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Abstract
Hole drilling is one of the major basic operations in part manufacturing. It follows without surprise then that the opti-

mization of this process is of great importance when trying to minimize the total financial and environmental cost of part

manufacturing. In multi-hole drilling, 70% of the total process time is spent in tool movement and tool switching.

Therefore, toolpath optimization in particular has attracted significant attention in cost minimization. This paper critically

reviews research publications on drilling path optimization. In particular, this review focuses on three aspects; problem

modeling, objective functions, and optimization algorithms. We conclude that most papers being published on hole drilling

are simply basic Traveling Salesman Problems (TSP) for which extremely powerful heuristics exist and for which source

code is readily available. Therefore, it is remarkable that many researchers continue developing ‘‘novel’’ metaheuristics for

hole drilling without properly situating those approaches in the larger TSP literature. Consequently, more challenging hole

drilling applications that are modeled by the Precedence Constrained TSP or hole drilling with sequence dependent drilling

times do not receive much research focus. Sadly, these many low quality hole drilling research publications drown out the

occasional high quality papers that describe specific problematic problem constraints or objective functions. It is our hope

through this review paper that researchers’ efforts can be refocused on these problem aspects in order to minimize

production costs in the general sense.

1 Introduction

Cost optimization of production processes remains one of

the major focus points of machine builders world-wide.

Machining in general and drilling in particular is one of the

main production processes used to manufacture durable

goods. Hole drilling is a process that uses a rotating drill bit

to remove a circular cross-section of material from metallic

or non-metallic materials. This process is a fundamental

manufacturing process and thus is encountered in many

industries and applications [1].

Given the fact that this process is so widely used, a great

pressure exists to optimize the hole drilling process as

much as possible. This can be achieved through better

machine and tool design [2] and through process parameter

optimization [3–6], but also through tool path optimization.

Tool path optimization is the focus of this review paper.

Non-cutting time can take up to 70% of the total time in the

drilling process [7]. This includes repositioning times and

tool switch times. Therefore, this is not an optimization

problem that one can neglect without having significant

impact on total production costs. Especially in mass pro-

duction systems, a small improvement on tool path can

provide significant cost reductions for the companies.

Therefore, there exist several studies in literature related

with hole drilling.

Recently, Abidin et al. [8] composed an overview of

papers published on hole-drilling path optimization

between 1995 and 2017. They present an overview of

publication trends, country origin and application areas.

The discussion on problem modeling, objective functions,

and optimization algorithms, however, does not provide

many useful insights, neither for practitioners from indus-

try nor for academic researchers.
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The purpose of this review paper is to give a clear

overview of previous work on hole drilling in order to

provide a clear approach on how to model and optimize

hole drilling problems for the practitioner from industry or,

for the academic scholars, a clear overview of remaining

challenges in hole drilling path optimization.

Section 2 presents the hole drilling process in detail.

Section 3 presents different approaches to model hole

drilling processes. In Sect. 4, the reviewed literature is

discussed critically with regards to modeling approach,

objective functions, and used algorithms. Finally, Sect. 5

presents our conclusions and outlook for the future of hole

drilling path optimization research.

2 Hole Drilling Process

The basic hole drilling process involves routing a single

drill bit over a workpiece in such a way that all holes are

visited in the fastest possible manner. Figure 1 shows a

widely used basic example of a single tool hole drilling

workpiece with 14 holes of the same diameter.

This is the most basic version of a multi-tool drilling

applications are workpieces, where every hole has to be

drilled by a single specific tool. We will refer to this

problem as single tool hole drilling (ST).

However, in reality, it is rare that all holes on a work

piece require the same diameter or the same type of fin-

ishing. In that case, one speaks of multi-tool drilling and

such a process attempt to minimize the sum of the tool

switch costs and the tool travel costs. From an optimization

point of view, however, this hole drilling problem with

multiple tools reduces to the single tool hole drilling

problem. Since, beforehand, we can define a simple cost

matrix (or time matrix) that unambiguously defines the cost

of moving from one hole to another hole. This cost equals

the summation of the travel cost and the tool switch cost.

