
ar
X

iv
:1

30
5.

15
11

v4
  [

m
at

h.
D

G
] 

 1
 M

ay
 2

01
7

A STUDY OF THREE-DIMENSIONAL PARACONTACT (κ̃, µ̃, ν̃)-SPACES

I. KUPELI ERKEN AND C. MURATHAN

Abstract. This paper is a study of three-dimensional paracontact metric (κ̃, µ̃, ν̃)-manifolds. Three
dimensional paracontact metric manifolds whose Reeb vector field ξ is harmonic are characterized. We
focus on some curvature properties by considering the class of paracontact metric (κ̃, µ̃, ν̃)-manifolds
under a condition which is given at Definition 3.1. We study properties of such manifolds according to
the cases κ̃ > −1, κ̃ = −1, κ̃ < −1 and construct new examples of such manifolds for each case. We also
show that the existence of paracontact metric (−1, µ̃ 6= 0, ν̃ 6= 0) spaces with dimension greater than 3

such that h̃2 = 0 but h̃ 6= 0.

1. Introduction

Paracontact manifolds are smooth manifolds of dimension 2n+ 1 endowed with a 1-form η, a vector
field ξ and a field of endomorphisms of tangent spaces ϕ̃ such that η(ξ) = 1, ϕ̃2 = I−η⊗ ξ and ϕ̃ induces
an almost paracomplex structure on the codimension 1 distribution defined by the kernel of η (see § 2 for
more details). In addition, if the manifold is endowed with a pseudo-Riemannian metric g̃ of signature
(n+ 1, n) satisfying

g̃(ϕ̃X, ϕ̃Y ) = −g̃(X,Y ) + η(X)η(Y ), dη(X,Y ) = g̃(X, ϕ̃Y ),

(M, η) becomes a contact manifold and (ϕ̃, ξ, η, g̃) is said to be a paracontact metric structure on M . The
study of paracontact geometry was started by Kaneyuki and Williams in [18] and then it was continued by
many other authors. A systematic study of paracontact metric manifolds, and some subclasses like para-
Sasakian manifolds, was carried out in a striking paper of Zamkovoy [31]. The importance of paracontact
geometry, and in particular of para-Sasakian geometry, has been pointed out especially in the last years
by several papers highlighting the interplays with the theory of para-Kähler manifolds and its role in
pseudo-Riemannian geometry and mathematical physics (cf. e.g. [1], [2], [12], [14], [15]).

In [13], Closset, Dumitrescu, Festuccia, and Komargodski constructed supersymmetric field theories
on Riemannian three manifolds, considering three dimensional theories with N = 2 supersymmetry.
They proved that the supersymmetric field theory on three manifold M possesses a single supercharge if
and only if M admits an almost contact metric structure that satisfies certain integrability conditions.
Recently, Willett [29] studied the localization of three dimensional N = 2 supersymmetric theories on
compact manifolds.

As known every orientable Riemannian three-manifold admits a metric-compatible almost contact
structure and three dimensional unit sphere S3 has a Sasakian structure. In [22] Markellos and Tsichlias
constructed new (κ, µ) contact metric structures (non-Sasakian) on the unit sphere S3.

On the other hand, in [11] it was proved (cf. Theorem 2.1 below) that any (non-Sasakian) contact
(κ, µ)-space carries a canonical paracontact metric structure (ϕ̃, ξ, η, g̃) whose Levi-Civita connection
satisfies a condition formally similar to contact case

(1.1) R̃(X,Y )ξ = κ̃ (η (Y )X − η (X)Y ) + µ̃(η (Y ) h̃X − η (X) h̃Y ),
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where 2h̃ := Lξϕ̃ and, in this case, κ̃ = (1 − µ/2)2 + κ − 2, µ̃ = 2. By [11] and [22], S3 will have
paracontact metric structure.

A (2n + 1)-dimensional paracontact metric manifold (M, ϕ̃, ξ, η, g̃) whose curvature tensor satisfies
(1.1), is called paracontact (κ̃, µ̃)-manifold. The class of paracontact (κ̃, µ̃)-manifolds is very large. It

contains para-Sasakian manifolds, as well as those paracontact metric manifolds satisfying R̃(X,Y )ξ = 0
for allX,Y ∈ Γ(TM) (recently studied in [32]). But, unlike in the contact Riemannian case, a paracontact
(κ̃, µ̃)-manifold such that κ̃ = −1 in general is not para-Sasakian. In fact, there are paracontact (κ̃, µ̃)-

manifolds such that h̃2 = 0 (which is equivalent to take κ̃ = −1) but with h̃ 6= 0. Another important
difference with the contact Riemannian case, due to the non-positive definiteness of the metric, is that
while for contact metric (κ, µ)-spaces the constant κ can not be greater than 1, here we have no restriction
for the constants κ̃ and µ̃. It should be also remarked that contact metric (κ, µ, ν)-spaces of dimension
greater than 3 is either a Sasakian manifold or a (κ, µ)-contact metric manifold. But the authors provided

an example of paracontact metric (κ̃, µ̃, υ̃)-manifold such that κ̃ = −1, (and h̃2 = 0) but with µ̃ 6= 0, ν̃ 6= 0,

h̃ 6= 0 , and n > 1.
Cappelletti Montano et al.[12] showed in that there is a kind of duality between those manifolds and

contact metric (κ, µ)-spaces and also proved that ξ is a Ricci eigenvector of paracontact (κ̃, µ̃)-manifolds.
In [8], G.Calvaruso and D. Perrone proved that ξ is harmonic if and only if ξ is an eigenvector of the

Ricci operator for contact semi-Riemannian manifolds.
It turns out that there exists a motivation to study harmonic maps in contact semi-Riemannian and

paracontact geometry.
Let (M, g) be smooth, oriented, connected pseudo-Riemannian manifold and (TM, gS) its tangent

bundle endowed with the Sasaki metric (also referred to as Kaluza-Klein metric in Mathematical Physics)
gS . By definition, the energy of a smooth vector field V on M is the energy corresponding V : (M, g) →
(TM, gs). When M is compact, the energy of V is determined by

E(V ) =
1

2

∫

M

(trgV
∗gs)dv =

n

2
vol(M, g) +

1

2

∫

M

‖∇V ‖2 dv.

The non-compact case, one can take into account over relatively compact domains. It can be shown that
V : (M, g) → (TM, gs) is harmonic map if and only if

(1.2) tr [R(∇.V, V ).] = 0, ∇∗∇V = 0,

where

(1.3) ∇∗∇V =
∑

i

εi(∇ei∇eiV −∇∇ei
eiV )

is the rough Laplacian with respect to a pseudo-orthonormal local frame {e1, ..., en} on (M, g) with
g(ei, ei) = εi = ±1 for all indices i = 1, ..., n.

If (M, g) is a compact Riemannian manifold, only parallel vector fields define harmonic maps.

Next, for any real constant ρ 6= 0, let χρ(M) =
{

W ∈ χ(M) : ‖W‖2 = ρ
}

.We consider vector fields

V ∈ χρ(M) which are critical points for the energy functional E |χρ(M), restricted to vector fields of
the same length. The Euler-Lagrange equations of this variational condition yield that V is a harmonic
vector field if and only if

(1.4) ∇∗∇V is collinear to V.

This characterization is well known in the Riemannian case ([3, 23, 25]). Using same arguments in
pseudo-Riemannian case, G. Calvaruso [5] proved that same result is still valid for vector fields of constant
length, if it is not lightlike.

Let T1M denote the unit tangent sphere bundle over M , and again by gS the metric induced on T1M
by the Sasaki metric of TM. Then, it is shown that in [3], the map on V : (M, g) → (T1M, gs) is harmonic
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if V is a harmonic vector field and the additonial condition

(1.5) tr[R(∇.V, V ).] = 0

is satisfied. G. Calvaruso [5] also investigated harmonicity properties for left-invariant vector fields on
three-dimensional Lorentzian Lie groups, obtaining several classification results and new examples of
critical points of energy functionals. In [7], he studied harmonicity properties of vector fields on four-
dimensional pseudo-Riemannian generalized symmetric spaces. Moreover, he gave a complete classifi-
cation of three-dimensional homogeneous paracontact metric manifolds in [6]. Recently, G.Calvaruso
and D.Perrone [9] proved that all three-dimensional homogeneous paracontact metric manifolds are H -
paracontact, that is, paracontact metric manifolds whose characteristic vector field ξ is harmonic.

In this paper, we study harmonicity of the characteristic vector field of three-dimensional paracontact
metric manifolds and give a characterization of (κ̃, µ̃, ν̃)-manifolds.

Overview: Here is the plan of the paper: § 2 is devoted to preliminaries. In § 3, we study the
common properties of paracontact metric (κ̃, µ̃, ν̃)-manifolds (see § 3 for definition) for the cases κ̃ < −1,
κ̃ = −1, κ̃ > −1. Beside the other results, we prove for instance that while the values of κ̃, µ̃ and ν̃
change, the paracontact metric (κ̃, µ̃, υ̃)-manifolds remain unchanged under D-homothetic deformations.
Moreover we prove that in dim M > 3, paracontact metric (κ̃ 6= −1, µ̃, ν̃)-manifolds must be paracontact
(κ̃, µ̃)-manifolds.

We reserve § 4, for the following two main theorems of the paper:

Theorem 1.1. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold. ξ is a harmonic vector
field if and only if the characteristic vector field ξ is an eigenvector of the Ricci operator.

Theorem 1.2. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold. If the characteristic
vector field ξ is harmonic vector field then the paracontact metric (κ̃, µ̃, ν̃)-manifold always exists on
every open and dense subset of M. Conversely, if M is a paracontact metric (κ̃, µ̃, ν̃)-manifold then the
characteristic vector field ξ is harmonic vector field.

We also show that a paracontact metric (κ̃, µ̃, ν̃)-manifold with κ̃ = −1 is not necessary para-Sasakian

(see the tensor h̃ has the canonical form (II)). As stated above, this case shows important difference with
the contact Riemannian case. So we can construct non-trival examples of non-para-Sasakian manifold
with κ̃ = −1. Also one could find examples about paracontact metric (κ̃, µ̃, ν̃)-manifolds according to
the cases κ̃ > −1, κ̃ < −1.

In § 5, we give a relation between non-Sasakian (κ, µ, ν = const.)-contact metric manifold with the

Boeckx invariant IM =
1−µ

2√
1−κ

is constant along the integral curves of ξ i.e. ξ(IM ) = 0 and 3-dimensional

paracontact metric (κ̃, µ̃, ν̃)-manifold.

2. Preliminaries

An (2n+1)-dimensional smooth manifold M is said to have an almost paracontact structure if it admits
a (1, 1)-tensor field ϕ̃, a vector field ξ and a 1-form η satisfying the following conditions:

(i) η(ξ) = 1, ϕ̃2 = I − η ⊗ ξ,
(ii) the tensor field ϕ̃ induces an almost paracomplex structure on each fibre of D = ker(η), i.e. the

±1-eigendistributions, D± := Dϕ̃(±1) of ϕ̃ have equal dimension n.

From the definition it follows that ϕ̃ξ = 0, η ◦ ϕ̃ = 0 and the endomorphism ϕ̃ has rank 2n. When
the tensor field Nϕ̃ := [ϕ̃, ϕ̃]− 2dη ⊗ ξ vanishes identically the almost paracontact manifold is said to be
normal. If an almost paracontact manifold admits a pseudo-Riemannian metric g̃ such that

(2.1) g̃(ϕ̃X, ϕ̃Y ) = −g̃(X,Y ) + η(X)η(Y ),
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for all X,Y ∈ Γ(TM), then we say that (M, ϕ̃, ξ, η, g̃) is an almost paracontact metric manifold. Notice
that any such a pseudo-Riemannian metric is necessarily of signature (n+1, n). For an almost paracontact
metric manifold, there always exists an orthogonal basis {X1, . . . , Xn, Y1, . . . , Yn, ξ} such that g̃(Xi, Xj) =
δij , g̃(Yi, Yj) = −δij and Yi = ϕ̃Xi, for any i, j ∈ {1, . . . , n}. Such basis is called a ϕ̃-basis.

