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Effects of rotational restraints on the thermal buckling of carbon nanotube
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The thermal buckling response of nanotubes with rotational restraints is investigated using a Timoshenko beam model with non-local elasticity
theory. Two trigonometric (Fourier) series are selected to analyse the thermal buckling of the non-local Timoshenko nanotube with rotational
restraints. Explicit equations are obtained for the boundary values with a coefficient matrix. In particular, the new method can be degenerated
to the non-local Euler beam model by assigning proper value to the shear correction factor. The main advantage of the present technique is its
capability of dealing with deformable or rigid supporting conditions. Several numerical examples are solved to asses proposed approach
reliability. The results show that thermal buckling including the thermal effects are lower than those without the thermal effects when the
temperature rises. The rotational restraint springs have significant effects on the buckling response of nanotubes.
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1. Introduction: Nanotechnology and nanoscience have opened a
new area in engineering, materials science, medicine, chemical,
energy production, biomaterials and electronics leading to innov-
ation and change. Graphene sheets and single-walled carbon nano-
tubes are two of the nanosized materials that have great potential in
delineating of composite materials, gas detection, and new sensors
and arouse attention among scientific communities. Single-walled
carbon nanotubes are nanomaterials which have tremendous poten-
tial in designs of new structures, machines, composite materials,
sensors, and gas detection. In recent years, several researchers
have investigated carbon nanotubes and their correlation, using dif-
ferent mathematical theories and definitions [1, 2]. To design
carbon nanotubes, nanomachines, and nanostructures, size-
dependent different elasticity theories have been utilised such as
strain, stress-based elastic models, peridynamics, and modified
couple stress theory.

Small size effects are related to molecules, particles, and atoms
that constitute the nanomaterials. Classical elasticity theories are
not considered the size effects and these theories lack the account-
ability of the size effects arising from the atoms and molecules. One
of the promising higher-order elasticity theories is Eringen’s non-
local elasticity theory [3], which considers the size effects and
underlying physics within the integral formulation of this small
size effect. Recently size-dependent continuum theories have
been used to execute the strategies about the effect of the small
size [4–12]. Due to the fact that classical elasticity theory cannot
predict the mechanical behaviours of small-sized structures and
machines, several researchers have proposed managing to predict
the mechanical properties of this type of structure in recent years
[13–21].

Literature review reveals that the conducted theoretical and
experimental studies on thermal buckling of nanotubes are based
on the assumptions that the supporting conditions are classical
(simply supported, clamped, and free). A very limited literature is
available for nanotubes with deformable boundary conditions.
The attempt of this study is to present a semi-analytical method
for investigating the thermal buckling of rotationally restrained
nanotubes with non-local elasticity theory. For this purpose, the the-
oretical formulation of the non-local Timoshenko beam model with
rotational restraints is presented at first. Two Fourier infinite series
with Stokes’ transformation are being utilised and analytical solu-
tions for the thermal buckling load are obtained. The influence of
rotational restraints and non-local effects of the nanotubes on the
thermal buckling temperature are discussed and investigated in
158
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detail. The main subject of this study is that the possibility of enhan-
cing the buckling temperature of carbon nanotubes by using rota-
tional restraints.

2. Non-local Timoshenko beam theory: Fig. 1 shows a carbon
nanotube with rotational restraints of length L. For the non-local
Timoshenko beam theory. The following partial differential equa-
tion is used [3]:

snl
ij − (e0a)

2∇2snl
ij = C:e, (1)

where e expresses the fourth-order strain tensor, C represents the
elasticity tensor, and e0 and a represent the material constant and
internal characteristic length, respectively. Equation (1) may be
approximated to the following compact form:

snl
xx − (e0a)

