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A p times continuously differentiable complex-valued function F = u + iv in a domain D < C is p-harmonic if F satisfies the p-
harmonic equation A - - - AF = 0, where p is a positive integer. By using the generalized Salagean differential operator, we introduce a
class of p-harmonic functions and investigate necessary and sufficient coefficient conditions, distortion bounds, extreme points, and

convex combination of the class.

1. Introduction

A continuous complex-valued function f = u + ivin a
domain D < C is harmonic if both u and v are real harmonic
in D; that is, Au = 0 and Av = 0. Here A represents the com-
plex Laplacian operator
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In any simply connected domain D we can write f = h+g,
where hand g are analytic in D. We call & the analytic part and
g the coanalytic part of f. A necessary and sufficient condi-
tion for f to be locally univalent and sense preserving in D is
that J; = |f,* = | I > 0in D. See [1, 2].

Denote by SH the class of functions f = h + g that are
harmonic, univalent, and sense preserving in the unit disk
U = {z : |z| < 1} for which f(0) = f,(0)—1 = 0. Then for f =
h +g € SH we may express the analytic functions /1 and g as
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The properties of the class SH and its geometric sub-
classes have been investigated by many authors; see ([1-6]).
Note that SH reduces to the class S of normalized analytic uni-
valent functions in U if the coanalytic part of f is identically
zZero.
A p times continuously differentiable complex-valued
function F = u + iv in a domain D < C is p-harmonic if

F satisfies the p-harmonic equation A---AF = 0, where p is
a positive integer.

A function F is p-harmonic in a simply connected
domain D if and only if F has the following representation:

P
F(2) =) |2V, (@), (3)
k=1

where Af, 1,(z) =0in D foreach k € {L,..., p}. f, 4, has
the form

fp—k+1 = hp—k+1 + ?p—kﬂ’ (4)

where

(o)
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hp (z) = z+ Z a; 2’
i

hp—k+1 (2) :Z aj,p_k+1zj, (k=2), (5)
i1

9p-k+1 (2) =Z bj,p_kﬂzj, (k=1).
j=1

Denote by SH » the class of functions F of the form (3)
that are harmonic, univalent, and sense-preserving in the unit
disk. Apparently, if p = 1 and p = 2, F is harmonic and
biharmonic, respectively.



Biharmonic functions have been studied by several
authors, such as, [7-9]. Also, biharmonic functions arise in
many physical situations, particularly, in fluid dynamics and
elasticity problems. They have many important applications
in engineering, biology, and medicine, such as in [10, 11].

For a function f in S, differential operator D" (n € N,)
was introduced by Séldgean [12]. AI-Oboudi [13] generalized
D" as follows:

DYf(2)=f(2),
Dyf(2)=(1-4) f(2)+Azf' (2), A=0,  (6)
D}f (z) =D, (D} f (2)).

When A = 1, we get the Salagean differential operator.

For f(z) = (z)+ﬁ given by (2), Liand Liu [14] defined
the following generalized Salagean operator D in SH:
D'\ f (z) = D}h(z) + D} g(z) A =0, (7)
where
Dih(z) =z+ ) [1+(k-1)\"a;Z,
=2
N ®)
Dig(z) =) [1+ (k- DA]"bz.

j=1

For a p-harmonic function F given by (3), we define the
following operator:

DYF (z) = F(z), 9)
DyF(z) = (1 - 1) D}F(2)
+1[2(DYF (2)), +Z(DJF (2)).], A=0,

D}F(z) = D} (D} 'F(2)), (neN).

(10)

If F is given by (3), then from (10) we see that

P 0
F(2)=) 2%V Y [1+(j-1)A+2(k-1)A]"

k=1 j=1
><aj,p—k+lzj

+ Z P4 Y 1+ (G-1)A+2(k-1)A]"
j=1

xbj, 1z (a,=1|p,| <1).

