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ON GENERALIZED ROTATIONAL SURFACES IN

EUCLIDEAN SPACES

Kadri Arslan, Betül Bulca, and Didem Kosova

Abstract. In the present study we consider the generalized rotational
surfaces in Euclidean spaces. Firstly, we consider generalized tractrices in
Euclidean (n + 1)-space En+1. Further, we introduce some kind of gen-
eralized rotational surfaces in Euclidean spaces E3 and E4, respectively.
We have also obtained some basic properties of generalized rotational sur-
faces in E4 and some results of their curvatures. Finally, we give some
examples of generalized Beltrami surfaces in E3 and E4, respectively.

1. Introduction

The Gaussian curvature and mean curvature of the surfaces in Euclidean
spaces play an important role in differential geometry. Especially, surfaces
with constant Gaussian curvature [19], and constant mean curvature conform
nice classes of surfaces which are important for surface modelling [7]. Surfaces
with constant negative curvature are known as pseudo-spherical surfaces (see
[16]).

Rotational surfaces in Euclidean spaces are also important subject of differ-
ential geometry. The rotational surfaces in E

3 are called surfaces of revolution.
Recently V. Velickovic classified all rotational surfaces in E

3 with constant
Gaussian curvature [18]. Rotational surfaces in E

4 was first introduced by C.
Moore in 1919. In the recent years some mathematicians have taken an interest
in the rotational surfaces in E

4, for example G. Ganchev and V. Milousheva
[14], U. Dursun and N. C. Turgay [13], the first author et al. [3]. In [14], the
authors applied the invariance theory of surfaces in the four dimensional Eu-
clidean space to the class of general rotational surfaces whose meridians lie in
two dimensional planes in order to find all minimal surfaces. See also [2] for
rotational surfaces have pointwise 1-type Gauss map in E

4. The first author
et al. in [3] gave the necessary and sufficient conditions for generalized rota-
tion surfaces to become pseudo-umbilical. They also gave some special classes
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of generalized rotational surfaces as examples. See also [6], [12] and [20] for
the rotational surfaces with constant Gaussian curvature in Euclidean 4-space
E
4. For higher dimensional case N. H. Kuiper defined rotational embedded

submanifolds in Euclidean spaces [17].
In [16] V. A. Gorkavyi and E. N. Nevmerzhitskaya introduced a special class

of curves in E
n called generalized tractrices. Then, by applying special motions

in E
n to generalized tractrices, they construct a special class of pseudo-spherical

surfaces in E
n called generalized Beltrami surfaces.

This paper is organized as follows: Section 2 gives some basic concepts of
the surfaces in E

n. Section 3 explains some geometric properties of general-
ized tractrices E

n+1. Section 4 tells about the generalized rotational surfaces
in E

n+m. Further, this section provides some basic properties of generalized
rotational surfaces in E

4 and some results of their curvatures. We also shown
that every generalized Beltrami surfaces in E

4 have constant Gaussian curva-
ture K = −1/c2. Finally, we present some examples of generalized Beltrami
surfaces in E

4.

2. Basic concepts

Let M be a smooth surface in E
n given with the patch X(u, v) : (u, v) ∈

D ⊂ E
2. The tangent space to M at an arbitrary point p = X(u, v) of M span

{Xu, Xv}. In the chart (u, v) the coefficients of the first fundamental form of
M are given by

(2.1) g11 = 〈Xu, Xu〉 , g12 = 〈Xu, Xv〉 , g22 = 〈Xv, Xv〉 ,

where 〈, 〉 is the Euclidean inner product. We assume that W 2 = g11g22−g212 6=
0, i.e., the surface patch X(u, v) is regular. For each p ∈ M , consider the
decomposition TpE

n = TpM ⊕T⊥
p M where T⊥

p M is the orthogonal component
of TpM in E

n.
Let χ(M) and χ⊥(M) be the space of the smooth vector fields tangent to

M and the space of the smooth vector fields normal to M , respectively. Given
any local vector fields X1, X2 tangent to M , consider the second fundamental
map h : χ(M)× χ(M) → χ⊥(M);

(2.2) h(Xi, Xj
) = ˜∇X

i
X

j
−∇X

i
X

j
1 ≤ i, j ≤ 2,

where ∇ and
∼

∇ are the induced connection of M and the Riemannian con-
nection of En, respectively. This map is well-defined, symmetric and bilinear
[9].

