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ABSTRACf 

The paper presents the use of a nurnerical solution procedure for the pred iction of steady, in­

compressible, and two-dimensional axisymmetric turbulent swirling flows in annuli. The mathematical mo­

del comprises differential equations for continuity, momentum, turbulence kinetic energy and its rate of 

dissipation. The simultaneous solution of these equations by means of a finite-difference solution algorithm 

yields the values of the variables at a ll internal grid points in the flow domain. The nurnerical solution pro­

cedure, composed of the mathematical model and its solution algorithm, is applied to predict the fields of 

variables within annular ducts; the results of predictions are compared with published experimental data. 

The predicted results for turbulent flow in a vertical large-gap annulus w ith both rotating and non-rotating 

inner cylinder, and for turbulent swirling flow in a stationary annulus with a rotating inlet were in generally 

good agreement with experimental measurements reported in the literature. 

1. INTRODUCTION 

The present study is concerned w ith the prediction of turbulent swirling flows in annuli usi ng up· 

wind discretisation scheme and the k- e model of turbulence1 
•

2
• Two types of swirling flow situations have 

been studied ; namely, axisymmetric turbulent flow ina verticallarge-gap annulus w ith rotating inner cylin­

der, and axisymmetric turbulent swirling flow in a stationary annulus. In addition, turbulent non-swirling 

flow ina vertical large-gap annulus has also been studied. 

A swirling flow in a stationary. circular-sectioned duct or annulus combines tlYe characteristics of 

a vortex motion with axial motion along the duct or annu lus. The fluid moves in spiral or helical paths; the 

direction of the mean velocity changes ·continuously and varies as a function of position in the flow field. 

This is a field in which the swirling motion decays and the velocity and pressure distributions develop to­

wards those of a pure axial flow. 
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Considerable experimental and theoretical works on turbulent swirling flows in stationary circular· 

sectioned ducts and annuli have been reported in the literature. Among the interesting ones are the works 

of King et al.3 , Murakami et al.4 , Weske and Sturov5
, Sukhovich6

, Yeh 7 , Scott and Rask11
, Scott and Bar· 

telt9 , and Murthy and Soehngen1 0 • In the present investigation, the experimental data of Scott and Bar· 

telt9 for turbulent swirling flow in a stationary annulus with a rotating inlet seetion have been employed 

for comparison w ith the predictions. 

On the other hand, the swirling flow in an annulus with inner cylinder rotation is different from 

the one just deseribed above. In this case, both the axial and the swirl velocities develop with distance along 

the annular duct and attain fully..cJeveloped state at certain lengths, after which they do not change with 

downstream distance. 

Experimental studies of turbulent flows in annuli with one or two rotating walls ineJude the works 

of Taylor1 1 •1 2
, Zmeykov et al.1 3

, Bissonnette and Mellor1 4
, and Lohmann1 5

• Turbulent flow in an annu­

lus with rotating inner ey linder has been investigated experimentally by Kuzay1 6
, and numerically by S har­

ma et al. 1 7
, who employed the prediction procedure of Pa tankar and Spalding1 11 for the computation of 

the flow using a mixing-length hypothesis. In the present study, the experimental measurements of Ku­

zay1 6 have been used for comparison with the calculations. 

The above..cJescribed turbulent flows have been predicted by the use of a mathematical and physi· 

cal model, which gives the local values of components of velocity, pressure and some useful properties of 

turbulence. The model comprises aset of non-linear partial differential equations, the simultaneous solution 

of which by means of a fınite..cJifference solution procedure yields the values of dependent variablesat all 

internal grid points in the flow domain. The Reynolds stresses arising from turbulence have been represen· 

ted by a two-equation model of turbulence, which entails the solution of two differential equations of trans­

port for kineti c energy of turbulence and its rate of dissipatio_n. 

The paper is divided into fıve sections, of which the present one is the fırst. The next section, See­

tion 2, presents the equations that govern turbulent flow. These equations are then diseretised and the 

approximation made to model the convective terms is provided for the upwind scheme. The solution proce­

due is briefly deseribed in Seetion 3. The results of the predictions for turbulent flows in annuli are presen­

ted in Seetion 4. Finally conclusions drawn from the present study are given in Seetion 5. 

2. THE MA THEMAliCAL FORMULATION 

2.1. The Goveming Equations 

The time-averaged equations governing steady, incompressible axisymmetric turbulent swirling 

flow in the cylindrical coordinate system can be conveniently cast into the following forms. 

