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ABSTRACT
Objective: Epigenetic modulation of gene expression by DNA promoter methylation may 
contribute to acquired resistance to chemotherapy in cancer cells. Decitabine (5-aza-2’-
deoxycytidine), a demethylating agent, may act synergistically with standard chemotherapy 
regimens to activate epigenetically silenced genes. In the present in vitro study, it was 
investigated the effect of gene methylation level after treatment with decitabine and 
combination of decitabine with anthracycline-based therapeutics (5-fluorouracil plus 
epirubicine plus cyclophosphamide; FEC) on breast cancer cells (MCF-7 and MDA-MB-231). 
Methods: The effect of decitabine and its combination with FEC on different genes 
methylation level has been tested in MDA-MB-231 and MCF-7 human breast cancer cell 
lines. The effect of decitabine on the cell viability was assayed by MTT assay. Methylight 
real-time PCR and methylation specific PCR were carried out to determine the methylation 
status of certain genes: DAPK, TMS1, MGMT and the global methylation marker LINE-1.
Results: The LINE-1 methylation status significantly decreased in both cell lines after 
treatment with the combination of decitabine with FEC. In MDA-MB-231 cells, methylation 
of the TMS1 and the MGMT gene promoter was significantly reduced by FEC plus decitabine 
while no effect was observed in MCF-7 cells. 
Conclusion: Anthracycline-based therapy regimens in combination with demethylating 
agents such as decitabine may affect chemotherapy outcome by modulation of apoptosis-
relevant genes by methylation. More importantly, this modulation seems to be dependent on 
the cell type.
Key Words: DNA methylation, breast cancer, apoptosis, decitabine, FEC
Conflict of Interest: The authors do not have any conflict of interest.

ÖZET
Amaç: DNA promotör metilasyonu yoluyla gen ekspresyonunun epigenetik modülasyonu 
kanser hücrelerinde kemoterapiye karşı dirence neden olabilir. Bir demetile edici ajan olan 
desitabin (5-aza-2’-deoksisitidin) epigenetikle susturulmuş genleri yeniden aktive ederek 
standart kemoterapi rejimleri ile sinerjistik etki gösterebilir. Bu in vitro çalışmada, desitabin 
ve desitabinin antrasiklin-bazlı tedavi (FEC:5-Florourasil+Epirubisin+Siklofosfamid) ile 
kombinasyonunun meme kanseri hücrelerinde gen metilasyon seviyelerine etkisi araştırıldı.
Metot: Desitabinin tek başına ve FEC ile kombinasyonunun farklı genlerin metilasyon 
seviyeleri üzerine etkisi insan MDA-MB-231 ve MCF-7 meme kanseri hücre soylarında 
araştırıldı. Desitabinin hücre canlılığı üzerine etkisi MTT canlılık testi ile çalışıldı. DAPK, 
TMS1, MGMT ve genel metilasyon göstergesi olan LINE-1 genlerinin metilasyon seviyelerini 
belirlemek için Methylight realtime PCR ve  metilasyon spesifik PCR kullanıldı.
Bulgular: LINE-1 metilasyon seviyesi desitabin ve FEC kombinasyon tedavisinden sonra 
her iki hücre soyunda da anlamlı olarak azaldı. MDA-MB-231 hücrelerinde, desitabin ve 
FEC kombinasyonunun TMS1 ve MGMT gen promotöründe metilasyon seviyelerinde 
azalmaya sebep olduğu gözlenirken aynı etki MCF-7 hücrelerinde gözlenmedi. 
Sonuç: Antrasiklin-bazlı kemoterapinin, desitabin gibi bir demetilasyon ajanı ile 
kombinasyonu metilasyon aracılığıyla apoptozisle ilişkili genlerin modülasyonu  neden 
olarak kemoterapi sonucunu etkileyebilir. Daha da önemlisi, bu modülasyonun hücre tipine 
bağlı olarak gerçekleşebileceği görülmektedir.  
Anahtar Kelimeler: DNA metilasyonu, meme kanseri, apoptozis, desitabin, FEC
Çıkar Çatışması: Yazarlar arasında çıkar çatışması bulunmamaktadır.
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Introduction
Breast cancer is recognized as the most common malig-
nancy among women. Substantial advances in therapy 
and diagnosis have enhanced the survival rate of breast 
cancer patients [1]. Chemotherapy plays a major role in 
the treatment of patients with cancer, particularly bre-
ast cancer. Adjuvant treatment of high risk breast cancer 
patients with anthracycline containing regimens (5-flu-
orouracil plus epirubicine plus cyclophosphamide; FEC) 
has been proven to be highly effective for treating pati-
ents with advanced breast cancer [2]. Research programs 
led to the identification of a variety of therapy option 
for breast cancer. Epigenetic mechanisms such as DNA 
methylation are now recognized to play an important 
role in cancer. Altering the DNA methylation machinery 
is a potentially powerful approach to cancer therapy [3]. 
DNA methylation is a covalent modification of the DNA 
formed by addition of a methyl group at the 5’ carbon 
residue of cytosine in so-called CpG dinucleotide re-
peats [4]. DNA methylation, once established, acts as 
a dominant factor in down-regulation of gene expressi-
on. Aberrant DNA methylation plays also an important 
role in carcinogenesis and tumor apoptosis [5]. DNA 
hypermethylation occurs in many genes in breast carci-
nogenesis [6]. Gene-specific methylation has also been 
suggested as a useful tool for prediction of prognosis or 
response to treatment in early and advanced breast can-
cer patients [7,8]. Since epigenetic silencing of genes is 
known to be associated with breast cancer progression 
[5,9]. Recent studies showed that promoter methylation 
of genes used as a biomarker for predicting prognosis in 
breast cancer [10-12].
Several preclinical cell line and animal models have 
shown a physiological impact of the DNA methyltrans-
ferase inhibitor decitabine (5-aza-2’-deoxycytidine, 
DAC) as a demethylating agent on gene expression and 
tumor development [13-15]. Decitabine reverses the 
hypermethylation status of CpG repeats in gene promo-
ters inducing transcriptional reactivation of epigeneti-
cally silenced genes, ultimately leading to restoration of 
apoptosis and inhibition of tumor growth [16-18]. In fact, 
re-expression of silenced tumor suppressor genes with 
demethylating drugs will effect inhibition of cancer cell 
growth in vitro and in vivo [19,20]. 
In the present report, we employed a human estrogen 
receptor negative, highly invasive breast cancer cell 
line (MDA-MB-231) and an estrogen receptor posi-
tive, non-invasive breast cancer cell line (MCF-7) to 
determine the changes in DNA methylation of DAPK 
(Death-Associated Protein Kinase), TMS1 (Target of 
Methylation-Induced Silencing 1; apoptosis), MGMT 
(O6-Methylguanine-DNA Methyltransferase; DNA re-
pair) LINE-1(Long-Interspersed Repetitive Elements; 
global methylation marker) genes as a response to the 
combined chemotherapies with decitabine. 

