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H I G H L I G H T S

• A new self-consistent data reduction
scheme is introduced for the determi-
nation of the tensile yield stress from
Small Punch tests.

• The scheme derives from finite ele-
ment simulations of a wide range of
strength coefficients and hardening
exponents of power-law hardening.

• The method is validated by compar-
ing yield stress predictions to actual
yield stresses, using various harden-
ing laws and experimental data.

• With the new approach the uncer-
tainty of yield stress determination
by Small Punch tests can be largely
reduced as compared to traditional
schemes.
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A B S T R A C T

The Small Punch (SP) test serves the screening of mechanical material properties and their degradation
in a virtually non-invasive way. It requires robust frameworks for the derivation of mechanical properties
and microstructure–mechanical property correlation. The tensile yield stress sy is commonly associated
with an elastic-plastic transition force Fe via sy = aFe/h2 with h denoting the SP disc thickness and a
dimensionless coefficient a considered constant. Here it is shown that a cannot be taken as a constant.
Instead a new self-consistent data reduction scheme is proposed for the determination of sy which is based
on the curvature of the force–displacement curve rather than a single Fe force level. The scheme derives from
finite element simulations of a wide range of strength coefficients C and hardening exponents n of power
law flow s = C4n. To a good approximation the scheme depends only on the hardening exponent n, which
depends on the curvature, whereas C and the elastic modulus barely matter. The method is validated by
comparing the yield stress predictions with the actually implemented yield stresses in the simulations, using
various types of hardening rules, as well as experimental data. The uncertainty of yield stress determination
by SP tests is thereby largely reduced as compared to the traditional scheme.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Many components in power plants, e.g. pressure vessels and
steam pipes, operate at demanding conditions causing gradual
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Fig. 1. Schematic of the experimental set-up of a Small Punch test rig.

degradation of the material properties and mechanical performance
required for structural integrity. Miniaturized test techniques like
the Small Punch (SP) test enable assessing this degradation and,
hence, the residual lifetime during which safe operation of a compo-
nent can be ensured. Unlike conventional mechanical test methods
SP testing requires sub-sized specimens only, thereby enabling the
mechanical performance assessment of structural materials in a
virtually non-invasive way.

SP tests also play an important role in that they allow for rapid
screening of mechanical material properties, as well as the mechan-
ical property determination of neutron irradiated materials while
minimizing the amount of activated material to be tested. From a
practical point of view, besides validated experimental methods, SP
testing requires robust frameworks for the derivation of mechanical
properties and microstructure–mechanical property correlations.

The typical SP test specimen is a disc with a thickness of 0.5 mm
and a diameter of 8 mm being rigidly clamped, in order to be forced

into a receiving circular hole of 4 mm diameter by means of a hemi-
spherical punch (or ceramic ball) of 2.5 mm diameter, see Fig. 1.
Different experimental set-ups are used for determining either ten-
sile plastic and fracture mechanical properties (by tests performed at
constant displacement rate), or creep properties (at constant force).
In a Small Punch test of tensile properties, the punch tip or ball
deforms the specimen at a constant displacement rate of the cross
head, while the force F is recorded as a function of displacement
and/or specimen deflection. If displacement is used, parasitic compli-
ances of the test frame have to be taken into account and corrected
for. The main output of the test is then a force–displacement curve.

Considerable effort has been made to translate the charac-
teristics obtained from a force–displacement curve, in particular,
elastic–plastic transition force and maximum force, into the conven-
tional tensile yield stress and ultimate tensile strength [1-18]. This
may involve empirical or semi-empirical correlations established
between the mentioned quantities. However, the SP test still suffers
from large uncertainties when it comes to deriving tensile proper-
ties from it, in particular, regarding the yield stress sy, which is
commonly associated with an elastic–plastic transition force Fe via

sy = aFe/h2 , (1)

with h denoting the initial SP disc thickness and a dimensionless
coefficient a considered to be constant. For instance, this relation
was used by Mao and Takahashi [6] who tested various austenitic
and ferritic steels (see Table 1).

The elastic bending theory of plates can be used to analytically
relate the tensile bending stress at the centre of the disc to the
applied force. The yield stress can then be approximated from the
deviation from linearity of the elastic part of the force–displacement

Table 1
Compilation of correlation factors a = h2sy/Fe proposed in the literature. Deviations from the conventional specimen size and die geometry are indicated in the last column.

