆,Σ
(𝛼,ℎ)

Definition 1. Let the functions ℎ, 𝑝 : 𝑈 → C be so
constrained that

min {Re (ℎ (𝑧)) ,Re (𝑝 (𝑧))} > 0,

ℎ (0) = 𝑝 (0) = 1.
(11)

Definition 2. A function 𝑓 ∈ Σ is said to be in the class
𝑆
∗

𝑆,Σ
(𝛼, ℎ) if the following conditions are satisfied:

2 [(1 − 𝛼) 𝑧𝑓
󸀠
(𝑧) + 𝛼𝑧 (𝑧𝑓

󸀠
(𝑧))
󸀠

]

(1 − 𝛼) (𝑓 (𝑧) − 𝑓 (−𝑧)) + 𝛼𝑧 (𝑓󸀠 (𝑧) + 𝑓󸀠 (−𝑧))
∈ ℎ (𝑈) ,

2 [(1 − 𝛼)𝑤𝑔
󸀠
(𝑤) + 𝛼𝑤 (𝑤𝑔

󸀠
(𝑤))
󸀠

]

(1 − 𝛼) (𝑔 (𝑤) − 𝑔 (−𝑤)) + 𝛼𝑤 (𝑔󸀠 (𝑤) + 𝑔󸀠 (−𝑤))
∈ 𝑝 (𝑈) ,

(12)

where 𝑔(𝑤) = 𝑓−1(𝑤).

Definition 3. One notes that, for 𝛼 = 0, one gets the class
𝑆
∗

𝑆
(ℎ) which is defined as follows:

2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
∈ ℎ (𝑈) ,

2𝑤𝑔
󸀠
(𝑤)

𝑔 (𝑤) − 𝑔 (−𝑤)
∈ 𝑝 (𝑈) .

(13)

Theorem 4. Let 𝑓 given by (2) be in the class 𝑆∗
𝑆,Σ
(𝛼, ℎ). Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨

≤ min
{{

{{

{

√

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

8 (1 + 𝛼)
2

, √

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 (1 + 2𝛼)

}}

}}

}

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ min

{

{

{

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

8 (1 + 𝛼)
2

+

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 (1 + 2𝛼)
,

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

4 (1 + 2𝛼)

}

}

}

.

(14)

Proof. Let 𝑓 ∈ 𝑆
∗

𝑆,Σ
(𝛼, ℎ) and 𝑔 be the analytic extension of

𝑓
−1 to 𝑈. It follows from (12) that

2 (𝑧𝑓
󸀠
(𝑧) + 𝛼𝑧

2
𝑓
󸀠󸀠
(𝑧))

(1 − 𝛼) (𝑓 (𝑧) − 𝑓 (−𝑧)) + 𝛼𝑧 (𝑓󸀠 (𝑧) + 𝑓󸀠 (−𝑧))
= ℎ (𝑧) ,

(𝑧 ∈ 𝑈) ,

2 (𝑤𝑔
󸀠
(𝑤) + 𝛼𝑤

2
𝑔
󸀠󸀠
(𝑤))

(1 − 𝛼) (𝑔 (𝑤) − 𝑔 (−𝑤)) + 𝛼𝑤 (𝑔󸀠 (𝑤) + 𝑔󸀠 (−𝑤))
= 𝑝 (𝑤) ,

(𝑤 ∈ 𝑈) ,

(15)

where ℎ(𝑧) and 𝑝(𝑤) satisfy the conditions of Definition 1.
Furthermore, the functions ℎ(𝑧) and 𝑝(𝑤) have the following
Taylor-Maclaurin series expansions:

ℎ (𝑧) = 1 + ℎ
1
𝑧 + ℎ
2
𝑧
2
+ ⋅ ⋅ ⋅ , (16)

𝑝 (𝑤) = 1 + 𝑝
1
𝑤 + 𝑝

2
𝑤
2
+ ⋅ ⋅ ⋅ , (17)

respectively. From (15), we deduce

2 (1 + 𝛼) 𝑎
2
= ℎ
1
, (18)

2 (1 + 2𝛼) 𝑎
3
= ℎ
2
, (19)

−2 (1 + 𝛼) 𝑎
2
= 𝑝
1, (20)

2 (1 + 2𝛼) (2𝑎
2

2
− 𝑎
3
) = 𝑝
2
. (21)

From (18) and (20) we obtain

ℎ
1
= −𝑝
1
, (22)

8 (1 + 𝛼)
2
𝑎
2

2
= ℎ
2

1
+ 𝑝
2

1
. (23)
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By adding (19) to (21), we get

4 (1 + 2𝛼) 𝑎
2

2
= ℎ
2
+ 𝑝
2
. (24)

Therefore, we find from (23) and (24) that

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
2

≤

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

8 (1 + 𝛼)
2

,

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
2

≤

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 (1 + 2𝛼)
.