Materials and Methods

Chemicals, Anticancer Drugs and Cell Culture 
Decitabine was obtained from Sigma (St. Louis, MO). 
5-Fluorouracil (5-FU; EBEWE Pharma, Austria), 4-HC 
(4-hydroperoxycyclophosphamide, the active metabolite 
of cyclophosphamide; NIOMECH, Germany), and epi-
rubicine (EBEWE Pharma, Austria) were obtained from 
the Pharmacy of the Uludag University Hospital, repre-
senting standard drug regimens normally used for bre-
ast cancer treatment. Stock concentrations of each drug 
were prepared either in PBS (Phosphate Buffer Saline) 
or in the dilution buffer provided by the drug company. 
Working dilutions of the drugs were prepared from stock 
solutions by diluting them in the appropriate culture me-
dium. For each drug, four different concentrations were 
used and defined as test drug concentrations (TDC). 
TDC were determined by pharmacokinetic/clinical in-
formation and clinical evaluation data [21]. 100% TDC 
was defined as mean plasma drug concentration assayed 
after standard FEC dose administration in cancer pati-
ents [22]. Hereby, 100% TDC values (in µg/mL) were 
defined as follows: 5-FU: 22.50, epirubicine: 0.50, 4-HC: 
3.0. Drug concentrations used for in vitro experiments 
were 200, 100, 50, and 25% of TDC.
Breast cancer cell lines MCF-7 and MDA-MB-231 were 
cultured in RPMI 1640 supplemented with penicillin G 
(100 U/ml), streptomycin (100 µg/ml), L-glutamine, and 
10% fetal calf serum (Invitrogen, Paisley, UK) at 37 °C 
in a humidified atmosphere containing 5% CO2. 

