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MAPPING PROPERTIES FOR CONIC REGIONS

ASSOCIATED WITH WRIGHT FUNCTIONS

Muhey U Din∗ and Sibel Yalçin

Abstract. In this paper, we are mainly interested to find sufficient
conditions for the convolution operator Yλ,µf(z) = zWλ,µ(z) ∗ f(z)
belonging to the classes UCV (k, α) , Sp (k, α) , S∗ς and Cς .

1. Introduction and preliminaries

Let A be the class of functions of the form

(1) f(z) = z +
∞∑
n=2

anz
n,

analytic in the open unit disc U = {z : |z| < 1} and S denotes the class
of all functions in A which are univalent in U . Let S∗ (α) and C (α)
denote the classes of starlike and convex functions of order α and are
defined as:

S∗ (α) =

{
f : f ∈ A and <

(
zf ′ (z)

f (z)

)
> α, z ∈ U , α ∈ [0, 1)

}
and

C (α) =

{
f : f ∈ A and <

(
1 +

zf ′′ (z)

f ′ (z)

)
> α, z ∈ U , α ∈ [0, 1)

}
.

It is clear that

S∗ (0) = S∗ and C (0) = C.
These classes were introduced by Robertson in 1936, for more informa-
tion about these classes see [12, 17]. In 1991 Goodman [4, 5] introduced
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the class of uniformly convex functions UCV and uniformly starlike func-
tions Sp. A function f ∈ A is uniformly convex if for every circular arc
τ contained in the open unit disc with the center also in the open unit
disc, the image of f (τ) is convex. In 1992 Ma and Minda [7] and in
1993 Ronning [13] proved that independently:

Definition 1.1. A function f ∈ A is uniformly convex in the open
unit disc if and only if

(2) <
(

1 +
zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ .
Equivalently, we can say that a function f ∈ A is uniformly convex in

the open unit if 1 + zf ′′(z)
f ′(z) , is in the parabolic region.

Definition 1.2. A function f ∈ A is in Sp if

(3) <
(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ .
Next, we introduce the subclasses of k−uniformly convex functions of
order α and a new class related to the starlike functions. These classes
were defined by Bharati et al. in 1997 [2] defined as:

Definition 1.3. A function f ∈ A is in UCV (k, α) if and only if

(4) <
{

1 +
zf ′′(z)

f ′(z)

}
> k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ α, z ∈ U ,

where 0 ≤ k <∞ and 0 ≤ α < 1.

By using the Alexander transform, we can get the class Sp (k, α)
defined as:

Definition 1.4. A function f ∈ UCV (k, α) if and only if zf ′ ∈
Sp (k, α) .

In 1997 Ponnusamy and Ronning [8] were introduced the classes Cς
and S∗ς . These classes defined as follow:

Definition 1.5. If f ∈ A and

(5)

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ < ς, (z ∈ U , ς > 0) ,

then f ∈ Cς .
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Definition 1.6. If f ∈ A and

(6)

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < ς, (z ∈ U , ς > 0) ,

then f ∈ S∗ς .

In 2004 Swaminathan [18], was introduced a class P
τ(η)
ϕ . This class

will play an very important role in our main results. The class P
τ(η)
ϕ is

defined as:

Definition 1.7. If f ∈ A and satisfies

(7)

∣∣∣∣∣ (1− ϕ)f(z)
z + ϕf ′(z)− 1

2τ(1− η) + (1− ϕ)f(z)
z + ϕf ′(z)− 1

∣∣∣∣∣ < 1,

where ϕ ∈ [0, 1) , η < 1 and τ belongs to the complex numbers except

0, then f ∈ P τ(η)
ϕ .

Remark 1.8. If τ = eiξ cos ξ, for ξ ∈
(−π

2 ,
π
2

)
, then the class P

τ(η)
ϕ

can also be defined as:
(8)

P τ(η)
ϕ =

{
f ∈ A : <

{
eiσ(1− ϕ)

f(z)

z
+ ϕf ′(z)− η

}
> 0, σ ∈ R

}
.

