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Abstract

In this work, we discuss Riemann-Hilbert and its adjoint homogeneous problem
associated with generalized Q-holomorphic functions and investigate the solvability
of the Riemann-Hilbert problem.
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Introduction
Douglis [1] and Bojarskii [2] developed an analog of analytic functions for elliptic systems
in the plane of the form

Wz —qw; = 0, (1)

where w is an m x 1 vector and ¢ is an m X m quasi-diagonal matrix. Also, Bojarskii as-
sumed that all eigenvalues of g are less than 1. Such systems are natural ones to consider
because they arise from the reduction of general elliptic systems in the plane to a standard
canonical form. Subsequently Douglis and Bojarkii’s theory has been used to study elliptic
systems in the form

wz—qw,=aw+bw+F

and the solutions of such equations were called generalized (or pseudo) hyperanalytic
functions. Work in this direction appears in [3—5]. These results extend the generalized
(or ‘pseudo’) analytic function theory of Vekua [6] and Bers [7]. Also, classical boundary
value problems for analytic functions were extended to generalized hyperanalytic func-
tions. A good survey of the methods encountered in a hyperanalytic case may be found in
[8, 9], also see [10].

In [11], Hile noticed that what appears to be the essential property of elliptic systems in
the plane for which one can obtain a useful extension of analytic function theory is the
self-commuting property of the variable matrix Q, which means

Q(2z1)Q(z2) = Q(22)Q(z1)

for any two points z;, z; in the domain Gy of Q. Further, such a Q matrix cannot be brought
into a quasi-diagonal form of Bojarskii by a similarity transformation. So, Hile [11] at-
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tempted to extend the results of Douglis and Bojarskii to a wider class of systems in the
same form with equation (1). If Q(z) is self-commuting in G, and if Q(z) has no eigenvalues
of magnitude 1 for each z in Gy, then Hile called the system (1) the generalized Beltrami
system and the solutions of such a system were called Q-holomorphic functions. Later in
[12,13], using Vekua and Bers techniques, a function theory is given for the equation

Dw+Aw+ Bw=0, whereD:= i_ —Q(z)i, (2)
0z 0z

where the unknown w(z) = {w;(2)} is an m x s complex matrix, Q(z) = {g;(z)} is a self-
commuting complex matrix with dimension m x m and g1 #0 for k=2,...,m. A =
{a;(2)} and B = {b;(2)} are commuting with Q. Solutions of such an equation were called
generalized Q-holomorphic functions.

In this work, as in a complex case, following Vekua (see [6, pp.228-236]), we investigate
the necessary and sufficient condition of solvability of the Riemann-Hilbert problem for

equation (2).

Solvability of Riemann-Hilbert problems
In a regular domain G, we consider the problem

Lwl=Dw+Aw+Bw=F ingG,
(A): _ 3)
Re(Aw) =y ondG.

We refer to this problem as boundary value problem (A). Where the unknown w(z) =
{wij(z)} is an m x s complex matrix-valued function, Q = {g;(2)} is a Holder-continuous
function which is a self-commuting matrix with m x m and gxx_; # 0 for k = 2,...,m.
A ={a;j(z)} and B = {b;i(z)} are commuting with Q, which is

Q(z1)A(z2) = A(z1)Q(z1), Q(z1)B(z2) = B(z1)Q(z1).

It is assumed, moreover, that Q is commuting with Q and A(z) € C'(T") is commuting with
Q, where ' = G, AX = I. In respect of the data of problem (A), we also assume that A, B
and F € IP?(C) and y € C,(T"). If F =0, y = 0, we have homogeneous problem (;1).

We refer to the adjoint, homogeneous problem (A) as (fi’); it is given by

o L'[W]:=Dw —-AwW —-B*w =0 inG,
Ay @
Re(5Aw)=0 onT,

where ¢ is a generating solution for the generalized Beltrami system ([11, p.109]), B* =

7R dp ._ 0¢p dz 99 dZ
A AR T R
Q-holomorphic functions (see [11, p.113]), we have

and ds is the arc length differential. From the Green identity for

1 / / ! /
Re[z_i/]: d¢ww—//G¢Z(WL[w]—L[w]w)dxdy:| =0, (5)

where w' is commuting with Q. For L{w] = F and L'[w'] = 0, this becomes

1 / / _
N fr d¢(z)w(z)x(z>y<z>—Re( / fG b.(2w (z)F(z)dxdy) ~o. ©)


http://www.boundaryvalueproblems.com/content/2013/1/33

Hizliyel Boundary Value Problems 2013, 2013:33 Page 3 of 5
http://www.boundaryvalueproblems.com/content/2013/1/33