MTT Viability Assay 
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoli-
umbromide (MTT) cell viability assay was performed 
as previously described [23]. MCF-7 and MDA-MB-231 
cells were seeded per well of a 96-well plate in 200 ml 
culture medium in triplicates at a density of 5x103 cells. 
After overnight incubation, media were replaced by 
fresh ones with or without the decitabine. Cells were 
treated for 24 and 48 h with 1.25-10 µM decitabine. MTT 
was supplied as a stock solution (5 mg/ml PBS, pH 7.2) 
and sterile-filtered. At the end of the treatment period, 
25 μl of MTT solution was added to each well and then, 
after another 4 h at 37 ºC, 100 μl of solubilizing buffer 
(10% SDS dissolved in 0.01 N HCl) was added to each 
well. After overnight incubation, the absorbance was 
determined by an ELISA plate reader (FLASH Scan S12, 
Analytik Jena, Germany) at 570 nm as a read-out for cell 
viability. Cell viability of treated cells was calculated in 
reference to the untreated control cells using the formula: 
Viability (%) = [100 x (Sample Abs)/(Control Abs)].
DNA Extraction and Bisulfite Modification
Total cellular DNA was extracted by use of the Genomic 
DNA Puregene Purification Kit (Qiagen, Hilden, Ger-
many); sodium bisulfite conversion of (un)methylated 
cytosine was performed using the Epitect Bisulfit kit 
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(Qiagen) according to the manufacturer’s instructions, 
where one µg of DNA was converted by the following 
PCR thermal cycler conditions: 5 min at 99 °C, 25 min 
at 60 °C, 5 min at 99 °C, 85 min at 60 °C, 5 min at 99 

°C, 175 min at 60 °C and hold at 20 °C. Treated samples 
were purified and eluted in 80 µl final volume with Tris-
buffered elution buffer and stored at -20 °C until further 
use.
Analysis of Gene Promoter Methylation Status by 
Methylight Real-time PCR Assays 
Bisulfite-converted DNA was analyzed in duplicates by 
the MethyLight technique as described previously [24] 
employing the ABI PRISM7700 Sequence Detection 
System instrument and software (Applied Biosystems, 
Inc., Foster City, USA). Methylation-specific real-time 
PCR for the marker genes LINE-1, DAPK, TMS1 and 
MGMT were performed in a final volume of 20 µL inc-
luding 10 µl 2x Quantitect Probe mastermix (Qiagen), 
2 µL bisulfite-treated DNA, and assay-defined primer 
and probe concentrations (Table 1). For normalization 
of input of bisulfite-converted DNA, an Alu1 reference 
system was used, containing a DNA-methylation status-
independent consensus sequence of the most common 
Alu1 repeat families [25]. The experiment included a 
no-template control and a positive control with known 
DNA-methylation status. SssI-treated human chromoso-
mal DNA (Qiagen) was used as a reference of fully meth-
ylated cytosine. Primer and probes were purchased from 
Metabion (Martinsried, Germany), Applied Biosystems 
(Foster City, USA), or Microsynth (Lustenau, Austria).
Analysis of Gene Promoter Methylation Status by 
Methylation-specific PCR (MSP) analysis
Aberrant promoter methylation of TMS1 and DAPK 
gene was determined by the method of methylation spe-
cific PCR (MSP), as reported by Herman et al. [29]. MSP 
distinguishes unmethylated alleles of a given gene on 
the basis of DNA sequence alterations after bisulfite tre-
atment of DNA, which converts unmethylated but not 
methylated cytosines to uracils. Subsequent PCR using 
primers specific to sequences corresponding to either 
methylated or unmethylated DNA sequences was then 
performed. 
PCR was performed using CpG WIZ TMS1/ASC and 
DAP-kinase Amplification Kits (Chemicon Internatio-
nal, Canada, USA). Primer set U will anneal to unmeth-
ylated DNA that has undergone a chemical modification. 
Primer set M will anneal to methylated DNA that has 
undergone a chemical modification. TThe unmethylated 
or methylated sequence of TMS1 and DAPK are shown 
in Table 2. PCR conditions of TMS1 and DAPK promo-
ters: 95ºC for 5 min, 40 cycles of 95ºC for 45 s, annealing 
for 56ºC 45 s and a final extension 72ºC for 60 s. PCR 
products was mixed with 1.5 μl of loading dye and then 
run on 2 % agarose gel. Electrophoresis was carried out 
at 75 V at ambient temperature. The bands on the gels 
were visualized by ethidium bromide staining.