Recently Raza et al. [14] studied some geometric properties of Wright
function

Wλ,µ(z) =
∞∑
n=0

zn

n!Γ (λn+ µ)
, λ > −1, µ ∈ C.

This series is absolutely convergent in C, when λ > −1 and absolutely
convergent in open unit disc U for λ = −1. Furthermore this function
is entire. The Wright functions were introduced by Wright [20] and
have been used in the asymptotic theory of partitions, in the theory of
integral transforms of the Hankel type and in Mikusinski operational
calculus. Recently, Wright functions have been found in the solution of
partial differential equations of fractional order. It was found that the
corresponding Green functions can be represented in terms of the Wright
function [9, 15]. For positive rational number λ, the Wright function can
be represented in terms of generalized hypergeometric function. For
some details see [3]. In particular, the function W1,v+1(−z2/4) can be
expressed in terms of the Bessel functions Jv, given as:

Jv (z) =
(z

2

)v
W1,v+1

(
−z2

4

)
=
∞∑
n=0

(−1)n (z/2)2n+v

n!Γ (n+ v + 1)
.
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The Wright function generalizes various functions like Array function,
Wittakar function, entire auxiliary functions, etc. For the details, we
refer to [3]. Prajapat and Raza et. al [10, 14] discussed some geometric
properties of the following normalization of Wright functions

(9) Wλ,µ(z) = 1 +

∞∑
n=1

Γ (µ)

n!Γ (λn+ µ)
zn. λ > −1, µ > 0, z ∈ U ,

which can also be written as
(10)

zWλ,µ(z) = z +

∞∑
n=2

Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
zn. λ > −1, µ > 0, z ∈ U ,

where λ > −1, λ+ µ > 0.
Let f ∈ A given by (1) and g ∈ A given by

g(z) = z +
∞∑
n=2

bn z
n,

then Hadamard product (or convolution) of f and g is defined as

(f ∗ g) (z) = z +
∞∑
n=2

anbn z
n (z ∈ U) .

Now, we introduce the convolution operator

Yλ,µf(z) = zWλ,µ(z) ∗ f(z)

= z +

∞∑
n=2

Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
anz

n = z +

∞∑
n=2

Anz
n,

where An = Γ(µ)
(n−1)!Γ(λ(n−1)+µ)an. In our present work we find some suffi-

cient conditions under which the convolution operator Yλ,µf(z) belong-
ing to the classes UCV (k, α) , Sp (k, α) , S∗ς and Cς . Here, we add some
references that are closely related with this study [1, 19].

To prove our main results, we shall need the following lemmas.

Lemma 1.9. [2] A function f ∈ A is in UCV (k, α) if it assures

(11)

∞∑
n=2

n {n(1 + k)− (k + α)} |an| ≤ 1− α.

Lemma 1.10. [2] A function f ∈ A is in Sp (k, α) if it assures

(12)
∞∑
n=2

{n(1 + k)− (k + α)} |an| ≤ 1− α.
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Lemma 1.11. [18] If f ∈ P τ(η)
ϕ defined in (8) , then

(13) |an| ≤
2 |τ | (1− η)

1 + ϕ(n− 1)
.

Lemma 1.12. [6] If f ∈ A and satisfy

(14)
∞∑
n=2

(ζ + n− 1) |an| ≤ ζ, ζ > 0,

then f ∈ S∗ς .

Lemma 1.13. [6] If f ∈ A and satisfy

(15)

∞∑
n=2

n (ζ + n− 1) |an| ≤ ζ, ζ > 0,

then f ∈ Cς .

Remark 1.14. The conditions defined in (11) , (12) , (14) and (15)
are also necessary if f ∈ A of the form of

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0.

2. Main Results

These main results are the connections between the several subclasses
of analytic functions by using Wright functions. For more information
about that type of connections with hypergeometric funtions and Bessel
functions see [6, 8, 11, 16, 18].

Theorem 2.1. Let λ > −1, µ > 0 and α ∈ [0, 1) with inequality
such that

4(1− η) cos ξ

ϕ

{
(2k − α+ 3) (µ+ 1)

µ (2µ+ 1)

}
≤ (1− α) .