The continuity equation: 

_l ___ a_ (prv)+ a (pu)=O 
r ar ax 

The momentum equations: 

r-direction: 

[ ı a Crl )+ a 
p -r-ar ax 

~ + _1 ___ a_ ( av J + _ a_( _l!!_J 2 V + 
ar r ar r~err-ar- ax ~eff ar - ~e ff --ı-r 
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8-direction : 

= _ı ___ a_ [ 2 a cl )_ 
r ar r )Jeff ~ r J 

( 3) 

x-direction: 

[ ı a ( rvu)+ +x (uz)]= _ı ___ a_ [ au ] a [ au 
p -r- ar o r a r r l-leff ar + ---ax l-lef f ---ax J 

-~+_ı ___ a _ [ rıı ~] + _a_[ı ı au J 
ax r ar ~-'eff ax ax ~-'eff ---ax ( 4 ) 

where v, ve and u are the velocities in the radial (r), tangential (8) and axial (x) coordinate directions, ve r is 

the angular momentum, p is the fluid density, P is the pressure and J.leff is the effective viscosity d efi n ed by 

equation (8). 

2.2. The Turbulence Model 

The model employed in the present study is the k-E model of1 9
, in the form deseribed by 1 

• 
2

• 1 t 

necessitates the solution of two d ifferential equations o f transport for two turbulence quantities ; namely 

turbulence k inetic energy, k and i ts ra te of dissipatio n, E. 

The partial-differential equations governing the transport of k and E are given below: 

The k-equation: 

p [+ (uk) +_ı_- - 3 - (rvk)] 
r ar 

ı a + -----
r ar 

(5) 

where reff,k is the effective exchange coefficient for k, defined by equation (9), and Gk which represents 

the generation ra te of turbulence kineti c energy is: 

2 a , 2 3 ~J 2 
G {2 [ (~)2 + (~)2 + (- v-) J + (-u-+ ~) + (-~) 

k = )J t ax Cl r r () r ax (J x 

The E-equatio n: 

a 
P [ax (ud + _ı ___ a_ (rve: ) J 

r ar 
= _ a_[r _l.LJ 

ax eff, e: ax 

ı a + -----
r ar 

[ aae:r J + _ke: ( cıGk-C2pe:) rreff, e: 

(6) 

( 7) 
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t • 

where C1 and C2 are turbulence constants whose values are given in Tab le 1, and r eff e is the effective ex-, 
change coefficient for e, defıned by equation (9). 

Knowledge of the local values of k and e allows the evaluation of a local effective viscosity, J.Jeff, 

from which the turbulent shear stresses are calculated. The etfective viscosity, Jletf• is calculated via: 

(8) 

where p and J.JI are respectively the density and molecular viscosity. Jlt and Jleff are respectively the turbu­

lent and effective viscosities. The quantity CJ.J is the turbulence model constant. The value of w hi ch is given 

in Table 1. 

The effective exchange coefficient, r eff <l>• appearing in equations {5) and {7) is defıned as: , 

r ....,JL_+ 
eff,ıp = acp 

)J t 
(9) 

where aıp and aıp, t are respectively the laminar and turbulent Prandti/Schmidt numbers of the variable <1>. 

The laminar Prandti/Schmidt number, aıp, is dependent on the molecular properties of the fluid; 

and is equal to unity for k and e. However, the turbulent Prandti/Schmidt number, aıp, t• is dependent on 

the turbulence phenomena and its values are given in Table .1, w hi ch are the same as those recommended 

by2. 

Table 1· The Values of the Constants Usedin the k·E Turbulence Model 

c~ 

0.09 1.3 

2.3. The General Property (cl>) Equation 

For future reference, the equations (1), (2), (4), (5) and (7) can be cast into the following general 

form 

P [-ı- __ a._ (r v ıp) + _a_ (u ıp)] = 
r ar ax 

ı a -----
r ar 

(lO ) 

where <1> stand s for any scalar property, and r 4> is the appropriate exchange coeffıcient for the property <1>, 

and Set> is the source term ; it includes all the terms of the <1>-differential equation in question, that belong 

to neither convection nor the diffusion terms. When <1> equals one, and r <1> and Set> equal zero, equation 

( 1 O) reduces to the continuity equation. When <1> standsfor v (or u), and r <1> stand s for. J.leff• the correspon· 

ding momentum equation in the r (or x) direction is obtained. The equations of the turbulence model are 

obtained when <1> equals k and E, respectively . 
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2.4. The Wall Functions 

In the near-wall region, there isa steep variation in the fluid properties. To avo id the need for de­

tailed calculations in these regions, a lgebraic re lations are employed ·to relate the values of the dependent 

variables at a point on the w all to those at a po int adjacent to the wall; a logarithmic lay er is presumed to 
exist between these two points. 

The wall functions employed in the present study are those recommended by2 , they are: 
velocity parallel to wall 

u p ı 

K 

dissipation rate of turbulence energy 

cl /4 kı;z 
p ).J p 

Ln ( E y -...1:-'---.......l:..---) 
p ııı 

( ll ) 

(12 ) 

in which Up, kp, ep and yp are the values of the velocity parallel to the wall, turbulence kinetic energy 

and dissipation rate of turbulence kinetic energy ata near wall point P, a distance yp from the wall point 

w.At the wall point w, the shear stress Tw , is known or calculable; th·e constans E and K are ascribed the 

values of 9.0 and 0.42 respectively. 