At the lowest level, this is exactly the same as the single

tool hole drilling problem. However, we will refer to it as

the basic multi-tool hole drilling problem (MT)

A more complex version is one where, for every hole, a

specific sequence of tools is defined beforehand. In this

case, tool switch costs need to be taken into account and

the optimization algorithm needs to weigh travel costs

against these tool switch costs. This is the case where, for

examples, a work piece contains holes that first need to be

predrilled all the way through before being finished by a

tap or a reamer. We will refer to this type of drilling as

multi-tool hole drilling with precedence constraints(MTPC).

An even more complex version is the one presented by

Kolahan and Liang [9]. In this hole drilling application

with multiple tools, only the final tool for a given hole is

known. However, for that hole, multiple smaller tools

might be available to pre-drill the hole. Pre-drilling a hole

with a smaller tool will reduce the time required to drill the

hole with the larger tool as well as the wear on the larger

tool. Figure 2 presents a small example where hole A

might be drilled using tool sequences {3}, {1,3}, {2,3}, or

{1,2,3}; hole C can only be drilled by sequence {1}; and

hole B can be drilled by sequences {2}, or {1,2}.

This application involves four simultaneous optimiza-

tion decisions: (a) tool-hole selection, (b) tool travel rout-

ing, (c) tool switch scheduling, and (d) selection of cutting

speed for each tool-hole combination (operation) with the

goal of minimizing total production cost. Total production

cost consists of drilling cost, tool wear cost, tool travel

cost, and tool switch cost.

In their work, Kolahan and Liang use numerical

approaches to determine optimal cutting speeds for every

tool-hole combination given a certain pre-drilled state of

the hole (d). Therefore, (d) can be solved in a preprocessing

Fig. 1 Generic small hole drilling work piece [42]

Fig. 2 Example of multi-tool hole drilling with sequence dependent

drilling costs and times [9]
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phase to determine beforehand all cutting times and costs

for every hole, drill, and pre-drill combination. Hence, in

this multi-tool hole drilling problem with sequence

dependent drilling times, the remaining optimization

decisions are simultaneously (a), (b), and (c). We will refer

to this problem as multi-tool hole drilling with sequence

dependent drilling times (MTseq).

The following section will discuss how these hole dril-

ling applications are modeled as existing (well-studied)

optimization problems.

3 Hole Drilling Models

In the following sub sections, we show how the ST hole

drilling problem can be modeled as a Traveling Salesman

Problem (TSP), how the MT hole drilling problem can be

modeled as a Precedence Constrained Traveling Salesman

Problem (PCTSP), and how the PCseq hole drilling problem

can be modeled as a Precedence Constrained Generalized

Traveling Salesman Problem (PCGTSP).

3.1 Single Tool and Basic Multi tool Hole
Drilling: TSP

The single tool hole drilling problem deals with drilling a

set of holes on a work piece with a single drilling time

using a single tool. The TSP is defined as: given a set of

cities with a priori known travel costs (or travel times, or

distances) between any pair of cities, find the shortest tour

that visits every city. In the ST problem with a single tool,

the cost matrix is evidently the distance, travel time, or

travel cost between any two nodes.

In the basic multi tool problem, the cost between two

nodes i and j consists of the travel cost between the two

nodes plus the tool switch cost between the tool required to

drill i and the tool required to drill hole j. It follows that the

TSP model for the MT problem involves an asymmetric

cost matrix. However, this does not matter much for the

current state-of-the-art heuristic and exact TSP solvers.

Sherali et al. [10] discuss MIP formulations for the TSP

and propose several new ones. The following MIP for-

mulation is one (tight) way to formulate the TSP with

n holes designated with index 1 to n.