(11)

When p = 1, we get the generalized Salagean operator for
harmonic univalent functions defined by Li and Liu [14].
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Denote by SH p(n, A, «) the class of functions F of the form
(3) which satisfy the condition

R {DK”F (2)

>a, 0<ac<l, (12)
D1F (z) }

where D F(z) is defined by (11).
We let the subclass SH, of SH, consist of functions F of
the form (3) which include f;, 4, =h; 41 + G, 4> Where

h,(2) = z- Z |“j,p| 2,
i=2
: (13)

hy ki (2) == Z |a”, kH'z, (k>2),
j=1

Z' o kﬂ'zj, (k=1). (14)

gp k+1 (Z

Define S_Hp(n, Aa) = SH,,(n, Aa)n S_Hp.

The main object of the paper is to introduce a class
of p-harmonic functions by using the generalized Salagean
operator which was defined by Li and Liu [14]. We investi-
gate necessary and sufficient coeflicient conditions, extreme
points, distortion bounds, and convex combination of the
class.

2. Main Results

Theorem 1. Let F be a p-harmonic function given by (3).
Furthermore, let

8

iz [1+(-1D)A+2(k-1)A -«

k:]]:l

x[1+(j-1)A+2(k-1)A]"[|a

i [ poin]
<2(1-«),
(15)

where A 2 1, n € N, 0 < a < 1,and a;,, = 1. Then F

is sense preserving, p-harmonic, and univalent in U and F ¢
SH, (n, A, @).

Proof. Suppose z;, z, € Uand z; # z,, so that |z;| < |z,] < 1:

|F (21) - F (=)
= 'fp (Zl) _fp (zz)'
p
- Z [|Zl|2(k_l)fp—k+1 (z1) - |Z2|2(k_l)fp—k+1 (Zz)]
k=2
N Z{ 2 21— %
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x[1+(j-1)A+2(k-1)A]")
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which proves univalence.

In order to prove that F is sense preserving, we need to
show that |F,(z)| —

|E: )] - [Ez (2)]

(o)
=1+ ja,
j=2

Fx(2)] > 0:

) P © )
Y 12PENY (k- 1)ay, 4002
k= j=
2(k-1) oo _ )
> (k=1bj, 7
j=1

D N

k=1 j=1
P o) _ .
+ Z |z|2(k71) Z (]+ k- l)bj,pkﬂgjl‘
k=1 =1
P oo
>2= 3 2 [+ 20k = DI @) popen | +[Bpoic]
k=1j=1
P o

22-3 > (I

k=1j=1

>0,

forallz e U.

1+(G-DA+2(k-1)A-q]

x[1+(-1)A+2(k-1)A]")

x(1-a)" H ajp- k+1| +| j.p— k+1”

(16)

1

17)

Using the fact that Rew > aif and only if |1 — & + w| >
|1 + & — w|, it suffices to show that

|(1 ~ ) D}F (2) + D;“F(z)|
(18)
- |1 + @) D}F (2) - D}"'F (2)| > 0.
Substituting for D} F in (18), we obtain
|(1 —a) DjF () + D}''F (z)|

- |1+ a) D}F (2) - D{"'F (2)|

>2(1-a)lz]
—2§[1+(j—1))t—oc][1+(j—1))‘]”)aj’p'|z|j
2§[1+(1—1)A o] [1+(- ‘ P||Z|]

P 0
2 ) Y [+ (- A+ 2(k-1)A-a]

k=2 j=1

x[1+(G-1)A+2(k-1)A]"

x[[a; potera| + [by posca|] 1217

P oo
>2(1-a)lzl [ 2= D) ([1+(j-1)A+2(k-1)A-a]

k=1j=

—

x[1+(j-1)A+2(k-1)A]")

x(1 =)™ [ posen | + [byposen ]
(19)

This last expression is nonnegative by (15), and so the proof
is complete. O

Theorem 2. Let F be given by (13) and (14). Then F € ﬁp(n,
A, ) if and only if

P oo
ZZ [1+(G-1)A+2(k-1)A -«
k=1j=1
x[1+(G-1)A+2(-1)A]" (20)

x H %j.p- k+1|+| Jp= k+1|
<2(1-«a),
whereA>1,neN,0<a<1, and a;, =1

Proof. The “if” part follows from Theorem 1 upon noting that
ﬁp(n, Aa) C SH,(n, A, «). For the “only if” part, we show
that F ¢ S_Hp(n, A, ) if the condition (20) does not hold.