If f ∈ P
τ(η)
ϕ , ϕ ∈ [0, 1) and η < 1, then the convolution operator

Yλ,µf(z) ∈ UCV (k, α) .

Proof. Consider

Yλ,µf(z) = zWλ,µ(z) ∗ f(z)

= z +
∞∑
n=2

Anz
n,
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where An = Γ(µ)
(n−1)!Γ(λ(n−1)+µ)an.

To show that the convolution operator Yλ,µf(z) ∈ UCV (k, α) . From
Lemma 1.9 we will prove that

∞∑
n=2

n {n(1 + k)− (k + α)} |An| ≤ 1− α.

Now

∞∑
n=2

n {n(1 + k)− (k + α)} Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
|an|

≤ 2(1− η) cos ξ
∞∑
n=2

n {n(1 + k)− (k + α)}

Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)

1

1 + ϕ (n− 1)
.(16)

Since, n
1+ϕ(n−1) ≤

1
ϕ , ∀n ≥ 2, therefore (16) becomes

∞∑
n=2

n {n(1 + k)− (k + α)} Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
|an|

≤ 2(1− η) cos ξ

ϕ

 (1 + k)
∑∞

n=2

(
nΓ(µ)

(n−1)!Γ(λ(n−1)+µ)

)
−(k + α)

∑∞
n=2

Γ(µ)
(n−1)!Γ(λ(n−1)+µ)


=

2(1− η) cos ξ

ϕ

 (1 + k)
∑∞

n=2

(
(n−1+1)Γ(µ)

(n−1)!Γ(λ(n−1)+µ)

)
−(k + α)

∑∞
n=2

Γ(µ)
(n−1)!Γ(λ(n−1)+µ)


=

2(1− η) cos ξ

ϕ

 (1 + k)
∑∞

n=2

(
Γ(µ)

(n−2)!Γ(λ(n−1)+µ)

)
+(1− α)

∑∞
n=2

Γ(µ)
(n−1)!Γ(λ(n−1)+µ)

 .(17)

By using the inequaliteis

Γ (µ)

Γ (λ (n− 1) + µ)
≤ 1

(µ)n−1

, ∀n ≥ 2

(n− 1)! ≥ 2n−2 and (n− 2)! ≥ 2n−3, ∀n ≥ 2,
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(17) becomes

∞∑
n=2

n {n(1 + k)− (k + α)} Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
|an|

≤ 4(1− η) cos ξ

ϕ

{
(2k − α+ 3) (µ+ 1)

µ (2µ+ 1)

}
≤ 1− α,

by the theory in Lemma 1.9. This completes the proof of Theorem
2.1.

Theorem 2.2. Let λ > −1, µ > 0 and α ∈ [0, 1) with inequality
such that

2(1− η) cos ξ

ϕ

{
(µ+ 1) (4µ+ 2µk − 2µα+ k + 1)

2µ2 (2µ+ 1)

}
≤ (1− α) .

If f ∈ P
τ(η)
ϕ , ϕ ∈ [0, 1) and η < 1, then the convolution operator

Yλ,µf(z) ∈ Sp (k, α) .

Proof. Consider

Yλ,µf(z) = zWλ,µ(z) ∗ f(z)

= z +

∞∑
n=2

Anz
n,

where An = Γ(µ)
(n−1)!Γ(λ(n−1)+µ)an.

To show that the convolution operator Yλ,µf(z) ∈ Sp (k, α) , from
Lemma 1.10 we will prove that

∞∑
n=2

n {n(1 + k)− (k + α)} |An| ≤ 1− α

Now
∞∑
n=2

{n(1 + k)− (k + α)} Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
|an|

≤ 2(1− η) cos ξ

∞∑
n=2

{n(1 + k)− (k + α)}

Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)

1

1 + ϕ (n− 1)
.(18)
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Since, n
1+ϕ(n−1) ≤

1
ϕ , ∀n ≥ 2, therefore (16) becomes

∞∑
n=2

{n(1 + k)− (k + α)} Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
|an|

≤ 2(1− η) cos ξ

ϕ

 (1 + k)
∑∞

n=2

(
nΓ(µ)

n!Γ(λ(n−1)+µ)

)
−(k + α)