Reference Material, temperature Method a = h2sy/Fe Remark

Mao and Takahashi, 1987 Various austenitic and ferritic steels, 2-tangent 0.36 TEM specimen size
[6] RT (d = 3 mm, h = 0.25 mm

R = 0.75 mm, r = 0.5 mm)
Kameda and Mao, 1992 Various austenitic and ferritic steels, 2-tangent 0.36 r = 1.2 mm
[3] [−196◦C, 200◦C]
Cheon and Kim, 1996 SA508 steel, 12 Cr Steel, Offset 0.59–0.62 h = 0.5, 0.25 mm
[9] RT h/100 (R = 2 mm, r = 1.2 mm)
Fleury and Ha, 1998 4 different austenitic and ferritic steels, Not specified 0.33 r = 1.2 mm
[5] [25◦C, 600◦C] Square specimens

10 × 10 mm, h = 0.5 mm
Finarelli et al., 2004 316L stainless steel 2-tangent 0.38 TEM specimen size
[10] RT (d = 3 mm, h = 0.25 mm

R = 0.75 mm, r = 0.5 mm)
Campitelli et al., 2004 316L and F82H, 2-tangent 0.39 TEM specimen size
[11] RT (d = 3 mm, h = 0.25 mm

R = 0.75 mm, r = 0.5 mm)
Contreras et al., 2008 Ferritic-pearlitic AE460, Offset 50 lm 0.43 TEM specimen size
[12] {−60◦C, −50◦C} h/10 (d = 3 mm, h = 0.25 mm

R = 0.75 mm, r = 0.5 mm)
Rodríguez et al., 2009 HAZ of weldment in 30CrMo5-2 plate, Offset 50 lm 0.38 CWA 15627-2007
[13] RT h/10
Matocha et al., 2012 Carbon steel 22 K and heat treatments, Offset 100 lm 0.31 CWA 15627-2007
[7] RT h/5
García et al., 2014 Wide variety of steels and one Al alloy, Offset 50 lm 0.346 CWA 15627-2007
[2] RT h/10 Thickness corrected
Altstadt et al., 2016 T91 steels, 2-secant 0.44–0.60 Result of a round robin
[14] RT and 300◦C
Janča et al., 2016 Various steels and Al alloys Fe1.5 0.51 Eq. (3)
[16]
Davies et al., 2017 Laser deposited C263 Ni superalloy 2-secant 0.37 CWA 15627-2007
[18] RT and 780◦C
Moreno 2018 Various Al alloys and structural steels, (h/100, h/10, 0.23–0.98 Specimen thicknesses between
[17] RT 2-tangents, 2-secant), 0.35 mm–0.6 mm
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curve [4]. In the case of a constrained (i.e. rigidly clamped) disc spec-
imen, and yielding occurring at the surface opposite to the punch,
Vorlicek et al. [4] refer to a simplified relationship,

sy = 3
Fe

2ph2
, (2)

in accordance with the generalized empirical Eq. (1) if a = 3/2p.
While several other linear relations have been proposed in the lit-
erature [19-21], the preferred form is Eq. (1) which shows that h2

is a scaling parameter describing the thickness dependence. In the
present paper, however, this approach is revisited and it is shown
that a cannot be taken as a constant.

The elastic–plastic transition force Fe in those relations is
regarded as the force level at which the deformation passes from
elastic bending (noting that some amount of plastic indentation
underneath the punch also occurs during this stage) to plastic bend-
ing. However, it is not obvious how this force level can reliably be
derived from a force–displacement curve, and various methods are
used to assign a value to Fe. The graphical methods to determine Fe

are the offset method and the two-tangent method. The first method
requires plotting a straight line at h/10 (i.e., using an offset of 50 lm
for a conventional 0.5 mm disc) or h/100 offset [9,12,13,22] parallel
to the initial linear part of the force–displacement curve F(d) and tak-
ing Fe as the force value at the intersection of this parallel line and
the force–displacement curve.

Generally, the initial part of the force–displacement curve
exhibits an inflection point due to the settling of the specimen and
its indentation by the punch, as shown in Fig. 2. Then, the maximum
slope corresponding to the slope at the inflection point has to be
chosen for the tangent. Regarding the two-tangent method, two tan-
gent lines are drawn for the elastic and plastic bending regions of the
force–displacement curve and the force value at the intersection of
these two lines is regarded as Fe [1,6,22].