2.5. The Finite Difference Discretisation 
1 

Equations (1)-(5), (7) and (10) are solved, with their appropriate boundary conditions, by integ-

rating them over finite-difference control volumes that form the physical integration domain considered; an 

example of the grid arrangement is depicted in fig. 1 where it is seen that the grid is staggered so that velo­

city components are located mid-way between the grid points. The angular momentum (ver), pressure, vis­

cosity and any general scalar variable such as turbulence kinetic energy, dissipation rate of turbulence 

t t t t t t 
- ,_ - - -- - - -r-- --, 

! t 
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ı ı 
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Type Cont inuity 

Figure ı - Control volume specification. 
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kinetic energy are located at the grid points. The main advantage of this arrangement is that the pressure 

difference between two adjacent grid points becomes the natural driving force for the velocity component 

located between these grid points. Now, consider a single controlvolumefor 4>, as depicted·in fig. 2; integ­

ration of equation ( 1 O) over this control volume gives 

[ r __21.._] A<l> [ r ~] A<l> rpuqı - r <l> ax e e - r pu<j> - r 4> ax w w 

S r A<P 
4> p p (13) 

where the A 's denote cell-face areas at tour points (e, w, n, s) located mid-way between the grid points . 

. N 

~x--ı 
n r------- -----., l ı ı 

ı ı ~r w ı p :e E Wl 
ı ı 

1 ı ı 
ı ı 

L------- -----~ 

L 
s 

ôxw ôxe--

s 

Figure 2 - Control volume for a scalar variable. 

The next step in the formulation of a finite-difference equation is the assumption of the variation 

of ıJ> between any two grid points. The diffusion terms are formulated using the central difference scheme; 

and, since this is common practice, further attention will not be given to them. Attention is given to the 

· convection terms (e.g., the rpuıf> terms). Furthermore, the scheme that is used to approximate the convec­

tion terms is only applied to convected variable (i.e., 1/> in Eq. (13)); the convecting velocity is discretised 

using the central-difference scheme. 

(i) The Upwind-Difference Sche~e 
The upwind-difference scheme recognizes that the weak point in the central-difference formula­

tion is the assumption that the convected property 1/> at an interface of the control volume is the average 

of the ıf>'s at the grid points that lie on either side of the interface of the control volume, and proposes a 

better solution. That is, a piecewise-linear variation of 1/> between grid points is assumed for the diffusive 

flux, while for the convective flux the value of 1/> convected across an interface is taken to be the value 

of ıJ> at the grid point on the upwind side of the face; for example, when the convective flux is calculated 

across the west face, w, of the control volum e, the value of ıf>w is expressed asl 0 -ll : 

-26 -
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This approximation is adopted chiefly because in the flows to be considered the contribution of 

the convection to the total flux is dominant. Furthermore, the upwind-difference scheme is not only phy­

sically realistic, but also ensures the stability of the solution procedure. 

2.6. The Finite Difference Equations 

(i) The General Scalar Property ( 1/>) Equation 

By introducing the above upwind-difference formulation for the ıt>-d istributions at t he interfaces 

of the control volum e, the finite-difference representation of the general differentia l equation ( 1 O) can be 

formed. For two-dimensional axisymmetric flow, the finite-difference equation for the general scalar pro­

perty (1/>) is of the following form: 

c<P + c<P 
N S 

+ c<P + 
E 

(15) 

c<P - s<P w p 

in which C's are the coefficients which consist of contributions from convection and diffusion, and the S 's 

are components of the source term . The C's are formulated according to the upwind-difference scheme; and 

it is to those formulations that attention is now turned. 

(ü) The Upwind-Difference Scheme 
The detailed derivation of the C's for upwind-difference scheme are given in2 0

; here the results 

of manipulating the equations are presented. With reference to Fig. 2, the C's take the forms given below: 

c<l> = rro<l> o<P - c<P TI 
N n' n n ' 

in which 

c<l> = rro<l> o<P - c<P]] 
E e' e e ' 

o4> = 
n 

o<l> = 
e 

f r.p Acp 
cp ,e e e 

oxe 

c~ = rro<P o<P + c<I>I] 
S s' s s ' 

c<l> = 
n 

c<P = e 

p v r <l> A<l> 
n n n n 

(16) 

ete . 

The brackets [ ] denote that tlıe C's are assigned the maximum of the values contained w ith in them. 

(iü) The Source Tenn 
The source term Scp in equation (10) is integrated over the control volume shown in Fig. 2 and 

linearised to allow dependence on </Jp. The result is: 

(17) 
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where Su ri> and Sprl> are two source term coeffıcients whose composition depends on the particular 4>-equa­

tion considered. Sprl> must be negative to guarantee nurnerical stability. If there is no real dependence on 

1/>p, then Sprl> is simply set to zero. 