∑∞
n=2

Γ(µ)
n!Γ(λ(n−1)+µ)


=

2(1− η) cos ξ

ϕ

 (1 + k)
∑∞

n=2

(
(n−1+1)Γ(µ)
n!Γ(λ(n−1)+µ)

)
−(k + α)

∑∞
n=2

Γ(µ)
n!Γ(λ(n−1)+µ)


≤ 2(1− η) cos ξ

ϕ

 (1 + k)
∑∞

n=2

(
(n−1)Γ(µ)

n!Γ(λ(n−1)+µ)

)
+(1− α)

∑∞
n=2

Γ(µ)
n!Γ(λ(n−1)+µ)

 .(19)

By using the inequaliteis

Γ (µ)

Γ (λ (n− 1) + µ)
≤ 1

(µ)n−1

, ∀n ≥ 2

n! ≥ 2 (n− 1) and n! ≥ 2n−2, ∀n ≥ 2,

(19) becomes

∞∑
n=2

n {n(1 + k)− (k + α)} Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
|an|

≤ 2(1− η) cos ξ

ϕ

{
(µ+ 1) (4µ+ 2µk − 2µα+ k + 1)

2µ2 (2µ+ 1)

}
≤ 1− α,

by the theory in Lemma 1.10. This completes the proof of Theorem
2.2.

Theorem 2.3. Let λ > −1, µ > 0 and α ∈ [0, 1) with inequality
such that

{2(1− η) cos ξ}
ϕ

{
(µ+ 1) (ζ + 1)

µ (2µ+ 1)

}
≤ ζ.

If f ∈ P τ(η)
ϕ for ϕ ∈ [0, 1) , η < 1and ζ > 0,then the convolution operator

Yλ,µf(z) ∈ S∗ς .
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Proof. To prove that the convolution operator Yλ,µf(z) ∈ S∗ς , from
Lemma 1.12, we will show that

∞∑
n=2

(ζ + n− 1) |An| ≤ ζ.

where An = Γ(µ)
(n−1)!Γ(λ(n−1)+µ)an, for n ≥ 2.

Now

∞∑
n=2

(ζ + n− 1) |An|

=
∞∑
n=2

(ζ + n− 1)
Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
|an|

≤ 2(1− η) cos ξ

ϕ


∑∞

n=2

(
Γ(µ)

(n−1)!Γ(λ(n−1)+µ)

)
+ (ζ − 1)

∑∞
n=2

(
Γ(µ)

n!Γ(λ(n−1)+µ)

) 
≤ 2(1− η) cos ξ

ϕ


1
µ

∑∞
n=2

(
1

2(µ+1)

)n−2

+ (ζ−1)
2µ

∑∞
n=2

(
1

2(µ+1)

)n−2


=

2(1− η) cos ξ

ϕ

{
(µ+ 1) (ζ + 1)

µ (2µ+ 1)

}
≤ ζ,

by the theory in Lemma 1.12. This completes the proof of Theorem
2.3.

Theorem 2.4. Let λ > −1, µ > 0 and α ∈ [0, 1) with inequality
such that

{2(1− η) cos ξ}
{

(µ+ 1) (ζ + 1)

µ (2µ+ 1)

}
≤ ϕζ.

If f ∈ P τ(η)
ϕ , ϕ ∈ [0, 1) , η < 1and ζ > 0,then the convolution operator

Yλ,µf(z) ∈ Cς .

Proof. The proof of this theorem is similar to Theorem 2.3. There-
fore, we omit the details.
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Theorem 2.5. Let λ > −1, µ > 0 and α ∈ [0, 1) with inequality
such that

{
(k + 1)

(
4µ2 + 20µ+ 20

)
µ (µ+ 1) (µ+ 2) (2µ+ 5)

}
+

{
(2k + 3− α)

(
4µ2 + 12µ+ 10

)
µ (µ+ 1) (2µ+ 3)

}

+

{
2 (1− α) (1− µ)

µ (2µ+ 1)

}
≤ 1− α.

Then Yλ,µf(z) maps f(z) ∈ S into Sp (k, α) .