Another method is described in the CEN Workshop Agree-
ment on the Small Punch Test Method for Metallic Materials, CWA
15627:2007, henceforth referred to as the Code-of-Practice (CoP)
for SP testing [23]. The two-secant method uses a bilinear regres-
sion fit in that Fe derives from the intersection of linear regression
lines to the force–displacement curve which are chosen to mini-
mize the error between these straight lines and the SP curve. Fe is
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Fig. 2. Illustration of the effect of initial plastic indentation and/or settling of the spec-
imen in its fixture (leading to a positive curvature at the origin and the appearance
of an inflection point), as well as the effect of frame compliance (leading to reduced
slope at the inflection point). Correspondingly, the elastic–plastic transition force Fe is
underestimated, while a = h2sy/Fe is overestimated.

then chosen as the vertical projection of the intersection point to the
force–displacement curve.

Table 1 provides a compilation of experimental values for a as
proposed in various references. A huge variability of a and a con-
comitant uncertainty of sy are noted which impedes the application
of SP tests for a reliable determination of the yield stress. This uncer-
tainty does not only originate from different procedures which have
been used for the determination of the elastic–plastic transition force
Fe. It also stems from the impossibility of relating the yield stress sy

to a single force level. In other words, a is an ill-defined parameter:
it cannot be considered constant.

In fact, in a recent work, Moreno [17] has systematically inves-
tigated the derivation of yield strength from characteristic forces
obtained from SP tests of various aluminum alloys and structural
steels thereby varying the disc thickness and applying different
methodologies for the determination of the elastic–plastic transition
force Fe figuring in Eq. (1). The study confirms a huge variability of
the coefficients in the range 0.23 ≤ a ≤ 0.98 as determined by
the various methods applied to the different materials. For the offset
method alone, using h/10 as the offset, a varied between 0.23 and
0.49. It is concluded that a strong material dependence of the corre-
lation factor a prevents a reliable prediction of the yield stress from
Fe. Instead the author suggests using plastic energy as a criterion for
establishing sy.

Priel et al. [24] carried out finite element (FE) simulations to
determine the transition force Fe and used Eq. (1) to extract the coef-
ficient a for different materials and disc thicknesses. Their results
revealed a dependence of a on the thickness, which they fitted to an
exponential expression giving a = 0.290 for the standard thickness
h = 0.5 mm.

Janča et al. [16] developed a new criterion to assign a correlation
force as Fe1.5 which is based on the equivalence of areas, namely the
point of the force–displacement curve, for which the area under the
curve (i.e., the energy) is 1.5 times bigger than the complementary
area above the curve. The authors report a closer correlation with sy

as compared to the CoP method when Fe1.5 is used according to

sy = a
Fe1.5

h2
+ b . (3)

Isselin and Shoji [22] have proposed an approach based on elastic
energy instead of correlating a force value on the force–displacement
curve with yield strength. They considered the elastic energy Eel
which relates to the square of the stress as:

Eel = s2
y

2[1 − m2]R2h
3Ep[1 + m]2

, (4)

where E is the elastic modulus, m the Poisson ratio, and R the radius
of aperture of the lower die. Eel was determined experimentally
using the load/unload method. The specimens were loaded to a
maximum force level where complete plasticization was assured.
The specimens were then unloaded at the same rate, the elastic
reverse displacement measured, and the area under the force–
displacement curve up to elastic reverse displacement calculated as
Eel. Hence, instead of identifying an elastic–plastic transition force, a
load/unload test is required for this energy-based method, so as to
evaluate the area under the elastic part of the force–displacement
relation.

In yet another method proposed recently, Calaf Chica et al. [25]
combine a finite element analysis with experimental SP tests of dif-
ferent steels to correlate the yield stress with the SP data. They
propose an exponential expression for the yield stress sy as a func-
tion of the slope at the first inflection point, as mentioned before
in conjunction with the offset method. In practice, however, one
has to note that this slope is strongly affected by the accuracy with
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which the frame compliance is corrected so that the exponential
dependence of sy will introduce significant uncertainties.

In this study, a new procedure to establish a robust correlation
between sy and Fe is developed for ductile metallic materials. To this
end, consideration is given to a proper definition of Fe based on FE
simulations with discs of different thicknesses in the range of 0.2 to
1 mm. While an offset of 50 lm is confirmed to be a proper choice
for the standard disc thickness of 0.5 mm, it is shown that a sy − Fe

correlation cannot be established by a single force level. This is why
the curvature of the force–displacement curve will rather be taken
into account in a proposal for a new sy − Fe relation.