(iv) The Momenturo Equations 

The fınite-difference representations of the momentum equations closely resemble the one for 

the general scalar property (rp) equation. However, the control volumes used for the velocity components 

u and v are different from those of other dependent variables, as illustrated in Fig. 1. Therefore, due allo­

wance is to be made for the staggered locations of the velocities and their control volumes. Also, the pres­

sure gradient term which forms a source of momentum is to be given special attention. With this in mind, 

the fınite-difference forms of the momentum equations may be expressed as follows : 

v-momentum 

(18) 

ver-momentum 

v r v r ver ver ver . ver ver ver 
[Ce + ce + N S CE + c w Sp ][verJp = CN [ver]N + es [ver Js + CE [ver ]E 

ver ver 
(19) + cw [ver Jw + s 

u 

u-momentum 

[cu Cu Cu Cu Su] N + S + E + W - P up = 

(20) 

where the C's are calculated as in equation (16), and S's are the source term coefficients of momentum. 

3. THE SOLUTION PROCEDURE 

The solution procedure employed to solve the fınite-difference equations was the SIMPLE algo­

rithm23 •24 ; this algorithm was embodied in the general two-dimensional computer code, called 2/E/FIX, 

ofl 5 • In this computer code the fınite-difference equations are solved iteratively ina semi-implicit line-by­

line fashion using the well-known tri-diagonal matrix algorithm2 6
• Due to the semi-implicit nature of the 

code, under-relaxation factors are employed. A detailed description of the particular solution procedure 

employed here is presented in2 7
• 

4. THE RESULTS OF THE PREDICTIONS 

4.1. Turbulent Flow in an Annulus with Rotating Inner Cylinder 

4.1.1. The Physical Situation Considered 

In this case the physical situation considered corresponds to the experimental situation of Ku­

zay1 6 • The physical situation and the coordinate system employed for the predictions is sketched in Fig. 3. 
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; 

u 

Figure 3 - The physical situation considered. 

The vertical annulus of the experimental situation of Kuzay 1 6 consists of two concentric tubes. The outer 

tube has an inner diameter of 17.78 cms., while the inner tube has an outer diameter of 10.16 cms. The 

hydraulic diameter of the annulus, Dh(=d0 - dj), is 7.62 cms. and the radius ratio (q/ r0 ) is 0.571. The ove-

ralllength of the annular duct is 50 D h. 

The rotating seetion begins after the stationary 14 Dh Jong flow passage over which the axial air 

flow develops before rotation is imparted on it by the inner tu be. Consequently, the swirl velocity profıle . 

has 36 D h for its development Jength, while the axial velocity profıle has 50 D h· With inner tu be rotation, 

the flow in the annulus isa maintained swirling flow. 

4.1.2. Boundary conditions 

For the non-swirling flow calculations in the annulus, at the inlet plane (i.e. x = 0), a uniform 

mean axial velocity (um) corresponding to the experimental condition was prescribed, while the radial ve­

locity (v) was set to zero. In the absence of any knowledge regarding the distributions of the turbulence 

quantities k and e at the inlet, initial values were estimated. Fortunately, the calculations are not very sensi­

tive to these initial guesses (see Karasu2 7 ). The following uniform distributions were preseribed for the tur­

bulence kinetic energy and its rate of dissipation: 

2 
k• 0.005 Um , E .. 

(0.03 D}ı) 

where D h is the hydraulic diameter of the annulus. 
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For the swirling flow calculations, since the axial flow in the annulus had 14 Oh more of develop­

ment length then the rotating flow, the distributions of the u, v, k and e quantities at the beginning of ro­

tation, i.e. x = 14 Oh, were those of the non-swirling flow calculations. The angular morneotum (ve r) was 

preseribed as zero, because at the entrance to the rotating seetion only fluid in contact with the r~tating 

wall acquires a swirl velocity; the remaining flui d is swept downstream before angular momentum can dif­

fuse across the annulus. 

At the rotating inner wall, the velocity components u and v were set to zero, while the angular 

morneotum {ve r) was fınite. At the stationary outer wall, the velocity components u, v and angular momen­

tum were all set to zero. 

At the exit plane of the annulus, a condition of zero axial gradient was assumed for all dependent 

variables, i.e. a~{ax =o. 
For the components of velocity in the near-wall regions, the specified boundary conditions are the 

components of the wall-shear stress in the direction of the velocity. This component is identically zero for 

the velocity component normal to the walls, and are calculated from the wall functions deseribed in Seetion 

{2.4) for the other velocity components. 

The value of k for a near-wall grid point is calculated from the regular k-balance equation using the 

wall functions deseribed in Seetion (2.4), while the value of e is fıxed according to Eq. {12). 

