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ABSTRACT

In this study, aiming to achieve a more accurate analyse of performance ra-
dial journal bearings, the effects of shaft and liner deformations have been conside-
red together. If length/diameter ratio is quite small, the results given confirm well
with those obtained in practice. When this ratio is high, however, deteriotaritons in
the shaft deflection or linersgeometry will be more effective than expected radial de-
formations. '

OZET
Radyal Kaymah Yataklarda Deformasyonlarin Hesabi

Bu galigma, radyal kaymal ymzklémt performans karakteristiklerini, elastik
etkileri de dikkate alarak hesaplamay hedef almaktadir.

Rijid kabul ve sadece burcun elastik kabulilyle bulunan petformansiann ya-
ninda, bu ¢aligma milin de elastik oldugu gercek durumdaki performanslan en iyi
sekilde verebilmektedir.

*  Yrd. Dog. Dr.; Faculty of Engineering University of Uludag, Bursa-TURKEY,
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1. INTRODUCTION

When hydrodynamic conditions have been achieved in radial journal bea-
rings an oil film capable of carrying bearing load forms itself. Hydrodynamic
conditions are determined by the relative velocity between sliding surfaces and a
cross section with an area restricted in the direction of motion.

Carl!, in his experiments in 1964, proved that pressure of the oil film, p
(8, z), causes deformation in bearing and it is understood that for metals at
about 2000 1 b/in® (™ 140 at) this deformation is seriously important. Carl also
showed how bearing performance characteristics are influenced by these defor-
mations.

Common feature of oil studies in this field is that they all consider liner
deformations while shaft deformations are ignored. In this study, the effect of
shaft deformation in bearing performance characteristics, besides that of liner
deformation, is investigated. It is expected and found out that an account of the
effect of shaft deformation results with a considerable in these characteristics.

2. ASSUMPTIONS

1. Reynolds equation is solved with Reynolds boundary conditions. These
are:

[ ] in @-direction
st DRy
6=0, , p=0 Ty y | g,=0
z=10 L) IO 0
oz
[ 1 in z-direction
z=%1/2 p=0

2. Liner is fitted to the body tightly so that no deformation is observed
along the outer periphery of the liner, i.e. u = v = w = 0. In addition to this li-
ner is not allowed for axial motion (w = 0).

3. Elastic deformation of bearing is assumed to be caused by oil pressure
without any deflection. Therefore I/d ratios of 0.5 and 1.0 are used.

4. Temperature is taken to be constant. This assumption results with n =
n(p)-

5. During the runs shaft and liner axis are parailel and deformations
along the shaft axis are determined so as to become finite. Also the relative po-
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sition of the shaft and bearing at the end surfaces assumed to survive during the
experiment (i.e. the relative pomtlon of the shaft doesn’t change at any end du-
ring the experiments).

6. Elastisity theory is utilized for calculation of deformations and solution
is based on strain equation and equations of motion.

7. The effects of liner thickness, liner materials and variable viscosity in
deformation are also considered in the calculation.

3. NONDIMENSIONALIZATION?

It is quite useful to use nondimensional parameters in order to avoid the
calculational dlifficulties due to abundance of variables. Some nondimensional
parameters use:d in this study are as follows:

u.R
p= C,cz .P
h=cH
G= ::0 =emP
z=zR

Using these nondimensional parameters the Reynolds equation:
1 ) (n? ap)+ 0 (h? ap)=6n_1__ oh

2 u (3.1)
R o0 i} 0z 0z R a6
takes the following nondimensional form:
9 HY op.. o . H: @® oH
( g St )=86 (3.2)

a0 G 00 9z G 0z ad

Equation can be reduced to a finite-defference or a finite-element form
so that it can be solved easily by a numerical iterative technique. In each itera-
tion stgp the equations are solved as many times as the number of grids and
pressure distribution is determined.