2. Numerical modelling of the Small Punch test

A 2D axisymmetric model of the SP test was configured in the
finite element program ABAQUS/Standard, see Fig. 3. The dies and
the punch are modelled as rigid bodies and the disc as a deformable
body. The interaction between the rigid and deformable bodies is
implemented by a friction coefficient l = 0.25 for the punch–
disc interface and l = 1 for the die–disc interface, in order to
mimic the clamping effect and foreclose relative tangential motion.
The punch was assigned a constant velocity of 0.005 mm/s for which
quasi-static conditions prevail [26,27].

Uniform meshing was used with 0.005 mm × 0.005 mm CAX4R
elements (axisymmetric continuum stress and displacement, 4-
node, reduced-integration element). For the investigated SP disc
thicknesses of h = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm, this cor-
responds to 40, 60, 80, 100, 120, 140, 160 and 200 through thickness
elements, respectively.

Unlike Refs.[26,27], where a Gurson-type porous plasticity model
was formulated, the current work uses an isotropic hardening
J2 plasticity model. This proves fully sufficient for the present
investigation of the initial yield stage of the material while the
absence of damage results in overestimating local strains only at
the later stages of SP disc deformation, see, e.g., Fig. 4 (a). More-
over, a direction independent linear elastic stress definition is used
with the assumption of small elastic strains, which is justified for
metal elasto-plasticity.

Fig. 3. Idealized axisymmetric FE model for an SP disc of thickness h = 0.5 mm, see
Fig. 1. The SP disc domain is meshed uniformly with 0.005 mm × 0.005 mm CAX4R
elements yielding 100 elements through thickness. Besides accuracy of the solu-
tion itself, this also provides accuracy in the integrations regarding the yield volume
fraction given in Fig. 4 (b). The punch and die geometries are kept constant with
r = 1.25 mm and rd = 0.1 mm for all the investigated SP disc thicknesses of
h = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm.

Fig. 4. Simulation results for (a) the force–displacement curve together with illustra-
tions of the deformation states at three different displacement levels (in mm), and (b)
initial part of the force (left scale) and yield volume fractions (right scale) as functions
of displacement and as calculated for six different yield intervals from 0.125% to 5% of
the yield stress. In (b), the points marked correspond to deformation stages given in
Fig. 5 (a) to (i). Punch displacement is denoted by d.

During metal forming processes strain hardening is prevalent.
This can be described by power law or exponential hardening rules
such as the following
Ludwik rule [28]:

s = s0 + C4n , (5)

Hollomon rule [29]:

s = C4n , (6)

Swift rule [30]:

s = C[40 + 4]n , (7)
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Voce rule [31]:

s = s0 + s∞[1 − exp(−4/40)] , (8)

the parameters of which are usually determined from uniaxial tensile
tests. Satisfactory agreement between these hardening forms and a
wide range of experimental material data has been obtained. In the
numerical simulations of this work, the two-parameter Hollomon
and the three-parameter Ludwik hardening functions are used. To
this end, plastically isotropic hardening functions are implemented
with the UHARD subroutine interface of ABAQUS. The used strength
coefficients C, hardening exponents n, and elastic modulus parame-
ters are reported on the subsequent pages.

3. The elastic–plastic transition force in Small Punch tests

In order to establish a relation for the yield stress sy, one first has
to establish a transition force Fe from a force–displacement curve.
In this study, SP discs of different thicknesses were used in finite
element simulations to identify Fe as a function of thickness.

An FE model of the SP test utilizing the constitutive stress–strain
curve from a uniaxial tensile test of P91 steel with sy identified as the
0.2% offset strain was configured in ABAQUS. For the disc thickness
h = 0.5 mm, the deformation history was screened to single out the
state for which the volume fraction of equivalent stresses close to
the yield stress is maximum. To this end, a yield stress interval was
defined as (1 ± 1%)sy, so as to determine for each time step the zone
of the specimen which has equivalent stresses within the sy interval
defined. Fe was then identified as the force at which the fraction of
elements affected by yielding exhibited a maximum with respect to
time (see Fig. 4 (b)).

For this purpose, a script was implemented to automise the
procedure of finding the volume fraction. This is realised by
the implemented USDFLD subroutine. For each time step the
(reduced integration) elements with Gauss points whose von
Mises stresses are within the interval sy(1 − a, 1 + a) with
a ∈ {0.125, 0.25, 0.5, 1, 2, 5}% were determined. Since the model is
axisymmetric and all elements have equal areas, the fraction of the
volume in the yield stress interval, which is hereby referred to as the

yield volume fraction, was then computed as

yield volume fraction =

∑NGP
I∈IGP,yld

rI∑NGP
J rJ

. (9)

Here, NGP is the total number of Gauss points (or reduced integration
elements) and IGP,yld the set of Gauss points whose von Mises stress
values fall in the yield stress interval sy(1 − a, 1 + a). rI denotes the
radius at which the Gauss points are positioned.