Statistical Analyses
All statistical analyses were performed using the SPSS 
20.0 statistical software for Windows. The TDC were 
plotted against the corresponding cell viability values 
using one-way analysis of variance (ANOVA) and the 
Student’s t-test. Mann–Whitney’s U-test was used to 
analyze the association between the methylation statu-
ses of the assessed genes. A value of p<0.05 was consi-
dered statistically significant. Results are expressed as 
mean values plus/minus standard deviation.

Results
Effect of Decitabine on cell viability of MCF-7 and 
MDA-MB 231 cells 
The effect of decitabine (1.25-10 µM) was assessed by 
the MTT viability assay in MCF-7 and MDA-MB-231 
breast cancer cells for 24 and 48h. Decitabine resulted 
in decrease in the cell viability (about 20% percent) at 
10 µM after the treatment for 48 h in both cell types (Fi-
gure 1). 
DNA-Methylation Status of Genes after Anthracycli-
ne-Based Therapy and Decitabine 
We examined the effects of 100% TDC FEC, 10 µM, 
decitabine and their combination on DNA methylation 
status of certain cancer-related genes: DAPK, TMS1, 
MGMT and LINE-1 in the MDA-MB-231 and MCF-7 
breast cancer cell lines by Methylight Realtime PCR As-
say.
LINE-1, as a marker for genome-wide methylation status, 
displays an elevated overall DNA methylation status for 
untreated MCF-7 cells when compared to MDA-MB-231 
cells (60.9 vs 49.7% promoter methylated reference 
(PMR). The LINE-1 methylation status significantly 
decreased in both cell lines after treatment with com-
bined FEC/decitabine drug treatment (p<0.05) (Figure 
2). When FEC or decitabine are used as a single drug re-
gimens, they impacted the overall methylation status of 
LINE-1 in MDA-MB-231 cells slightly, only except for 
treatment of MCF-7 cells with decitabine which led to 
significant reduction of the overall LINE-1 methylation 
status (Figure 2).
DAPK promoter methylation was different in the MCF-7 
and MDA-MB-231 cell lines, displaying a high meth-
ylation rate in the MCF-7 cell line but a low one in the 
MDA-MB-231 cells. In the MCF-7 cell line, the meth-
ylation rate of the DAPK promoter was significantly 
decreased by treatment with FEC, decitabine, or combi-
nation thereof. Likewise, in the MDA-MB-231 cells, the 
low DNA methylation status of the DAPK gene promo-
ter was not significantly affected by the single drugs or 
combinations thereof (Figure 3).
Different from the above gene promoter DNA meth-
ylation status, the TMS1 and MGMT promoters were 
completely unmethylated in the MCF-7 cells. In MDA-
MB-231 cells, methylation of the TMS1 gene promoter 
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Table 1. Primer and probe sequences (MethyLight systems)

Gene 
Primer 

and 
probe

Sequence 5’-3’ Size of PCR 
product (bp)

Reference
Sequence

Reference

LINE-1
Forward 
Reverse 
Probe 

GGACGTATTTGGAAAATCGGG  
AATCTCGCGATACGCCGTT 

FAM-TCGAATATTGCGTTTTCGGATCGGTTT-BHQ1

81
X52230.1

1524-1605
[25]

DAPK
Forward 
Reverse 
Probe 

TCGTCGTCGTTTCGGTTAGTT
TCCCTCCGAAACGCTATC

FAM-CGA CCA TAA ACG CCA ACG CCG-BHQ1

67 AL161787.13
47151-47218

[26,27]

TMS1
Forward 
Reverse 
Probe 

CGT TGG AGA ATT TGA TCGTCG
CCC GTA ACC CTC GCG CAA

FAM-AGT TTA AGA AGT TTA AGT TGA AGT TGT TGT 
CGG TGT CG-BHQ1 

79
AF184072.1
1287-1366

[28]

MGMT
Forward 
Reverse 
Probe 

CGAATATACTAAAACAACCCGCG
GTA TTT TTT CGG GAG CGA GGC 

FAM-AATCCTCGCGATACGCACCGTTTACG-BHQ1
122

X 61657
1029-1150

[26]