If in addition dη(X,Y ) = g̃(X, ϕ̃Y ) for all vector fields X,Y on M, (M, ϕ̃, ξ, η, g̃) is said to be a para-
contact metric manifold. In a paracontact metric manifold one defines a symmetric, trace-free operator
h̃ := 1

2Lξϕ̃. It is known [31] that h̃ anti-commutes with ϕ̃ and satisfies trh̃ = 0 = h̃ξ and

(2.2) ∇̃ξ = −ϕ̃+ ϕ̃h̃,

where ∇̃ is the Levi-Civita connection of the pseudo-Riemannian manifold (M, g̃). Moreover h̃ ≡ 0 if and
only if ξ is a Killing vector field and in this case (M, ϕ̃, ξ, η, g̃) is said to be a K-paracontact manifold.
A normal paracontact metric manifold is called a para-Sasakian manifold. Also in this context the para-
Sasakian condition implies the K-paracontact condition and the converse holds only in dimension 3 (see
[6]). Moreover, in any para-Sasakian manifold

(2.3) R̃(X,Y )ξ = −(η(Y )X − η(X)Y )

holds, but unlike contact metric geometry the condition (2.3) not necessarily implies that the manifold

is para-Sasakian. Differentiating ∇̃Y ξ = −ϕ̃Y + ϕ̃h̃Y , we get

(2.4) R̃(X,Y )ξ = −(∇̃X ϕ̃)Y + (∇̃Y ϕ̃)X + (∇̃X ϕ̃h̃)Y − (∇̃Y ϕ̃h̃)X.

In [31], Zamkovoy proved that

(2.5) (∇̃ξh̃)X = −ϕ̃X + h̃2ϕ̃X + ϕ̃R̃(ξ,X)ξ.

Moreover, he showed that Ricci curvature S̃ in the direction of ξ is given by

(2.6) S̃(ξ, ξ) = −2n+ trh̃2.

An almost paracontact structure (ϕ̃, ξ, η) is said to be integrable if Nϕ̃(X,Y ) ∈ Γ(Rξ) whenever
X,Y ∈ Γ(D).

In [27], J. Welyczko proved that any 3-dimensional paracontact metric manifold is always integrable.
So for 3-dimensional paracontact metric manifold, we have

(2.7) (∇̃X ϕ̃)Y = −g̃(X − h̃X, Y )ξ + η(Y )(X − h̃X).

We end this section by pointing out the following.

Theorem 2.1 ([11]). Let (M,ϕ, ξ, η, g) be a non-Sasakian contact metric (κ, µ)-space. Then M admits
a canonical paracontact metric structure (ϕ̃, ξ, η, g̃) given by

(2.8) ϕ̃ :=
1√
1− κ

h, g̃ :=
1√
1− κ

dη(·, h·) + η ⊗ η.

3. Preliminary results on 2n+1-dimensional paracontact metric (κ̃, µ̃, ν̃)-manifolds

Theorem 2.1 motivates the following definition.

Definition 3.1. A 2n + 1-dimensional paracontact metric (κ̃, µ̃, ν̃)-manifold is a paracontact metric
manifold for which the curvature tensor field satisfies

(3.1) R̃(X,Y )ξ = κ̃(η(Y )X − η(X)Y ) + µ̃(η(Y )h̃X − η(X)h̃Y ) + ν̃(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y ),

for all X,Y ∈ Γ(TM), where κ̃, µ̃, ν̃ are smooth functions on M .

In this section, we discuss some properties of paracontact metric manifolds satisfying the condition
(3.1). We start with some preliminary properties.
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Lemma 3.2. Let (M, ϕ̃, ξ, η, g̃) be a 2n+1-dimensional paracontact metric (κ̃, µ̃, ν̃)-manifold. Then the
following identities hold:

h̃2 = (1 + κ̃)ϕ̃2,(3.2)

Q̃ξ = 2nκ̃ξ,(3.3)

(∇̃X ϕ̃)Y = −g̃(X − h̃X, Y )ξ + η(Y )(X − h̃X), for κ̃ 6= −1,(3.4)

(∇̃X h̃)Y − (∇̃Y h̃)X = −(1 + κ̃)(2g̃(X, ϕ̃Y )ξ + η(X)ϕ̃Y − η(Y )ϕ̃X)(3.5)

+(1− µ̃)(η(X)ϕ̃h̃Y − η(Y )ϕ̃h̃X)

−ν̃(η(X)h̃Y − η(Y )h̃X),

(∇̃X ϕ̃h̃)Y − (∇̃Y ϕ̃h̃)X = −(1 + κ̃)(η(X)Y − η(Y )X)(3.6)

+(1− µ̃)(η(X)h̃Y − η(Y )h̃X)

−ν̃(η(X)ϕ̃h̃Y − η(Y )ϕ̃h̃X),

∇̃ξh̃ = µ̃h̃ ◦ ϕ̃− ν̃h̃, ∇̃ξϕ̃h̃ = −µ̃h̃+ ν̃h̃ ◦ ϕ̃,(3.7)

R̃ξXY = κ̃(g̃(X,Y )ξ − η(Y )X) + µ̃(g̃(h̃X, Y )ξ − η(Y )h̃X)(3.8)

+ν̃(g̃(ϕ̃h̃X, Y )ξ − η(Y )ϕ̃h̃X),

ξ(κ̃) = −2ν̃(1 + κ̃),(3.9)

for any vector fields X, Y on M , where Q̃ denotes the Ricci operator of (M, g̃).

Proof. The proof of (3.2)-(3.5) are similar to that of [[12], Lemma 3.2]. The relation (3.6) is an immediate

consequence of (3.4), (3.5) and (∇̃X ϕ̃h̃)Y −(∇̃Y ϕ̃h̃)X = (∇̃X ϕ̃)h̃Y −(∇̃Y ϕ̃)h̃X+ϕ̃((∇̃X h̃)Y −(∇̃Y h̃)X).

Putting ξ instead of X in the relation (3.5), we have (3.7). Taking into account h̃ϕ̃ = −ϕ̃h̃, (3.2) and
(3.7), we obtain

(3.10) ∇̃ξh̃
2 = (∇̃ξh̃)h̃+ h̃(∇̃ξh̃) = (µ̃h̃ϕ̃− ν̃h̃)h̃+ h̃(µ̃h̃ϕ̃− ν̃h̃) = −2ν̃(1 + κ̃)ϕ̃2.

Alternately, differentiating (3.2) along ξ and using (2.7), we obtain

(3.11) ∇̃ξh̃
2 = ξ(κ̃)ϕ̃2.

Combining (3.10) and (3.11), we complete the proof (3.9). �

Remarkable subclasses of paracontact (κ̃, µ̃, ν̃)-manifolds are given, in view of (2.3), by para-Sasakian

manifolds, and by those paracontact metric manifolds such that R̃(X,Y )ξ = 0 for all vector fields X,Y

on M . Note that, by (3.2), a paracontact (κ̃, µ̃, ν̃)-manifold such that κ̃ = −1 satisfies h̃2 = 0. Unlike

the contact metric case, since the metric g̃ is pseudo-Riemannian we can not conclude that h̃ vanishes
and so the manifold is para-Sasakian.

Given a paracontact metric structure (ϕ̃, ξ, η, g̃) and α > 0, the change of structure tensors

(3.12) η̄ = αη, ξ̄ =
1

α
ξ, ϕ̄ = ϕ̃, ḡ = αg̃ + α(α − 1)η ⊗ η

is called a Dα-homothetic deformation. One can easily check that the new structure (ϕ̄, ξ̄, η̄, ḡ) is still a
paracontact metric structure [31].

Proposition 3.3 ([12]). Let (ϕ̄, ξ̄, η̄, ḡ) be a paracontact metric structure obtained from (ϕ̃, ξ̃, η̃, g̃) by a
Dα-homothetic deformation. Then we have the following relationship between the Levi-Civita connections
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∇̄ and ∇̃ of ḡ and g̃, respectively,

(3.13) ∇̄XY = ∇̃XY +
α− 1

α
g̃(ϕ̃h̃X, Y )ξ − (α− 1) (η(Y )ϕ̃X + η(X)ϕ̃Y ) .

Furthermore,

(3.14) h̄ =
1

α
h̃.

After some straightforward calculations one can prove the following proposition.

Proposition 3.4 ([12]). Under the same assumptions of Proposition 3.3, the curvature tensor fields R̄

and R̃ are related by

αR̄(X,Y )ξ̄ = R̃(X,Y )ξ − (α− 1)((∇̃X ϕ̃)Y − (∇̃Y ϕ̃)X + η(Y )(X − h̃X)− η(X)(Y − h̃Y ))

− (α− 1)2(η(Y )X − η(X)Y ).(3.15)

Using Proposition 3.4 one can easily get following

Proposition 3.5. If (M, ϕ̃, ξ, η, g̃) is a paracontact metric (κ̃, µ̃, ν̃)-manifold, then (ϕ̄, ξ̄, η̄, ḡ) is a para-
contact metric (κ̄, µ̄, ν̄)-structure, where

(3.16) κ̄ =
κ̃+ 1− α2

α2
, µ̄ =

µ̃+ 2α− 2

α
, ν̄ =

ν̃

α
.

By the same argument in Proposition 3.9 of [12], we have

Corollary 3.6. Let (M, ϕ̃, ξ, η, g̃) be a paracontact metric (κ̃, µ̃, ν̃)-manifold such that κ̃ 6= −1. Then

the operator h̃ in the case κ̃ > −1 and the operator ϕ̃h̃ in the case κ̃ < −1 are diagonalizable and admit
three eigenvalues: 0, associate with the eigenvector ξ, λ̃ and -λ̃, of multiplicity n, where λ̃ :=

√

|1 + κ̃|.
The corresponding eigendistributions Dh̃(0) = Rξ, Dh̃(λ̃), Dh̃(−λ̃) and Dϕ̃h̃(0) = Rξ, Dϕ̃h̃(λ̃), Dϕ̃h̃(−λ̃)

are mutually orthogonal and one has ϕ̃Dh̃(λ̃) = Dh̃(−λ̃), ϕ̃Dh̃(−λ̃) = Dh̃(λ̃) and ϕ̃Dϕ̃h̃(λ̃) = Dϕ̃h̃(−λ̃),

ϕ̃Dϕ̃h̃(−λ̃) = Dϕ̃h̃(λ̃). Furthermore,

(3.17) Dh̃(±λ̃) =

{

X ± 1√
1 + κ̃

h̃X |X ∈ Γ(D∓)

}

in the case κ̃ > −1, and

(3.18) Dϕ̃h̃(±λ̃) =

{

X ± 1√
−1− κ̃

ϕ̃h̃X |X ∈ Γ(D∓)

}

where D+ and D- denote the eigendistributions of ϕ̃ corresponding to the eigenvalues corresponding to
the eigenvalues 1 and −1, respectively.

In the sequel, unless otherwise stated, we will always assume the index of Dh̃(±λ) (in the case κ̃ > −1)
and of Dϕ̃h̃(±λ) (in the case κ̃ < −1) to be constant.

Being h̃ (in the case κ̃ > −1) or ϕ̃h̃ (in the case κ̃ < −1) diagonalizable, one can easily prove the
following lemma. Following similar steps in proof of the theorem ([12], Lemma 3.11), we can give following
lemma.