(25)

Subtracting (21) from (19) we have

4 (1 + 2𝛼) 𝑎
3
− 4 (1 + 2𝛼) 𝑎

2

2
= ℎ
2
− 𝑝
2
. (26)

Then, upon substituting the value of 𝑎
2

2
from (23) and (24)

into (26), it follows that

𝑎
3
=

ℎ
2

1
+ 𝑝
2

1

8 (1 + 𝛼)
2
+

ℎ
2
− 𝑝
2

4 (1 + 2𝛼)
,

𝑎
3
=

ℎ
2
+ 𝑝
2

4 (1 + 2𝛼)
+

ℎ
2
− 𝑝
2

4 (1 + 2𝛼)
.

(27)

We thus find that

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

8 (1 + 𝛼)
2

+

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 (1 + 2𝛼)
,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

4 (1 + 2𝛼)
.

(28)

This completes the proof of Theorem 4.

Taking 𝛼 = 0 we get the following.

Corollary 5. If 𝑓 ∈ 𝑆
∗

𝑆
(ℎ) then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ min

{{{

{{{

{

√
󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

8
,√

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8

}}}

}}}

}

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ min

{

{

{

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

8

+

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8
,

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

4

}

}

}

.

(29)

Corollary 6. If we let

𝜙 (𝑧) = (
1 + 𝑧

1 − 𝑧
)
𝛽

= 1 + 2𝛽𝑧 + 2𝛽
2
𝑧
2
+ ⋅ ⋅ ⋅ (0 < 𝛽 ≤ 1) ,

(30)

then inequalities (14) become

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ min{

𝛽

1 + 𝛼
,

𝛽

√1 + 2𝛼
} ,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ min{

𝛽
2

(1 + 𝛼)
2
+

𝛽
2

1 + 2𝛼
,

𝛽
2

1 + 2𝛼
} .

(31)

Corollary 7. If we let

𝜙 (𝑧) =
1 + (1 − 2𝛽) 𝑧

1 − 𝑧
= 1 + 2 (1 − 𝛽) 𝑧

+ 2 (1 − 𝛽) 𝑧
2
+ ⋅ ⋅ ⋅ (0 ≤ 𝛽 < 1) ,

(32)

then inequalities (14) become

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ min

{

{

{

1 − 𝛽

1 + 𝛼
,√

1 − 𝛽

1 + 2𝛼

}

}

}

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ min{

(1 − 𝛽)
2

(1 + 𝛼)
2
+
1 − 𝛽

1 + 2𝛼
,
1 − 𝛽

1 + 2𝛼
} .

(33)

Remark 8. Corollaries 6 and 7 provide an improvement of the
estimate |𝑎

3
| obtained by Altınkaya and Yalçın [25].

Remark 9. The estimates on the coefficients |𝑎
2
| and |𝑎

3
| of

Corollaries 6 and 7 are improvement of the estimates in [7].

3. Coefficient Estimates for the Function
Class m

𝑆,Σ
(𝛼,ℎ)

Definition 10. A function 𝑓 ∈ Σ is said to be m
𝑆,Σ
(𝛼, ℎ) if the

following conditions are satisfied:

(
2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
)

𝛼

(
2 (𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧) + 𝑓󸀠 (−𝑧)
)

1−𝛼

∈ ℎ (𝑧) ,

(
2𝑤𝑔
󸀠
(𝑤)

𝑔 (𝑤) − 𝑔 (−𝑤)
)

𝛼

(
2 (𝑤𝑔

󸀠
(𝑤))
󸀠

𝑔󸀠 (𝑤) + 𝑔󸀠 (−𝑤)
)

1−𝛼

∈ 𝑝 (𝑤) ,

(34)

where 𝑔(𝑤) = 𝑓−1(𝑤).

We note that, for 𝛼 = 1, the class m
𝑆,Σ
(𝛼, ℎ) reduces to the

class 𝑆∗
𝑆
(ℎ).