Fig. 4 depicts simulation results for (a) just the force–
displacement curve and (b) the force–displacement curve combined
with the yield volume fractions computed for different yield inter-
vals sy(1 − a, 1 + a) using a three-parameter Ludwik-type hard-
ening rule (Eq. (5)) for P91 steel, the parameters of which are
identified from uniaxial tensile test data with curve fitting giv-
ing s0 = 394 MPa, C = 769 MPa and n = 0.312. Here,
sy = 504.7 MPa corresponds to the yield stress at 0.2% offset strain.
Locally computed maximum equivalent plastic strains are 0.485 for
(I), 0.937 for (II) and 2.76 for (III). Severe necking is observed at defor-
mation stage (III). Since no damage is implemented, the local strain
values reached are overestimated.

Ternary deformation maps of the nine selected displacement lev-
els of Fig. 4 (b) are shown in Fig. 5. Hereby, the black zones indicate
von Mises stress levels at yield within ±5% of the yield stress, while
the orange and blue zones exhibit stresses below and above the yield
band, respectively. The stress map Fig. 5 (c) featuring a displacement
u = 0.1075 mm corresponds to the maximum of the yield volume
fraction as depicted in Fig. 4 (b). The alternation of colour patterns
which is most pronounced in strain map (c) is due to the fact that
one actually has different yield zones on the top surface: compres-
sive around the punch contact area and tensile between the punch
and the clamped part. Both zones expand as the displacement pro-
gresses. As the tensile stretched region hardens, it decomposes into
two black rings with a blue ring in between.

The maxima of the yield volume fractions in Fig. 4 (b), while their
position weakly depends on the yield interval chosen, are sufficiently
pronounced to provide a clear means to identify an elastic–plastic
transition force Fe as a function of the punch displacement d. The
value of Fe can then be used for the identification of a proper offset as

Fig. 5. Ternary stress maps for different loading stages. The indication of the colour-coding is as follows: Blue represents svM > 1.05sy, black represents 0.95sy < svM < 1.05sy

and orange represents svM < 0.95sy. Punch displacement is denoted by d. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 6. Displacement offset doff corresponding to the elastic–plastic transition force
Fe (a) and resulting correlation coefficient a (b) as functions of the disc thickness,
and calculated for various yield band widths from 0.125% to 5%. As the yield band
width decreases, one observes convergence towards doff ≈ 50lm and a = 0.332,
respectively.

illustrated by Fig. 6. Using again the material parameters from uni-
axial tensile tests of P91, the thickness dependence of the transition
force Fe(h) as determined by the maxima of the yield volume frac-
tions in Fig. 4 (b) has been simulated. The disc thicknesses amounted
to 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; and 1.0 mm. In each case, and for
the different yield band width indicated in Figs. 4 (b) and 6(a), the
offset was determined that is needed to recover Fe(h) as the inter-
section point if a tangent is applied to the initial inflection point
of the force–displacement curve. In this way, the elastic behaviour
was associated with the steepest part of the F(u) curve, as discussed
before in conjunction with Fig. 2.

Fig. 6 (a) demonstrates that the displacement offsets which have
to be chosen exhibit minima converging at about doff ≈ 50lm for the
narrowest yield band of 0.125% the position of which are close to the
thickness of interest, i.e. h = 0.5 mm. On the one hand, this confirms
doff = 50lm as a good choice for the determination of the transition
force of 0.5 mm discs. On the other hand, the existence of the minima

is at variance with the notion doff = h/10 if the thickness deviates
from the standard value, while the radii of the punch and the die
aperture are not scaled accordingly.

From the knowledge of the transition forces and the yield stress,
one can infer the coefficients a according to Eq. (1) for this spe-
cific steel P91. The results are depicted in Fig. 6 (b), suggesting
a = 0.332 as appropriate for P91, if one averages the values numer-
ically obtained for the three thicknesses 0.4; 0.5; and 0.6 mm and
the three narrowest yield band widths investigated: 0.125; 0.25; and
0.5%. As a comparison with the experimental findings compiled in
Table 1 reveals, this a value can be considered a lower bound to
the reported experimental values, if the value from Matocha et al.
[7] which was obtained using twice as big an offset of 100 lm is
not taken into account. It has to be kept in mind, however, that the
present a value has been established for a single material only, while
there is evidence that a is strongly material dependent. This will be
investigated in the following sections.

