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  A non-linear elastic-plastic stress analysis in a 
ductile double-lap joint  
   Abstract:   In this study, an elastic-plastic stress analysis 

was proposed in order to obtain shear stress distribution 

in a double-lap joint, analytically. The solution was car-

ried out using incremental theory. The obtained shear 

stress was then used for determining the peel stress in the 

adhesive. The elastic peel stress distribution in the adhe-

sive was determined using Newton-Raphson method. In 

this study, FM73 (Cytec Industries Inc., New Jersey, USA) 

ductile adhesive was selected as it represents plastic 

hardening. The analytical results were compared with 

the finite element solution. For that, ANSYS 10 Software 

(Figes Engineering A.S., Turkey) was used so as to com-

pare with the analytical results. A good agreement was 

obtained between the two methods.  
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1     Introduction 
 Adhesively bonded joints have been used in several appli-

cations. Adhesive bonding usually enables structures to 

have lower cost and weight in comparison with the con-

ventional methods. The adhesive bonding offers certain 

advantages over traditional joining techniques, such as 

corrosion, fatigue resistance, crack retardation, cost saving 

and lighter weight of structural component. It also enables 

to joint dissimilar materials effectively in comparison with 

the conventional methods. This method is especially suit-

able for the joining of thin materials. To satisfy the safety 

of adhesively bonded joints, it is necessary to estimate a 

correct stress distribution in the joints. A ductile adhesive 

ensures high strengths in the joints, by using the ductile 

properties and residual stresses in the joints. An explicit 

analytical solution is presented in double-lap joints by 

Smith  [1] . He reported the plastic shear stress in the adhe-

sive. He also determined the peel stresses in the adhesive. 

Silva and Adams  [2]  proposed a technique for decreasing 

the peel stresses in double joints and to increase the joint 

strength, particularly at low temperatures. Kadioglu et al. 

 [3]  studied a very ductile adhesive and a structural epoxy. It 

has been shown that when designed correctly, the ductile 

adhesive could take advantage of the epoxy, and that an 

adhesive which is relatively stronger in one mode (e.g., 

tension) is not necessary so far in the other mode (e.g., 

bending). Four-point bending tests were performed in this 

study. Apalak and Gunes  [4]  investigated three-dimen-

sional elastic stresses in an adhesively bonded single-lap 

joint with functionally graded adherends in tension. A 

finite layered solid element was formulated based on three-

dimensional elasticity. Silva and Adams  [5]  carried out a 

finite element model to design a joint, suitable for use from 

low to high temperatures. They studied shear and peel 

stresses in the adhesive so as to find the best possible joint 

design. Xiao et al.  [6]  presented an analytical solution for 

the in-plane stiffness response of adhesively bonded dou-

ble-lap shear joints. Her  [7]  developed an analytical solu-

tion for finding the shear stress in single-lap and double-lap 

joints. Schmidt and Edlund  [8]  proposed a finite element 

method so as to analyze the failure of adhesively bonded 

structures. Kadioglu et al.  [9]  measured shear stress-strain 

behavior of two low modulus structural adhesives using 

the butt-torsion test. The Nadai correction for nonlinear 

shear behavior was utilized in the solutions. Chataigner 

et al.  [10]  proposed a procedure using nonlinear failure cri-

teria for double-lap bonded joints. The proposed analytical 

procedure is based on the well-known Shear Lag Theory of 

Volkersen. Edlund et al.  [11]  studied a model for an adhe-

sively bonded joint with elastic-plastic adherends and a 

softening adhesive. Malvade et al.  [12]  studied the simu-

lation of non-linear mechanical behaviors of adhesively 

bonded double-lap joints for variable extension rates and 

temperatures using the implicit ABAQUS solver. Sayman 

 [13]  proposed an analytical model for the elasto-plastic 

solution of a single-lap joint. DP 460 (3M Scotch-Weld 
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Epoxy Adhesives, Turkey) ductile adhesive was used and 

ANSYS finite element solution was carried out for the 

numerical solution. Markofelas and Papathanassiou  [14]  

developed a shear-lag model in order to evaluate stress 

redistributions in double-lap joints under axial lap-shear 

cyclic loading. The adherend materials exhibit linear 

elastic behavior; however, the adhesive material provides 

the elastic-perfectly plastic shear stress-strain relation. 

 In this study, an elastic-plastic stress analysis was 

carried out in a ductile double-lap joint. The shear and 

peel stresses in the adhesive were found analytically. The 

results were compared with the finite element solution.  

