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The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality
of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating
a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were
given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by
shape optimization using differential evolution algorithm.

1. Introduction

Bushings are used in automotive industry for vibration
isolation and comfort requirements.They are produced from
rubber materials and their main functions are to join the
elements between rigid structures, isolate vibrations through
to the chassis, and avoid the transmission of noise in the vehi-
cles. Due to the increasing interest of multibody simulations
of complete vehicles or subsystems, it is important to develop
and effective models to represent the static stiffness of these
rubber products in vehicles. During the vehicle development
process, shape optimization of rubber products is also need
to have target stiffness curves. Many bushing manufacturers
use trial and error method to meet these requirements, but
optimization algorithms are the solution to this type of design
problems. This paper presents a simulation-based approach
to optimize two-dimensional rubber bushing model to meet
target radial static stiffness without the need for physical
prototypes.

Rubber bushings are used mostly in vehicle suspensions.
The primary role of the bushings in a suspension system is to
improve the ride quality of the vehicle. Their stiffness curve
has been primarily research subjects for many researchers.
Blundell [1] concluded that suspension designs depend on
the behavior of rubber bushings. He described the influence
of rubber bushing compliance on changes in suspension
geometry during vertical movement relative to the vehicle

body. An experimental investigation was conducted on
elastomeric bushings, which was presented by Kadlowec
et al. [2, 3]. The experiment reveals that the relationship
between the forces and moments and their corresponding
displacements and rotations is nonlinear and viscoelastic
due to the nature of the elastomeric material. A parameter
identification method by Lei et al. [4] is proved to model the
appropriate hyperelastic material for rubber bushing validly
when material tensile tests data are not provided. In terms of
the hyperelastic material of this bushing, three-term Ogden
law is utilized as the material constitutive model.

Recently, the use of non-deterministic algorithms has
attracted the researchers to find global optimum. Among the
nondeterministic methods, the differential evolution (DE)
algorithm produced good results in the literature for different
applications in science and engineering. DE and particle
swarm optimization methods have been applied to the
design of minimum weight toroidal shells subject to internal
pressure. The optimization process is performed by Fortran
routines coupledwith finite element analysis codeAbaqus [5].
An investigation into structural topology optimization using
amodified binaryDEwith a newly proposed binarymutation
operator is performed [6]. Carrigan et al. [7] introduced and
demonstrated a fully automated process for optimizing the
airfoil cross-section of a vertical-axis wind turbine using a
parallel DE algorithm. Jena et al. [8] presented a damage
detection technique combining analytical and experimental
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investigations on a cantilever aluminium alloy beam with a
transverse surface crack. The damage location is formulated
as a constrained optimization problem and solved using
the DE algorithm based on the measured and calculated
first three natural frequencies as inputs. A framework for
the shape optimization of aerodynamics profiles using com-
putational fluid dynamics and genetic algorithms proposed
by López et al. [9]. A DE optimization based technique is
proposed to find the optimum value of a modified Bezier
curve.The proposed equation contains shaping parameters to
adjust the shape of the fitted curve [10]. Ketabi and Navardi
[11] proposed a new method for optimum shape design
of variable capacitance micromotor using DE algorithm.
The objective function aims to maximize torque value and
minimize the torque ripple, where the geometric parameters
are considered to be the variables. The optimization process
is carried out using a combination of DE algorithm and FEM
analysis.

Shape optimization of rubber mounts and bushings was
performed by many researchers. A parameter optimization
methodology for a rubber mount based on finite element
analysis (FEA) and genetic neural network models is pro-
posed in [12]. Through a combination of FEA and genetic
neural network methods, the parameters of the rubber
mount were optimized to meet the design requirements. The
optimum nonlinear stiffness curve of rubber suspension was
obtained through the whole vehicle dynamics optimization
using classical optimization algorithms such as sensitivity
analysis and sequential quadratic programming theory in
[13]. Ambrósio and Verissimo [14] discussed the sensitivity
of the ride characteristics of a road vehicle to the mechan-
ical characteristics of the bushings used in its suspension.
Sensitivities of different vehicle kinematic responses to the
characteristics of the bushings used in the suspension are
evaluated, by using numerical sensitivities. A bush type
engine mount has been designed using a parameter opti-
mization method in [15]. An optimization code is developed
to determine the shape to meet the stiffness requirements
of engine mount, coupled with commercial nonlinear finite
element program. Powell’s penalty functionmethodwas used
as optimization algorithm. Lee and Youn [16] proposed a
topology optimization for the design of rubber vibration
isolators.The topology optimization formulation is proposed
in order to generate the system layouts considering both the
static and dynamic performance. The density distribution
approach and sequentially linear programming were used as
the optimization algorithms.