2 ∂
2snl

xx

∂x2
= Eexx, (2)

tnlxz − (e0a)
2 ∂

2tnlxz
∂x2

= Ggxz, (3)

where E represents the elasticity modulus and G denotes the shear
modulus. sxx is the axial stress, exx is the axial strain, txz is the shear
stress, and gxz is the shear strain. The following relations can be
written:

exx = z
∂f

∂x
, (4)

gxz =
∂w

∂x
− f, (5)

where f is the rotation and w is the transverse displacement caused
by bending. The following differentiation relations are often used in
Timoshenko beam theory:

∂V

∂x
= −cT

∂2w

∂x2
, (6)

∂M

∂x
+ V = 0, (7)
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Fig. 1 Carbon nanotube with rotational springs at both ends

 17500443, 2019, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/m

nl.2018.5428 by B
ursa U

ludag U
niversity, W

iley O
nline L

ibrary on [03/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

re
where V is the shear force, M is the bending moment and cT is the
thermal force, which may be expressed as following form [22]:

cT = − EaTA

1− 2n
, (8)

where a denotes the thermal expansion coefficient, A is the cross-
sectional area, T is the temperature change and n is the Poisson’s
ratio. The shear force and bending moment can be shown as
follows:

V =
∫
A
zsxx dA, (9)

M =
∫
A
txy dA. (10)

The following relations are obtained by using the above equa-
tions [22]:

M − (e0a)
2 ∂

2M

∂x2
= EI

∂f

∂x
, (11)

V − (e0a)
2 ∂

2V

∂x2
= kAG

∂f

∂x
− f

( )
, (12)

where k denotes the shear correction factor. The moment of inertia
can be written the following relation:

I =
∫
A
z2 dA. (13)

The following relation can be obtained from (7) and (11):

M = EI
∂f

∂x
+ (e0a)

2 − ∂V

∂x

( )
. (14)

Using (6) and (12), the following equation can be found in terms of
thermal normal force:

M = EI
∂f

∂x
+ (e0a)

2 cT
∂2w

∂x2

( )
. (15)

Based on (6) and (12), it can be derived that

V = kAG
∂f

∂x
− f

( )
− (e0a)

2 −cT
∂3w

∂x3

( )
. (16)

Inserting (16) into (6), we can obtain

kAG
∂2w

∂x2
− ∂f

∂x

( )
+ (e0a)

2 cT
∂4w

∂x4

( )
= −cT

∂2w

∂x2
. (17)
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3. Transverse displacement and rotation: The following solution
function is selected for the lateral displacement:

w0 x = 0, (18)

wL x = L, (19)

w(x) =
∑1
k=1

Ak sin
kpx

L

( )
0 , x , L. (20)

Similarly, the rotation function is taken as

f0 x = 0, (21)

fL x = L, (22)

f(x) =
∑1
k=1

Bk cos
kpx

L

( )
0 , x , L. (23)

The Fourier coefficient in (20) can be written as follows:

Ak =
2

L

∫L
0
f(x) sin

npx

L

( )
dx, (24)

Taking the first derivative of (20) yields

w′(x) =
∑1
k=1

kpx

L
Ck cos

kpx

L

( )
, (25)

The function w′(x) is represented by a Fourier cosine series

w′(x) = b0
L
+

∑1
k=1

bk cos
kpx

L

( )
. (26)

The Fourier coefficients in (26) are given by

b0 =
2

L

∫L
0
w′(x) dx = 2

L
w(L)− w(0)
[ ]

, (27)

bk =
2

L

∫L
0
w′(x) cos

kpx

L

( )
dx k = 1, 2, . . . (28)

We will need to use integration by parts in the following form:

bk =
2

L
w(x) cos

kpx

L

( )[ ]L
0

+ 2

L

kp

L

∫L
0
w(x) sin

kpx

L

( )
dx

[ ]
.