2    Mathematical formulation 
 The geometric structure of a double-lap joint is shown in 

Figure  1  . Free body-diagrams of the joints are shown in 

Figure  2  . The static equilibrium yields the following equa-

tions as 

   

τ+ =0 0
dT
dx  

(1) 

   

τ=-2 0idT
dx  

(2) 

 where  T  
0
  and  T  

 i   are the tensions per unit width in adher-

ends, respectively. The shear strain in the adhesive is 

written as 
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 If the incremental theory is used in the solution,  d ε   
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be written as 
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 Figure 1    Geometric structure of a double-lap joint.    
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 Figure 2    Free body-diagrams of the joint.    
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 where   η   and  G  
 a 
  are the thickness and the shear modulus of 

the adhesive, respectively. 
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 The Ludwik equation for the shear stress is written as 

   
τ τ γ= +0

n
pK

 
(7) 

 In the solution,  n  is chosen as 1, for an easy analytical 

solution, because for  n ≠  1, the analytical solution may be 

impossible or very difficult. The solution for  n   =  1 is almost 

close to reality. However, a more realistic solution can be 

obtained by using the nonlinear stress-strain diagrams for 

 n   =  0.597. Therefore, nonlinear ANSYS solutions have been 

added to the shear stress diagrams along the joints in 

Figures  3–  5  .   εp
xyd  can be expressed in terms of the equiva-

lent strain  d γ     p   as 
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Figure 3 Shear stress along the adhesive for t
0
 = 1.6 mm.
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 The total strain increment is 
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 From this equation, 
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 Static equilibrium is written as 

  P   =   T  
 i   + 2 T  

0
  and  T  

 i    =   P  – 2 T  
0
  (13) 
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 Figure 5    Shear stress along the adhesive for  t  
0
   =  3.2 mm.    
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Figure 4 Shear stress along the adhesive for t
0
 = 2.4 mm.
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 Figure 6    Outer adherend. (A) Stresses, (B) element loads.    

 Putting in the equation of  T  
0
  yields the equation 
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 The boundary conditions are 
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 where  L  is the total length of the adhesive. The solution of 

this differential equation produces the plastic shear stress 

in the adhesive as 
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 In the elastic region, the shear stress can be found 

from the work of Her  [7] . 

2.1    Peel stress 

 The peel stress is another important stress component 

in the adhesive. However, in this study, the solution of 

the peel stress is found individually. The shear stress dis-

tribution along the adhesive is obtained first. Then it is 

substituted in the solution of the peel stress, as shown in 

Figure  6  . 
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 The equations of the peel stress are presented by 

Smith  [1] . They are 
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 and the other equations 
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 where  M ,  V ,  w  
0
  and   σ   

 c 
  are the bending moment, shear 

force, deflection and peel stress, respectively. These equa-

tions produce a basic differential equation which is 
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outer adherent. The solution of the homogenous part is 

given by Smith  [1]  under the condition of   
τ =0

d
dx
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+  C  sin  Xx  sin h  Xx  +  F  cos  Xx  cos h  Xx  (24) 

 However, in this study,   
τd

dx  is taken to be different 

from the zero. Then the private solution of the equation 

in the plastic region of the shear stress Eq. (18) is added as 
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 Eq. (23) is rearranged in Eq. (25) as follows: 
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 After the solution of Eq. (25a), the constants are found as 
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   λ   
 p 
  is given by Eq. (15), where 
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 When the shear stress is elastic, the elastic shear 

stress equation found from the work of Her  [7]  is substi-

tuted in the above equation instead of the plastic relation 

in Eq. (25). The boundary conditions are 
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 The other relation is 
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 As the peel stress ( σ  
 c 
 ) is produced by the bending 

moment, the summation of the peel stress along the adhe-

sive is equal to zero. Therefore, the peel stress satisfies the 

zero. As a result of this, the summation of the deflection 

( w  
0
 ) along the adhesive is equal to zero, due to the linear 

relation between them [Eq. (20)]. The unknown integra-

tion constants are taken out from the boundary conditions 

and then are put in Eq. (31) in terms of the constant  A . The 

numerical solution is carried out for Eq. (31). For that, 

the numerical integration is performed by Newton-Cotes 

formulas, and then  w  
0
  is calculated by using the Newton-

Raphson method. Subsequently, the peel stress   σ   
 c  
 is found 

along the adhesive at each point, numerically.   

3    Results and discussions 
 In this study, composite plates were manufactured by the 

vacuum infusion method. Material properties are given in 
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Table  1  . The adhesive joint is a ductile material, namely 

FM-73. An external force is applied to the double-lap joint. 

Then the   τ   –   γ   diagram is obtained, as shown in Figure  7  . 

Material properties of the adhesive were found from this 

diagram. The yield point of the shear stress is   τ   
 y 
   =  17.0 MPa 

and the plasticity constants are  K   =  40.4 MPa and  n   =  1. The 

true stress-strain values are used in the construction of 

the diagram. Mechanical properties of the adhesive are 

given in Table  2  . 

 The magnitude of  P  is chosen as 640 N. The length and 

thickness of the adhesive are 20 mm and 0.14 mm, respec-

tively.  t  
0
  is selected as 1.6, 2.4 and 3.2 mm.  t  

 i   is chosen as 

2 t  
0
 , in each case. 

 The finite element analysis was carried out for the 

numerical solution. Solid 182 element of four nodes was 

utilized in the numerical analysis. Symbolic meshing of 

the double-lap joint is shown in Figure  8  . This numeri-

cal solution provides a two-dimensional stress analysis. 