Note that a necessary and sufficient condition for F given
by (13) and (14) to be in S_Hp(n, A, «) is that the condition (12)
should be satisfied.

This is equivalent to Re{A(z)/B(z)} = 0, where

Alz)=(1-a)z
=Y 1+ (-DA-a) [1+(i-1)A]"|a;,| 2
=2
=Y 1+ (-DA-a) 1+ (- 1)A]"|b |7
=1
p 0
Y PN 1+ (j-1)A+2(k-1)A -q]
= j=1
x[1+(G-1)A+2(k-1)A]"
% [[ajp-sn |2+ B | 7]
B(@)=z-) [1+(j-1)A]"|a;,|’
j=2
i [1+(j-1)A]"[py,| 7

.
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z 2e-1) Z [1+(G-1)A+2(k-1)A]"

j=1

X Haj,p—kﬂ' 2+ 'bf:p—kﬂ' Ej]
(21)

The above condition must hold for all values of z, |z| = r < 1.
Upon choosing the values of z on the positive real axis, where
0 <z =r < 1 we must have

A"

j-1
j,p| r

((l—oc) Z(1+ i-D)A-a)[1+(j-

j=2

_Z(1+ = )A=a)[1+(j-1)A]" [by,| /" >

Jj=

><<1 §[1+( ~1)A]" |a]p|— ) 1+(]—1 1" [,

P oo

S [+ (i-1)A+2(k-1)A]"

k=2j=1
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Abstract and Applied Analysis

<i§ [1+(-D)A+2(-DA-qf

k=2j=1

x[1+(j-1)A+2(k-1)A]"

x ”aJP k+1' +| jop- k+1']rj+2k3>

x<1—§:[1+(]—1)/\

j=2

=Y [+ (j-1)AL”

j=1

P oo
Y+(-1D)A+2(k-1)A]"

k=2j=1

-1
(] + I pmn)

(22)

If the condition (20) does not hold, then the numerator in
(22) is negative for r is sufficiently close to 1. Hence there exist
z, = 1,in (0, 1) for which the quotient in (22) is negative. This
contradicts the required condition for F € ﬁp(n, A, &) and
so the proof is complete. O

Theorem 3. Let F be given by (13) and (14). Then F ¢
S_Hp(n, A, &) if and only if

F(z) ZZ ( jsp— —ke1h Jop—k+1 (2)+Y; jp—k+19j,p—k+1 (Z))

k=1j=1
(23)
where

hl)P(Z):Z,
hjp (2)
— 2(1-“) j S0

(rG-Dr-w sG> U2
gj,p(z)
B 2(1-a) o
T UG- 1+ G- (G=1).
hj,p7k+1(z)

=z-1zP*V 21 -a)

x([1+(G-1)A+2(k-1)A-q]
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x[1+(-D)A+2(k-1)A]") 2
(j=1,2<k<p),
Gjp-k+1 (2)
=z-zP*P 20 -w)
x([1+(-1)A+2(k-1)A-a]
x [1+(j - 1) A+2 (k - 1)/\]")7 Z
(j=1,2<k<p),

(24)

and Z ZOO X; Jrp—k+1 + Yp k+1) = 1 Xj,p—k+1 > 0
Y. > 0
Jsp—k+1

In particular, the extreme points of S_Hp(n, A o) are
{h; pin1(2)} and {g; ,_i1(2)}, where j > 1 and 1 < k < p.