Less attention has been paid to optimization of the rubber
products to have target nonlinear stiffness curve in the
literature. Main contributions of this paper are as follows.

(i) The parameters of rubber bushing were optimized to
obtain desired level of stiffness.

(ii) A DE based global optimization software was devel-
oped and tested with two test functions.

(iii) Rubber material experiments were performed to
obtain hyperelastic model coefficients.

In this study, a methodology for determination of shape
parameters of a rubber bushing to have a desired stiffness
curve has been proposed. Shape optimization was used to
design a two-dimensional rubber bushing model using DE
algorithm to meet target stiffness curve. Stiffness curves of
rubber bushing with different geometric parameters in radial
directions were obtained by finite element method. A Pascal
(in Delphi environment) code based DE was developed for
shape optimization. Developed optimization software was
tested with two test functions; then, optimization process
was performed using a combination of DE algorithm and FE
analysis.

2. Differential Evolution Algorithm

One of the main shortcomings of classical optimization
methods is to stuck into local optimum instead of global
optimum. Genetic algorithm and differential evolution algo-
rithms are evolutionary optimization algorithms; they were
developed for finding the global optimumof the optimization
problems. DE is a relatively new evolutionary optimization
algorithm. It is a population-based optimization method
introduced by Price et al. [17]. They developed a new robust,
versatile, and easy-to-use global optimization algorithm and
published it under the name differential evolution (DE)
algorithm in 1995. This algorithm, like other evolutionary
algorithms, has a population-based structure, and it attacks
the starting point problem using a real-coded system and a
new differential mutation operator. The DE algorithm’s main
strategy is to generate new individuals by calculating vector
differences between other individuals of the population. The
DE algorithm includes three important operators: mutation,
crossover, and selection. In the DE, population vectors are
randomly created at the start of iteration. This population is
successfully improved by applying mutation, crossover, and
selection operators, respectively. Mutation and crossover are
used to generate new vectors (trial vectors), and selection
then is used to determine whether or not the new generated
vectors can survive the next iteration. Among the strategies
in DE algorithm, DE/rand/1/bin DE strategy was used. The
details of DE algorithm are given below.

DE was firstly proposed for minimizing unconstraint
real single objective optimization. DE consists of two fun-
damental phases: initialization and evolution [18]. In the
initialization phase, just like in other evolutionary algorithms,
an initial population (𝑃0) is generated. After that, the 𝑃0
population evolves to 𝑃1, 𝑃1 evolves to 𝑃2, and so on. In
this way, evolution of new populations is continued until the
termination conditions are fulfilled. While evolving from the
𝑃
𝑛 to 𝑃𝑛+1, three evolutionary operations are executed on the

individuals in the current population. These operations are
differential mutation, crossover, and selection [18].

2.1. Initialisation. In this stage, the initial population 𝑃0 is
randomly created from𝑁

𝑝
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𝑥
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𝑗
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𝑗
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, (1)

where 0 means the initial population, 𝑖 is the sequence of the
population, 𝑗 is the number of individuals in the population,
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𝛼
𝑖

𝑗
is the real random number generator in the 𝑖th population

and 𝑗th individual, 𝑏𝐿
𝑗
is the lower value of the 𝑗th individual,

and 𝑏𝑈
𝑗
is the upper value of the 𝑗th individual.

2.2. Differential Mutation. In mutation, a mutant (V𝑛+1,𝑖) and
a mutant vector (𝑥𝑛+1,V,𝑖) are created for each 𝑝𝑛,𝑖 individual,
called a mother, in the 𝑃𝑛 population. It should not be
forgotten that 𝑥 is a vector that represents all individuals in
the current population (𝑥 = 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
).