Let xij equal 1 if the arc from hole i to hole j is selected,

and 0 otherwise (8i; j ¼ 1; . . .; n; i 6¼ jÞ. Let yij equal 1 if

hole i precedes (not necessarily immediately) hole j, and 0

otherwise (8i; j ¼ 2; . . .; n; i 6¼ j). Let cij equal the cost of

moving from hole i to hole j. The TSP can then be for-

mulated as follows:

min
Xn

i¼1

Xn

j¼1;j 6¼i

cijxij ð1Þ

Xn

v¼1;i 6¼v

xiv ¼ 1 8i ¼ 1; . . .:; n ð2Þ

Xn

i¼1;i6¼v

xiv ¼ 1 8v ¼ 1; . . .:; n ð3Þ

yij � xij 8i; j ¼ 2; . . .; n; i 6¼ j ð4Þ

yij þ yji ¼ 1 8i; j ¼ 2; . . .; n; i 6¼ j ð5Þ

yij � x1i 8i; j ¼ 2; . . .; n; i 6¼ j ð6Þ

yji � xi1 8i; j ¼ 2; . . .; n; i 6¼ j ð7Þ

yij þ xji
� �

þ yjk þ yki � 2 8i; j; k ¼ 2; . . .; n; i 6¼ j 6¼ k

ð8Þ
x1j þ xj1 � 1 8i; j ¼ 2; . . .; n; i 6¼ j ð9Þ

xij 2 0; 1f g 8i; j ¼ 1; . . .; n; i 6¼ j ð10Þ

yij � 0 8i; j ¼ 2; . . .; n; i 6¼ j ð11Þ

Constraint set (2) ensures that all cities except for the

end city are exited. Constraint set (3) ensures that all cities

are except for the start city are entered. Constraint sets (4)

to (9) are sub tour elimination constraints and simultane-

ously ensure that the y-variables correctly represent

precedence relations between cities. Constraint set (9)

forces the xij variables to be binary and, lastly, constraint

set (10) in conjunction with the sub tour elimination con-

straints also ensures that the yij also take binary values.

State-of-the-art solvers are capable of optimally solving

TSPs with thousands of cities [11]. However, this still

requires substantial amounts of computation time, i.e. in

the order of 1000s for a 1000 city problem. Nevertheless,

powerful heuristics exist and open source code is available

that find near-optimal solutions in very short computation

times [12]. Helsgaun’s improved Lin-Kernighan heuristic

[12] routinely solves 1000 city TSP’s to optimality in on

average 11s. Therefore, considering that problem sizes in

hole drilling applications are limited to hundreds of holes

(as opposed to thousands of cities in current academic

challenges and benchmarks), we actually can consider the

path optimization problem for ST and MT hole drilling as

solved from a machine builder’s perspective.

3.2 Multi-tool Hole Drilling with Precedence
Constraints: PCTSP

Multi-tool hole drilling deals with drilling a set of holes on

a work piece where a sequence of drilling operations for

each hole is determined beforehand. For example, in

Fig. 3a [13], hole 1 needs to be drilled by only tool 1, hole
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2 first needs to be drilled by tool 1 and then by tool 2, and

hole 3 needs to be drilled by tools 1, 2, and 3 in that order.

Figure 3b shows an operations precedence graph where

nodes 0 and 7 represent the start and end of the hole drilling

process. If one creates a city for every allowed hole-tool

combination and one defines the cost of moving from a

certain hole-tool combination (i, t) to another hole-tool

combination (j, u) as the summation of the travel cost from

hole i to hole j and the tool switch cost from tool t to tool u, the

problem is actually identical to the Precedence Constrained

Traveling Salesman Problem (PCTSP) [14] also known as

the Sequential Ordering Problem (SOP) [15]. The PCTSP

can be defined as follows: given a set of cities, the costs of

moving from one city to another city, and a set of precedence

constraints between the cities, find the shortest path that

visits every city without violating a precedence constraint.

The TSP formulation of Sherali et al. [10] described

above, can also be used to model the PCTSP since the yij
variables denote whether a city i precedes another city j.