For any arbitrary orthonormal frame field {N1, N2, . . . , Nn−2} of M , recall
the shape operator A : χ⊥(M)× χ(M) → χ(M);

(2.3) ANk
Xj = −(˜∇Xj

Nk)
T , Xj ∈ χ(M).

This operator is bilinear, self-adjoint and satisfies the following equation:

(2.4) 〈ANk
Xj, Xi〉 = 〈h(Xi, Xj), Nk〉 = Lk

ij , 1 ≤ i, j ≤ 2; 1 ≤ k ≤ n− 2,
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where Lk
ij are the coefficients of the second fundamental form. The equation

(2.2) is called Gaussian formula, and

(2.5) h(Xi, Xj) =

n−2
∑

k=1

Lk
ijNk, 1 ≤ i, j ≤ 2

hold. Then the Gauss curvature K of a regular patch X(u, v) is given by

(2.6) K =
1

W 2

n−2
∑

k=1

(Lk
11L

k
22 − (Lk

12)
2).

Further, the mean curvature vector of a regular patch X(u, v) is given by

(2.7)
−→
H =

1

2W 2

n−2
∑

k=1

(Lk
11g22 + Lk

22g11 − 2Lk
12g12)Nk.

We call the functions

(2.8) Hk =
(Lk

11g22 + Lk
22g11 − 2Lk

12g12)

2W 2

the k-th mean curvature of the given surface. The norm of the mean curvature

vector H =
∥

∥

∥

−→
H
∥

∥

∥ is called the mean curvature of M . Recall that a surface M

is said to be flat (resp. minimal) if its Gauss curvature (resp. mean curvature
vector) vanishes identically [8], [10].

The normal curvature KN of M is defined by (see [11])

(2.9) KN =







n−2
∑

1=α<β

〈

R⊥(X1, X2)Nα, Nβ

〉2







1/2

,

where

(2.10) R⊥(Xi, Xj)Nα = h(Xi, ANα
Xj)− h(Xj , ANα

Xi),

and

(2.11)
〈

R⊥(Xi, Xj)Nα, Nβ

〉

=
〈

[ANα
, ANβ

]Xi,Xj

〉

is called the equation of Ricci. We observe that the normal connection D of
M is flat if and only if KN = 0, and by a result of Cartan, this equivalent to
the diagonalisability of all shape operators ANα

of M which means that M is
a totally umbilical surface in E

n [1].

3. Generalized tractrices

Let γ be a regular oriented curve in E
n+1 that does not lie in any subspace

of En+1. From each point of the curve γ one can draw a segment of unit length
along the tangential line corresponding to the chosen orientation. The ends
of these segments describe a new curve β. The curve γ ∈ E

n+1 is called a
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generalized tractrix if the curve β lies in a certain subspace E
nof En+1. The

curve β is called the trace of γ [16]. Let

(3.1) γ(u) = (f1(u), . . . , fn+1(u))

be the radius vector of the curve γ given with arc-length parametrization u,
i.e., ‖γ′(u)‖ = 1. The curve β is defined by the radius vector

(3.2) β(u) = (γ + cγ′)(u) =
(

(f1 + cf ′
1)(u), . . . , (fn+1 + cf ′

n+1)(u)
)

,

where c > 0 is a real constant. If γ is a generalized tractrix of En+1, then by
definition the curve β lies in the hyperplane En if and only if fn+1+ cf ′

n+1 = 0.
Consequently, this equation has a non-trivial solution

(3.3) fn+1(u) = λe−u/c,

where λ is a constant. Thus, the radius vector of the generalized tractrix γ
takes the form

(3.4) γ(u) =
(

f1(u), . . . , fn(u), λe
−u/c

)

.

Moreover, the condition for the arc-length parameter u implies that

(3.5) (f ′
1)

2 + · · ·+ (f ′
n)

2 = 1−
λ2

c2
e−2u/c.

For convenience, we introduce a vector function

φ(u) = (f1(u), . . . , fn(u); 0) .