Mutant vector 𝑥𝑛+1,V,𝑖 is created as follows:

𝑥
𝑛+1,V,𝑖
= 𝑥
𝑛,𝑏,𝑖
+ ∑

𝑦≥1

𝐹
𝑦
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1𝑦 − 𝑥
𝑛,𝑝
2𝑦) ,

1 ≤ 𝑖 ̸= 𝑝
1𝑦
̸= 𝑝
2𝑦
≤ 𝑁
𝑃
,

(2)

where 𝑥𝑛,𝑏,𝑖 is the base vector (𝑏) selected for the new
individual that will be created for the 𝑖th old individual in
the 𝑛th population and 𝑥𝑛,𝑃1,𝑖 is the 𝑃

1𝑦
th individual selected

randomly from between [1,𝑁
𝑃
] integers. Similarly, 𝑥𝑛,𝑃2,𝑖 is

the 𝑃
2𝑦
th individual selected randomly from between [1,𝑁

𝑃
]

integers, and𝐹
𝑦
is the scale factor for the𝑦th vector difference

in the range of [0, 1].
The 𝑥𝑛,𝑏,𝑖 base vector can be selected in different ways:

(i) from the current vector: 𝑥𝑛,𝑏,𝑖 = 𝑥𝑛,𝑖,𝑖, (𝑏 = 𝑖);
(ii) from the best vector: 𝑥𝑛,𝑏,𝑖 = 𝑥𝑛,best,𝑖, (𝑏 = the best);
(iii) from the better vector: 𝑥𝑛,𝑏,𝑖 = 𝑥𝑛,better,𝑖, (𝑏 = the

better);
(iv) from a random vector: 𝑥𝑛,𝑏,𝑖 = 𝑥𝑛,random,𝑖, (𝑏 =

random).

After the mutation process, the new individual can be
created outside the range of [𝑏𝑈

𝑗
, 𝑏
𝐿

𝑗
]. Various methods have

been proposed for infeasible individuals [18].

2.3. Crossover. In this process, a new child individual (𝑐𝑛+1,𝑖)
is created bymating the new individual (𝑥𝑛+1,𝑖) that is created
in the mutation process with the current individual (𝑝𝑛,𝑖)
in the population according to the crossover probability 𝐶

𝑟
.

Here, 𝑝𝑛,𝑖 is referred to as the mother, and 𝑥𝑛+1,𝑖 is referred to
as the father.

2.4. Selection. There is a competition between mother and
child in the selection operation. They compete with each
other according to objective function values to survive in
the next generation [18]. This competition is formulated
mathematically as follows:

𝑝
𝑛+1,𝑖
= {
𝑐
𝑛+1,𝑖
, if (𝑐𝑛+1,𝑖 > 𝑝𝑛,𝑖) ,

𝑝
𝑛,𝑖
, otherwise.

(3)

The key parameters of control in DE are as follows:

𝑁
𝑃
: the population size (number of individual);
𝐶
𝑟
: the crossover constant (probability) (0.0-1.0);
𝐹
𝑦
: scaling factor that controls the amplification of

differential variations (0.0–2.0).

Figure 1: Optimization user interface and results for test function 1.

During the iterations of DE algorithm, various feasible and
unfeasible individuals may appear. Regular DE operators
can produce unfeasible individuals. It means that some
individuals may violate the constraints. For example, at some
stage of the evolution process, a population may contain
some feasible and unfeasible individuals. Therefore, several
trends for handling unfeasible solutions have emerged in the
area of evolutionary computation. In this study, Schoenauer
and Xanthakis’s method was adopted [19]. In this method,
any individual do not complying with the constraints is
eliminated and a new individual is created. This insures that
the size of the population remains constant even when elim-
inating those individuals violate the constraints. Therefore,
every individual in the population satisfies the constraints.

In this study, DE algorithm was selected for shape
optimization due to following reasons [20].

(i) It finds the lowest fitness value for most of the
problems.

(ii) DE is robust; it is able to reproduce the same result
consistently over many trials.

(iii) It is simple and robust, converges fast, and finds the
optimum in almost every run.