Since w' satisfies the boundary condition

Re(é—flw’) =0, (7)
we have
-1
w = ia <Z—‘f) 3, (8)

where 3 is a real matrix commuting with Q.
The solutions to problem (A’) may be represented by means of fundamental kernels in

terms of a real, matrix density s as

W)= P! fr (o) @ oW (©) - I @ W T))
=iP™! / (QW(z,0)A7(¢) + QO(z,£)A1(g)) (¢ ) ds, )
r

see ([14, p.543]). In (9), P is a constant matrix defined by
P(z) = f (zI +zQ) ' dz + Qdz)
|z|=1

called P-value for the generalized Beltrami system [11]. Since 5 is a real matrix commuting

with Q, inserting the expression (9) into the boundary condition (7), we have

/Kl(g,z)%(()ds{ =0, z¢=¢(s)eT, (10)
r
where

Ki(¢,z) =-Re [iP‘lk(z)%(

QW (z, )0 (2) + QP(z,¢ )A‘I(Z))].

The integral in (10) is to be taken in the Cauchy principal value sense. If we denote this
equation in an operator form by K¢ = 0 and its adjoint by K 'f =0, then it may be easily
demonstrated that the index of (10) is x = k — k€’ = 0. Here k and k' are dimensions of
null spaces of K and K " respectively. If {54,..., 54} is a complete system of solutions of
(10), putting each of this into (9), we obtain the solutions of problem (/i’). However, it is
possible that some of these solutions may turn out to be trivial solutions, which occurs
when (Ai—f)‘lz takes on the boundary values of a Q-holomorphic function /; on each
component of boundary contours I'; in C*#(C) which is, moreover, Q-holomorphic in the
domain G; bounded by the closed contour I';. Let {57, ..., 72} be solutions of equation (10)
to which linearly independent solutions (see [15]) w}, ..., W), of problem (fi/ ) correspond,

then the remaining solutions {s¢y,, ..., s} satisfy the boundary condition of the form

»(z) = ik(z)i—fdf(z) onT. (11)
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Here @~ are meant to be Q-holomorphic functions outside of G~ := G + I and ®(o0) = 0.
Hence the Q-holomorphic functions satisfy the homogeneous boundary conditions

Al = Re(kf{—(bd)) -0 onT. (12)
S

In a complex case, Vekua refers to problems of this type as being concomitant to (/i/ )
and denotes them by (f{;). Let ¢, be a number of linearly independent solutions of this
problem. Obviously, ¢’ + £, = k.

Let us now return to the discussion of problem (A), where we assume that s = 0 in
what follows. The solutions of this problem may be expressed in terms of the generalized
Cauchy kernel as follows:

w(z) = wi(z) + wa(2) = ClAy](2) + Cliru](2),

where

Cl®] = P! /F o)z, £)(¢) - AP (2, 1) DE)

(see [14, p.543]). From the Plemelj formulas, it is seen that the density ;« must satisfy the
integral equation

. / K¢ () ds., 13)
r
where
%0(¢) = ¥(¢) = Re[A(0)wy (¢)] = —Re[A(0)w] (2)]- (14)

Problem (ff*) concomitant to problem (121) has the boundary condition Re[A 7} (z) @~ (2)] =
0 on T, where ® is Q-holomorphic outside G + I" and ®(c0) = 0. Denoting the numbers of
linearly independent solutions of (;1) and (;\*) by ¢ and £, respectively, we have k = £ + £,.
In order that (13) is solvable, it is necessary and sufficient that the nonhomogeneous data
o satisfy the auxiliary conditions

fr Oyo@)dse =0 (i=1,...,K), 15)

where s are solutions to integral equation (10). These solutions may be broken up into

two groups {sa,..., 2y} and {s¢p 1, ..., 25} such that s = ik(z)il—fw;(z) forj=1,...,¢ and

7= iA(z)’fi—¢d>j forj=4¢+1,...,k, where z € I'. Here w/ and ®; are solutions of problems
s ]

(/i/) and (ff;) respectively. The condition (15) for y, given by (14) becomes

- [ omrds =~ [ apemr ) +Re[i / d¢<c>w;(;>wf<c)}
r r r

forj=1,...,¢, whereas forj=¢'+1,...,k, we have

/ %j(f)VO(C)dSZRe[i / d¢<c)¢;<c>w;(¢)} -0,
r r
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Consequently, the conditions (15) are seen to hold if (6) (with F = 0) holds. From the above
discussion, one obtains a Fredholm-type theorem for problem (A).

Theorem 1 Non-homogeneous boundary problem (A) is solvable if and only if the condi-
tion (6) is satisfied, w being an arbitrary solution of adjoint homogeneous boundary prob-
lem (A').

This theorem immediately implies the following.

Theorem 2 Non-homogeneous boundary problem (A) is solvable for an arbitrary right-
hand side if and only if adjoint homogeneous problem (A’) has no solution.
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