Based on the precedence graph, certain yij variables can be

fixed beforehand to 1 (and conversely, the corresponding

yij variables can be fixed to 0).

Solving the PCTSP is significantly harder. This is

showcased by the fact that still much research is being

carried out in developing better exact approaches [14, 16],

exploiting special cases [17], and investigating better

heuristics [15, 18–22].

Skinderowicz [21, 22] developed the state-of-the-art Ant

Colony Optimization—Simulated Annealing hybrid that is

able to generate consistently very high quality solutions for

problem instances with 200–700 nodes requiring 600s of

computation time. For many practical applications this is

too high. On the other hand, many hole drilling applica-

tions do not deal with 200 holes and therefore such an

approach could probably yield high quality solutions in

shorter computation times. For the applications that deal

with larger problem sizes, the current state of the art forces

us to either accept the high computation times or to accept

a lower solution quality.

Of course, the focus of academic researchers dealing

with multi-tool hole drilling with precedence constraints

should be to position their research with in the larger

PCTSP or SOP research field and to freely borrow and

improve upon ideas present in the active research fields.

3.3 Multi-tool Hole Drilling with Sequence
Dependent Drilling Times

Based on our review of the hole drilling literature, the MTseq

as introduced byKolahan and Liang [9] does not seem to be a

very attractive problem. Only Dalavi, Pawar and Singh [23]

and Dalavi [24] actually claim to deal with the MTseq prob-

lem. Both their and Kolahan and Liang’s solution approach

seem to indicate that the problem structure does not easily

translate into a standard Operations Research problem

model. Kolahan & Liang and Dalav, Pawar, and Singh rep-

resent a solution to the problem as a permutation of all

possible tool-hole combinations and use a metaheuristic

approach to generate neighbor solutions. Evaluating a single

neighbor solution always requires a time complexity of O(n),

as opposed to evaluating a swap neighbor solution in a reg-

ular TSP which requires only O(1) time.

In the review paper of Dewil et al. [25] on tool path

algorithms for laser cutting, it is suggested that the problem

can be modeled as a Precedence Constrained Generalized

Traveling Salesman Problem (PCGTSP), but a detailed

modeling approach and computational experiments are still

to be produced.

Therefore, the MTseq problem is far from solved both

from an academic point of view as from a practitioner’s

point of view with regards to modeling and efficient and

easily implementable optimization approaches.

Fig. 3 Multi-tool hole drilling

with known tool-hole operations

[13]
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4 Discussion

4.1 Modeling Approaches

Abidin et al. [8] identify three models used in the literature

on hole drilling: Traveling Salesman Problem (TSP),

Traveling Cutting Tool Problem (TCP), and a so-called

Precedence Sequence.

For the TSP model, Abidin et al. [8] present a Mixed

Integer Programming formulation which is actually incor-

rect since it does not contain sub tour elimination con-

straints. The TCP model is defined as a TSP problem where

the tool head does not need to return to its starting position,

tool changes are modeled as actual visits to a tool changing

location and movements between holes might require

additional moves to avoid collisions with the (static) work

piece. It is remarkable that this is considered a separate

problem since all of these issues can easily be preprocessed

and taken into account in the regular TSP distance or cost

matrix. The Precedence Sequence model is not explained

in detail, but we assume it corresponds to the above defined

PCTSP model.

Abidin et al. [8] classify the modeling approaches of 411

reviewed papers as 92% TSP, 5% Precedence Sequence,

and 3% TCP. Taking into account that the TCP actually is

just a TSP problem, this means that 95% of hole drilling

path optimization papers published between 1995 and 2017

attempt to solve the basic Traveling Salesman Problem.

This seems a bit excessive.

Therefore, we prefer to use the above defined modeling

approaches: TSP, PCTSP, and MTSeq. We reviewed 53

papers on path optimization for hole drilling (including the

41 papers reviewed by Abidin, Ab Rashid and Mohamed)

and augmented these with more recent or also relevant

papers. These papers were published between 1998 and

2016. An overview of the number of publications by year is

given in Fig. 4.