DE algorithm is slower than the other evolutionary algo-
rithms especially for noisy problems.This is the disadvantage
of the DE algorithm.

Pascal programming language based DE optimization
software was developed and validated using two test func-
tions. After validation of the developed DE optimization
software, optimum shape parameters of 2D rubber model
were determined using differential evolution optimization
algorithm.

3. Optimization of Test Functions with DE

The developed DE software was validated using two test
functions.The first test function is an unconstrained function
called Rosenbrock’s saddle [21]. It is a nonconvex func-
tion used as a performance test problem for optimization
algorithms introduced by Howard H. Rosenbrock in 1960.
It is also known as Rosenbrock’s valley or Rosenbrock’s
banana function. The global minimum is inside a long,
narrow, parabolic shaped flat valley. However, it is difficult to
find the global optimum of this function with the classical
optimization algorithms.
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𝜃
R2

R1

Limits of shape parameters:

30 ≤ R1 ≤ 65

5 ≤ R2 ≤ 15

10∘ ≤ 𝜃 ≤ 140∘

R1 + R2 ≤ 70

R1 − R2 ≥ 25

Figure 2: 2D rubber parametric model and limits of shape parameters.

The function and bound values of parameters are given as

min𝐹 (𝑥
1
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2
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)
2

+ (1 − 𝑥
1
)
2

− 2.048 ≤ 𝑥
1
, 𝑥
2
≤ 2.048.

(4)

It has a global minimum at (𝑥
1
, 𝑥
2
) = (1, 1) where

𝑓(𝑥
1
, 𝑥
2
) = 0 [19]. Population size of 20, generation number

of 100, and the crossover constant and scaling factor of 0.85
and 0.75 were selected. User interface of the software for test
function is given in Figure 1.

Results were obtained as 𝑥
1
= 1 and 𝑥

2
= 1 exactly. It

can be seen that the DE successfully converged to the global
minimum easily. It is clear from the generation history that
generation number as 40 is enough, because it converged at
the 40th iteration.

Having validated the first unconstrained test function,DE
software was also validated using second test function which
is constrained type and it is taken from [22]. The objective
function and constraints are given as follows:
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2
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− 10)
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3
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2

− 82.81 ≤ 0,

(5)

where 13 ≤ 𝑥
1
≤ 100 and 0 ≤ 𝑥

2
≤ 100.

This optimization problem has a global minimum at
(𝑥
1
, 𝑥
2
) = (14.095, 0.84296) where 𝑓(𝑥

1
, 𝑥
2
) = −6961.8

[22]. The DE software is also validated with the second test
function, because the same results were obtained as in the
literature. It is concluded that developed DE software can be
used for subsequent shape optimization studies.

4. Finite Element Modeling of Rubber Bushing

Rubber bushings in a vehicle suspension system can affect the
stability of the vehicle. Thus, the stiffness characteristic of a
rubber bushing in each direction is achieved by analyzing the
vehicle performance during the design process. To design a
particular rubber bushing, the stiffness in certain direction
needs to meet the requirements. The purpose of this paper
is to make the radial stiffness characteristic of the given 2D
rubber bushingmodelmeet the target stiffness curve by using
the optimization method presented in this paper. In order to
determine the stiffness curve of the bushing, nonlinear finite
model was defined using Abaqus software [23].

4.1. CAD-Based Design Parameterization. Theparametric 2D
CADmodel is used for design optimization. Dimensions are
geometric parameters that can be varied permitting design
change while preserving the basic shape or design intent of
the part. Automaticmodel regeneration is an essential feature
of dimension-driven systems. If a dimension is changed, the
model should be regenerated automatically while preserving
geometric constraints and relationships. Design intent will be
captured by establishing and preserving these relationships
[24].

Three parameters were selected as design variables for 2D
bushing model as shown in Figure 2. The guiding principle
to select these design variables is to choose those parameters
which influence the rubber bushing stiffness characteristics
most. Also limits and constraints were defined in order to
preserve the shape. In order to undergo further parametric
optimization, Python programming language was used to
build the model in Abaqus software in terms of parameters
such as 𝑅

1
, 𝑅
2
, and 𝜃 as shown in Figure 2.