Proof. Consider

Yλ,µf(z) = zWλ,µ(z) ∗ f(z)

= z +
∞∑
n=2

Anz
n,

where An = Γ(µ)
(n−1)!Γ(λ(n−1)+µ)an.

To show that the convolution operator Yλ,µf(z) maps f(z) ∈ S of
the form of (1) into Sp (k, α) , from Lemma 1.9 we will prove that

∞∑
n=2

{n(1 + k)− (k + α)} |An| ≤ 1− α.
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Now
∞∑
n=2

{n(1 + k)− (k + α)} Γ (µ)

(n− 1)!Γ (λ (n− 1) + µ)
|an|

=

 (1 + k)
∑∞

n=2

(
nΓ(µ)

(n−1)!Γ(λ(n−1)+µ)

)
|an|

−(k + α)
∑∞

n=2

(
Γ(µ)

(n−1)!Γ(λ(n−1)+µ)

)
|an|


≤

 (1 + k)
∑∞

n=2

(
n2Γ(µ)

(n−1)!Γ(λ(n−1)+µ)

)
−(k + α)

∑∞
n=2

(
nΓ(µ)

(n−1)!Γ(λ(n−1)+µ)

) 
= (1 + k)

∞∑
n=1

(
(n+ 1)2 Γ (µ)

n!Γ (λn+ µ)

)
− (k + α)

∞∑
n=1

(
(n+ 1) Γ (µ)

n!Γ (λn+ µ)

)

= (1 + k)

∞∑
n=1

(
n (n− 1) + 3n+ 1

n!Γ (λn+ µ)

)
Γ (µ)

− (k + α)
∞∑
n=1

(
(n+ 1)

n!Γ (λn+ µ)

)
Γ (µ)

≤ (1 + k)
∞∑
n=1

(
n (n− 1) + 3n+ 1

n! (µ)n

)
− (k + α)

∞∑
n=1

(
(n+ 1)

n! (µ)n

)

= (1 + k)
∞∑
n=1

(
n (n− 1)

n! (µ)n

)
+ 3(1 + k)

∞∑
n=1

(
n

n! (µ)n

)

+ (1 + k)
∞∑
n=1

(
1

n! (µ)n

)
− (k + α)

∞∑
n=1

(
n

n! (µ)n

)

− (k + α)
∞∑
n=1

(
1

n! (µ)n

)

=


(1+k)
µ(µ+1)

∑∞
n=2

(
1

(n−2)!(µ+2)n−2

)
+ (2k + 3− α)

∑∞
n=1

(
1

(n−1)!(µ)n

)
+ (1− α)

∑∞
n=1

(
1

n!(µ)n

) 

≤


(1+k)
µ(µ+1)

{
2 + 1

µ+2

∑∞
n=3

(
1

2(µ+3)

)n−3
}

+ (2k + 3− α)

{
2
µ + 1

µ(µ+1)

∑∞
n=2

(
1

2(µ+2)

)n−2
}

+ (1−α)
µ

∑∞
n=1

(
1

2(µ+1)

)n−1
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=

{
(k + 1)

(
4µ2 + 20µ+ 20

)
µ (µ+ 1) (µ+ 2) (2µ+ 5)

}

+

{
(2k + 3− α)

(
4µ2 + 12µ+ 10

)
µ (µ+ 1) (2µ+ 3)

}
+

{
2 (1− α) (1− µ)

µ (2µ+ 1)

}
≤ 1− α,

by the given hypothesis. Thus the proof of Theorem 2.5 is established.

Theorem 2.6. Let λ > −1, µ > 0 and α ∈ [0, 1) with inequality
such that

(5 + 4ζ) (µ+ 1)

2µ2
≤ ζ

Then Yλ,µf(z) maps f(z) ∈ S into S∗ς .

Theorem 2.7. Let λ > −1, µ > 0 and α ∈ [0, 1) with inequality
such that

(28ζ − 19) (µ+ 1)

2µ2
≤ ζ

Then Yλ,µf(z) maps f(z) ∈ S into Cς .

Proof. The proofs of Theorems 2.6, 2.7 are similar to the proof of
Theorem 2.5. Therefore, we omit the details.
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