As can be seen in Fig. 5, 79% of papers (42) tackle the

classical TSP, 13% (7) model the process as a PCTSP, and

8% (4) papers deal with the complex MTSeq problem. Note

that out of the 42 TSP papers, 38 deal with a single-tool

hole drilling process and 4 with a basic multi-tool hole

drilling process.

Although, it is not 95% of papers, still a sizable 79% of

papers develop custom TSP optimization algorithms while

more powerful approaches can easily be found in previous

work and in open source repositories.

Given the TSP-like nature of all problem types (ST, MT,

MTpc, MTseq), solutions are represented as a permutation of

tool-hole combinations (1A represents tool 1—hole A), e.g.

[1A, 2A, 6A, 3B, 2B, 4B, 5C].

Table 1 presents an overview of the reviewed papers.

Columns 1 and 2 contain the reference number and pub-

lication year. Columns 3 and 4 contain the considered

problem and the model used to approach the problem.

Columns 5, 6, and 7 mark in which way distances or travel

times are calculated, and column 8 contains the optimiza-

tion algorithm(s) used.

4.1.1 MIP Formulations

MIP formulations in PTCTSP and MTSeq hole drilling lit-

erature are few and those MIP models that are formulated

are in fact not subjected to computational tests. For

example, Ghaiebi and Solimanpur [67] and Hsieh et al.

[68] present MIP formulations with quadratic objective

function for the PCTSP. Kolahan and Liang [9] present a

MIP formulation which lacks sub tour elimination con-

straints for the MTSeq. Abbas et al. [37] also present a MIP

formulation for the TSP lacking sub tour elimination

constraints.

In addition to the modeling issues of unnecessary

development of TSP algorithms not advancing the state-of-

the-art, seeing TCP as a separate problem as TSP, and the

avoidance of looking for lower bounds using exact solvers

are some of the indications that many publications on path

optimization in the hole drilling literature are not well

grounded in operations research techniques and models.

1 Abidin, Ab Rashid and Mohamed claim to review 61 papers on hole

drilling path optimization, but going in detail over those publications,

we were only able to identify 41 papers that deal with path

optimization. More specifically, using the reference numbers of the

paper of Abidin, Ab Rashid and Mohamed [8], [52] was omitted

because of very poor quality and content, [60] described state of the

art in optimization for maintenance system,

[14, 15, 19, 21–23, 41, 42, 45, 62–67] are general descriptions of

metaheuristics not specifically applied to hole drilling, [51] was

counted twice, and [5] deals with optimization of process parameters.
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Fig. 4 Overview of number of publications on hole drilling path

optimization by year
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4.2 Optimization Algorithms

As mentioned above, exact approaches are not being used

in the reviewed papers. Researchers and practitioners use

heuristics and metaheuristics to avoid the sometimes long

calculation times of exact approaches. Figure 5 gives an

overview of the algorithms used in the reviewed papers.

In the 53 reviewed papers, 56 algorithms were imple-

mented. We can see that 75% of implemented algorithms

use ‘‘classical’’ heuristics or metaheuristics: Tabu Search

(TS), Ant Colony Optimization (ACO), Simulated

Annealing (SA), Genetic Algorithms (GA), Particle Swarm

Optimization (PSO), Lin-Kernighan Heuristic (LKH) and

Local Search. 5% use or compare against basic CAM

heuristics. 18% use so-called ‘‘novel’’ metaheuristics [72]

and 1 paper did not give any details on the algorithms used

(Fig. 6).