4.2. Material Model. The natural rubber can be considered
as a hyperelastic material, showing highly nonlinear elastic
isotropic behavior with incompressibility. A relationship
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Figure 3: Uniaxial tension material test.

between stress and strain in the hyperelastic material, gen-
erally characterized by strain energy potentials, is essential
for the FEA of rubber components. In order to define
the hyperelastic material behavior, that is, the constitutive
relation, experimental test data are required to determine
material parameters in the strain energy potential. In this
study, uniaxial and planar tension tests were performed at a
local rubber company.

Uniaxial test is the main test to achieve pure tension
effect.The extended length of samplemust be sufficiently long
in the direction of stretching compared with the width and
thickness. For this reason, the length of the sample must be
ten times greater than the width. The measurement is done
from only the pure tension area that is the distance between
two chins. The uniaxial test condition is given in Figure 3.

In uniaxial tension test, the material properties vary
dramatically at first cycles. This behavior is called “Mullin
effect.” After the number of certain cycles (from 3–20), the
material shows a stable behavior. If the material is exposed to
a different high tension, after a few cycles, it will show a stable
behavior again. Mullin effect is considered for the tests done
in this research.

Planar tension test resembles the uniaxial tension test
but the sample length is smaller than the width (Figure 4).
Thinning of the sample is along the thickness direction.
Because of the fact that rubber is incompressible, pure shear
arises at 45∘ angle of tension direction. To provide this event,
the width of the sample must be ten times greater than
the length. The specific holders are used to overcome the
specimen slippage from the clamp edges since thismay lead to
the inadequate states of pure shear strain.Therefore, a special
gripping device, which is shown in Figure 4, is designed

Figure 4: Planar tension material test.

to prevent specimen slippage in order to improve the test
accuracy.

These two test data are evaluated in Abaqus software and
compared to the hyperelastic material models.

Among the hyperelasticmaterialsmodels, theOgden𝑁 =
5 produces a better fit for test data as shown in Figure 5. The
Ogden material model appears to best capture the bushing
response in the finite element study. Therefore, this material
model was selected in the finite element model.

4.3. FE Analysis of 2D Rubber Model. The proper element
type and reasonable meshing strategy were used tomodel the
two-dimensional rubber model. The central and lower parts
of the rubber component will come in contact when the slot
is closed under vertical displacement applied to the center of
the rubber. Therefore, contact interaction was defined in the
finite element model. Thus, this becomes a nonlinear large
displacement contact analysis. As a whole, the initial finite
element model has about 1200 hybrid 2D elements (CPE4H)
and 1340 nodes.

As shown in Figure 6, the displacement of 25mm was
applied from the center of the inner circle using rigid connec-
tion and self-contact was defined for lower slot. Outer circle is
constrained with all degrees of freedom. Reaction forces were
stored in a text file for every displacement iteration during
solution process.

Deformedmodel and radial stiffness curve obtained after
the solution are given in Figure 7.

During radial deformation, the slope of stiffness curve
slowly increased; after closing the lower slot by self-
contacting, it suddenly increased.

5. Differential Evolution Based
Shape Optimization

The objective of the shape optimization of rubber bushing is
to find the shape parameters that provide the desired static
stiffness curve.

In this study, the difference between the calculated data
point (𝐹calc) and the target (𝐹target) data point for each point in
a stiffness curve is measured by a statistical term called Chi-
square which is given as follows:

chi-square =
𝑛

∑

𝑖=1

(𝐹calc 𝑖 − 𝐹target 𝑖)
2

𝐹target 𝑖
. (6)

Here, 𝑛 is the measurement points shown in Figure 8.
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Figure 5: Rubber material for test data (stress-strain curve).

Contact

Uy = −25mm

Figure 6: Boundary conditions and finite element model of bush-
ing.

If the Chi-square is large, then the calculated and target
curves are not close to each other. If the two curves are exactly
the same, Chi-square will be zero.The large value means that
two curves are not identical and very close from each other.