(29)

The above equation can be shown as a following compact form:

bk =
2

L
(− 1)kw(L)− w(0)
[ ]+ kp

L
Ck . (30)

The second-, third- and higher-order derivatives may be calculated
with the use of a similar procedure. The higher-order derivatives of
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w(x) can be written as follows:

dw(x)

dx
= wL − w0

L

+
∑1
k=1

cos bkx
( ) 2 (− 1)kwL − w0

( )
L

+ bkAk

( )
,

(31)

d2w(x)

dx2
= −

∑1
k=1

bk sin bkx
( ) 2 (− 1)kwL − w0

( )
L

+ bkAk

( )
, (32)

d3w(x)

dx3
= w′′

L − w′′
0

L

+
∑1
k=1

cos (bkx)
2((− 1)kw′′

L − w′′
0)

L

(

−b2
k

2((− 1)kwL − w0)

L
+ bkAk

( ))
,

(33)

d4w(x)

dx4
= −

∑1
k=1

ak sin (bkx)
2((− 1)kwL′′ − w0′′ )

L

(

−a2
k

2((− 1)nwL − w0)

L
+ bkAk

( ))
,

(34)

where

bk =
kp

L
. (35)

Similar applications can be made to rotation function. Taking the
first derivative of rotation function with respect to x

f′(x) = −
∑1
k=1

bkBk sin
kpx

L

( )
. (36)

To write the Fourier sine series as a Fourier sine series, one more
derivative should be computed

f′′(x) = −
∑1
k=1

b2
kBk cos

kpx

L

( )
. (37)

If the similar steps are repeated in [23–27], the following relations
are derived:

df(x)

dx
= −

∑1
k=1

bkBk sin bkx
( )

, (38)

d2f(x)

dx2
= (f′

L − f′
0)

+
∑1
k=1

cos (bkx)
2((− 1)kf′

L − f′
0)

L
− b2

kBk

( )
,

(39)

d3f(x)

dx3
=

∑1
k=1

bk sin (bkx)
2((− 1)kf′

L − f′
0)

L
− b2

kBk

( )
. (40)
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The following Fourier coefficients are obtained from Fourier sine,
cosine series, and Stokes’ transformation:

Ak = − 2AGk(M0 + (− 1)k+1ML)

EILcTb
3
k + AGLk(cT + (− EI + cT(e0a)

2)b2
k )
, (41)

Bk = − 2(cT − AGk)(M0 + (− 1)k+1ML)

EILcTb
3
k + AGLk(cT + (− EI + cT(e0a)

2)b2
k )
, (42)

where

M0 = EIf′
0 + cT(e0a)

2w′′
0, (43)

ML = EIf′
L + cT(e0a)

2w′′
L. (44)

The non-local boundary conditions can be written as follows by
using the effect of rotational restraints:

EI
df(0)

dx
+ cT(e0a)

2 d
2w(0)

dx2
= V0f0, (45)

EI
df(L)

dx
+ cT(e0a)

2 d
2w(L)

dx2
= VLfL. (46)

Fourier coefficients in (41) and (42) are substituted into (32) and
(38) to obtain

−1−
∑1
k=1

2LV0L1

EIcTk2p2 + AGL2k

( )
M0

+ −1−
∑1
k=1

2L(− 1)kV0L1

EIcTk2p2 + AGL2k

( )
ML = 0,

(47)

−1−
∑1
k=1

2L(− 1)kVLL1

EIcTk2p2 + AGL2k

( )
M0

+ −1−
∑1
k=1

2LVLL1

EIcTk
2p2 + AGL2k

( )
ML = 0,

(48)

where

L1 = cT − AGk, (49)

L2 = cTL
2 + k2p2(− EI + cT(e0a)

2). (50)

The following eigenvalue problem is obtained by the means of end
moments

d11 d12
d21 d22

[ ]
M0

ML

[ ]
= 0, (51)

where

d11 = −1−
∑1
k=1

2LV0L1

EIcTk
2p2 + AGL2k

, (52)

d12 = −1−
∑1
k=1

2L(− 1)kV0L1

EIcTk
2p2 + AGL2k

, (53)

d21 = −1−
∑1
k=1

2L(− 1)kVLL1

EIcTk
2p2 + AGL2k

, (54)

d22 = −1−
∑1
k=1

2LVLL1

EIcTk
2p2 + AGL2k

. (55)
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Fig. 3 Effects both small-scale parameter and length on the critical non-
dimensional thermal buckling temperature for various rotational restraint
parameters