However, the analytical stress analysis is performed for 

the one-dimensional case. 

 The shear stress along the adhesive for  t  
0
   =  1.6 mm is 

shown in Figure 3. As seen in this figure, analytical and 

numerical solutions give close results along the adhesive. 

The analytical result of the shear stress at the ends is a 

little bit greater than the numerical solution. The analyti-

cal and numerical results are the greatest at the ends of 

the adhesive. 

 The shear stress along the adhesive for  t  
0
   =  2.4 mm is 

shown in Figure 4. As seen in the figure, both the analyti-

cal and numerical solutions are in good agreement. They 

are highest at the ends of the adhesive. 

 Figure 8    Symbolic modeling and meshing of the double-lap joint.    
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 Figure 7      τ   –   γ   diagram of the FM-73 adhesive.    

 E   x   (MPa)  E   y   (MPa)   υ    xy   G   xy  

33,000 10,500 0.27 4800

 Table 1      Mechanical properties of composite adherends.  

 E   a   (MPa)   υ    ττ    y   (MPa)  K  (MPa)  n 

4200 0.35 17.0 40.4 1

 Table 2      Mechanical properties of adhesive.  

 The shear stress distribution along the adhesive for 

 t  
0
   =  3.2 mm is shown in Figure 5. As seen in the figure, 

shear stress is the highest at the ends of the adhesive. It is 

similar for both analytical and numerical solutions. 

 The peel stress distribution along the adhesive for 

 t  
0
   =  1.6 mm is shown in Figure  9  . It is seen that both analyti-

cal and numerical solutions satisfy close results. The peel 

stress is compressive and tensile at the left-hand and right- 

hand sides, respectively. The magnitude of the tensile peel 

stress at the right-hand side is higher than that of the com-

pressive peel stress at the left-hand side. 

 The peel stress distribution along the adhesive for 

 t  
0
   =  2.4 mm is shown in Figure  10  . Both the analytical and 

numerical solutions produce close results. The peel stress 

is the highest at the ends of the adhesive. The magnitude 

of the peel stress at the right-hand side is higher than that 

at the left-hand side. It is compressive and tensile at the 

left-and right-hand sides, respectively. 

 The peel stress distribution along the adhesive for 

 t  
0
   =  3.2 mm is shown in Figure  11  . It is seen that both the 

analytical and numerical solutions provide close results. 

The peel stress is tensile and compressive at the right-hand 
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 Figure 9    Peel stress distribution along the adhesive for  t  
0
   =  1.6 mm.    
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and left-hand sides, respectively. The magnitude of the 

tensile peel stress is higher than that at the left-hand side. 

 It is also seen that when the thickness of  t  
0
  is chosen 

to be thin, the peel stress for both solutions obtained are 

very close, due to the small bending moments. As the 

thicknesses ( t  
0
  and  t  

 i  ) are small, the bending moment 

also becomes small. The small bending moment produces 

small peel stress. Smith  [1]  proposed a relation for suffi-

ciently long adhesives; the maximum peel stress in this 

kind of adhesive is 

   

τ
σ

η
= 0

max 32 2

a
C

E t
D X  

(32) 

 where  E  
 a 
  is the Young ’ s Modulus of the adhesive. The mag-

nitude of the highest peel stress at the ends of the joints is 

obtained approximately as 28.52, 32.26 and 37.40 MPa from 

Eq. (32), for  t  
0
   =  1.6, 2.4, and 3.2 mm, respectively. These results 

are close to the theoretical and numerical solutions. In all 

the adhesives, the shear stress exceeds the yield point of the 

adhesive; when the external force is released, the residual 

stress occurs in the adhesive. The load carrying capacity of 

the joints can be increased by using the residual stress.  

4    Conclusions 

 In this study, a nonlinear stress analysis was carried out 

in a double-lap joint. Shear and peel stresses are found by 

theoretical and numerical methods.

a.    The shear stress components in the adhesive can be 

obtained analytically and numerically.  

b.   The shear stress component was obtained to be 

the highest at the ends of the adhesive for both 

solutions.  

c.   Both analytical and numerical methods produce peel 

stress closer in thin  t  
 i   and  t  

0
  adherends.  

d.   The peel stress is an important component together 

with the shear stress in the failure of adhesive.  

e.   Analytical and numerical methods yield good 

agreement in the analysis of the shear stress.  

f.   The strength of the joint can be increased by 

releasing the external force and obtaining the 

residual stresses in a ductile adhesive.       
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 Figure 10    Peel stress distribution along the adhesive for  

t  
0
   =  2.4 mm.    

-40

-30

-20

-10

0

10

20

30

40

-10 -7.5 -5.0 -2.5 0 2.5 5.0 7.5 10

L (mm)

σ 
(M

P
a)

Finite
Analytical

 Figure 11    Peel stress distribution along the adhesive for 

 t  
0
   =  3.2 mm.    