Alu 1
Forward 
Reverse 
Probe 

GGTTAGGTATAGTGGTTTATATTTGTAATTTTAGTA  
ATTAACTAAACTAATCTTAAACTCCTAACCTCA  

VIC-CCTACCTTAACCTCCC-MGB

98 Consensus 
sequence [25]

Note: Primer and probe concentrations were as follows: uPA, 600 nmol/L primer/200 nmol/L probe; PAI-1, 600 nmol/L primer/200 nmol/L 
probe; LINE-1, 300 nmol/L primer/100 nmol/L probe; DAPK, 600 nmol/L primer/200 nmol/L probe; MGMT, 600 nmol/L primer/200 nmol/L 
probe; TMS1, 300 nmol/L primer/200 nmol/L probe; and Alu1, 300 nmol/L primer/100 nmol/L probe. 
Abbreviations: I: Inosin binding to cytosine or uracile; BHQ: Black Hole Quencher; MGB: Minor groove binder.

Table 2. Primer sequences (MSP systems)

Gene primer 
and probe

Sequence 5’-3’ Size of PCR 
product (bp) Reference

DAPK
M primer

U primer

Forward  GGATAGTCGGATCGAGTTAACGTC
Reverse   CCCTCCCAAACGCCGA

Forward  GGAGGATAGTTGGATTGAGTTAATGTT
Reverse   CAAATCCCTCCCAAACACCAA

98

106

[30]

TMS1
M primer

U primer

 
Forward  TTGTAGCGGGGTGAGCGGC

Reverse   AACGTCCATAAACAACAACGCG

Forward  GGTTGTAGTGGGGTGAGTGGT
Reverse   CAAAACATCCATAAACAACAACACA

272

207

[31]

Abbreviations: M: Metylated primer; U: Unmethylated Primer
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Figure 1. The effects on the cell viability of decitabine for 24 and 48 h. The assays were performed as described in the materials and methods. 

Figure 2. Quantitative assessment of the methylation status of the LINE-1 after treatment with 100% TDC FEC, 10 µM decitabine (DAC), or 
FEC (100% TDC) plus decitabine (10 µM) for 48 h in MDA-MB-231 and MCF-7 cell lines. SssI, methylated human chromosomal DNA; PMR, 
percentage methylated reference. *Significant differences of marker levels in relation to untreated control (p<0.05) are marked with asterisks.

Figure 3. Quantitative assessment of the methylation status of the DAPK after treatment with 100% TDC FEC, 10 µM decitabine (DAC), or 
FEC (100% TDC) plus decitabine (10 µM) for 48 h in MDA-MB-231 and MCF-7 cell lines. SssI, methylated human chromosomal DNA; PMR, 
percentage methylated reference. *Significant differences of marker levels in relation to untreated control (p<0.05) are marked with asterisks.
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was significantly reduced by decitabine, FEC, or com-
bination thereof. Even though that the MGMT promoter 
showed low methylation levels only in MDA-MB-231 
cells, treatment with decitabine alone or in combinati-
on with FEC led to further reduction of the methylation 
signal (Figure 4).

Analysis of TMS1 and DAPK gene promoter 
methylation by MSP
The analysis of the methylation status of TMS1 and 
DAPK apoptosis related genes in MCF-7 and MDA-
MB-231 breast cancers was carried out by MSP analysis. 
The results of representative MSP analyses are shown in 
Figure 5. MCF-7 and MDA-MB-231 cells exhibit partial 
methylation of analyzed genes. In both cells, the TMS1 
gene promoter was demethylated after FEC, DAC and 
combination (FEC+DAC) treatment. The methylation of 
DAPK promoter was decrease after treatment of DAC 
and FEC plus decitabine in both cells.

Discussion
Epigenetic alterations associated with human breast car-
cinogenesis including hypermethylation of tumor supp-
ressor genes [9] which is also important to predict the risk 
of developing breast cancer [32,33]. DNA methylation is 
catalyzed by DNA methyltransferases and inhibition of 
this mechanism is supposed to be beneficial in the treat-
ment of this malignant disease [34]. Accordingly, DNA 
methyltransferase inhibitors such as decitabine, which 
lead to cytosine demethylation, activate epigenetically 
silenced genes [35-37]. This modification in genes by 
the effects of decitabine makes it a promising agent for 
used in cancer chemotherapy. The use of decitabine in 
combination with other polychemotherapy regimens 
may lead to even more effective therapy in breast cancer.
In the present study, we investigated methylation status 
of genes: DAPK, TMS1 (apoptosis-inducers), MGMT 
(DNA repair), and the global methylation marker LINE-

Figure 5. Representative data showing the methylation status of TMS1 and DAPK promoter for MDA-MB-231 and MCF-7 cell lines. M and 
U are the methylated and unmethylated primers, respectively. U unmethylated DNA, M methylated DNA, indicates molecular weight control 
(1000pb ladder).