Lemma 3.7. Let (M, ϕ̃, ξ, η, g̃) be a paracontact metric (κ̃, µ̃, ν̃)-manifold such that κ̃ 6= −1. If κ̃ > −1
(respectively, κ̃ < −1), then there exists a local orthogonal ϕ̃-basis {X1, . . . , Xn, Y1, . . . , Yn, ξ} of eigen-

vectors of h̃ (respectively, ϕ̃h̃) such that X1, . . . , Xn ∈ Γ(Dh̃(λ̃)) (respectively, Γ(Dϕ̃h̃(λ̃))), Y1, . . . , Yn ∈
Γ(Dh̃(−λ̃)) (respectively, Γ(Dϕ̃h̃(−λ̃))), and

(3.19) g̃(Xi, Xi) = −g̃(Yi, Yi) =

{

1, for 1 ≤ i ≤ r
−1, for r + 1 ≤ i ≤ r + s
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where r = index(Dh̃(−λ̃)) (respectively, r = index(Dϕ̃h̃(−λ̃))) and s = n−r = index(Dh̃(λ̃)) (respectively,

s = index(Dϕ̃h̃(λ̃))).

Lemma 3.8. The following differential equation is satisfied on every (2n + 1)-dimensional paracontact
metric (κ̃, µ̃, ν̃)-manifold (M, ϕ̃, ξ, η, g̃) :

0 = ξ(κ̃)(η(Y )X − η(X)Y ) + ξ(µ̃)(η(Y )h̃X − η(X)h̃Y ) + ξ(ν̃)(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y )(3.20)

+X(κ̃)ϕ̃2Y − Y (κ̃)ϕ̃2X +X(µ̃)h̃Y − Y (µ̃)h̃X +X(ν̃)ϕ̃h̃Y − Y (ν̃)ϕ̃h̃X.

Proof. Differentiating (3.1) along an arbitary vector field Z and using the relation ∇̃ξ = −ϕ̃+ ϕ̃h̃ we find

∇̃ZR̃(X,Y )ξ = Z(κ̃)(η(Y )X − η(X)Y ) + Z(µ̃)(η(Y )h̃X − η(X)h̃Y ) + Z(ν̃)(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y )

+κ̃[(η(∇̃ZY )− g̃(Y, ϕ̃Z) + g̃(Y, ϕ̃h̃Z))X + η(Y )∇̃ZX

+(−η(∇̃ZX) + g̃(X, ϕ̃Z)− g̃(X, ϕ̃h̃Z))Y − η(X)∇̃ZY ]

+µ̃[(η(∇̃ZY )− g̃(Y, ϕ̃Z) + g̃(Y, ϕ̃h̃Z))h̃X + η(Y )∇̃Z h̃X

+(−η(∇̃ZX) + g̃(X, ϕ̃Z)− g̃(X, ϕ̃h̃Z))h̃Y − η(X)∇̃Z h̃Y ]

+ν̃[(η(∇̃ZY )− g̃(Y, ϕ̃Z) + g̃(Y, ϕ̃h̃Z))ϕ̃h̃X + η(Y )∇̃Zϕ̃h̃X

+(−η(∇̃ZX) + g̃(X, ϕ̃Z)− g̃(X, ϕ̃h̃Z))ϕ̃h̃Y − η(X)∇̃Z ϕ̃h̃Y ].

By using the relation ∇̃ξ = −ϕ̃+ ϕ̃h̃, we deduce

(∇̃ZR̃)(X,Y, ξ) = ∇̃ZR̃(X,Y )ξ − R̃(∇̃ZX,Y )ξ − R̃(X, ∇̃ZY )ξ − R̃(X,Y )∇̃Zξ

= Z(κ̃)(η(Y )X − η(X)Y ) + Z(µ̃)(η(Y )h̃X − η(X)h̃Y ) + Z(ν̃)(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y )

+κ̃[g̃(Y,−ϕ̃Z + ϕ̃h̃Z)X + g̃(X, ϕ̃Z − ϕ̃h̃Z)Y ]

+µ̃[g̃(Y,−ϕ̃Z + ϕ̃h̃Z)h̃X + g̃(X, ϕ̃Z − ϕ̃h̃Z)h̃Y

+η(Y )(∇̃Z h̃)X − η(X)(∇̃Z h̃)Y ]

+ν̃[g̃(Y,−ϕ̃Z + ϕ̃h̃Z)ϕ̃h̃X + g̃(X, ϕ̃Z − ϕ̃h̃Z))ϕ̃h̃Y

+η(Y )(∇̃Zϕ̃h̃)X − η(X)(∇̃Z ϕ̃h̃)Y ] + R̃(X,Y )ϕ̃Z − R̃(X,Y )ϕ̃h̃Z.

Using the second Bianchi identity in the last relation, we obtain

0 = Z(κ̃)(η(Y )X − η(X)Y ) + Z(µ̃)(η(Y )h̃X − η(X)h̃Y ) + Z(ν̃)(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y )

+X(κ̃)(η(Z)Y − η(Y )Z) +X(µ̃)(η(Z)h̃Y − η(Y )h̃Z) +X(ν̃)(η(Z)ϕ̃h̃Y − η(Y )ϕ̃h̃Z)

+Y (κ̃)(η(X)Z − η(Z)X) + Y (µ̃)(η(X)h̃Z − η(Z)h̃X) + Y (ν̃)(η(X)ϕ̃h̃Z − η(Z)ϕ̃h̃X)

+2κ̃[g̃(ϕ̃Y, Z)X + g̃(ϕ̃Z,X)Y + g̃(ϕ̃X, Y )Z]

+µ̃[2g̃(ϕ̃Y, Z)h̃X + η(Z)((∇̃X h̃)Y − (∇̃Y h̃)X) + 2g̃(ϕ̃Z,X)h̃Y + η(X)((∇̃Y h̃)Z − (∇̃Z h̃)Y )

+2g̃(ϕ̃X, Y )h̃Z + η(Y )((∇̃Z h̃)X − (∇̃X h̃)Z)]

+ν̃[2g̃(ϕ̃Y, Z)ϕ̃h̃X + η(Z)((∇̃X ϕ̃h̃)Y − (∇̃Y ϕ̃h̃)X) + 2g̃(ϕ̃Z,X)ϕ̃h̃Y + η(X)((∇̃Y ϕ̃h̃)Z − (∇̃Z ϕ̃h̃)Y )

+2g̃(ϕ̃X, Y )ϕ̃h̃Z + η(Y )((∇̃Z ϕ̃h̃)X − (∇̃X ϕ̃h̃)Z)]

+R̃(X,Y )ϕ̃Z + R̃(Y, Z)ϕ̃X + R̃(Z,X)ϕ̃Y

−R̃(X,Y )ϕ̃h̃Z − R̃(Y, Z)ϕ̃h̃X − R̃(Z,X)ϕ̃h̃Y.
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for all X,Y, Z ∈ Γ(TM). Putting ξ instead of Z in the last relation, we obtain

0 = ξ(κ̃)(η(Y )X − η(X)Y ) + ξ(µ̃)(η(Y )h̃X − η(X)h̃Y ) + ξ(ν̃)(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y )

+X(κ̃)Y − η(Y )ξ +X(µ̃)h̃Y +X(ν̃)ϕ̃h̃Y

+Y (κ̃)(η(X)ξ −X)− Y (µ̃)h̃X − Y (ν̃)ϕ̃h̃X + 2κ̃g̃(ϕ̃X, Y )ξ

+µ̃[(∇̃X h̃)Y − (∇̃Y h̃)X + η(X)((∇̃Y h̃)ξ − (∇̃ξh̃)Y ) + η(Y )((∇̃ξh̃)X − (∇̃X h̃)ξ)]

+ν̃[(∇̃X ϕ̃h̃)Y − (∇̃Y ϕ̃h̃)X + η(X)((∇̃Y ϕ̃h̃)ξ − (∇̃ξϕ̃h̃)Y )

+η(Y )((∇̃ξϕ̃h̃)X − (∇̃X ϕ̃h̃)ξ)]

+R̃(Y, ξ)ϕ̃X + R̃(ξ,X)ϕ̃Y − R̃(Y, ξ)ϕ̃h̃X − R̃(ξ,X)ϕ̃h̃Y.

Using (3.5),(3.6) and (3.8) in the last relation we finally get (3.20) and it completes the proof. �

By Corollary 3.6 and Lemma 3.7, one can obtain the proof of following theorem by using a similar
method of ([20], Theorem 4.1).

Theorem 3.9. Let (M, ϕ̃, ξ, η, g̃) be a 2n + 1-dimensional paracontact metric (κ̃, µ̃, ν̃)-manifold with
κ̃ 6= −1 and n > 1. Then M is a paracontact metric (κ̃, µ̃)-manifold, i.e κ̃, µ̃ are constants and ν̃ is the
zero function.

Remark 3.10. By (3.2), for κ̃ = −1 we obtain h̃2 = 0. Since the metric g̃ is not positive definite we can

not conclude that h̃ = 0 and the manifold is para-Sasakian. The following question comes up naturally.
Do there exist a paracontact metric (−1, µ̃) manifold with dimension greater than 3 satisfying h̃2 = 0 but

h̃ 6= 0? B. Cappelletti Montano and L. Di Terlizzi [11] and V. Martin-Molina [23] gave an affirmative
answer for n > 1.

In (κ, µ, ν )-contact metric case, T.Koufogiorgos et al. [20] proved that if dimension greater than 3
then it is either a Sasakian manifold or a (κ, µ)-contact metric manifold. Now we will give an example of
paracontact metric (−1, µ̃, ν̃ 6= 0)-manifold for five dimensional which have no contact metric counterpart

(h̃2 = 0 but h̃ 6= 0). This is first example of this type manifold .

Example 3.11. Let g be the 5-dimensional Lie algebra with basis X1, X2, Y1, Y2, ξ and Lie brackets
defined by

[ξ,X1] = Y1 , [ξ, Y1] = 0
[ξ,X2] = Y2 , [ξ,X2] = Y2

[X1, Y1] = 2ξ − Y1 , [X2, Y2] =
2
3Y1 − Y2 − 2ξ

[X1, X2] = − 1
3X1 − 1

3X2, [Y1, Y2] = 0
[X1, Y2] = − 2

3Y1 − 1
3Y2, [Y1, X2] =

1
3Y1.

Let G be a Lie group whose Lie algebra is g. On G we define a left-invariant paracontact metric
structure (ϕ̃, ξ, η, g̃) by setting ϕ̃ξ = 0 and ϕ̃Xi = Xi, ϕ̃Yi = −Yi, η(ξ) = 1, η(Xi) = η(Yi) = 0 and whose
only non-vanishing components of the metric are g̃(ξ, ξ) = g̃(X1, Y1) = 1, g̃(X2, Y2) = −1 for all i = 1, 2.

Therefore, h̃Xi = Yi and h̃Yi = 0, i = 1, 2, so h̃2 = 0 but h̃ 6= 0 and rank(h̃)= 2.Moreover, one can verify
that (G, ϕ̃, ξ, η, g̃) is a paracontact metric (κ̃, µ̃, ν̃)-manifold with κ̃ = −1, µ̃ = −1, ν̃ = −3.

4. Classification of the 3-dimensional Paracontact metric (κ̃, µ̃, ν̃)-manifolds

In this section, we analyze the different possibilities for the tensor field h̃. Hence one can recognize
the differences between the contact and paracontact cases by looking at the possible Jordan forms of the
tensor field h̃.

A self-adjoint linear operator A of a Riemannian manifold is always diagonalizable, but this is not
the case for a self-adjoint linear operator A of a Lorentzian manifold. It is known ([26], pp. 50-55) that
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self-adjoint linear operator of a vector space with a Lorentzian inner product can be put into four possible
canonical forms. In particular, the matrix representation g̃ of the induced metric on M3

1 is of Lorentz
type, so the self-adjoint linear A of M3

1 can be put into one of the following four forms with respect to
frames {e1, e2, e3} at TpM

3
1 where TpM

3
1 is called tangent space to M at p [21],[24].