4. Derivation of a new scheme for the yield stress

With a clear definition of the elastic–plastic transition force Fe and
the corresponding offset, one can identify a correlation coefficient
a = h2

0sy/Fe for a specific material. In general, however, a is not
expected to be a constant which is independent of the actual elastic
and plastic properties of the material. In fact, Fig. 5 shows that the
elastic–plastic transition force Fe relates to a complex yield pattern
which involves bending and stretching of the material. Therefore it
is not possible to identify a unique value for any kind of material,
the main reason being the neglect of the actual strain hardening
behaviour of the material. In what follows, a generalized approxi-
mation for the yield stress sy with improved predictive capability is
developed that is still sufficiently simple to serve for rapid material
property screening for engineering applications.

If one is to take into account the hardening behaviour, it is not
sufficient to work with a single force at a certain offset, e.g. the force
at 50 lm offset which is denoted as F50. Instead a triplet of forces at
different offsets is to be considered so as to capture the curvature of
the force–displacement curve.

As illustrated by Fig. 7, offsets of 10 lm, 50 l m and 90 lm are
chosen, defining force triplets {F10, F50, F90}. The curvature of the

Fig. 7. Illustration of a scheme to quantify the curvature of the force–displacement
curve by identifying the levels at three distinct displacement offsets, i.e. 10 lm, 50 lm
and 90 lm. The data indicated pertain to the FE simulation of P91 steel as introduced
in Section 3.
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Fig. 8. Dependence of the curvature factor K on the hardening exponent n as numer-
ically determined for a variety of Hollomon-type power law hardening rules with
strength coefficients 300 MPa < C < 1500 MPa and 0.02 < n < 0.6 for (a)
E = 70 GPa, (b) E = 210 GPa, (c) E = 400 GPa.

force–displacement curves is numerically determined for a variety
of Hollomon-type hardening rules, s = C4n, for wide ranges of
strength coefficients (300MPa < C < 1500MPa) and hardening
exponents (0.02 < n < 0.6) while three different values for the elas-
tic modulus are used: E = 70 GPa, E = 210 GPa and E = 400 GPa.
The Poisson ratio is chosen as m = 0.3. The curvature of the force–
displacement curve is then quantified by a dimensionless curvature
factor K defined as

K = 2
F50 − F10

F90 − F10
− 1 =

[F50 − F10] − [F90 − F50]
F90 − F10

. (10)

From simulations of the two-parameter hardening rule (Eq. (6)), one
gets a relationship between the curvature K and the hardening expo-
nent n, which can be approximated by a straight line. From a linear
fit for 0.1 ≤ n ≤ 0.6 for E = 210 GPa, one obtains:

n = 1 − 3.034K for K < 0.330 . (11)

This is shown in Fig. 8 (b), while Fig. 8 (a) and (c) illustrates the qual-
ity of the same fit line as applied to simulation results for E = 70 GPa
and E = 400 GPa, respectively. The fit works well for the intermedi-
ate level E = 210 GPa. However, K is overestimated at small n values
for E = 70 GPa, whereas it is underestimated for E = 400 GPa.
These deviations are brought about by a dependence of K on the
strength coefficient C, which is insignificant for the larger values of n.

It is important to note that the hardening exponent n can be
inferred from the curvature K in a way as to derive a K-dependent
yield coefficient a50 and the corresponding yield stress sy. A linear
fit to the E = 210 GPa data gives

a50 = 0.360 − 0.422n for n > 0 . (12)

Regarding Fig. 9 (a–c), the quality of the fit is very satisfactory, in
particular, for the two higher values of Young’s moduli (Fig. 8 (a–c)).

If one combines Eqs. (11) and (12), the n-dependence of a50

translates into a stepwise linear K-dependence

a50 =
{

1.28K − 0.062 for K < 0.330 ,
0.360 otherwise ,

(13)

where the step at K = 0.330 is required by the necessity to con-
sider positive n values only. This is illustrated in Fig. 10 showing
that the accuracy of the stepwise linear approximation increases
with increasing E. The K-dependence of a50 leads to the following
K-dependent yield stress as derived from the force at 50 lm offset:

sy =

{
[1.28K − 0.062] F50

h2 for K < 0.330 ,
0.360 F50

h2 otherwise .
(14)

In practice, this can be used to derive the yield stress based on
the knowledge of three forces determined at three different offsets
of 10 lm, 50 lm and 90 lm, which gives more reliable results for
a wide range of hardening behaviours as compared to the tradi-
tional method based on F50 determined at 50 lm offset only. In the
following section, the present 10-50-90 offset scheme is validated
by comparing it to the predictive performance of the traditional
scheme for which a50 = 0.360 = constant is used for the ease of
comparability.
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Fig. 9. Correlation factor a50 = h2
0sy,nom/F50 as a function of hardening exponent

n numerically determined for power law hardening rules with strength coefficients
300 MPa < C < 1500 MPa and 0.02 < n < 0.6 for (a) E = 70 GPa, (b) E = 210 GPa,
(c) E = 400 GPa.