4. BEARINGG DEFORMATION ANALYSIS®

For deformation analysis, we will start with gomponent of the strain ten-
sor which i well-known for compresible fluid flow computations and analysis of
linear elasti c materials. This is given by:

By =



t, .= ?\eii 51;1 + 2,uek1 (4.1)

k1
where \ and p. are tame constants which are defined in terms of young modulus
and poisson’s ratio as.
E
. S
(1+v)(1—2v)

E
K= 51+
6k1 = Kronecker’s delta
ex1 = Linearized strain tensor
u(r, 6,2); v (r, 8,2) and w (r, 6, 2) being the radial, tangential and axial
deformation vectors respectively, components of deformation tensor can be ex-
pressed by:

Ty
1= 5 (g1 T k)

In cylindirical coordinates, the components of infinitesinual strain tensor
are defined by.

A
frr or
8 Wi B E
&g =3 ( a0 ar g
1 %
T Ty Taq
1 0V u
€99 T
1 av
€2~ "3 dz
AW
ezz aZ

By using these, components of stress tensor are obtained as follows:

by = (A F 21)ey, + 7\(933 tegp)
tep = 2Meyg
b = 2;,:91,2
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teg o (R + 2“)868 + R(en, + ezz)
tg, = 2Keg;
tzz =(A+ 2#)922 + R(en + 868)

Second step in the analysis is the introduction of equaiton of motion. In
-it’s general form, the equation can be written as:

tkl;k + pf, = pii,y (4.2)

If the body forces and the deformations are static, this equation takes its
simple form.

b =0 (4.3)

Introducing the proper derivatives from stress components in the equa-
tion above, deformation equations can be obtained.

au M %y ?%u 1 du
A+ 2 +
( ) 1'2 ag T H H
__L__QL(R+3M)+i u 2% _0
r? 96 arad ordz
N SIS o UV PN SR 1 SRRV, A, W 0 S L P
b TR g R T g TRy TR ¥ 86
1 3%u 1 Pw
gyt 08 L L OV g
() r orod r 0680z
Pw, 1 au I .
+ (At + () — L=
(7\+u) (Atu) O Y
Series solutions of these equations are as follows:*
u=aur) Cos%z-Cos né
v=an v(r) Cos—]%-Sinnﬂ (4.5)

w=akw() Sin—kg,‘l Cos nf

Here u(r), v(r) and w(r) are the functions to be determined. Let us make
change of variables as defined by ¢ = 2 + My and y = r/a. Inmserting the ge-
neral solutions (4.5) in equation (4.4) with the new variables, a simpler form of
equations of motion can be obtained: -
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(c— 1)——

d2u+__c_____ (n +k2y2+c)'—-—+ dy

“Tayr  y dy

dw
2 i —_—=
v+k® (¢c—1) ay

—(e—1)

v . 1 @6 ¥ o o0 +k2y2)—-1—(0~1)—“—
+ = — n nec
dy> vy dy y? ¢ y dy

. (ce—1)w=0 (4.68)

(ec+1)— a

1)— —n*(c—1)=0
Yy

dw 1 dw n 2
= —(—tck)w—(c—1
y* y &y ¥
It is obvious that deformation components which are functions of r only

by this last set of equation, can be calculated easily.

5. BOUNDARY CONDITIONS

1/2 . 12
777777 |
r {n ‘
. - z i r=a r=a ™o
il l
' r=b
LA
Fig. 1 - Dimensions of the journal bearing
— For the inner surface of the liner (r = a), Fig. 1.
c ?il; =—%—(c—2)£—v+l+kzw for -t =—P
d s
'd‘;::—-v for ty=0
dw _ for t,=0
ay 5



- For the outer surface of the liner (r = b)

u=v=w=10
Also both ends of the bearing are free of motion:
Forr =batz=0andz = = 1/2

w =0
t9 =0
trz =0

For the shaft at r = a the above conditions are valid while at r = 0 the
equality

u=v=w = finite’

must hold.