Then the radius vector (3.4) can be represented in the form

(3.6) γ(u) = φ(u) + λe−u/cen+1,

where en+1 = (0, 0, . . . , 0, 1). Consequently, the condition (3.5) gives

(3.7) ‖φ′(u)‖
2
= 1−

λ2

c2
e−2u/c.

Hence, the radius vector of the trace curve β becomes

(3.8) β(u) = φ(u) + φ′(u).

Consider an arbitrary unit vector function

(3.9) a(u) = (a1(u), . . . , an(u); 0)

in E
n+1 and use this function to construct a new vector function

(3.10) φ(u) =

∫

√

1−
λ2

c2
e−2u/ca(u)du

whose last coordinate is equal to zero. Consequently, it is easy to see that the
vector function α(u) satisfies the condition (3.7) and generates a generalized
tractrix with radius vector (3.6).
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Example 3.1. The ordinary tractrix in E
2 is given with the radius vector

(3.11) γ(u) =

(

∫

√

1−
λ2

c2
e−2u/cdu, λe−u/c

)

.

Example 3.2. Consider the unit vector

a(u) = (cosα(u), sinα(u); 0)

in E
2. Then, by the use of (3.10), the corresponding generalized tractrix γ in

E
3 is defined by the radius vector

(3.12)

γ(u)=

(

∫

√

1−
λ2

c2
e−2u/c cosα(u)du,

∫

√

1−
λ2

c2
e−2u/c sinα(u)du;λe−u/c

)

.

Example 3.3. Consider the unit vector

a(u) =
(

cosα(u), cosα(u) sinα(u), sin2 α(u); 0
)

in E
3. Then using (3.10), the corresponding generalized tractrix γ in E

4 is
parametrized by

f1(u) =

∫

√

1−
λ2

c2
e−2u/c cosα(u)du,

f2(u) =

∫

√

1−
λ2

c2
e−2u/c cosα(u) sinα(u)du,(3.13)

f3(u) =

∫

√

1−
λ2

c2
e−2u/c sin2 α(u)du;

f4(u) = λe−u/c.

4. Rotational surfaces

Consider the space E
n+1 = E

n ⊕ E
1 as a subspace of En+m = E

n ⊕ E
m,

m ≥ 2 and Cartesian coordinates x1, x2, . . . , xn+m and an orthonormal basis
e1, . . . , en+m in E

n+m. Let M ⊂ E
n+m be a local surface given with the regular

patch (radius vector)

(4.1) X(u, v) = φ(u) + fn+1(u)ρ(v),

where

φ(u) = (f1(u), . . . , fn(u); 0, . . . , 0)

is the vector function, such that,

γ(u) = φ(u) + fn+1(u)en+1

becomes a unit speed parametrization. Furthermore, the vector function

ρ(v) = (0, . . . , 0; g1(v), . . . , gm(v))
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satisfying the conditions

(4.2) ‖ρ(v)‖ = 1, ‖ρ′(v)‖ = 1

specifies a curve ρ = ρ(v) parametrized by a natural parameter on the unit
sphere Sm−1 ⊂ E

m. Consequently, the surface M is obtained as a result of
the rotation of the profile curve γ along the spherical curve ρ, which is called
rotational surface in E

n+m.
In the sequel, we consider some types of generalized rotational surfaces;

Case I. For n = 1 andm = 2, the radius vector (4.1) satisfying the indicated
properties describes the surface of revolution in E

3 with

(4.3) X(u, v) = (f1(u), f2(u) cos v, f2(u) sin v).

The tangent space is spanned by the vector fields

Xu = (f1
′(u), f2

′(u) cos v, f2
′(u) sin v),

Xv = (0,−f2(u) sin v, f2(u) cos(v)).

Hence, the coefficients of the first fundamental form of the surface are

g11 = 〈Xu, Xu〉 = 1,

g12 = 〈Xu, Xv〉 = 0,

g22 = 〈Xv, Xv〉 = (f2(u))
2,

where 〈, 〉 is the standard scalar product in E
3.