4.13. So me Computational Details 

S ince the flow in the annulus is axisymmetric, computations were made only for half of the annu­

lu s. The fınite-difference grid distribution employed in the swirling flow predictions is depicted in Fig. 4. lt 

possesses 17 x 20 grid nodes in the x-and r-directions, respectively .'On the other hand, the finite-difference 

T 
i 

1 
E 
E 
aı 

a:i 
<D 

---

E 

<D 
ci 

-

·- -

i 
2743 .2 mm 

E J 
.ı....ı.......&uı r -!..---·- - ·- - -·-·-·--· 

Figure 4 - Finite-difference grid distribution for axisymmetric turbulent flow in 
an annulus with rotating inner cylinder of Kuzay16

• Grid size: 17 (x) x 
20 (r) points. 

grid u sed in the non-swirling flow predictions possessed 39 x 20 grid nodes in the x- and r-directions, respec­

tively. The two grids employed were distributed non-uniformly in both x-and r-directions, respectively, 

with more grid points placed near inner and outer walls of the annulus where steep gradients of dependent 

variables were expected. 

As an example, for swirling flow field w ith Re = 17259 (Re = Um Oh , where Um is the mean 
V 

axial velocity and Oh is the hydraulic diameter of the annulus) and rotation ratio ~ = 2.099 {defined as the 

ratio of the tangential velocity on the surface of the rotating inner wall to the mean axial velocity in the an­

nulus, i.e. r = Veiw/Um), a well<onverged solution was attained after 417 iteration eyetes of the computa-
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tional flow domain using 17 x 20 grid size; whereas for swirling flow field Re= 17191 and ~ = 2. 786 (Fig. 

9), a well-converged solution was achieved after 648 iteration cycles employing the same grid size. On the 

other hand, for non-swirling flow field with Re = 17327 and ~ = 0 (Fig. 9 ), a well-converged solution was 
reached after 140 iteration cycles using 39 x 20 grid size. 

by 
The convergence criterion was obtained by specifying that the residuals to each equation, defined 

( canveetion + diffusion + source ) 
all cells 

inlet flux of + 

to be less than ı o-J for all equations; to obtain this level of convergence required 398 secs. computational 

time on a CDC 6500 computer for 17 x 20 grid size for swirling flow field with Re = 17259 and ~= 2.099, 

and 347 secs. ona CDC 6600 computer for the same grid size for swirling flow field with Re = 17191 and 

~ = 2.786, and finally 151 secs. ona CDC 6600 computer for 39 x 20 grid size for non-swirling flow field 
with Re = 17327 and ~ = O. 

For all the swirling flow fields in the vertical annulus the under-relaxation factors used in the pre­

dictions for u, v, ver, k, e, P and J.leff w ere 0 .6 , 0 .6, 0.6, 0.8, 0 .8 , 0.5 and 0.5, respectively; and for all the 

non-swirling flow fields the under-relaxation factors employed in the computations for u, v, k, e, P and 

J.leff were 0.6, 0 .6, 0.8, 0.8, 0.8 and 0.3, respectively. They are not optimised to give the fastest degree of 

convergence; therefore, experimentation w ith other sets of under-relaxation factors may result in the reduc­

tion of the number of iteration cycles required to obtain a converged solu tion. 

4.1 .4. Presentation and Discussion of Results 

Figs. 5 to 15 present the results of predictions and their comparisons with the experimental measu­

rements of Kuzay 16 at axiallocation three hydraulic diameters (3 Dh) below the exit plane of the annulus. 

Figs. 5, 7 and 8 show the predicted and measured swirl velocity profiles in dimensionless form 

VefVeiw• and radial position r-: ri/ r0 - q; while Fig. 6 reveals the predicted and measured angular mo­

mentum profil es in terms of non-dimensional form V e r/Voiwfi• and radial distance r - ri /r 0 - ri . The swirl 

velocity profiles are made dimensionless with respect to the tangential velocity of the rotating inner wall 

Veiw ; while the angular momentum profiles are non-dimensionalised by the angular momentum at the ro­

tating inner wall Veiw,ri. Both the swirl velocity profiles and the angular momentum profiles are grouped 

in sets of two at fixed axial Reynolds number. The higher rotation ratio ~ = V eiw/Um in each set corres­

ponds to nominal 2000 rpm and the lower ~ corresponds to nominal 1500 rpm rotational speeds of the in­

ner cylinder. 

Fig. 5 shows that the predicted swirl velocity profiles exhibit similar trends to the measured ones. 