With these boundary conditions, the set of differential equations can be
solved by using either Bessel functions or applying the step-by-step integration
of Runge-Kutta approximation as it is done here.

6. METHOD OF SOLUTION

1. Pressure distribution in bearings is found by using the finite-difference
method applied to Reynolds equation of differential form.

2. The equation for pressure distribution is expressed in the form of do-
uble Fourier series, since this form allows an easy calculation of deformation.

m{z
1

Cos (nf + 8

n m.n)

L)

P=23 P

3. In the case of unit dimensionless pressure amplitudes (pm,a = 1), pres-

sure distrubution belonging to any point P(m,n) is in the form
p=Cos%CosnG (k=—2—miﬂ—)

since pressure is not under the effect of phase difference angle Bm,. In that
case, total deformation value at any point of the bearing can be found by using
the calculated deformation coefficients u(r), v(r), w(r);

u=au(r) Cos B Cos nf
kz
v=an v(r) Cos = Sin né

w=akw(r) Sink—az-CosnB
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When these deformations multiplied by the pressure amplitudes Pmp,
corresponding to the points P(m,n), deformation value corresponding to this
term can be found. Summation over m and n gives the overall deformation of
any point.

mnz
= +
. u E %3 B u(r)m'n Cos 1 Cos (nf Bm,n)
: knz . '
v= E Enpm,n v(r)m'n Cos —— Sin (nf + ﬁm,n) i (6.1)
= ! knz
w= E En Pin w(r)m,n Sin e Cos (nf + ﬁm,n}

If the total deformations obtained in this manner are added to the initial
oil film thickness, actual film thicknesses for every point can easily be found.

Performance characteristics of the journal bearings with rigid lineir and _
two elastic liners of steel and brass are compared for constant load of w = 5.6
kN, including shaft deformation,-in Table 1. In Table 2 variation of performance
characteristics with viscosity is given.

Table 1. Performance Characteristics at Constant Loading Case

(W = 5.6 Kn)
*
b £ Hmin R f
1. 000 063 0.37 47r 1.15 272 bearing with rigid liner
2. 04 0.66 0.35 43° 107 290 bearing with steel liner
3. 008 0.69 033 41° 1.05 3.09 bearing with brass liner

Table 2. Performance Characteristics (e = 0.5, /d = 1.0, material steel)

c Pmax w b Hmin € o
0.018 1.879 322 33.18 0512 0.487 0.00
0.018 1.976 332 3348 0512 0.487 0.05
0.018 2.084 343 33.74 0512 0.487 0.1
7. CONCLUSIONS

1. Unlike the results obtained with rigid bearings, modulus of elasticity
and liner thickness are found to be effecting the bearing performance.

2. Eccentricity ratio, which was constant in rigid bearings, increased with
deformation.
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3. With increased deformation, pressure distribution showed improved

uniformity, maximum pressure area increased and maximum pressure decrea-

sed.

4. Load angle decreased due to deformation. This results with a better

stability in ]oumal bearing systems.

5. Based on the result that minimum ﬁlm thickness increases with defor-

mation, it can be concluded that it is possible to use eccentricity tatios greater
than unity in elastic journal bearings without any metal-to-metal contact between
liner and the shaft (i.e liquid friction still survives).

;
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NOMENCLATURE

radial clearance

a costant

bearings diameter

Young’s modulus of bearing lineer and shaft

friction coefficient parameter

fluid film thickness

nondimensional fluid film thickness
min minimum film thickness

bearing length in z-direction

power loss

pressure

nondimensional pressure

mwZ = mm e T me Qo

.
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journal radius
bearing lineer thickness

ratio of lineer thickness to inner radius of the bearing lineer

journal velocity

components of bearing deformation
nondimensional of bearing deformation
load capacity

piezoviscous coefficient

poisson’s ratio

eccentricity ratio

new eccentricity ratio

viscosity of the lubricant

viscosity at atmosferic pressure

attitude angle

nondimensional deformation coefficient
cylindrical coordinates