For a regular patch X(u, v) the unit normal vector field or surface normal
N is defined by

N(u, v) =
Xu ×Xv

‖ Xu ×Xv ‖
(u, v)

= (f2
′(u),−f ′

1(u) cos v,−f ′
1(u) sin v) ,

where

f1
′(u)2 + f2

′(u)2 = 1

and

‖xu × xv‖ =
√

g11g22 − g212 = f2(u) 6= 0.

The second partial derivatives of X(u, v) are expressed as follows

Xuu = (f1
′′(u), f2

′′(u) cos v, f2
′′(u) sin v),

Xuv = (0,−f2
′(u) sin v, f2

′(u) cos(v)),

Xvv = (0,−f2(u) cos v,−f2(u) sin(v)).

Similarly, the coefficients of the second fundamental form of the surface are

L11 = 〈Xuu, N〉 = −κ1(u),

L12 = 〈Xuv, N〉 = 0,(4.4)

L22 = 〈Xvv, N〉 = f1
′(u)f2(u),
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where

(4.5) κ1(u) = f1
′(u)f2

′′(u)− f1
′′(u)f2

′(u)

is the differentiable function.
Furthermore, substituting (4.4) into (2.6)-(2.7) the Gaussian and mean cur-

vatures of the surface become

(4.6) K = −
f2

′′(u)

f2(u)

and

(4.7) 2H =
f1

′(u)− κ1(u)f2(u)

f2(u)
,

respectively (see [6]).
Assume that M is a flat surface then an easy calculation gives that the

differential equation (4.6) has a non-trivial solution f2(u) = c1u+ c2.
In [18] V. Velickovic proved the following results.

Proposition 4.1 ([18]). Let M be a flat rotational surface given with the

parametrization (4.3). The following assertations holds;
i) If the profile curve γ is of the form γ(u) = (±u+d1, c2), then the resultant

surface becomes a circular cylinder.

ii) If the profile curve γ is of the form γ(u) = (d1,±u+c2), then the resultant

surface becomes a portion of a plane.

iii) If the profile curve γ is of the form γ(u) = (c1u, d1u), then the resultant

surface becomes a circular cone.

Proposition 4.2 ([18]). Let M be a rotational surface in E
3 given with the

parametrization (4.3). If M has negative Gaussian curvature K = −1
c2 for some

constant c > 0, then f2(u) = c1 cosh
(

u
c

)

+ c2 sinh
(

u
c

)

holds. Furthermore,

i) If c1 = −c2 = λ 6= 0, then f2(u) = λe−u/c, and the resultant surface is

called parabolic pseudo-spherical surface.

ii) If c2 = 0, c1 = λ 6= 0, then f2(u) = λ cosh
(

u
c

)

, and the resultant surface

is called hyperbolic pseudo-spherical surface.

iii) If c1 = 0, c2 = λ 6= 0, then f2(u) = λ sinh
(

u
c

)

, and the resultant surface

is called elliptic pseudo-spherical surface.

Example 4.3. If we take the profile curve as the ordinary tractrix given with
the parametrization (3.11), then the resultant rotational surface in E

3 describes
the classic Beltrami surface in E

3 with the radius vector

X(u, v) =

(

∫

√

1−
λ2

c2
e−2u/cdu, λe−u/c cos v, λe−u/c sin v

)

.

Consequently, classic Beltrami surface is a kind of parabolic pseudo-spherical
surface. Eugenio Beltrami in 1868 showed that pseudo-sphere provided a model
for hyperbolic geometry. Pseudo-spheres are known as surfaces with constant
negative Gaussian curvature K = −1

c2 .
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Case II. For n = 2 and m = 2, the radius vector (4.1) satisfying the
indicated properties describes the rotational surface M in E

4 given with the
parametrization

(4.8) X(u, v) = (f1(u), f2(u), f3(u) cos v, f3(u) sin v),

(see [7], [14]).
The tangent space is spanned by the vector fields

Xu = (f1
′(u), f1

′(u), f3
′(u) cos v, f3

′(u) sin v),

Xv = (0, 0,−f3(u) sin v, f3(u) cos(v)).