The latter are over predicted in the inner region of the annulus where dominance of rotation is strong, par­

ticularly so near the rotating inner cylinder; however, in the outer region where dominance of rotation is 

weaker, the predicted profiles are in excellent agreement with the corresponding measured ones. The mea­

sured profiles exhibit a free vortex type character only in the m id-region of the annulus. This is particularly 

observed in the angular momentum profiles in Fig. 6 , where the angular momentum (ver) is uniform in 

approximately 80 % of the annular gap. Near the walls, the measured swirl velocity profiles differ from the 

free vortex character. 
Fig. 7 reveals that the measured profiles are over-predicted in the inner region of the annulus and 

slightly underpredicted in the outer region, and that the predicted profiles display similar trends to the mea­

sured ones. As noticed, at fixed Reynolds number, the agreement obtained between the predicted and 

measured profil es for case w ith higher rotation ratio ~ is better than that for case w ith lower rotation ratio ~. 
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Figure 5 - Comparison between predicted 
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Figure 6- Comparison between predicted 
and measured angular morneo­
tum profiles. 

The .reason for this is that the higher the swirl velocity, the larger the turbulent viscosity, and the increased 

viscosity raises the rate of radial propagatic;m of angular momentum. In this figure the agreement attained 

between the predicted and measured profilesis not so good as that in Fig. S. 

Fig. 8 shows that the measured profiles are overestimated in the inner region near the rotating in­

ner cylinder and underestimated in the rest of the annulaııregion. However, the predicted profiles exhibit 

similar trends to the measured ones. The wiggles observed in the measured profiles corresponding to cases 

with ~ = 0.756 and 0.568 are due to the increased error in the measurement of flow angles, Kuzay 1 6
• ln 

general, the agreement obtained between the predicted and measured profilesis satisfactory. 

Overall examination of Figs. 5 to 8 indicates that as the axial Reynolds number increases the pre­

dictions of the swirl velocity profıle deteriorate. 

The predicted swirl velocity profilesfor all rotation ratios m studied have not attained fully-deve­

loped state within the available 36 D h length of the annular duct. The number of hydraulic diameters re­

quired to reach the fully-developed state decreases with increasing rotational velocity of the inner cylinder 

relative to the mean axial velocity Um· At low rotation ratios the swirling flow requires greater length to 

attain the fully-developed state. Accordingly, it seems that, of the Kuzay1 6 measurements, only the measu­

rements at the higher rotation ratios have approached the fully-developed state. 
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Figure 8 - Comparison between predicted 
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Figs. 9 to 14 display the predicted and measured axial velocity profıles in non-dimensional form 

U/Um, and radial position r- q/r 0 - rj , for swirling and non-swirling flow fıelds in the annulu s. These pro­

fıles are non-dimensionalised w ith respect to the mean axial velocity Um· Each fıgure presents aset of three 

profılesat fıxed Reynolds number. The highest t corresponds to nominal 2000 rpm and the lower ~ corres­

ponds to nominal 1500 rpm rotational speeds of the inner cylinder. The case r = O represents pure axial 
flow in the annulu s. 

Finally, Fig. 15 gives the predicted and measured dimensionless radial profıles of axial velocity 

for pure axial flow only. 

Figs. 9 to 15, which give the comparison between the predicted and measured axial velocity pro­

fılesfor both swirling and non-swirling' flows in the annulus, show generally good agreement between the 

predicted and measured profıles. 

In the swirling flow cases, the measured profıles are appreciably underpredicted in the inner 

region of the annulus where dominance of rotation is strong; however, in the outer region of the annulus 

where dominance of rotation is weaker, the predicted profıles are in very good agreement with the corres­

ponding measured ones. In comparison with no-rotation cases, the predicted profıles, like the measured 

ones, are appreciably flattened owing to rotation in the mid-region of the annulus. This is particularly 
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noticeable in th~ profiles for ~> 1.5 in Figs. 9 to 11. As expected, the fiattening of the profiles diminishes 

as rotation ratio Ç decreases. 

In the swirling flow calcu lations, the ax ial ve locity had 14 Dh more of development length than 

the swirl velocity , and full y-developed axial ve locity profıle was attained for allcasesin about 45 D h length 

of the a nnular duct. 

In the non-swirling flow cases, the measured profıles are underpredicted by a maximum of about 

4 % in the central region of the annulus. This is probably due to the spe~ification of uniform axial velocity 

distribution at the inlet plane of the annulus (i.e. , x = O). However, the agreement obtained between the pre­

dicted and measured profiles is good. 

In the non-swirling flow computations, fully-develo ped axial velocity profıle was attained for all 

casesin about 25 Dh length of the a nnular duct . This is in the range reported in the literature that turbulent 

straight flow in annuli will develop between 15 and 30 Dh length. 