(I) A =





λ1 0 0
0 λ2 0
0 0 λ3



 , g̃ =





−1 0 0
0 1 0
0 0 1



 ,

(II) A =





λ 0 0
1 λ 0
0 0 λ3



 , g̃ =





0 1 0
1 0 0
0 0 1



,

(III) A =





γ −λ 0
λ γ 0
0 0 λ3



 , g̃ =





−1 0 0
0 1 0
0 0 1



 , λ 6= 0,

(IV) A =





λ 0 0
0 λ 1
1 0 λ



 , g̃ =





0 1 0
1 0 0
0 0 1



.

The matrices g̃ for cases (I) and (III) are with respect to an orthonormal basis of TpM
3
1 , whereas for

cases (II) and (IV) are with respect to a pseudo-orthonormal basis. This is a basis {e1, e2, e3} of TpM
3
1

satisfying g̃(e1, e1) = g̃(e2, e2) = g̃(e1, e3) = g̃(e2, e3) = 0 and g̃(e1, e2) = g̃(e3, e3) = 1.
Next, we recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold satisfies

(4.1) R̃(X,Y )Z = g̃(Y, Z)Q̃X − g̃(X,Z)Q̃Y + g̃(Q̃Y, Z)X − g̃(Q̃X,Z)Y − r

2
(g̃(Y, Z)X − g̃(X,Z)Y ).

The tensor h̃ has the canonical form (I). Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric
manifold .

U1 =
{

p ∈ M | h̃(p) 6= 0
}

⊂ M

U2 =
{

p ∈ M | h̃(p) = 0, in a neighborhood of p
}

⊂ M

That h̃ is a smooth function on M implies U1 ∪ U2 is an open and dense subset of M , so any property
satisfied in U1∪U2 is also satisfied in M. For any point p ∈ U1∪U2 there exists a local orthonormal ϕ̃-basis
{ẽ, ϕ̃ẽ, ξ} of smooth eigenvectors of h̃ in a neighborhood of p, where −g̃(ẽ, ẽ) = g̃(ϕ̃ẽ, ϕ̃ẽ) = g̃(ξ, ξ) = 1.

On U1 we put h̃ẽ = λ̃ẽ, where λ̃ is a non-vanishing smooth function. Since trh̃ = 0, we have h̃ϕ̃ẽ = −λ̃ϕ̃ẽ.
The eigenvalue function λ̃ is continuos on M and smooth on U1 ∪ U2. So, h̃ has following form

(4.2)





λ̃ 0 0

0 −λ̃ 0
0 0 0





respect to local orthonormal ϕ̃-basis {ẽ, ϕ̃ẽ, ξ}. In this case, we will say the operator h̃ is of h1 type. Using
same method with [20] and [25], we have
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Lemma 4.1. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h1 type.Then
for the covariant derivative on U1 the following equations are valid

i) ∇̃ẽẽ =
1

2λ̃

[

σ̃(ẽ)− (ϕ̃ẽ)(λ̃)
]

ϕ̃ẽ, ii) ∇̃ẽϕ̃ẽ =
1

2λ̃

[

σ̃(ẽ)− (ϕ̃ẽ)(λ̃)
]

ẽ+ (1− λ̃)ξ,

iii) ∇̃ẽξ = (λ̃− 1)ϕ̃ẽ,

iv) ∇̃ϕ̃ẽẽ = − 1

2λ̃

[

σ̃(ϕ̃ẽ) + ẽ(λ̃)
]

ϕ̃ẽ− (λ̃+ 1)ξ, v) ∇̃ϕ̃ẽϕ̃ẽ = − 1

2λ̃

[

σ̃(ϕ̃ẽ) + ẽ(λ̃)
]

ẽ,

vi) ∇̃ϕ̃ẽξ = −(λ̃+ 1)ẽ,

vii) ∇̃ξ ẽ = bϕ̃ẽ, viii) ∇̃ξϕ̃ẽ = bẽ,

ix) [ẽ, ξ] = (λ̃− 1− b)ϕ̃ẽ, x) [ϕ̃ẽ, ξ] = (−λ̃− 1− b)ẽ,(4.3)

xi) [ẽ, ϕ̃ẽ] =
1

2λ̃

[

σ̃(ẽ)− (ϕ̃ẽ)(λ̃)
]

ẽ+
1

2λ̃
[σ̃(ϕ̃ẽ) + ẽ(λ)] ϕ̃ẽ+ 2ξ,

where

b = g̃( ∇̃ξ ẽ, ϕ̃ẽ), σ̃ = S̃(ξ, .)ker η .

Proposition 4.2. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold. If h̃ is h1 type then
on U1 we have

(4.4) ∇̃ξh̃ = −2bh̃ϕ̃+ ξ(λ̃)s,

where s is the (1, 1)-type tensor defined by sξ = 0, sẽ = ẽ, sϕ̃ẽ = −ϕ̃ẽ.

Proof. Using (4.3), we get

(∇̃ξh̃)ξ = 0 = (−2bh̃ϕ̃+ ξ(λ̃)s)ξ,

(∇̃ξh̃)ẽ = 2λ̃bϕ̃ẽ+ ξ(λ̃)ẽ = (−2bh̃ϕ̃+ ξ(λ̃)s)ẽ,

(∇̃ξh̃)ϕ̃ẽ = −2λ̃bẽ− ξ(λ̃)ϕ̃ẽ = (−2bh̃ϕ̃+ ξ(λ̃)s)ϕ̃ẽ.

So, the last equations complete the proof of (4.4). �

Proposition 4.3. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h1 type.Then
the following equation holds on M.

(4.5) h̃2 − ϕ̃2 =
S̃(ξ, ξ)

2
ϕ̃2.

Proof. Using (2.6), we have S̃(ξ, ξ) = 2(λ̃
2 − 1). After calculating h̃2 − ϕ̃2 with respect to the basis

components, we get

(4.6) h̃2ξ − ϕ̃2ξ =
S̃(ξ, ξ)

2
ϕ̃2ξ = 0, h̃2ẽ − ϕ̃2ẽ =

S̃(ξ, ξ)

2
ϕ̃2ẽ, h̃2ϕ̃ẽ− ϕ̃3ẽ =

S̃(ξ, ξ)

2
ϕ̃2ϕ̃ẽ.

Thus the last equation completes the proof of (4.5). �

Lemma 4.4. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold. If h̃ is h1 type then the

Ricci operator Q̃ is given by

(4.7) Q̃ = a1I + b1η ⊗ ξ − ϕ̃(∇̃ξh̃) + σ̃(ϕ̃2)⊗ ξ − σ̃(ẽ)η ⊗ ẽ+ σ̃(ϕ̃ẽ)η ⊗ ϕ̃ẽ,

where a1 and b1 are smooth functions defined by a1 = 1 − λ̃
2
+ r

2 and b1 = 3(λ̃
2 − 1) − r

2 , respectively.

Moreover the components of the Ricci operator Q̃ are given by
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Q̃ξ = (a1 + b1)ξ − σ̃(ẽ)ẽ+ σ̃(ϕ̃ẽ)ϕ̃ẽ,

Q̃ẽ = σ̃(ẽ)ξ + (a1 − 2bλ̃)ẽ − ξ(λ̃)ϕ̃ẽ,(4.8)

Q̃ϕ̃ẽ = σ̃(ϕ̃ẽ)ξ + ξ(λ̃)ẽ+ (a1 + 2bλ̃)ϕ̃ẽ.

Proof. From (4.1), we have

l̃X = R̃(X, ξ)ξ = S̃(ξ, ξ)X − S̃(X, ξ)ξ + Q̃X − η(X)Q̃ξ − r

2
(X − η(X)ξ),

where l̃ denotes the Jacobi operator and X is a vector field. Using (2.5), the last equation implies

Q̃X = −ϕ̃2X + h̃2X − ϕ̃(∇̃ξh̃)X − S̃(ξ, ξ)X + S̃(X, ξ)ξ + η(X)Q̃ξ +
r

2
(X − η(X)ξ).

Since S̃(X, ξ) = S̃(ϕ̃2X, ξ) + η(X)S̃(ξ, ξ), we have

(4.9) Q̃X =
S̃(ξ, ξ)

2
ϕ̃2X − ϕ̃(∇̃ξh̃)X − S̃(ξ, ξ)X + S̃(ϕ̃2X, ξ)ξ + η(X)S̃(ξ, ξ)ξ + η(X)Q̃ξ +

r

2
ϕ̃2X.

One can easily prove that

(4.10) Q̃ξ = −σ̃(ẽ)ẽ + σ̃(ϕ̃ẽ)ϕ̃ẽ+ S̃(ξ, ξ)ξ.

Using (4.10) in (4.9), we have

Q̃X =
(

1− λ̃
2
+

r

2

)

X +
(

3(λ̃
2 − 1)− r

2

)

η(X)ξ(4.11)

−ϕ̃(∇̃ξh̃)X + σ̃(ϕ̃2X)ξ − η(X)σ̃(ẽ)ẽ+ η(X)σ̃(ϕ̃ẽ)ϕ̃ẽ,

for arbitrary vector field X . Hence, the proof follows from (4.11). By (4.4) and (4.11) we get (4.8). �

The tensor h̃ has the canonical form (II). Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact
metric manifold and p is a point of M . Then there exists a local pseudo-orthonormal basis {e1, e2, ξ} in
a neighborhood of p where g̃(e1, e1) = g̃(e2, e2) = g̃(e1, ξ) = g̃(e2, ξ) = 0 and g̃(e1, e2) = 1.

Lemma 4.5. Let U be the open subset of M where h̃ 6= 0. For every p ∈ U there exists an open
neighborhood of p such that h̃e1 = e2, h̃e2 = 0, h̃ξ = 0 and ϕ̃e1 = ±e1, ϕ̃e2 = ∓e2.

Proof. Since the tensor h̃ has canonical form (II) (with respect to a pseudo-orthonormal basis {e1, e2, ξ})
then h̃e1 = λ̃e1 + e2, h̃e2 = λ̃e2, h̃ξ = 0. Since h̃ξ = 0 and tr(h) = 0 we have λ̃ = 0. On the other
hand using the anti-symmetry tensor field ϕ̃ of type (1, 1), with respect to the pseudo-orthonormal basis
{e1, e2, ξ}, takes the form

(4.12)





ϕ̃11 ϕ̃12 0
ϕ̃21 ϕ̃22 0
0 0 0



 .

Using (2.1) and (4.12) we have

g̃(ϕ̃e1, e1) = 0 = ϕ̃21 and g̃(ϕ̃e2, e2) = 0 = ϕ̃12,(4.13)

g̃(ϕ̃e1, e2) = ϕ̃11 = −g̃(e1, ϕ̃e2) = −ϕ̃22

Other hand we get

(4.14) g̃(ϕ̃e1, ϕ̃e2) = ϕ̃11ϕ̃22 = −g(e1, e2) = 1.

From two last equation , ϕ̃22 = ∓1. This completes the proof. �
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Hence the tensor h̃ has the form





0 0 0
1 0 0
0 0 0



 relative a pseudo-orthonormal basis {e1, e2, e3}. In

this case, we call h̃ is of h2 type.

Remark 4.6. Without loss of generality, we can assume that ϕ̃e1 = e1 ϕ̃e2 = −e2. Moreover one can
easily get h̃2 = 0 but h̃ 6= 0.