Hence, the coefficients of the first fundamental form of the surface are

g11 = 〈Xu, Xu〉 = 1,

g12 = 〈Xu, Xv〉 = 0,

g22 = 〈Xv, Xv〉 = (f3(u))
2,

where 〈, 〉 is the standard scalar product in E
4. The second partial derivatives

of X(u, v) are expressed as follows

Xuu = (f1
′′(u), f2

′′(u), f3
′′(u) cos v, f3

′′(u) sin v),

Xuv = (0, 0,−f3
′(u) sin v, f3

′(u) cos(v)),

Xvv = (0, 0,−f3(u) cos v,−f3(u) sin(v)).

The normal space is spanned by the vector fields

N1 =
1

κγ
(f1

′′(u), f2
′′(u), f3

′′(u) cos v, f3
′′(u) sin v) ,

(4.9)

N2 =
1

κγ
(f2

′(u)f3
′′(u)− f2

′′(u)f3
′(u), f1

′′(u)f3
′(u)− f1

′(u)f3
′′(u),

(f1
′(u)f2

′′(u)− f1
′′(u)f2

′(u)) cos v, (f1
′(u)f2

′′(u)− f1
′′(u)f2

′(u)) sin v) ,

where

(4.10) κγ =

√

(f1′′)
2 + (f2′′)

2 + (f3′′)
2

is the curvature of the profile curve γ.
Similarly, the coefficients of the second fundamental form of the surface are

L1
11 = 〈Xuu, N1〉 = κγ(u),

L1
12 = 〈Xuv, N1〉 = 0,

L1
22 = 〈Xvv, N1〉 = −

f3
′′(u)f3(u)

κγ(u)
,(4.11)

L2
11 = 〈Xuu, N2〉 = 0,

L2
12 = 〈Xuv, N2〉 = 0,
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L2
22 = 〈Xvv, N2〉 = −

f3(u)κ1(u)

κγ(u)
,

where

(4.12) κ1(u) = f1
′(u)f2

′′(u)− f1
′′(u)f2

′(u)

is the curvature of the projection of the curve γ on the Oe1e2-plane.
Furthermore, by the use of (4.11) with (2.6)-(2.7) the Gaussian curvature

and the mean curvature vector of the surface M become

(4.13) K = −
f3

′′(u)

f3(u)

and

(4.14)
−→
H =

1

2

{(

κγ +
K

κγ

)

N1 −
κ1(u)

f3(u)κγ(u)
N2

}

,

respectively, where κγ is the curvature of the profile curve γ and κ1 is the
differentiable function defined in (4.12).

Summing up the following results are proved.

Theorem 4.4. Let M be a rotational surface in E
4 given with the parametriza-

tion (4.8). Then for the Gaussian curvature K of M

(4.15) f ′′
3 (u) +Kf3(u) = 0

holds.

Corollary 4.5. Let M be a rotational surface in E
4 given with the parametriza-

tion (4.8). Then M is a flat surface if and only if

f3(u) = c1u+ c2,

where c1, c2 are real constants.

Theorem 4.6. Let M be a rotational surface in E
4 given with the parametriza-

tion (4.8). Then the mean curvature of M at point p is

2H =

√

(

κγ +
K

κγ

)2

+
κ2
1(u)

f32(u)κ2
γ(u)

,

where κγ is the curvature of the profile curve γ and κ1 is the curvature of the

projection of γ on the Oe1e2-plane.

Proposition 4.7. Let M be a rotational surface in E
4 given with the parametr-

ization (4.8). Then M is a minimal surface if and only if either M is a flat

surface in E
4 or a non-flat surface given with the profile curve γ

f1(u) =
λ
√

2c2 − c21√
1 + λ2

ln
(

√

u2 + 2c1u+ 2c2 + u+ c1

)

+ c3,

f2(u) =

√

2c2 − c21√
1 + λ2

ln
(

√

u2 + 2c1u+ 2c2 + u+ c1

)

+ c4,(4.16)
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f3(u) = ±
√

u2 + 2c1u+ 2c2,

where c1, c2, c3, c4 and λ are real constants.

Proof. (⇒) : Assume that M is a minimal surface of E4. Then from (4.14)
κ1 = 0 and K+κ2

γ = 0. Consequently, by the use of (4.10) and the fact that γ
is a unit speed curve we can get the following system of differential equations

f ′′
3 (u)

f3(u)
= (1 + λ2)(f ′′

2 (u))
2 + (f ′′

3 (u))
2,(4.17)

1 = (1 + λ2)(f ′
2(u))

2 + (f ′
3(u))

2.