Well over half of the optimization approaches (57%) use

a population based approach (GA, PSO, CS, Firefly,

Intelligent Water drops, Immune Algorithm, SFL, BBO,

MOA). From an implementation perspective, this actually

makes sense since these approaches can quickly be applied

to problems that can be represented by a permutation of

tool-hole combinations. In fact, for these approaches it

does not matter much whether the problem is a TSP,

PCTSP, or MTSeq since the evaluation of new offspring,

eggs, frogs, fireflies,… always takes O(n) time. There is no

additional time complexity required to include precedence

constraint checking or dealing with sequence dependent

drill times. ACO, although not a population based

approach, operates in a similar fashion: the process of

generating a solution also ensures feasibility and is

accompanied with the correct objective function value.

Tabu Search, Simulated Annealing, and Local Search,

on the other hand, require a good understanding of the

problem structure to define solution neighborhoods that can

be searched efficiently for feasible solutions and evaluated

efficiently. The advantage is that many more solutions are

evaluated in the same time frame as population based

algorithm. The disadvantage is that diversification requires

additional explicit diversification mechanisms. Further-

more, other successful meta heuristics such as Variable

Neighborhood Search and Large Neighborhood search

have not been applied to the hole drilling problem before.

These pose interesting avenues for further research since, at

the very least, they require the development of different

local move operators. Investigating which local move

operators are successful is an interesting research in itself.

4.3 Objective Functions

In the reviewed papers, paths are optimized for a single

objective, being cost, distance, or time. Minimizing time or

cost includes several or all of the following components:

travel, drill, and tool switch times or costs, respectively.

As described above, for the ST, MT, and MTpc prob-

lems, the total process cost can easily be captured in a two

pre-computed cost matrices. The first containing the travel

costs between any pair of holes and the second containing

the tool switch costs between any pair of tools. In the ST,

MT, and MTpc problems, since all tool-hole combinations

have been decided beforehand, no optimization of drill

costs is possible and thus can be left out of the objective

function.

The drill costs have to be included in the MTseq problem

and can also be captured in a simple 2 dimensional matrix

where the cost in cell i,j corresponds to the cost to drill a

hole with tool j when the hole is pre-drilled with tool i.

Travel costs are calculated as a function of travel dis-

tance or travel time. The reviewed papers use three dif-

ferent functions to model distance: Euclidean, rectilinear

and Chebyshev. Euclidean, rectilinear, and Chebyshev

distances are calculated according to Eqs. 12, 13, and 14

respectively.

deuclidean;ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2þ y1 � y2ð Þ2

q
ð12Þ

drectilinear;ij ¼ x1 � x2j j þ y1 � y2j j ð13Þ

dchebyshev;ij ¼ max x1 � x2j j; y1 � y2j jð Þ ð14Þ

To the best of the authors’ knowledge, hole drilling

machines use 2 separate motors for movements in the X

and Y dimensions. Therefore, with regards to travel times

or travel costs, a Euclidean distance matrix does not really

make sense. It does, however, make the tool paths look

nicer to a human observer.

79%

13%
8%

Modeling approaches

TSP

PCTSP

MTSeq

Fig. 5 Overview of models used in hole drilling path optimization
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Table 1 Overview of reviewed literature

References Year Problem Model Distance matrix Algorithms

Euclidean Rectilinear Chebyshev

[26] 1999 ST TSP x x x SA, nearest neighbor, sequential search, ranged sequential