Lemma 4.7. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h2 type. Then
for the covariant derivative on U the following equations are valid

i) ∇̃e1e1 = −b2e1 + ξ, ii) ∇̃e1e2 = b2e2 + ξ, iii) ∇̃e1ξ = −e1 − e2,

iv) ∇̃e2e1 = −b̃2e1 − ξ, v) ∇̃e2e2 = b̃2e2, vi) ∇̃e2ξ = e2,

vii) ∇̃ξe1 = a2e1, viii) ∇̃ξe2 = −a2e2,

ix) [e1, ξ] = −(1 + a2)e1 − e2, x) [e2, ξ] = (1 + a2)e2,(4.15)

xi) [e1, e2] = b̃2e1 + b2e2 + 2ξ.

where a2 = g̃(∇̃ξe1, e2), b2 = g̃(∇̃e1e2, e1) and b̃2 = − 1
2 σ̃(e1) = − 1

2 S̃(ξ, e1) .

Proof. Replacing X by e1 and Y by e2 in equation ∇̃ξ = −ϕ̃+ ϕ̃h̃, we have iii), vi).
For the proof of viii) we have

∇̃ξe2 = g̃(∇̃ξe2, e2)e1 + g̃(∇̃ξe2, e1)e2 + g̃(∇̃ξe2, ξ)ξ

= −g̃(e2, ∇̃ξe1)e2.

If the function a2 is defined as g̃(∇̃ξe1, e2) then ∇̃
ξ
e2 = −a2e2. The proofs of other covariant derivative

equalities are similar to ii).
Putting X = e1, Y = e2 and Z = ξ in the equation (4.1), we have

(4.16) R̃(e1, e2)ξ = −σ̃(e1)e2 + σ̃(e2)e1.

On the other hand, by using (2.4), we get

R̃(e1, e2)ξ = (∇̃e1 ϕ̃h̃)e2 − (∇̃e2 ϕ̃h̃)e1

= 2b̃2e2.(4.17)

Comparing (4.17) with (4.16), we obtain

(4.18) σ̃(e1) = −2b̃2, σ̃(e2) = 0 = S̃(ξ, e2).

Hence, the function b̃2 is obtained from the last equation. �

Next, we derive a useful formula for ∇̃ξh̃.

Proposition 4.8. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h2 type.
Then we have

(4.19) ∇̃ξh̃ = 2a2ϕ̃h̃,

on U .

Proof. Using (4.15), we get

(∇̃ξh̃)ξ = 0 = (2a2ϕ̃h̃)ξ,

(∇̃ξh̃)e1 = −2a2e2 = (2a2ϕ̃h̃)e1,

(∇̃ξh̃)e2 = 0 = (2a2ϕ̃h̃)e2.

�
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Using (2.6), we have S̃(ξ, ξ) = −2. After calculating h̃2 − ϕ̃2 with respect to the basis components, we
get

(4.20) h̃2ξ − ϕ̃2ξ =
S̃(ξ, ξ)

2
ϕ̃2ξ = 0, h̃2e1 − ϕ̃2e1 =

S̃(ξ, ξ)

2
ϕ̃2e1, h̃2e2 − ϕ̃2e2 =

S̃(ξ, ξ)

2
ϕ̃2e2.

So we have following

Proposition 4.9. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold. If h̃ is h2 type then
the following equation holds on M.

(4.21) h̃2 − ϕ̃2 =
S̃(ξ, ξ)

2
ϕ̃2.

Lemma 4.10. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h2 type. Then

the Ricci operator Q̃ is given by

(4.22) Q̃ = äI + b̈η ⊗ ξ − ϕ̃(∇̃ξh̃) + σ̃(ϕ̃2)⊗ ξ + σ̃(e1)η ⊗ e2,

where ä and b̈ are smooth functions defined by ä = 1 + r
2 and b̈ = −3− r

2 , respectively.

Proof. For 3-dimensional case, we have

l̃X = S̃(ξ, ξ)X − S̃(X, ξ)ξ + Q̃X − η(X)Q̃ξ − r

2
(X − η(X)ξ),

where l̃ denotes the Jacobi operator and X is a vector field. Using (2.5), the last equation implies

(4.23) Q̃X = −ϕ̃2X + h̃2X − ϕ̃(∇̃ξh̃)X − S̃(ξ, ξ)X + S̃(X, ξ)ξ + η(X)Q̃ξ +
r

2
(X − η(X)ξ).

Using ϕ̃2 = I − η ⊗ ξ, we get S̃(X, ξ) = S̃(ϕ̃2X, ξ) + η(X)S̃(ξ, ξ). So (4.23) becomes

(4.24) Q̃X =
S̃(ξ, ξ)

2
ϕ̃2X − ϕ̃(∇̃ξh̃)X − S̃(ξ, ξ)X + S̃(ϕ̃2X, ξ)ξ + η(X)S̃(ξ, ξ)ξ + η(X)Q̃ξ +

r

2
ϕ̃2X.

By the basis pseudo-orthonormal {e1, e2, ξ} and (4.18), it follows that

(4.25) Q̃ξ = σ̃(e1)e2 + S̃(ξ, ξ)ξ.

Using (4.25) in (4.24), we have

Q̃X =
(

1 +
r

2

)

X +
(

−3− r

2

)

η(X)ξ(4.26)

−ϕ̃(∇̃ξh̃)X + σ̃(ϕ̃2X)ξ + η(X)σ̃(e1)e2,

for arbitrary vector field X . Hence, proof comes from (4.26). �

A consequence of Lemma 4.10, we can give the components of the Ricci operator Q̃ by following,

Q̃ξ = (ä+ b̈)ξ + σ̃(e1)e2,

Q̃e1 = σ̃(e1)ξ + äe1 − 2ae2,(4.27)

Q̃e2 = äe2.

The tensor h̃ has the canonical form (III). Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact
metric manifold and p is a point of M . Then there exists a local orthonormal ϕ̃-basis {ẽ, ϕ̃ẽ, ξ} in a
neighborhood of p where −g̃(ẽ, ẽ) = g̃(ϕ̃ẽ, ϕ̃ẽ) = g̃(ξ, ξ) = 1. Now, let U1 be the open subset of M

where h̃ 6= 0 and let U2 be the open subset of points p ∈ M such that h̃ = 0 in a neighborhood of p.
U1∪ U2 is an open subset of M . For every p ∈ U1 there exists an open neighborhood of p such that
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h̃ẽ = λ̃ϕ̃ẽ, h̃ϕ̃ẽ = −λ̃ẽ and h̃ξ = 0 where λ̃ is a non-vanishing smooth function. Since trh̃ = 0, the matrix
form of h̃ is given by

(4.28) h̃ =





0 −λ̃ 0

λ̃ 0 0
0 0 0





with respect to local orthonormal basis {ẽ, ϕ̃ẽ, ξ}. In this case, we say that h̃ is of h3 type.

Lemma 4.11. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h3 type. Then
for the covariant derivative on U1 the following equations are valid

i) ∇̃ẽẽ = a3ϕ̃ẽ+ λ̃ξ, ii) ∇̃ẽϕ̃ẽ = a3ẽ+ ξ, iii) ∇̃ẽξ = −ϕ̃ẽ+ λ̃ẽ,

iv) ∇̃ϕ̃ẽẽ = b3ϕ̃ẽ− ξ, v) ∇̃ϕ̃ẽϕ̃ẽ = b3ẽ+ λ̃ξ, vi) ∇̃ϕ̃ẽξ = −ẽ− λ̃ϕ̃ẽ,

vii) ∇̃ξ ẽ = b̃3ϕ̃ẽ, viii) ∇̃ξϕ̃ẽ = b̃3ẽ,

ix) [ẽ, ξ] = λ̃ẽ− (1 + b̃3)ϕ̃ẽ, x) [ϕ̃ẽ, ξ] = −(1 + b̃3)ẽ− λ̃ϕ̃ẽ, xi) [ẽ, ϕ̃ẽ] = a3ẽ − b3ϕ̃ẽ+ 2ξ.(4.29)

where a3, b3 and b̃3 are defined by

a3 = − 1

2λ̃

[

σ(ϕ̃ẽ) + (ϕ̃ẽ)(λ̃)
]

, σ̃(ẽ) = S(ξ, ẽ),

b3 =
1

2λ̃

[

σ(ẽ)− ẽ(λ̃)
]

, σ̃(ϕ̃ẽ) = S(ξ, ϕ̃ẽ),

b̃3 = g̃(∇̃ξ ẽ, ϕ̃ẽ)

respectively.

Proof. Replacing X by ẽ and Y by ϕ̃ẽ in equation ∇̃ξ = −ϕ̃+ ϕ̃h̃, we have iii), vi).
For the proof of viii) we have

∇̃ξϕ̃ẽ = −g̃(∇̃ξϕ̃ẽ, ẽ)ẽ + g̃(∇̃ξϕ̃ẽ, ϕ̃ẽ)ϕ̃ẽ+ g̃(∇̃ξϕ̃ẽ, ξ)ξ

= g̃(ϕ̃ẽ, ∇̃ξ ẽ)ẽ,

where b̃3 = g̃(∇̃ξ ẽ, ϕ̃ẽ). So we obtain ∇̃ξϕ̃ẽ = b̃3ẽ . The proofs of other covariant derivative equalities
are similar to viii).

Putting X = ẽ, Y = ϕ̃ẽ, Z = ξ in the equation (4.1), we have

R̃(ẽ, ϕ̃ẽ)ξ = −g̃(Q̃ẽ, ξ)ϕ̃ẽ+ g̃(Q̃ϕ̃ẽ, ξ)ẽ.

Since σ̃(X) is defined as g̃(Q̃ξ,X), we have

(4.30) R̃(ẽ, ϕ̃ẽ)ξ = −σ̃(ẽ)ϕ̃ẽ+ σ̃(ϕ̃ẽ)ẽ.

On the other hand, by using (2.4), we have

R̃(ẽ, ϕ̃ẽ)ξ = (∇̃ẽϕ̃h̃)ϕ̃ẽ− (∇̃ϕ̃ẽϕ̃h̃)ẽ

= (−2a3λ̃− (ϕ̃ẽ)(λ̃))ẽ + (−2b3λ̃− ẽ(λ̃))ϕ̃ẽ.(4.31)

Comparing (4.31) with (4.30), we get

σ̃(ẽ) = ẽ(λ̃) + 2b3λ̃, σ̃(ϕ̃ẽ) = −(ϕ̃ẽ)(λ̃)− 2a3λ̃.

Hence, the functions a3 and b3 are obtained from the last equation. �

Next, we derive a useful formula for ∇̃ξh̃.



A STUDY OF THREE-DIMENSIONAL PARACONTACT (κ̃, µ̃, ν̃)-SPACES 15

Proposition 4.12. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h3 type.
So, on U1 we have

(4.32) ∇̃ξh̃ = −2b̃3h̃ϕ̃+ ξ(λ̃)s,

where s is the (1, 1)-type tensor defined by sξ = 0, sẽ = ϕ̃ẽ, sϕ̃ẽ = −ẽ.

Proof. Using (4.29), we get

(∇̃ξh̃)ξ = 0 = (−2b̃3h̃ϕ̃+ ξ(λ̃)s)ξ,

(∇̃ξh̃)ẽ = 2b̃3λ̃ẽ+ ξ(λ̃)ϕ̃ẽ = (−2b̃3h̃ϕ̃+ ξ(λ̃)s)ẽ,

(∇̃ξh̃)ϕ̃ẽ = −2b̃3λ̃ϕ̃ẽ − ξ(λ̃)ẽ = (−2b̃3h̃ϕ̃+ ξ(λ̃)s)ϕ̃ẽ.

The last equations complete the proof of (4.32). �

Proposition 4.13. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h3 type.
Then the following equation holds on M.

(4.33) h̃2 − ϕ̃2 =
S̃(ξ, ξ)

2
ϕ̃2.