Figure 9 - Comparison between predicted 
and measured axial velocity pro­
files. 
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4.2 . Turbulent Swirling Flow ina Stationary Annulus 

42.1. The Physical Situation Considered 

The physical situation and the coordinate system used for the computation of the annular swirl 

flow is depicted in Fig. 16. lt represents the experimental annular test seetion geometry of Scott and Bar­

telt9. The annular test seetion of the experimental situation of Scoot and Bartelt9 consists of two concent­

ric tubes. The outer tube has an fnner diameter of 12.7 cms. , white the inner tube has an outer diameter of 

5.1 cms. The test seetion is 300 cms. long or 39.3 Dh, where Dh (= d0 - dj} is the hydraulic diameter of 
the annulus. · 

t 

! ·- 1-
E 
E 

~ ın (") . 
"? ~ 2 6 56 mm ------'------

ın 

ıti 

* t : ·- - --------·- - - ------·--- ----

Figure 16- Finite-d.ifference grid distribution for axisymmetric turbulent 
swirling flow in a stationary annulus of Scott and Bartelt9. Grid 
size: 33 (x) x 26 (r) points. 

1 n the experimental situation of Scott and Bartelt9, air enter s a rotating inlet seet ion which im­

parts a swirling motion to it, and the n passes through the annular test seetion; subsequently the air passes 

through a diffuser, flow straighteni'ng tubes, a metering orifice, and finally into a blower which exhausts in­

to the atmosphere. 
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The rotating inlet seetion is 15.2 cms. long, and consists of a bundle of parallel tubes, each tu be of 

hexangular cross-section. This honeycomb-like bundle of tubes is of a cylindrical cross-section similar to the 

an nu lar test section. Air flowing in to the honeycomb assumes the rotational velocity of the inlet before en­

tering the test seetion asa swirling flow. The design is intended, therefore, to provide forced vortex or solid 

body rotation to tht: entering fluid. The rotation is provided by means of a variable speed motor whose rpm 

range is 4004400. 

4.2.2. Boundary Conditions 

At the inlet plane of the annulus {i.e., x /Oh = 1. 7), the experimental profıle of angular momentum 

(ver) anda uniform mean axial velocity corresponding to the experimental condition, i.e. Um= 15 m/see, 

were prescribed, ·white the radial velocity {v) was specified as zero. In the absence of any information regar­

ding the distributions of the turbulence properties k and e at the inlet, initial values were estimated. The 

following uniform distributions were preseribed for the turbulence kinetic energy and its rate of dissipation: 

2 k a 0.02 Um , € • 

where Um is the mean axial velocity, and Oh is the hydraulic diameter of the annulu s. 

At the inner and outer walls of the annulus, the velocity components u, v and angular momentum 

(ver) were all set to zero. 

At the exit plane, a condition of zero axial gradient was employed for all dependent variables, i.e. 

ort>fox =o. 
As deseribed in sub-section {4.1.2), the turbulence quantities k and e at the near-wall grid poi nts 

are calculated using the wall functions given in Seetion {2.4). 

4 .2.3. Some Computational Detaüs 

The computational fınite-difference grid distribution used for case with a rotational speed of 

3000 rpm of the rotating inlet seetion of the annulus is shown in Fig. 16. lt consists of 33 x 26 grid 

points in the x- and r-directions, respectively; w hile the grid employed for case w ith a rotational speed 

of 1400 rp m of the ro tating inlet seetion had 33 x 21 grid points in the x- and r-directions, respectively. 

The two grid sizes employed were distributed non-uniformly in both X· and r-directions, respectively, with 

more grid points located in the inlet region and near inner and outer walls of the annular duct where steep 

gradients of dependent variabtes were expected. 

For 33 x 26 grid size, a well-converged solution was obtained after 397 iteration cycles, and the 

computational time required was 102 secs. on a COC 7600 computer; where as for 33 x 21 grid size the 

number of iteration cycles performed was 337, and the computational time needed was 352 secs. ona COC 

6600 computer. Convergence criteria ı.vere again chosen as ıo-3 for each equation. 

For the grid sizes quoted above, the under-relaxation factors usedin the calculations for u , v, ver, 

k, e, P and J.leff were 0.6, 0.6, 0.6, 0.8, 0.8, 0.5 and 0.3 respectively. 

4.2.4. Presentation and Discussioiı of Results 

The results of computatio ns for turbulent swirling flow in a stationary annulus with a rotating 

inlet at an average Reynolds number of 72 000 (Re = UmOh/v, where Um is the mean axial velocity of 

the flow), and their comparisons with experimental data of Scott and Bartelt9 , are presented in Figs. 17 

and 18. 