Proof. For functions F of the form (13) and (14) we have

F(z)

J2e)
:ZZ ( o kb j,p—k+1 (2)+Y jp-k+19j,p—k+1 (Z))
k=1j=

—_
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Then
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andso F € ﬁp(n, A, «). Conversely, if F € mp(n, A, &), then

'“Jp|
2(1-a)
(1+(J—1)A @) [1+(j-1)A"
'“j,pfk+1|

<U-a)([1+

(j=2),

G-DA+2(*k-1)A -«
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Set
Xjp
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(j22),
Yip
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where X , > 0. Then, as required, we obtain

F(z) ZZ ( jsp— ke1h jop—k+1 (2)+7Y; jp—k+19j,p—k+1 (Z))
k=1j=1
g (29)
O

Theorem 4. Let F € Ep(n, A ). Then for |z| = r < 1 we
have

|F (2)]

P
(1l 2 sl ) )
k=

N 2(1-a)
(T+A-a)[1+A]"

P n
[T+2k-1DA-«a] [1+2(k-1)A]
-2

P (I+A-a)[1+A]"
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Lol ]

|F (2)]

P
2 (1= sl 2 (g ) )

_< 2(1 - «)
(I+A-a)[1+A]"
_Z M+2(k-1DA-a][1+2(k-1A]"
(I+A-a)[1+A]"

X [|a1,pfk+1| + |b1,pfk+1” )”2
(30)

Proof. We only prove the right-hand inequality. The proof for
the left-hand inequality is similar and will be omitted. Let F €

S_Hp(n, A, «). Taking the absolute value of F we have

p
< (Z (|al,pfk+1' + 'b1>pk+1|)>r

k=1

P oo
(5 el i) )

o=

p
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P oo
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k=1j=2
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x2(1-«) [|ajp k+1'+| pk+1”>

p
< (141l 3 Qo+ g )

. 2(1-a)r?
(I+A-a)[1+A]"

p n
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X<1_Z 2(1-a)

k=1

X ['“Lp—kﬂ' + 'bl,p—kH” ) :

(31)
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The following covering result follows from the left-hand
inequality in Theorem 4.

Corollary 5. Let F of the form (13) and (14) be so that F €

S_Hp(n, A, «). Then
{ N |<(1+A—<x)[1+)t]"—(1—oc)
o A+ A—a) 1+ A]"

L1 -(+A-a[1+A)
(I+A-a)[1+A])"

.
P

+ Y (M+2(k-DA-a][1+2(k-1)A]"
k=2

—(I+A-a)[1+A]") (1 + A - oc)[1+)t])

x ('al,p—kﬂ' + |b1)‘g_k+1|) } c F(U).
(32)

Theorem 6. The class S_Hp(n, A, &) is closed under convex
combinations.

Proof. Let F; € S_Hp(n, A o) fori=1,2,.
by

.., where F; is given

oo . oo .
F(2) = 2= ) |ay,|2'= ) |by,] 7
=2 j=1

& kD) K
2(k—-1 j =J
- Z |2l Z ['aij,p—k+1|z + |bij,p—k+1|z ]
k=2 s

(33)
Then by (20),
ii (L+(G-D)A+2(k-1)A-aq]
o (34)

x[1+(j-1)A+2(k-1)A]")
X (2(1-a)) [' Aij,p— k+1|+' ij,p= k+1']<1'

For Y2 t; = 1,0 < t; < 1, the convex combination of F; may
be written as

[ee)
Y tF(2)
i=1
(o] [ee] i
:Z_Z< i [[as| 2" + b 1P|Z]]>
j=2 \i=1
P
IEE N O e ER D)
k=2 i=1

(35)

Then by (34),
P oo
DY (+(G-1)A+2(k-1)1-q]
k=1j=1
x[1+(G-DA+2(k-DA") Q1 -a)™
(2 ¢ )
&) P oo
=t Y (M+(-D)A+2(k-1)1-q]
i=1 k=1j=1
x[1+(j-1)A+2(k-1)A]")
x (2(1 =) |aypier| + [Bjpoten ]
si t;=1
i=1 (36)
This is the condition required by (20) and so Y7, t;Fi(z) €
S_Hp(n,/\,oc). O
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