Fig. 10. The curvature dependence of the correlation factor a50 = h2
0sy,nom/F50 for

power law hardening rules with strength coefficients 300 MPa < C < 1500 MPa and
0.02 < n < 0.6 for (a) E = 70 GPa, (b) E = 210 GPa, (c) E = 400 GPa.
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Fig. 11. Predicted SP yield stress vs. input 0.2% proof stress for power law harden-
ing rules with strength coefficients 300 MPa < C < 1500 MPa and 0.02 < n < 0.6
for (a) E = 70 GPa, (b) E = 210 GPa, (c) E = 400 GPa; comparison of the present
curvature-based offset scheme (red and blue triangles for K < 0.330 and K > 0.330,
respectively) with the usual offset scheme (red crosses) using a50 = 0.36 for all K
values, not limited to K > 0.330 as proposed in the present work. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

5. Validation of the scheme

The predictive capability of the proposed 10-50-90 lm offset
scheme is determined by comparing the SP based yield stresses as
derived from the three different displacement offsets with the actual
tensile 0.2% proof stresses implemented in the FE simulations. The
validation is hence based on numerical rather than experimental
data which would be affected by additional uncertainties and sys-
tematic errors associated with the equipment and testing protocols
used. The traditional scheme with a50 = 0.360 = constant serves
as a benchmark.

In Fig. 11, the SP yield stress as predicted by the present 10-
50-90 l m offset scheme is compared with the actual 0.2% proof
stress corresponding to the power law hardening rules with strength
coefficients and hardening exponents again covering the ranges
300 MPa < C < 1500 MPa and 0.02 < n < 0.6, respectively,
for (a) E = 70 GPa, (b) E = 210 GPa, (c) E = 400 GPa. The
superior performance of the present curvature-based offset scheme
(red and blue triangles for K < 0.330 and K > 0.330, respec-
tively) as compared to the usual offset scheme (red crosses) using
a50 = 0.36 for all K values, hence not limited to K > 0.330, is
clearly visible. The degree of agreement increases with increasing
Young’s modulus. While the traditional correlation a = h2

0sy/Fe =
constant may lead to overestimating the yield stress by more
than 100%, the present scheme significantly improves the property
correlation accuracy.

Fig. 12 shows the performance of the present scheme in terms of
the error percentage of the predicted SP yield stress vs. normalized
input 0.2% proof stress sy,nom/E for power law hardening rules with
strength coefficients 300 MPa < C < 1500 MPa and 0.02 < n < 0.6
for E = 70 GPa (blue squares), as well as the worst performing
three data points selected for E = 210 GPa (red triangles). Three
parameter domains are identified with poor predictive power, that is
domains where the relative error exceeds 10%: (i) for soft materials
with strong hardening capacity (n = 0.6) and low elastic modu-
lus (E = 70 GPa), (ii) for high strength materials with sy,nom/E >
3 × 10−3 and E = 70 GPa and (iii) for sy,nom/E > 1.6 × 10−2

Fig. 12. Error percentage of the predicted SP yield stress vs. normalized input
0.2% proof stress sy,nom/E for power law hardening rules with strength coefficients
300 MPa < C < 1500 MPa and 0.02 < n < 0.6 for E = 70 GPa (blue squares) and
worst performing data selected for E = 210 GPa (red triangles). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Table 2
Scheme validation through numerical results obtained from simulating the F/M steel P91, the RPV steel A533B, and the Ni-base superalloy U720pm. The latter two materials
exhibit yield phenomena. For comparison results of power law flow with similar yield stresses, however, without yield phenomena are also compiled.