Definition 11. One notes that, for 𝛼 = 0, one gets the class
𝐶
𝑆
(ℎ) which is defined as follows:

2 (𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧) + 𝑓󸀠 (−𝑧)
∈ ℎ (𝑈) ,

2 (𝑤𝑔
󸀠
(𝑤))
󸀠

𝑔󸀠 (𝑤) + 𝑔󸀠 (−𝑤)
∈ 𝑝 (𝑈) .

(35)



4 Journal of Function Spaces

Theorem 12. Let 𝑓 given by (2) be in the class m
𝑆,Σ
(𝛼, ℎ). Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ min

{{

{{

{

√

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

8 (2 − 𝛼)
2

, √

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 (3 − 3𝛼 + 𝛼2)

}}

}}

}

,

(36)

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ min

{

{

{

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

8 (2 − 𝛼)
2

+

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 (3 − 2𝛼)
,

(6 − 5𝛼 + 𝛼
2
)
󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+ (𝛼 − 𝛼

2
)
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 (3 − 2𝛼) (3 − 3𝛼 + 𝛼2)

}

}

}

.

(37)

Proof. Let 𝑓 ∈ m
𝑆,Σ
(𝛼, ℎ) and 𝑔 be the analytic extension of

𝑓
−1 to 𝑈. We have

(
2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
)

𝛼

(
2 (𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧) + 𝑓󸀠 (−𝑧)
)

1−𝛼

= 1 + 2 (2 − 𝛼) 𝑎
2
𝑧

+ [2 (3 − 2𝛼) 𝑎
3
− 2𝛼 (1 − 𝛼) 𝑎

2

2
] 𝑧
2
+ ⋅ ⋅ ⋅ ,

(
2𝑤𝑔
󸀠
(𝑤)

𝑔 (𝑤) − 𝑔 (−𝑤)
)

𝛼

(
2 (𝑤𝑔

󸀠
(𝑤))
󸀠

𝑔󸀠 (𝑤) + 𝑔󸀠 (−𝑤)
)

1−𝛼

= 1 − 2 (2 − 𝛼) 𝑎
2
𝑤

+ [2 (3 − 2𝛼) (2𝑎
2

2
− 𝑎
3
) − 2𝛼 (1 − 𝛼) 𝑎

2

2
]𝑤
2
+ ⋅ ⋅ ⋅ .

(38)

It follows from (34) that

(
2𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧) − 𝑓 (−𝑧)
)

𝛼

(
2 (𝑧𝑓
󸀠
(𝑧))
󸀠

𝑓󸀠 (𝑧) + 𝑓󸀠 (−𝑧)
)

1−𝛼

= ℎ (𝑧) ,

(𝑧 ∈ 𝑈) ,

(
2𝑤𝑔
󸀠
(𝑤)

𝑔 (𝑤) − 𝑔 (−𝑤)
)

𝛼

(
2 (𝑤𝑔

󸀠
(𝑤))
󸀠

𝑔󸀠 (𝑤) + 𝑔󸀠 (−𝑤)
)

1−𝛼

= 𝑝 (𝑤) ,

(𝑤 ∈ 𝑈) ,

(39)

where ℎ(𝑧) and 𝑝(𝑤) satisfy the conditions of Definition 1.
From (39), we deduce

2 (2 − 𝛼) 𝑎
2
= ℎ
1 (40)

2 (3 − 2𝛼) 𝑎
3
− 2𝛼 (1 − 𝛼) 𝑎

2

2
= ℎ
2
, (41)

−2 (2 − 𝛼) 𝑎
2
= 𝑝
1 (42)

2 (3 − 2𝛼) (2𝑎
2

2
− 𝑎
3
) − 2𝛼 (1 − 𝛼) 𝑎

2

2
= 𝑝
2
. (43)

From (40) and (42) we obtain

ℎ
1
= −𝑝
1
, (44)

8 (2 − 𝛼)
2
𝑎
2

2
= ℎ
2

1
+ 𝑝
2

1
. (45)

By adding (41) to (43), we get

4 (3 − 3𝛼 + 𝛼
2
) 𝑎
2

2
= ℎ
2
+ 𝑝
2
, (46)

which gives us the desired estimate on |𝑎
2
| as asserted in (36).