Proof. Using (2.6), we have S̃(ξ, ξ) = 2(1 + λ̃
2
). After calculating h̃2 − ϕ̃2 with respect to the basis

components, we get

(4.34) h̃2ξ − ϕ̃2ξ =
S̃(ξ, ξ)

2
ϕ̃2ξ = 0, h̃2ẽ− ϕ̃2ẽ =

S̃(ξ, ξ)

2
ϕ̃2ẽ, h̃2ϕ̃ẽ− ϕ̃3ẽ =

S̃(ξ, ξ)

2
ϕ̃2ϕ̃ẽ.

(4.34) completes the proof of (4.33). �

Lemma 4.14. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold with h̃ of h3 type. Then

the Ricci operator Q̃ is given by

(4.35) Q̃ = ā I + b̄η ⊗ ξ − ϕ̃(∇̃ξh̃) + σ̃(ϕ̃2)⊗ ξ − σ̃(ẽ)η ⊗ ẽ+ σ̃(ϕ̃ẽ)η ⊗ ϕ̃ẽ,

where ā and b̄ are smooth functions defined by ā = 1 + λ̃
2
+ r

2 and b̄ = −3(λ̃
2
+ 1) − r

2 , respectively.

Moreover the components of the Ricci operator Q̃ are given by

Q̃ξ = (ā+ b̄)ξ − σ̃(ẽ)ẽ+ σ̃(ϕ̃ẽ)ϕ̃ẽ,

Q̃ẽ = σ̃(ẽ)ξ + (ā+ ξ(λ̃))ẽ − 2b̃3λ̃ϕ̃ẽ,(4.36)

Q̃ϕ̃ẽ = σ̃(ϕ̃ẽ)ξ + 2b̃3λ̃ẽ+ (ā+ ξ(λ̃))ϕ̃ẽ.

Proof. By (4.1), we have

R̃(X, ξ)ξ = S̃(ξ, ξ)X − S̃(X, ξ)ξ + Q̃X − η(X)Q̃ξ − r

2
(X − η(X)ξ),

for any vector field X. Using (2.5), the last equation implies

(4.37) Q̃X = −ϕ̃2X + h̃2X − ϕ̃(∇̃ξh̃)X − S̃(ξ, ξ)X + S̃(X, ξ)ξ + η(X)Q̃ξ +
r

2
(X − η(X)ξ).

By writing S̃(X, ξ) = S̃(ϕ̃2X, ξ) + η(X)S̃(ξ, ξ) in (4.37), we obtain

(4.38) Q̃X =
S̃(ξ, ξ)

2
ϕ̃2X − ϕ̃(∇̃ξh̃)X − S̃(ξ, ξ)X + S̃(ϕ̃2X, ξ)ξ + η(X)S̃(ξ, ξ)ξ + η(X)Q̃ξ +

r

2
ϕ̃2X.

We know that the Ricci tensor S̃ with respect to the orthonormal basis {ẽ, ϕ̃ẽ, ξ} is given by

(4.39) Q̃ξ = −σ̃(ẽ)ẽ + σ̃(ϕ̃ẽ)ϕ̃ẽ+ S̃(ξ, ξ)ξ.
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Using (4.39) in (4.38), we have

Q̃X =
(

1 + λ̃
2
+

r

2

)

X +
(

−3(λ̃
2
+ 1)− r

2

)

η(X)ξ(4.40)

−ϕ̃(∇̃ξh̃)X + σ̃(ϕ̃2X)ξ − η(X)σ̃(ẽ)ẽ+ η(X)σ̃(ϕ̃ẽ)ϕ̃ẽ,

for arbitrary vector field X . This ends the proof. �

The tensor h̃ has the canonical form (IV). Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact
metric manifold and p is a point of M . Then there exists a local pseudo-orthonormal basis {e1, e2, e3} in
a neighborhood of p where g̃(e1, e1) = g̃(e2, e2) = g̃(e1, e3) = g̃(e2, e3) = 0 and g̃(e1, e2) = g̃(e3, e3) = 1.

Since the tensor h̃ has canonical form (IV) (with respect to a pseudo-orthonormal basis {e1, e2, e3}) then
h̃e1 = λ̃e1 + e3, h̃e2 = λ̃e2 and h̃e3 = e2 + λ̃e3. Since 0 = trh̃ = g̃(h̃e1, e2) + g̃(h̃e2, e1) + g̃(h̃e3, e3) = 3λ̃,

then λ̃ = 0. We write ξ = g̃(ξ, e2)e1 + g̃(ξ, e1)e2 + g̃(ξ, e3)e3 respect to the pseudo-orthonormal basis

{e1, e2, e3}. Since h̃ξ = 0, we have 0 = g̃(ξ, e2)e3 + g̃(ξ, e3)e2. Hence we get ξ = g̃(ξ, e1)e2 which leads to
a contradiction with g̃(ξ, ξ) = 1. Thus, this case does not occur.

The proof of Theorem 1.1:
According to a suitable (pseudo)-orthonormal basis, h̃ can be put into one of the three forms. So we

will need three cases.
Case 1: Firstly, we suppose that h̃ is h1 type.
From (1.3) we have

∇̃∗∇̃ξ = −∇̃ẽ∇̃ẽξ + ∇̃∇̃ẽ ẽ
ξ + ∇̃ϕ̃ẽ∇̃ϕ̃ẽξ − ∇̃∇̃ϕ̃ẽϕ̃ẽ

ξ

= −σ̃(ẽ)ẽ+ σ̃(ϕ̃ẽ)ϕ̃ẽ + 2(λ̃
2
+ 1)ξ.

By using (1.4) and (4.8) we obtain σ̃(ẽ) = σ̃(ϕ̃ẽ) = 0 and Q̃ξ = 2(λ̃
2 − 1)ξ.

Case 2: Secondly, we assume that h̃ is h2 type.
We construct an orthonormal basis {ẽ, ϕ̃ẽ, ξ} from the pseudo-orthonormal basis {e1, e2, ξ} such that

(4.41) ẽ =
e1 − e2√

2
, ϕ̃ẽ =

e1 + e2√
2

, g̃(ẽ, ẽ) = −1 and g̃(ϕ̃ẽ, ϕ̃ẽ) = 1.

Then h̃ with respect to this new basis takes the form,

(4.42) h̃ẽ = h̃ϕ̃ẽ =
1

2
(−ẽ+ ϕ̃ẽ).

By Lemma 4.7 we have

∇̃ẽẽ =
1√
2
(−b2 −

1

2
σ̃(e1))ϕ̃ẽ+

1

2
ξ, ∇̃ẽϕ̃ẽ = − 1√

2
(b2 +

1

2
σ̃(e1))ẽ +

3

2
ξ,(4.43)

∇̃ẽξ =
ẽ− 3ϕ̃ẽ

2
, ∇̃ϕ̃ẽẽ = − 1√

2
(b2 −

1

2
σ̃(e1))ϕ̃ẽ−

1

2
ξ,

∇̃ϕ̃ẽϕ̃ẽ = − 1√
2
(b2 −

1

2
σ̃(e1))ẽ +

1

2
ξ, ∇̃ϕ̃ẽξ =

−ẽ− ϕ̃ẽ

2
.

Using (1.3) and (4.43) we get

∇̃∗∇̃ξ = −∇̃ẽ∇̃ẽξ + ∇̃∇̃ẽẽ
ξ + ∇̃ϕ̃ẽ∇̃ϕ̃ẽξ − ∇̃∇̃ϕ̃ẽϕ̃ẽξ(4.44)

=
σ̃(e1)√

2
(ẽ − ϕ̃ẽ) + 2ξ.

From (1.4) and (4.44), we obtain σ̃(e1) = 0. By help of (4.27), ξ is an eigenvector of the Ricci operator.

Case 3: Finally, let h̃ be h3 type.
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Again using (1.3) we obtain

∇̃∗∇̃ξ = −∇̃ẽ∇̃ẽξ + ∇̃∇̃ẽ ẽ
ξ + ∇̃ϕ̃ẽ∇̃ϕ̃ẽξ − ∇̃∇̃ϕ̃ẽϕ̃ẽ

ξ

= −σ̃(ẽ)ẽ+ σ̃(ϕ̃ẽ)ϕ̃ẽ + 2(1− λ̃
2
)ξ.

From (1.4), we obtain σ̃(ẽ) = σ̃(ϕ̃ẽ) = 0. By (4.36) we have Q̃ξ = −2(1 + λ̃
2
)ξ.

This completes the proof.
The proof of Theorem 1.2:
We give proof of the theorem for three cases respect to chosen (pseudo)-orthonormal basis.

Case 1: We assume that h̃ is h1 type.
Since ξ is a harmonic vector field, ξ is an eigenvector of Q̃. Hence we obtain that σ̃ = 0. Putting

s = 1
λ̃
h̃ in (4.7) we have

(4.45) Q̃ = a1I + b1η ⊗ ξ − 2bh̃− ξ(λ̃)

λ̃
ϕ̃h̃.

Setting Z = ξ in (4.1) and using (4.45), we obtain

R̃(X,Y )ξ = (λ̃
2 − 1)(η(Y )X − η(X)Y )− 2b(η(Y )h̃X − η(X)h̃Y )− ξ(λ̃)

λ̃
(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y ),

where the functions κ̃, µ̃ and ν̃ defined by κ̃ = S̃(ξ,ξ)
2 , µ̃ = −2b, ν̃ = − ξ(λ̃)

λ̃
, respectively. So, it is obvious

that for this type κ̃ > −1. Moreover, using (4.45), we have Q̃ϕ̃− ϕ̃Q̃ = 2µ̃h̃ϕ̃− 2ν̃h̃.

Case 2: Secondly, let h̃ be h2 type.
Putting σ̃ = 0 in (4.22) we get

(4.46) Q̃ = äI + b̈η ⊗ ξ − 2a2h̃,

which yields

(4.47) Q̃ξ = S̃(ξ, ξ)ξ,

for any vector fields on M. Putting ξ instead of Z in (4.1) we obtain

R̃(X,Y )ξ = −S̃(X, ξ) + S̃(Y, ξ)− η(X)Q̃Y(4.48)

+η(Y )Q̃X +
r

2
(η(X)Y − η(Y )X),

for any vector field X. Using (4.46) and (4.47) in (4.48), we obtain

R̃(X,Y )ξ = −(η(Y )X − η(X)Y )− 2a2(η(Y )h̃X − η(X)h̃Y ),

where the functions κ̃ and µ̃ defined by κ̃ = S̃(ξ,ξ)
2 , µ̃ = −2a2, respectively. So, it is obvious that for this

type κ̃ = −1. Furthermore, by (4.46), we have Q̃ϕ̃− ϕ̃Q̃ = 2µ̃h̃ϕ̃.

Case 3: Finally, we suppose that h̃ is h3 type.
Since M is a H-paracontact metric manifold we have σ̃ = 0. Putting s = 1

λ̃
h̃ in (4.35) we get

(4.49) Q̃ = āI + b̄η ⊗ ξ − 2b̃3h̃−
(

ξ(λ̃)

λ̃

)

ϕ̃h̃,

which yields

(4.50) Q̃ξ = S̃(ξ, ξ)ξ,
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for any vector fields on M. Setting ξ = Z in (4.1) we find

R̃(X,Y )ξ = −S̃(X, ξ) + S̃(Y, ξ)− η(X)Q̃Y(4.51)

+η(Y )Q̃X +
r

2
(η(X)Y − η(Y )X),

for any vector field X. Using (4.49) and (4.50) in (4.51), we get

R̃(X,Y )ξ = (−1− λ̃
2
)(η(Y )X − η(X)Y )− 2b̃3(η(Y )h̃X − η(X)h̃Y )− ξ(λ̃)

λ̃
(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y ),

where the functions κ̃, µ̃ and ν̃ defined by κ̃ = S̃(ξ,ξ)
2 , µ̃ = −2b̃3, ν̃ = − ξ(λ̃)

λ̃
, respectively. So, it is obvious

that for this type κ̃ < −1. By help of (4.49), we get Q̃ϕ̃− ϕ̃Q̃ = −2µ̃h̃ϕ̃− 2ν̃h̃.
Conversely, let M is a paracontact metric ( κ̃, µ̃, ν̃)-manifold. Using Teorem 1.1 and (3.3), we conclude

that ξ is harmonic vector field.
This completes the proof.
Concluding Lemma: Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact metric manifold. Then a

canonical form of h̃ stays constant in an open neighborhood of any point for h̃.
Proof: Let U1 be open subset of M where h̃ 6= 0 and p, q ∈ U1 with p 6= q.
Case 1. Now we assume that h̃p has canonical form (I) at TpM

3
1 . In this case, there exists an orthonor-

mal ϕ̃-basis {ẽ, ϕ̃ẽ, ξ} such that

(4.52) h̃pẽ = λ̃(p)ẽ, h̃p(ϕ̃ẽ) = − λ̃(p)ϕ̃ẽ, h̃pξ = 0,

with −g̃(ẽ, ẽ) = g̃(ϕ̃ẽ, ϕ̃ẽ) = g̃(ξ, ξ) = 1.