search

[27] 2007 ST TSP ? ? ? Local search

[28] 2008 ST TSP x Local search

[29] 2009 ST TSP x Local search

[30] 2009 ST TSP x x x Local search

[31] 2014 MT TSP ? ? ? LKH

[32] 2011 ST TSP x ACO

[33] 2012 ST TSP x x x ACO

[34] 2012 ST TSP x x x ACO

[35] 2012 ST TSP x x x ACO

[36] 2013 ST TSP ? ? ? ACO

[37] 2014 ST TSP x ACO hybrid

[38] 2014 ST TSP x x x ACO

[39] 2014 ST TSP x ACO

[40] 2014 MT TSP x ACO

[41] 2015 ST TSP x ACO, GA

[42] 2006 ST TSP x PSO

[43] 2008 ST TSP x PSO

[44] 2010 ST TSP x PSO

[45] 2011 ST TSP x x x PSO

[46] 2004 ST TSP x PSO

[47] 2005 ST TSP x x x GA

[48] 2011 ST TSP x x x GA

[49] 2011 ST TSP x x x GA

[50] 2012 ST TSP ? ? ? GA

[51] 2012 ST TSP x GA

[52] 2012 ST TSP x x x GA

[53] 2012 ST TSP x x x GA

[54] 2013 ST TSP x GA

[55] 2014 ST TSP x GA

[56] 2014 ST TSP x X GA

[57] 2015a ST TSP x GA

[58] 2010 ST TSP x Unspecified

[59] 2013 ST TSP X Magnetic optimization

[60] 2014 MT TSP ? ? ? Generic CAM heuristic

[61] 2015 ST TSP x Nearest neighbor, CAM heuristics

[62] 2012 ST TSP x x x Immune algorithm

[63] 2012 ST TSP x Firefly algorithm

[64] 2014b ST TSP x x x Cuckoo search

[65] 2014 ST TSP x Cuckoo search/GA hybrid

[66] 2015 ST TSP x Intelligent water drops

[67] 2007 MTPC PCTSP x ACO

[68] 2011 MTPC PCTSP x x PSO

[69] 2011 MTPC PCTSP x GA

[70] 2013 MTPC PCTSP x ACO

[13] 2015 MTPC PCTSP x x BBO

A Critical Review of Multi-hole Drilling Path Optimization 455

123



A rectilinear distance matrix is applicable when the

motors are activated in sequence, e.g. first execute the

movement in X, and only then execute the movement in Y.

A Chebyshev distance matrix is applicable when both

motors are activated simultaneously and, in that case, the

longest distance is the one determining the actual travel

time.

If one considers travel costs, there is an argument to be

made that a combination of rectilinear and Chebyshev is

actually most appropriate. The Chebyshev component

captures travel time with its accompanying production cost

per time unit and the rectilinear component captures the

energy usage and wear and tear on the motors and their

associated production costs per mm traveled. Such a

combination is shown in Eq. 4. Where ctime is the pro-

duction cost of the machine per time time unit, vx and vy
are the motor movement speeds in the x and y dimension

respectively, and cmotor is the cost per mm movement of the

x and y motors.

travel cos tij ¼ ctimemax
x1 � x2j j

vx
;
y1 � y2j j

vy

� �

þ cmotordrectilinear;ij ð15Þ

Such a travel cost component, however, is not used in

the reviewed papers. Several papers repeat experiments

with other distance metrics. In total, 34, 32, and 19 papers

use Euclidean, rectilinear, and Chebyshev distances,

respectively. Five papers do not specify which distance

matrix they use.

Equation 15 assumes a constant speed in the x and y

dimensions. Acceleration and deceleration, however, are a

significant factor in the machine tool head movements

given the powerful motors and the short distances involved.

None of the reviewed papers considered the non-linearities

of acceleration and deceleration in setting up their distance

matrix. From an academic point of view, this is under-

standable since all of the algorithms proposed in the

reviewed papers function, regardless of the exact distance

measure and travel time approximation used. From a

practitioner’s point of view, however, it does matter

greatly. Since, the end goal is to minimize production costs

and therefore, the algorithm should actually be minimizing

the actual costs and not a simplification of these costs.

5 Discussion and Future Outlook

Based on the number of publications over the years, it

would seem that hole drilling path optimization is a

thriving research field. However, if one looks more closely,

we see that 79% of papers (42 papers) deal with the basic

TSP for which powerful heuristics are readily available. It

would be better if research dealing with the basic TSP

would be positioned within the TSP field.