In this study, Chi-square must be as small as possible to have
the desired static stiffness of rubber bushing.
𝐹calc refers to the stiffness curve of any individual in DE

algorithms and is calculated by finite element analysis.
In this study, minimization of Chi-square was selected

as objective function. Therefore, the shape optimization
problem was defined as follows:

Objective is

min chi-square

s.t. 30 ≤ 𝑅
1
≤ 65, 5 ≤ 𝑅

2
≤ 15,

10
∘
≤ 𝜃 ≤ 140

∘

𝑅
1
+ 𝑅
2
≤ 70, 𝑅

1
− 𝑅
2
≥ 25.

(7)

Shape optimization of two-dimensional bushing was imple-
mented using software written in Pascal programming lan-
guage. Displacement and forces which are required to obtain
the radial static stiffness curve are calculated in Abaqus
finite element analysis software. Abaqus finite element model
is able to perform batch jobs when giving a parameter
vector, the complete simulation, including geometric mod-
eling, meshing, and postprocessing. The simulation results
are performed in a fully automatic manner using Python
programming language. Developed software sends shape
parameters to Abaqus to analysis and generates stiffness
curve. After the solution is obtained, displacements and
forces at the circle center are written to a text file. DE
algorithm reads this file and computes the objective function
(fitness).

Shape optimization of the rubber bushing using proposed
methodology is shown in Figure 9. Two case studies were
given below for shape optimization. In these case studies,
target stiffness curves which are expected from rubber design
were defined as a polynomial form. Chi-square value was cal-
culated using actual and target stiffness curves for objective
function.

Case Study 1. Before setting a target stiffness curve, it should
be known of limits the stiffness curves as shown in Figure 10.
Target stiffness curves should remain betweenmaximum and
minimum stiffness curves. For this case study, target stiffness
curve can be seen in Figure 10.
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This optimization problem was solved by DE optimiza-
tion algorithm. DE parameters were selected as follows:
population size: 20; number of generations: 40; scale factor:
0.75; crossover rate: 0.85. After the solution phase completed,
optimum shape parameters were found as 𝑅

1
= 50, 𝑅

2
= 12,

and 𝜃 = 27. As seen in Figure 10, optimum curve is very close
to target curve. Thus, DE algorithm was successfully applied
to shape optimization problem in this case study. Iteration
history for this case study is given in Figure 11.

Case Study 2. In the second case study, stiffer rubber bushing
compared to case study 1 is expected. Target stiffness curve is
shown in Figure 12.

DE parameters were selected same as for case study 1.
After solving the optimization problem with DE algorithm,
optimum shape parameters were found as 𝑅

1
= 44, 𝑅

2
= 5.5,

and 𝜃 = 29. As seen in Figure 12, optimum curve is close to
target curve 2 again. In this case study, optimum curve is the
best one that matches the target curve.

Proposed methodology was successfully applied to shape
optimization problem. It may be considered that this gives a
systematic guidance to the shape designer of bushing. By a
similar method, this approach can be used in the design of

Crossover

ABAQUS

Displacements,
forces

Fitness value

Calculate the fitness of
each individual

No

Yes

Best
individual

Mutation

Selection

Population for next 
generation

Fitness value

Shape parameters

Shape parameters

Generation number (N)
Population size (Np)
Scale factor (Fy)
Crossover probability (Cr)

R1, R2,

R1, R2,

t < N

t ← t + 1

Initialize population, t ← 0

and 𝜃

and 𝜃

Figure 9: The flowchart of the proposed methodology and Abaqus
interface.

other types of rubber products such as engine mount and so
forth in the automotive industry.

6. Conclusion

In this study, a differential evolution algorithm based shape
optimization is presented. A Pascal code based on DE
algorithm was developed to solve shape optimization prob-
lems. DE algorithm was successfully applied to shape opti-
mization of 2D rubber bushing to obtain target stiffness
curves. Abaqus software was used for the FE calculation of
objective function. It is seen that the combined DE algorithm
and FE method approach seem to be powerful for finding
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Figure 12: Optimization results for target curve 2.

a global optimum. The DE method is particularly suited
to problems where there is no well-defined mathematical
relationship between the objective function and the design
variables. The proposed method can shorten the rubber
products design cycle and decrease the trial-and-error efforts.
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