Fig. 17 displays the profıles of angular momentum plotted against the dimensionless radial posi­

tion r - q /r 0 - rj , a t axial statio ns x/Oh = 7 ,22.2 and 32.7, for a rotational speed of 3000 rpm of the 

rotating inlet of the annulus, and reveals that the predicted profıles, like the measured o nes, exhibit a uni­

form ax ial decay of angular momentum with profile shape independent of axiallocation. The measured an-
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gular momentum profıles exhibit a forced vortex or solid bod t · fl · · 
. Y ro atıon ow over a maıor portıon of the 

ann~lar cross-sectıon throughout the length of the annular d t Th" f d · . 
. uc . ıs orce vortex type flow ıs also manı-

fesred by the predıcted angular momentum profıles Nea th t 11 f h 
. . . . r e ou er wa o t e annulus, the measu red pro-

fıles exhıbıt a free vortex type flow (i.e. ver = Constant) whı"l th d" d , e e pre ıcte ones do not. The measured 
profıles are observed to be appreciably overpredicted near the t d · 

. ou er an ınner walls. However, the agree-
ment obtaıned between the predicted and measured profı lesis generally good. 
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Figure 17 - Comparison of predicted and measured 
profiles of angular momentum (Inlet rpm = 
3000, Re = 72.000). 

Fig. 18 shows the profıles of angular momentum plotted against the non-dimensional radial pasi­

tion r - q /r 0 - rj, at axial stations x/Dh = 7,14.8 and 32.7, for a rotational speed of 1400 rp m of the rata­

ting inlet of the annulus, and reveals that the predicted angular momentum profıles at axial locations 

x/Dh = 7 and 14.8 are in excellent agreement with the corresponding measured ones. At axial location 

x/Dh = 32.7, the measured angular momentum profile is appreciably overpredicted over much of the annu­

lar cross-section, but the agreement between the predicted and measured profılesis reasonable. Furthermo­

re, it is seen that the measured profiles exhibit a forced vortex character throughout the length of the annu­

lar duct; this is satisfactorily demonstrated by the corresponding predicted profıles. Fig. 18 also shows that 

the predicted profıles, like the measured ones, display a uniform axial decay of angular momentum with 

profıle shape independent of axial locatio n. 

- 39-



lar duct. 

Data ot Sc ot ı 
x.;oh and Barteli 

7 • 
14.8 () 
32.7 o 

Predictions 

Grid Size 
x. r 

33 X 21 

0.4 0.6 0 .8 1.0 
r - r. ___ , 
r0 - r; 

Figure 18- Comparison of predicted and measured 
profiles of angular momentum (lnlet rpm = 
1400, Re = 72.000). 

Comparison of Figs. 17 and 18 shows that : 

(i) Both cases exhibit a predominantly forced vortex type flow throughout the length of the annu -

(ii) In the case with inlet rotation of 3000 rpm, the region near the outer wall that exhibits a free 

vortex type flow (i.e. ver= Constant) is larger than that in the case with inlet rotation of 1400 rpm. 

(iii) 1 n both ca ses, the predicted angular morneotum profıles, lik e the measured ones, exhibit a un i· 

form axia l decay of angular momentum with profıle shape independent of axiallocation. 

(iv) The discrepancies b.etween the predictions and measurements for the case of inlet rotation of 

3000 rpm are much more pronounced than those for the case of inlet rotation of 1400 rpm. This demon· 

sırates that the increased rotation or swirl at the inlet increases the anisotropicity of swirl turbulence in the 

annulu s. 

(v) In both cases, the predictions obtained by the use of the k-€ tu rbulence model show generally 

good .ıgrcement with the experimental measurements of Scott and Bartelt9 • 

S. CONCLUSIONS 

This paper has presented predictions for turbulent flow in a vertical large-gap annulus with both 

rotating and non-rotating inner cylinder, and for turbulent swirling flow in a stationary annulus with a ro· 

tating inlet. The conclusions that can be drawn from this nurnerical study are as follows. 

(i) The predictions made using the k-€ turbulence model 'for both swirling and non-swirling flows 

in the \Crtical large-gap annul us were in good agreement with the experimental measurements of K uzay' f> . 
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(ii) For cases with higher rotation ratio (~) and lower axial Reynolds number, the predicted swirl 

velocity profıles were found to be in better agreement with the corresponding measured ones than those for 

cases with lower rotation ratio and higher Reynolds number. 

(iii) In the swirling flow predictions, the axial velocity, which had 14 hydraulic diameters more of 

development length than the swirl velocity, attained the fully-developed state in about 45 hydraulic diame· 

ters length of the vertical annular duct; while the swirl velocity requires more than 36 hydraulic diame.ters 

to reach the fully-developed state. Consequently, it seems that, of the Kuzay 1 6 measurements, only the 

measurements at the higher rotation ratios have approached the fully-developed state. 

(iv) In the non-swirling flow predictions, the axial velocity attained the fully-developed state in 

about 25 hydraulic diameters length of the vertical annular duct . 

(v) For swirling flow fıelds ina stationary annulus with a rotating inlet that exhibit predominantly 

forced vortex or solid body rotation, the predictions obtained employing the k-e turbulence model revealed 

generally good agreement with the experimental measurements of Scott and Bartelt9
• The predicted angular 

momentum profıles, like the measured ones, displayed a uniform axial decay of angular momentum with 

profıle shape independent of axial location. 
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