Fig. 6 Overview of algorithms used in hole drilling path optimization

Table 1 (continued)

References Year Problem Model Distance matrix Algorithms

Euclidean Rectilinear Chebyshev

[71] 2014a MTPC PCTSP x Cuckoo search/GA hybrid

[73] 2015b MTPC PCTSP x x x GA

[74] 2016 MTPC PCTSP x x x TS

[9] 2000 MTseq MTseq x TS

[23] 2016 MTseq MTseq x PSO, shuffled frog leaping

[24] 2016 MTseq MTseq x POS, SFL

[75] 2016 MTseq MTseq x x x N/A (review paper)

GA genetic algorithm, ACO ant colony optimization, LKH lin-kernighan heuristic, PSO particle swarm optimization, TS tabu search, BBO

biogeography based optimization, MOA magnetic optimization algorithm, SFL shuffled frog leaping algorithm
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Subtracting the TSP papers from the reviewed papers,

we are left with 11 papers on hole drilling path optimiza-

tion published between 1994 and 2017. Out of these 11,

another 7 can be classified as the PCTSP or SOP which is a

notoriously difficult problem. However, the reviewed

papers on MTpc validate their algorithms on very small

problem instances. Liu et al. [70] use a 42 hole problem,

Khalkar et al. [73] use a 32 hole problem. Ghaiebi and

Solimanpur [67] use a 10 and a 12 hole problem, Hsieh

et al. [68] use a 12 hole problem, Chen and Guo [74] use a

6 and a 35 hole problem, and Tamjidy [13] considers the

same 42 hole problem as Liu et al. and the same 10 hole

problems as Ghaiebi and Solimanpur. It is remarkable that

so much effort is spent on these small problems while SOP

benchmark studies are being performed on instances with

up to 700 cities [76]. Simply borrowing algorithms from

these studies would mean a huge jump in cost savings for

machine builders being confronted with MTpc problems

and would free up time from researchers to tackle unsolved

problems.

Out of all reviewed papers, 4 papers deal with an actual

not well understood problem, the hole drilling path opti-

mization problem with sequence dependent drilling times

or MTseq in short. Current approaches represent a solution

as a single array containing all tool-hole combinations.

Evaluation of a solution happens by iterating over a solu-

tion and possibly skipping a node if the hole has already

been drilled to a larger size. It follows that such an eval-

uation is very practical for population based approaches or

for a constructive algorithms such as ACO. For local search

based algorithms, such as the Tabu Search method using a

swap local operator of Kolahan and Liang [9], the advan-

tage of quick evaluations is not present and a such not

particularly well suited for this problem. Further research

could focus on new solution representation techniques

which could allow for quicker neighbor solution evaluation

techniques in local search based metaheuristics. New

specific local move operators could be developed to exploit

the specific problem structure. And, although Kolahan and

Liang described in detail what parameters were used to

generate their instances, it would be useful to generate and

make publicly available a set of many and large benchmark

instances. Currently, no attempts have been undertaken to

find exact solutions to MTseq instances. Therefore, it would

be very interesting to investigate different (linear) problem

formulations and attempt to solve these using exact solvers.

6 Conclusions

Many publications on hole drilling path optimization have

appeared over the years. This paper critically reviewed

these publications and finds that 79% deal with the basic

TSP problem and do not properly recognize the develop-

ments which have occurred over the years in the TSP path

optimization field. These papers develop basic custom

algorithms and frequently perform computational tests on

very small problem instances. Such computational tests are

of no or very low value for understanding the workings and

limits of their proposed optimization approach.

More challenging optimization problems lie in (1) the

PCTSP or SOP domains which can be used to model multi-

tool hole drilling applications with precedence constraints,

and (2) the MTseq application which does not yet have a

very convincing modeling approach or optimization

algorithm.

Future research on hole drilling should focus on

grounding the optimization models for MTpc problems in

the PCTSP or SOP literature, testing new algorithms on

SOP benchmarks and large hole drilling instances. MTseq

problems are very challenging and developing a proper

modeling approach and optimization strategy should be the

main focus of researchers working on hole drilling path

optimization. Such developments would be of immediate

interest to the industrial practitioner developing multi-hole

drilling machines with sequence dependent drilling times.
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