Figure 4. Quantitative assessment of the methylation status of the TMS1 and MGMT after treatment with 100% TDC FEC, 10 µM decitabine 
(DAC), or FEC (100% TDC) plus decitabine (10 µM) for 48 h in MDA-MB-231 cells. SssI, methylated human chromosomal DNA; PMR, 
percentage methylated reference. *Significant differences of marker levels in relation to untreated control (p<0.05) are marked with asterisks.
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1 using DNA-methylation specific real-time PCR after 
treatment of decitabine plus FEC chemotherapy regime. 
In this study, we also examined the effects of decitabine 
on viability of the breast cancer cell lines MDA-MB-231 
and MCF-7. Decitabine lead to decrease of cell viability 
at 20% percent (10 µM for 48) in both cells. In our pre-
vious study, we show that the treatment of MCF-7 and 
MDA-MB-231 cells with FEC significantly reduced cell 
viability in a dose-dependent manner. However, the com-
bination of the different doses of FEC with 10 µM deci-
tabine did not impair cell viability levels any further [38].
The methylation level of LINE-1 (long-interspersed) 
repetitive elements was assessed by MethyLight assay 
which estimates total genomic DNA methylation [39]. 
Several clinical studies associated the DNA-methylation 
status of repetitive sequences like LINE-1 or Sat2 with 
clinical prognosis in different cancer types [40-42]. We 
demonstrated that the LINE-1 methylation status is hig-
her in MCF-7 cells compared to MDA-MB-231 and that 
incubation of the cell lines with decitabine plus FEC re-
sulted in significant reduction of the methylation status. 
Activation of general DNA repair pathways are involved 
in acquired resistance of cancer cells to chemotherapy 
and the MGMT (O6-methylguanine-DNA methyltrans-
ferase) gene, which is involved in the repair of alkylated 
DNA lesions [43,44]. Promoter methylation of MGMT 
genes associated with loss of MGMT expression and di-
minished DNA-repair activity [45]. Recent studies sug-
gested that the MDA-MB-231 cell line exerts MGMT 
silencing by promoter hypermethylation [46,47]. In our 
hands, in MDA-MB-231 cells, the MGMT promoter sho-
wed only low methylation levels, still, treatment with 
decitabine alone or in combination with FEC led to furt-
her reduction of the methylation signal. In a previously 
study showed that partial demethylation of MGMT gene 
prompoter when paclitaxel, adriamycin and 5-fluoroura-
cil combined with decitabine [48].  
DAPK and TMS1 are supposed to play a pivotal role 
in the regulation of apoptosis, inflammatory signa-
ling pathways, and immune response pathways [49-51], 

which may be implicated in cancer progression [52,53]. 

In our study, we found high promoter methylation levels 
of DAPK in the MCF-7 cell line and low methylation ra-
tio in MDA-MB-231 cell line. On the opposite, the TMS1 
promoter was hypermethylated in MDA-MB-231, which 
is consistent with reported studies [54-56]. Correlating 
results were also reported for DAPK and TMS1 mRNA 
and protein expression levels in various breast cancer 
cell lines [54,57]. We found that in cells treated with 
decitabine, FEC, and the combination regimens, DAPK 
as well as TMS1 were significantly demethylated in the 
respective cell lines in a synergistic fashion. In additi-
on, our previously data demonstrate that decitabine plus 
FEC treatments increased apoptosis than decitabine or 
FEC treatment alone in MCF-7 cells [38], which may be 
a result of reactivation of gene expression by promoter 
demethylation. 

Conclusions 
In conclusion, these treatments lead to reduction of the 
methylation status of promoters of the TMS1 and DAPK 
genes. Furthermore epigenetic effects were also obser-
ved for FEC only regimens, which may be related to a 
kind of epigenetic adaption or selection process in the 
treated tumor cell population. We concluded that the 
therapy of FEC plus decitabine, even FEC alone, may 
affect therapy outcome by upregulation of apoptosis-re-
levant genes via hypomethylation.
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