In TqM
3
1 we suppose that h̃q has canonical form (II). By Lemma 4.5 we can construct a pseudo-

orthonormal basis {e1, e2, e3} in a neighborhood of q such that h̃qe1 = e2, h̃qe2 = 0, h̃qe3 = 0 and
ϕ̃e1 = e1, ϕ̃e2 = −e2, ϕ̃e3 = 0 and also ξ = e3 with g̃(e1, e1) = g̃(e2, e2) = g̃(e1, e3) = g̃(e2, e3) = 0 and
g̃(e1, e2) = g̃(e3, e3) = 1. Putting

(4.53) Ẽ =
e1 − e2√

2
, ϕ̃Ẽ =

e1 + e2√
2

we get an orthonormal basis such that −g̃(Ẽ, Ẽ) = g̃(ϕ̃Ẽ, ϕ̃Ẽ) = g̃(ξ, ξ) = 1 and also

(4.54) h̃qẼ = h̃qϕ̃Ẽ =
1

2
(−Ẽ + ϕ̃Ẽ).

So tangent spaces TpM = span{ẽ, ϕ̃ẽ, ξ} and TqM = span{Ẽ, ϕ̃Ẽ, ξ) have same dimension and index.
Thus there exist a linear isometry F∗ from TpM to TqM such that F (p) = q and

(4.55) F∗(ẽ) = Ẽ, F∗(ϕ̃ẽ) = ϕ̃Ẽ, F∗(ξ) = ξ.

By (4.52) and (4.55) we have

(4.56) F∗(h̃pẽ) = λ̃(q)Ẽ, F∗(h̃pϕ̃ẽ) = −λ̃(q)ϕ̃Ẽ.

Using (4.54) and (4.56) we obtain

0 = trh̃2
q = 2λ̃

2
(q),

which implies that λ̃(q) = 0. Hence we contradict the fact that q ∈ U1.

Case 2. Again we assume that h̃p has canonical form (I) at TpM
3
1 . Suppose to contrary that h̃q has

canonical form (III) in TqM. One can construct a local orthonormal ϕ̃-basis {f̃1, ϕ̃f̃1, ξ} in a neighborhood

of q such that −g̃(f̃1, f̃1) = g̃(ϕ̃f̃1, ϕ̃f̃1) = g̃(ξ, ξ) = 1, h̃q(f̃1) = λ̃1(q)ϕ̃f̃1, h̃q(ϕ̃f̃1) = −λ̃1(q)f̃1. Since
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tangent spaces TpM
3
1 = span{ẽ, ϕ̃ẽ, ξ} and TqM

3
1 = span{f̃1, ϕ̃f̃1, ξ) have same dimension and index, we

can construct a linear isometry T∗ from TpM
3
1 to TqM

3
1 such that T (p) = q and

(4.57) T∗(ẽ) = f̃1, T∗(ϕ̃ẽ) = ϕ̃f̃1, T∗(ξ) = ξ.

So we get

(4.58) T∗(h̃pẽ) = λ̃(q)f̃1, T∗(h̃pϕ̃ẽ) = −λ̃(q)ϕ̃f̃1.

From (4.57) and (4.58) we find

−2λ̃
2

1(q) = trh̃2
q = 2λ̃

2
(q)

and this last equation gives λ̃1(q) = λ̃(q) = 0 which contradicts with q ∈ U1.

Case 3 . Let us consider that h̃p has canonical form (III) at TpM
3
1 . In this case, there exist an

orthonormal ϕ̃-basis {ẽ, ϕ̃ẽ, ξ} such that

h̃pẽ = λ̃(p)ϕ̃ẽ, h̃p(ϕ̃ẽ) = −λ̃(p)ẽ, h̃pξ = 0

with −g̃(ẽ, ẽ) = g̃(ϕ̃ẽ, ϕ̃ẽ) = g̃(ξ, ξ) = 1. In TqM
3
1 we suppose that h̃q has canonical form (II). Similar

arguments as in Case 1, we obtain

0 = trh̃2
q = 2λ̃

2
(q)

which leads to a contradiction of chosen q. This completes proof of the concluding lemma.
Now we will give some examples of 3-dimensional (κ̃, µ̃, ν̃)-paracontact metric manifolds according to

the cases κ̃ > −1, κ̃ = −1 and κ̃ < −1.

Example 4.15. We consider the 3-dimensional manifold

M = {(x, y, z) ∈ R3 | 2y + z 6= 0, z 6= 0}

and the vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = (2y + z)

∂

∂x
− (2zx− 1

2z
y)

∂

∂y
+

∂

∂z
.

The 1-form η = dx− (2y+ z)dz defines a contact structure on M with characteristic vector field ξ = ∂
∂x

.
We define the structure tensor ϕ̃ẽ1 = 0, ϕ̃ẽ2 = ẽ3 and ϕ̃ẽ3 = ẽ2. Let g̃ be Lorentzian metric defined
by g̃(e1, e1) = −g̃(e2, e2) = g̃(e3, e3) = 1 and g̃(e1, e2) = g̃(e1, e3) = g̃(e2, e3) = 0. Then (ϕ̃, ξ, η, g̃) is
a paracontact metric structure on M . Using Lemma 4.1, we conclude that M is a generalized (κ̃,µ̃)
paracontact metric manifold with κ̃ = −1 + z2, µ̃ = 2(1− z).

Example 4.16. Consider the 3-dimensional manifold

M =
{

(x, y, z) ∈ R
3 | 2y − z 6= 0,

}

,

where (x, y, z) are the cartesian coordinates in R
3. We define three vector fields on M as

e1 = (−2y + z)
∂

∂x
+ (x− 2y − z)

∂

∂y
+

∂

∂z
, e2 =

∂

∂y
, e3 = ξ =

∂

∂x
.

The pseudo-Riemannian metric g̃, and the (1, 1)-tensor field ϕ̃ given by

g̃ =





1 0 (2y − z)/2
0 0 1

2
(2y − z)/2 1

2 (−2y + z)2 − 2(x− 2y − z)



 , ϕ̃ =





0 0 −2y + z
0 −1 x− 2y − z
0 0 1



 .
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So we easily obtain g̃(e1, e1) = g̃(e2, e2) = g̃(e1, e3) = g̃(e2, e3) = 0 and g̃(e1, e2) = g̃(e3, e3) = 1.

Moreover we have η = dx + (2y − z)dz and h̃ =





0 0 0
0 0 1
0 0 0



 with respect to the basis ∂
∂x

, ∂
∂y

, ∂
∂z
. By

direct calculations we get

R̃(X,Y )ξ = −(η(Y )X − η(X)Y ) + 2(η(Y )h̃X − η(X)h̃Y ).

Finally we deduce that M is a (−1, 2, 0)-paracontact metric manifold.

Remark 4.17. To our knowledge, the above example is the first numerical example satisfying κ̃ = −1
and h̃ 6= 0 in R

3.

Example 4.18. In [20] Koufogiorgos et al. construct following example.
Consider 3-dimensional manifold

M =
{

(x, y, z) ∈ R
3 | 2x+ ey+z > 0, y 6= z

}

and the vector fields e1 = ∂
∂x

,

e2 =

(

−
(

y2 + z2

2

)

(2x+ ey+z)
1
2

)

∂

∂x
+

(

z(2x+ ey+z)
1
2

y − z
+

(2x+ ey+z)−
1
2

y − z

)

∂

∂y

+

(

y(2x+ ey+z)
1
2

z − y
+

(2x+ ey+z)−
1
2

z − y

)

∂

∂z
,

e3 =

((

y2 + z2

2

)

(2x+ ey+z)
1
2

)

∂

∂x
+

(

z(2x+ ey+z)
1
2

z − y
+

(2x+ ey+z)−
1
2

y − z

)

∂

∂y

+

(

y(2x+ ey+z)
1
2

y − z
+

(2x+ ey+z)−
1
2

z − y

)

∂

∂z
.

Let η be the 1-form dual to e1. The contact Riemannian structure is defined as follows

ξ = e1, ϕe1 = 0, ϕe2 = e3and ϕe3 = −e2,

g(ei, ej) = δij for any i, j ∈ {1, 2, 3}.
Thus it can be deduced that (M,ϕ, ξ, η, g) is a (κ, µ, ν)-contact metric manifold with κ = 1− 1

(2x+ey+z)2 , µ =

2 and ν = −2
(2x+ey+z) .

Next,using (5.11) we can construct paracontact structure as follows

ẽ1 = ξ, ẽ2 =
1√
2
(e2 − e3), ẽ3 =

1√
2
(e2 + e3) such that ϕ̃ẽ1 = 0, ϕ̃ẽ2 = ẽ3 and ϕ̃ẽ3 = ẽ2

g̃(ẽ1, ẽ1) = 1, g̃(ẽ2, ẽ2) = −1, g̃(ẽ3, ẽ3) = 1 and

g̃(ẽ1, ẽ2) = g̃(ẽ1, ẽ3) = g̃(ẽ2, ẽ3) = 0.

Moreover, the matrix form of h̃ is given by

h̃ =





0 −λ 0
λ 0 0
0 0 0



 ,

where λ =
√
1− κ. After calculations, we finally deduce that (M, ϕ̃, ξ, η, g̃) is a (κ̃, µ̃, ν̃)-paracontact metric

manifold κ̃ = κ− 2, µ̃ = 2 and ν̃ = −ν.

Remark 4.19. In the last example ν is a non-constant smooth function.
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Remark 4.20. Choosing ν is a constant function, we can construct a family of (κ̃ < −1, µ̃ = 2, ν̃ = −ν)-
paracontact metric manifolds.

We will finish this section by the following theorem.

Theorem 4.21. Let (M, ϕ̃, ξ, η, g̃) be a 3-dimensional paracontact (κ̃, µ̃, ν̃)-manifold . If the characteris-
tic vector field ξ : (M, g̃) → (T1M, g̃s) is harmonic map then paracontact (κ̃, µ̃, ν̃)-manifold is paracontact
(κ̃, µ̃)-manifold, i.e. ν̃ = 0.

Proof. Using the definition of paracontact (κ̃, µ̃, ν̃)-manifold and properties of curvature tensor one has

(4.59) R̃(ξ,W )X = κ̃(g̃(X,W )ξ − η(X)W ) + µ̃(g̃(h̃X,W )ξ − η(X)h̃W ) + ν̃(g̃(ϕ̃h̃X,W )ξ − η(X)ϕ̃h̃W ).

Since the characteristic vector field ξ is harmonic vector field for the paracontact (κ̃, µ̃, ν̃)-manifold it is
enough to calculate (1.5).

Case 1: Assume that κ̃ > −1.
Using (4.2), (4.3) and (4.59) in (1.5), we get

tr[R(∇.ξ, ξ).] = (λ̃− 1)R̃(ξ, ϕ̃ẽ)ẽ+ (λ̃ + 1)R̃(ξ, ẽ)ϕ̃ẽ = 2λ̃2ν̃ξ.