10-50-90 scheme

P91 A533B C = 900 MPa U720pm C = 1500 MPa
(numerical) (numerical) n = 0.1 (numerical) n = 0.05

10 lm offset force F10 [N] 247 229 235 459 465
50 lm offset force F50 [N] 390 375 372 779 757
90 lm offset force F90 [N] 462 437 445 930 913
Curvature factor K 0.333 0.402 0.309 0.357 0.306
a50 factor 0.360 0.360 0.333 0.360 0.330
0.2% proof stress [MPa] 505 500 483 1100 1099
Predicted yield stress [MPa] 561 539 497 1120 998
Relative error [%] 11 8 3 2 3

and E = 210 GPa. So one concludes that the predictive power of
the 10-50-90 lm offset scheme decreases with increasing strength
and strain hardening rate, if it goes along with low elastic modulus.
However, sy,nom/E > 1.6 × 10−2 is outside the scope of real metal-
lic materials apart from the strongest titanium alloys like Ti6Al4 V
which may reach up to sy,nom = 1200 MPa, and sy,nom/E values of
up to 10−2, while E = 120 GPa is in between the values of 70 GPa
and 210 GPa considered here.

Furthermore, the 10-50-90 lm offset scheme is used to predict
the yield stresses of three other materials, without making use of
the two-parameter hardening rule of the Hollomon type. Table 2
shows numerical results obtained from simulating the F/M steel
P91, the reactor pressure vessel (RPV) steel A533B, and the Ni-base
superalloy U720pm. For P91 the three-parameter Ludwik-type hard-
ening rule s = s0 + C4n with s0 = 394 MPa, C = 769,
n = 0.312 MPa was used, which gives rise to a tensile yield stress
sy = Rp0.2 = 505 MPa, see Fig. 7 regarding the forces indicated. For
A533B and U720pm, which both exhibit yield phenomena, the exper-
imental tensile stress–strain data were implemented with tensile
yield stresses sy = Rp0.2 = 500 MPa and 1100 MPa, respectively,
as shown in Figs. 13 and 14. For comparison results of power law
flow with similar yield stresses, however without yield phenomena

Fig. 13. Tensile engineering (red) and true (green) stress–strain data showing a
yield phenomenon for the RPV steel A533B as implemented in the simulation:
sy = Rp0.2 = 500 MPa. For comparison a power law hardening rule (black) with
similar yield stress is also indicated. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

are also compiled. The corresponding force–displacement curves, as
obtained from the simulations, are compared in Fig. 15.

These industrial materials cover a wide range of applications,
while curvatures K approximately vary from 0.3 to 0.4, that is for K
values below and above the critical value K = 0.330 which marks
the transition between the two piecewise linear approximations. The
relative errors in predicting the yield stresses vary from 2% to 11%,
with the largest error occurring for P91. This is understandable by the
fact that for this material the predictive accuracy is reduced, since
the curvature K = 0.333 happens to be very close to the critical one.
The scheme performs well even in the case of materials exhibiting a
yield phenomenon.

6. Conclusions

The determination of material degradation of components in ser-
vice is crucial for the structural integrity and remaining life assess-
ment, especially in power plants. The SP test as a miniaturized
test technique enables the screening of the impairment in mechan-
ical properties (elastic, plastic and creep) with minimal material
requirements. Yet, the estimation of the yield strength from SP test-
ing suffers from significant uncertainties in the absence of a robust

Fig. 14. Tensile engineering (red) and true (green) stress–strain data showing a yield
phenomenon for the Ni-base superalloy U720pm as implemented in the simulation:
sy = Rp0.2 = 1100 MPa. For comparison a power law hardening rule (black) with
similar yield stress is also indicated. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Simulated SP force–displacement curves for A533B and U720pm, as well as
for power law hardening rules exhibiting similar yield stresses sy = Rp0.2 = 500
and 1100 MPa, respectively, as shown in Figs. 13 and 14 and compared in Table 2.

mechanical property correlation. In this study, a new methodology
for estimating the yield stress from SP force–displacement curves
was presented that is based on FE simulations of a wide range of
constitutive hardening rules.

The tensile yield stress sy is commonly associated with an
elastic–plastic transition force Fe via sy = aFe/h2 with h denot-
ing the SP disc thickness and a dimensionless coefficient a. In the
present work it has been shown, however, that a cannot be taken
as a constant. The coefficient a rather depends on the strain harden-
ing behaviour of a material (as reflected by the hardening exponent
n of power law flow) which, in the absence of knowledge of n,
can be inferred from the curvature of the force–displacement curve
recorded in the SP test. In practice, this is achieved by determin-
ing the forces at three different offsets (10 lm, 50 lm and 90 lm for
h = 0.5 mm disc thickness), instead of attempting to link the yield
stress to a single offset (for which h/10 = 50lm has most widely
been used).
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