Further, from the second differential equation in (4.17) one can get

(4.18) f ′
2(u) = ±

√

1− (f ′
3(u))

2

√
1 + λ2

.

Hence, substituting (4.18) into the first equation of (4.17) we obtain

f ′′
3 (u)

(

1− (f ′
3(u))

2 − f3(u)f
′′
3 (u)

)

= 0.

So we have two possible cases; f ′′
3 (u) = 0 or 1 − (f ′

3(u))
2 − f3(u)f

′′
3 (u) = 0.

If f ′′
3 (u) = 0, then f3(u) = au + b which means that M is a flat surface in

E
4. If M is a non-flat surface, then f3(u) = ±

√
u2 + 2c1u+ 2c2. Furthermore,

substituting this value into (4.18) we get

f2(u) =

√

2c2 − c21√
1 + λ2

ln
(

√

u2 + 2c1u+ 2c2 + u+ c1

)

+ c4.

Since, κ1 = f1
′(u)f2

′′(u)− f1
′′(u)f2

′(u) = 0 we obtain f ′
1(u) = λf ′

2(u). Conse-
quently, we obtain the first equation of (4.16).

(⇐) : Trivial. �

For any local surface M ⊂ E
4 given with the regular surface patch X(u, v)

the normal curvature KN is given with the following result.

Proposition 4.8 ([5]). Let M ⊂ E
4 be a local surface given with a regular

patch X(u, v). Then the normal curvature KN of the surface becomes

(4.19)

KN =
g11(L

1
12L

2
22 − L2

12L
1
22)− g12(L

1
11L

2
22 − L2

11L
1
22) + g22(L

1
11L

2
12 − L2

11L
1
12)

W 3
.

As a consequence of (4.11) with (4.19) we get the following result.

Proposition 4.9 ([14]). Any rotational surface M in E
4 defined by (4.8) is a

surface with flat normal connection, i.e., KN = 0.

Example 4.10. If we take the profile curve as the generalized tractrix given
with the parametrization (3.12), then the resultant rotational surface in E

4

describes the generalized rotational surface in E
4 with the parametrization

x1(u, v) =

∫

√

1−
λ2

c2
e−2u/c cosα(u)du,
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x2(u, v) =

∫

√

1−
λ2

c2
e−2u/c sinα(u)du,(4.20)

x3(u, v) = λe−u/c cos v,

x4(u, v) = λe−u/c sin v.

We call such surface generalized Beltrami surface of first kind in E
4.

By the use of (4.20) with (4.15) we get the following result.

Corollary 4.11. The generalized Beltrami surface of first kind in E
4 has con-

stant Gaussian curvature K = −1/c2.

As consequence of (4.14) we obtain the following results.

Corollary 4.12. Let M be a generalized Beltrami surface of first kind given

with the parametrization (4.20). Then the first mean curvature of M vanishes

identically if and only the angle function α(u) satisfies the equality

α′(u)2 =
1

c2
−

(ϕ′)2

ϕ2
,

where ϕ is the differentiable function defined by

ϕ(u) =

√

1−
λ2

c2
e−2u/c.

Case III. For n = 1 and m = 3, the radius vector (4.1) satisfying the
indicated properties describes the rotational surface M in E

4 given with the
parametrization

(4.21) X(u, v) = f1(u)
−→e 1 + f2(u)ρ(v),

where

γ(u) = (f1(u), f2(u); 0, 0) ,

is the profile curve and ρ = ρ(v) parametrized by

ρ(v) = (0; g1(v), g2(v), g3(v)),

‖ρ(v)‖ = 1, ‖ρ′(v)‖ = 1,

which lies on the unit sphere S2. We know that the spherical curve ρ has the
following Frenet Frames;

ρ′(v) = T (v),

T ′(v) = κρ(v)N(v) − ρ(v),

N ′(v) = −κρ(v)T (v).

Actually, the surfaces given with the parametrization (4.21) are know the
meridian surfaces in E

4 (see [4], [15]).
The tangent space is spanned by the vector fields

Xu = f ′
1(u)

−→e 1 + f ′
2(u)ρ(v),



1010 K. ARSLAN, B. BULCA, AND D. KOSOVA

Xv = f2(u)ρ
′(v).