Subtracting (43) from (41) we have

4 (3 − 2𝛼) 𝑎
3
− 4 (3 − 2𝛼) 𝑎

2

2
= ℎ
2
− 𝑝
2
. (47)

Then, in view of (45) and (46), it follows that

𝑎
3
=

ℎ
2

1
+ 𝑝
2

1

8 (2 − 𝛼)
2
+

ℎ
2
− 𝑝
2

4 (3 − 2𝛼)
,

𝑎
3
=

ℎ
2
+ 𝑝
2

4 (3 − 3𝛼 + 𝛼2)
+

ℎ
2
− 𝑝
2

4 (3 − 2𝛼)

(48)

as claimed. This completes the proof of Theorem 12.

Taking 𝛼 = 0 we get the following.

Corollary 13. If 𝑓 ∈ 𝐶
𝑆
(ℎ) then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ min

{{{

{{{

{

√
󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

32
,√

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

24

}}}

}}}

}

,

(49)

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ min

{

{

{

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

2

32

+

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

24
,

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

12

}

}

}

.

(50)

Corollary 14. If we let

𝜙 (𝑧) = (
1 + 𝑧

1 − 𝑧
)
𝛽

= 1 + 2𝛽𝑧 + 2𝛽
2
𝑧
2
+ ⋅ ⋅ ⋅ (0 < 𝛽 ≤ 1) ,

(51)

then inequalities (36) and (37) become

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ min{

𝛽

2 − 𝛼
,

𝛽

√3 − 3𝛼 + 𝛼2
} ,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ min{

𝛽
2

(2 − 𝛼)
2
+

𝛽
2

3 − 2𝛼
,

𝛽
2

3 − 3𝛼 + 𝛼2
} .

(52)

Corollary 15. If we let

𝜙 (𝑧) =
1 + (1 − 2𝛽) 𝑧

1 − 𝑧
= 1 + 2 (1 − 𝛽) 𝑧

+ 2 (1 − 𝛽) 𝑧
2
+ ⋅ ⋅ ⋅ (0 ≤ 𝛽 < 1) ,

(53)
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then inequalities (36) and (37) become

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ min

{

{

{

1 − 𝛽

2 − 𝛼
,√

1 − 𝛽

3 − 3𝛼 + 𝛼2

}

}

}

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ min{

(1 − 𝛽)
2

(2 − 𝛼)
2
+
1 − 𝛽

3 − 2𝛼
,

1 − 𝛽

3 − 3𝛼 + 𝛼2
} .

(54)

Remark 16. Corollaries 14 and 15 provide an improvement of
the estimate |𝑎

3
| obtained by Altınkaya and Yalçın [25].

Remark 17. The estimates on the coefficients |𝑎
2
| and |𝑎

3
|

of Corollaries 14 and 15 are improvement of the estimates
obtained in [7].
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[7] O. Crişan, “Coefficient estimates for certain subclasses of bi-
univalent functions,” General Mathematics Notes, vol. 16, no. 2,
pp. 93–102, 2013.

[8] B. A. Frasin and M. K. Aouf, “New subclasses of bi-univalent
functions,”AppliedMathematics Letters, vol. 24, no. 9, pp. 1569–
1573, 2011.

[9] B. S. Keerthi and B. Raja, “Coefficient inequality for certain
new subclasses of analytic bi-univalent functions,” Theoretical
Mathematics and Applications, vol. 3, no. 1, pp. 1–10, 2013.

[10] S. S. Kumar, V. Kumar, and V. Ravichandran, “Estimates
for the initial coefficients of Bi-univalent functions,”
http://arxiv.org/abs/1203.5480.

[11] N. Magesh and J. Yamini, “Coefficient bounds for certain sub-
classes of bi-univalent functions,” International Mathematical
Forum, vol. 8, no. 25–28, pp. 1337–1344, 2013.

[12] R. M. Ali, S. K. Lee, V. Ravichandran, and S. Supramaniam,
“Coefficient estimates for bi-univalent Ma-MINda starlike and

convex functions,” Applied Mathematics Letters, vol. 25, no. 3,
pp. 344–351, 2012.

[13] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, “Certain
subclasses of analytic and bi-univalent functions,” Applied
Mathematics Letters, vol. 23, no. 10, pp. 1188–1192, 2010.

[14] H. M. Srivastava, S. Bulut, M. Çaglar, and N. Yagmur, “Coef-
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