Fig. 4 Effect of asymmetrical spring parameters on the critical non-
dimensional thermal buckling temperature

Fig. 5 Effect of symmetrical spring parameters on the first three non-
dimensional thermal buckling temperature

Fig. 2 Effects of the non-local parameter on the critical non-dimensional
thermal buckling temperature for various rotational restraint parameters
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The eigenvalues of the coefficient matrix can be derived by setting
the following determinant in (51) to zero:

cij

∣∣∣ ∣∣∣ = 0 (i, j = 1, 2). (56)

4. Results and discussions: In this section, thermal buckling
analysis of a carbon nanotube with rotational restraints under
thermal axial loading is carried out. The non-local elasticity
theory with Timoshenko beam theory is applied in order to
capture size effects. The material parameters utilised in the compu-
tation are Poisson’s ratio n = 0.3, the mass density r = 2.3 g/cm3,
Young’s modulus E = 1TPa, the shear coefficient k = 8/10, the
shear modulus G = 0.4TPa, and the temperature expansion coeffi-
cient a = 1.1× 10−6 K−1. It is pointed out that non-local param-
eter [28, 29] e0a must be <2 nm for single-walled carbon
nanotubes [30].
The variation of the critical non-dimensional thermal buckling

temperature for various rotational restraint parameters with
respect to different non-local parameters is illustrated in Fig. 2 at
VL = 0.0. It is seen that by increasing the value of the non-local
parameter, the magnitude of the critical non-dimensional thermal
buckling temperature increases. It means that the non-local elasti-
city theory introduces a stiffness–softening effect, which is consist-
ent with the literature. This decreasing trend is more obvious in
higher values of rotational spring parameters.
It can be seen from Fig. 3 that when the ratio of the length to the

non-local parameter is small, non-local effects are more prominent.
Micro & Nano Letters, 2019, Vol. 14, Iss. 2, pp. 158–162
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However, the non-local effects on the critical non-dimensional
thermal buckling temperature can be controlled by rotational
restraints.

Fig. 4 presents the non-dimensional critical buckling temperature
for a nanotube with asymmetrical spring parameters. This paramet-
ric example points out to the possibility of enhancing the buckling
temperature of nanotubes for the different non-local parameter. It
also shows the effectiveness of the present method to capture the
significance of the rotational restraints at the ends, non-local para-
meters, and asymmetrical boundary conditions on the thermal buck-
ling response of carbon nanotubes.

The dependence of the critical thermal buckling temperature on
the symmetrical spring parameters is shown in Fig. 5. The non-local
parameters e0a = 0 and e0a = 0.5 and the mode numbers 1, 2, and
3 are considered. It can be seen from Fig. 5 that the ranges of the
buckling temperature for the first three mode number are quite dif-
ferent. It should be noted that the non-dimensionless buckling tem-
perature here represents the ratio of with and without rotational
restraint parameter. The present solution method can be extended
to calculate the dynamical buckling load.

5. Conclusion: Thermal buckling analysis of a carbon nanotube
subjected to axial thermal loading is explored by employing
Timoshenko beam theory. The size effects are taken into account
by using Eringen’s non-local elasticity theory which contains one
non-local parameter. Two Fourier series are used to represent the
deflection and rotation. By implementing Stokes’ transformation,
a coefficient matrix is obtained including rotational restraint, non-
local, and thermal parameters. Finally, the effect of different para-
meters such as non-locality parameters, length and rotational
161
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restrained parameters on the critical non-dimensional thermal buck-
ling load of the carbon nanotube is investigated. It can be seen that
the critical non-dimensional thermal buckling load decreases with
the increases of the non-local parameter. Also, the small-scale par-
ameter has a stiffness–softening effect and thermal buckling tem-
perature. Also, rotational restraints at the ends possess a
hardening effect and increase the critical buckling load and
temperature.
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