Hence, the coefficients of the first fundamental form of the surface are

g11 = 〈Xu, Xu〉 = 1,

g12 = 〈Xu, Xv〉 = 0,

g22 = 〈Xv, Xv〉 = f2
2(u).

The second partial derivatives of X(u, v) are expressed as follows

Xuu = f ′′
1 (u)

−→e 1 + f ′′
2 (u)ρ(v),

Xuv = f ′
2(u)ρ

′(v),

Xvv = f2(u)ρ
′′(v).

The normal space of M is spanned by

N1 = N(v),

N2 = f ′
2(u)

−→e 1 − f ′
1(u)ρ(v),

where N(v) is the normal vector of the spherical curve ρ.
Similarly, the coefficients of the second fundamental form of the surface are

L1
11 = 〈Xuu, N1〉 = 0,

L1
12 = 〈Xuv, N1〉 = 0,

L1
22 = 〈Xvv, N1〉 = κρ(v)f2(u),(4.22)

L2
11 = 〈Xu, N2〉 = −κγ(u),

L2
12 = 〈Xuv, N2〉 = 0,

L2
22 = 〈Xvv, N2〉 = f ′

1(u)f2(u),

where

κρ(v) =
√

g′′1 (v)
2 + g′′2 (v)

2 + g′′3 (v)
2

is the curvature of the spherical curve ρ and

(4.23) κγ(u) = f ′
1(u)f

′′
2 (u)− f ′′

1 (u)f
′
2(u)

is the curvature of profile curve γ.
Summing up the following results are proved.

Theorem 4.13. Let M be a rotational surface in E
4 given with the parametriza-

tion (4.21). Then for the Gaussian curvature K of M

(4.24) f ′′
2 (u) +Kf2(u) = 0

holds.

Theorem 4.14. Let M be a rotational surface in E
4 given with the parametriza-

tion (4.21). Then the mean curvature vector of M becomes

(4.25)
−→
H =

1

2f2(u)
{κρ(v)N1 + (f ′

1(u)− κγf2(u))}N2.
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Theorem 4.15. Let M be a rotational surface in E
4 given with the parametriza-

tion (4.21). Then the mean curvature of M at point p is

(4.26) 4 ‖H‖
2
=

κ2
ρ(v) + (f ′

1(u)− κγf2(u))
2

f2
2 (u)

.

As a consequence of (4.22) with (4.19) we get the following result.

Proposition 4.16. Any rotational surface in E
4 given with the parametrization

(4.21) has flat normal connection, i.e., KN = 0.

We obtain the following results.

Corollary 4.17. Let M be a rotational surface in E
4 given with the parametri-

zation (4.21). Then M is a minimal surface if and only if ρ is a great circle

and the profile curve γ has the parametrization

f1(u) =
√

2c2 − c21 ln
(

√

u2 + 2c1u+ 2c2 + u+ c1

)

+ c3,(4.27)

f2(u) = ±
√

u2 + 2c1u+ 2c2,

where, c1, c2 and c3 are real constants.

Proof. (⇒) Assume that M is a minimal surface of E
4. Then from (4.26)

κρ = 0 and f ′
1(u) − κγf2(u) = 0. Consequently, by the use of (4.23) and the

fact that γ is a unit speed curve we can get

(f ′
2(u))

2
+ f2(u)f

′′
2 (u) = 1

which has a nontrivial solution (4.27).
(⇐) Trivial. �

Example 4.18. If we take the profile curve γ as the ordinary tractrix (3.11),
then the resultant rotational surfaceM in E

4 describes the generalized Beltrami
surface E

4 with the parametrization

x1(u, v) =

∫

√

1−
λ2

c2
e−2u/cdu,

x2(u, v) = λe−u/cg1(v),(4.28)

x3(u, v) = λe−u/cg2(v),

x4(u, v) = λe−u/cg3(v).

We call such surface generalized Beltrami surface of second kind.

By the use of (4.15) with (4.28) we get the following result.

Corollary 4.19. The generalized Beltrami surface of first kind in E
4 has con-

stant Gaussian curvature K = −1/c2.
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