So, we conclude that tr[R(∇.ξ, ξ).] = 0 if and only if ν̃ = 0.
Case 2: We suppose that κ̃ = −1. In this case we know that ν̃ vanishes.
By help of (4.41), (4.42), (4.43) and (4.59), we obtain directly tr[R(∇.ξ, ξ).] = 0.
Case 3: Now we consider κ̃ < −1.
Using (4.28), (4.29) and (4.59) in (1.5), we have

tr[R(∇.ξ, ξ).] = −2λ̃
2
ν̃ξ.

Therefore, we deduce that tr[R(∇.ξ, ξ).] = 0 if and only if ν̃ = 0.
Thus, we complete the proof of the theorem. �

5. An Application

Now we will give some properties of 3-dimensional contact metric manifolds.
Let (M,ϕ, ξ, η, g) be a contact metric 3-manifold. Let

U = {p ∈ M | h(p) 6= 0} ⊂ M,

U0 = {p ∈ M | h(p) = 0, in a neighborhood of p} ⊂ M.

That h is a smooth function on M implies U ∪ U0 is an open and dense subset of M , so any property
satisfied in U0 ∪ U is also satisfied in M. For any point p ∈ U ∪ U0, there exists a local orthonormal
basis {e, ϕe, ξ} of smooth eigenvectors of h in a neighborhood of p (this we call a ϕ-basis). On U , we put
he = λe, hϕe = −λϕe, where λ is a nonvanishing smooth function assumed to be positive.

Lemma 5.1 ([17]). (see also [10]) On the open set U we have

∇ξe = aϕe, ∇ee = bϕe, ∇ϕee = −cϕe + (λ− 1)ξ,(5.1)

∇ξϕe = −ae,∇eϕe = −be+ (1 + λ)ξ,∇ϕeϕe = ce,(5.2)

∇ξξ = 0, ∇eξ = −(1 + λ)ϕe, ∇ϕeξ = (1− λ)e,(5.3)

∇ξh = −2ahϕ+ ξ(λ)s,(5.4)

where a is a smooth function,



22 I. KUPELI ERKEN AND C. MURATHAN

b =
1

2λ
(ϕe(λ) +A) with A = η(Qe) = S(ξ, e),(5.5)

c =
1

2λ
(e(λ) +B) with B = η(Qϕe) = S(ξ, ϕe),(5.6)

and s is the type (1, 1) tensor field defined by sξ = 0, se = e and sϕe = −ϕe.
In [4], Boeckx provided a local classification of non-Sasakian (κ, µ)-contact metric manifold respect to

the number

(5.7) IM =
1− µ

2√
1− κ

,

which is an invariant of a (κ, µ)-contact metric manifold up to Dα-homothetic deformations.
For (κ, µ, ν)-contact metric manifolds, T. Koufogiorgos et al. [20] proved that the following relations

hold

h2 = (κ− 1)ϕ2 for κ ≤ 1,(5.8)

ξ(κ) = 2ν(κ− 1), ξ(λ) = ν(λ),(5.9)

∇ξh = µhϕ+ νh.(5.10)

Recently, in [19], the authors gave the following local classification of a non-Sasakian (κ, µ, ν)-contact
metric manifolds with ξ(IM ) = 0.

Theorem 5.2 ([19]). Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν = const.)-contact metric manifold and
ξ(IM ) = 0, where ν = const. 6= 0. Then

1) At any point of M , precisely one of the following relations is valid: µ = 2(1 +
√
1− κ), or µ =

2(1−
√
1− κ)

2) At any point p ∈ M there exists a chart (U, (x, y, z)) with p ∈ U ⊆ M, such that
i) the functions κ, µ depend only on the variables x, z.
ii) if µ = 2(1 +

√
1− κ), (resp. µ = 2(1 −

√
1− κ)), the tensor fields η, ξ, ϕ, g, h are given by

the relations,

ξ =
∂

∂x
, η = dx − adz,

g =





1 0 −a
0 1 −b
−a −b 1 + a2 + b2







resp. g =





1 0 −a
0 1 −b
−a −b 1 + a2 + b2







 ,

ϕ =





0 a −ab
0 b −1− b2

0 1 −b







resp. ϕ =





0 −a ab
0 −b 1 + b2

0 −1 b







 ,

h =





0 0 −aλ
0 λ −2λb
0 0 −λ







resp. h =





0 0 aλ
0 −λ 2λb
0 0 λ







 ,

with respect to the basis
(

∂
∂x

, ∂
∂y

, ∂
∂z

)

, where a = 2y+f(z) (resp. a = −2y+f(z)), b = − y2

2 ν−y f(z)
2 ν−

y
2
r
′

(z)
r(z) + 2

ν
r(z)eνx + s(z) (resp. b = y2

2 ν − y f(z)
2 ν − y

2
r
′

(z)
r(z) + 2

ν
r(z)eνx + s(z)), λ = λ(x, z) = r(z)eνx and

f(z), r(z), s(z) are arbitrary smooth functions of z.

Now we are going to give a natural relation between non-Sasakian (κ, µ, ν)-contact metric manifolds
with ξ(IM ) = 0 and 3-dimensional paracontact metric manifolds.

If Theorem 2.1 is adapted for the 3-dimensional non-Sasakain (κ, µ, ν)-contact metric manifold and
used same procedure for proof then we have same result. Hence we can give following theorem.
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Theorem 5.3 ([11]). Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν)-contact metric manifold. Then M
admits a canonical paracontact metric structure (ϕ̃, ξ, η, g̃) is given by

(5.11) ϕ̃ :=
1√
1− κ

h, g̃ :=
1√
1− κ

dη(·, h·) + η ⊗ η.

After a long but straightforward calculation as in [11], we get

Proposition 5.4. Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν)-contact metric manifold. Then the Levi-

Civita connections ∇ and ∇̃ of g and g̃ are related as

∇̃XY = ∇XY +
1

2(1− κ)
ϕh(∇Xϕh)Y − 1√

1− κ
η(Y )hX − 1√

1− κ
η(X)hY

−1

2
η(Y )ϕhX − (1 − µ)

2
η(Y )ϕX − ν

2
η(Y )ϕ2X

+(
1

2
√
1− κ

g(hX, Y ) +
√
1− κg(X,Y )−

√
1− κη(X)η(Y )(5.12)

+
(1− µ)

2
√
1− κ

g(hX, Y )− g(X,ϕY ) +X(η(Y ))− η(∇XY ))ξ

−1

2
(1− κ)(X(

1√
1− κ

)ϕ2Y + Y (
1√
1− κ

)ϕ2X +

+
1

(1− κ)
g(X,ϕhY )ϕhgrad(

1√
1− κ

)),

for any X,Y ∈ Γ(TM).

Now we will give a relation between h̃ and h by following lemma.

Lemma 5.5. Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν)-contact metric manifold and let (ϕ̃, ξ, η, g̃) be
the canonical paracontact metric structure induced on M , according to Theorem 5.3. Then we have

(5.13) h̃ =
1

2
√
1− κ

((2− µ)ϕ ◦ h+ 2(1− κ)ϕ).

Proof. By help the equations (5.9), (5.11) and the definitons of h̃ and h we have

2h̃ = Lξϕ̃ = Lξ(
1√
1− κ

h)

= − ν√
1− κ

h+
1

2
√
1− κ

Lξ(Lξϕ).(5.14)

Using the identities ∇ξ = −ϕ− ϕh,∇ξϕ = 0 and ϕ2h = −h, and following same procedure cf. [[11] pg.
270], we get

2h̃ = − ν√
1− κ

h+
1

2
√
1− κ

(2∇ξh+ 4h2ϕ− 4hϕ).

By using (5.8) and (5.10), we obtain the claimed relation. �

Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν)-contact metric manifold. Choosing a local orthonormal
ϕ-basis {e, ϕe, ξ} on (M,ϕ, ξ, η, g) and using Proposition 5.4, Lemma 5.5 and Lemma 5.1, one can give
following proposition.
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Proposition 5.6. Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν)-contact metric manifold and let (ϕ̃, ξ, η, g̃)
be the canonical paracontact metric structure induced on M , according to Theorem 5.3. Then we have

i) ∇̃ee = − 1

2λ
e(λ)e+ (λ+ 1− µ

2
)ξ ii) ∇̃eϕe =

1

2λ
e(λ)ϕe + ξ, iii) ∇̃eξ = −e+ (

µ

2
− 1− λ)ϕe,

iv) ∇̃ϕee =
1

2λ
(ϕe)(λ)e − ξ, v) ∇̃ϕeϕe = − 1

2λ
(ϕe)(λ)ϕe+ (λ− 1 +

µ

2
)ξ,

vi) ∇̃ϕeξ = −e− (λ− 1 +
µ

2
)ϕe,

vii) ∇̃ξe = −e, viii) ∇̃ξϕe = ϕe,

ix) [e, ξ] = (
µ

2
− 1− λ)ϕe, x) [ϕe, ξ] = −e− (λ+

µ

2
)ϕe, xi) [e, ϕe] = − 1

2λ
(ϕe)(λ)e+

1

2λ
e(λ)ϕe+ 2ξ.

Moreover, g̃(e, e) = g̃(ϕe, ϕe) = g̃(ϕe, ξ) = 0 and g̃(e, ϕe) = g̃(ξ, ξ) = 1.

We assume that (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν)-contact metric manifold, (ϕ̃, ξ, η, g̃) be the
canonical paracontact metric structure induced on M , according to Theorem 5.3. Let {e, ϕe, ξ} be
an orthonormal ϕ-basis in a neighborhood of p ∈ M. Then one can always construct an orthonormal
ϕ̃-basis {ẽ1, ϕ̃ẽ1 = ẽ2, ξ}, for instance ẽ1 = (e − ϕe)/

√
2, ϕ̃ẽ1 = (e + ϕe)/

√
2, such that g̃(ẽ1, ẽ1) = −1,

g̃(ϕ̃ẽ1, ϕ̃ẽ1) = 1, g̃(ξ, ξ) = 1. Moreover, from Lemma 5.5, the matrix form of h̃ is given by

(5.15) h̃ =





−1 + µ
2 −λ 0

λ 1− µ
2 0

0 0 0





with respect to local orthonormal basis {ẽ1, ϕ̃ẽ1, ξ}. By using Proposition 5.6 we have following propo-
sition.

Proposition 5.7. Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν)-contact metric manifold and let (ϕ̃, ξ, η, g̃)
be the canonical paracontact metric structure induced on M , according to Theorem 5.3. Then we have

i) ∇̃ẽ1 ẽ1 = − 1

2λ
(ϕ̃ẽ1)(λ)ϕ̃ẽ1 + λξ, ii) ∇̃ẽ1 ϕ̃ẽ1 = − 1

2λ
(ϕ̃ẽ1)(λ)ẽ1 + (2− µ

2
)ξ,

iii) ∇̃ẽ1ξ = λẽ1 + (
µ

2
− 2)ϕ̃ẽ1, iv) ∇̃ϕ̃ẽ1 ẽ1 = − 1

2λ
ẽ1(λ)ϕ̃ẽ1 −

µ

2
ξ,

v) ∇̃ϕ̃ẽ1 ϕ̃ẽ1 = − 1

2λ
ẽ1(λ)ẽ1 + λξ, vi) ∇̃ϕ̃ẽ1ξ = −µ

2
ẽ1 − λϕ̃ẽ1,

vii) ∇̃ξ ẽ1 = −ϕ̃ẽ1, viii) ∇̃ξϕ̃ẽ1 = −ẽ1,

ix) [ẽ1, ξ] = λẽ1 + (
µ

2
− 1)ϕ̃ẽ1 x) [ϕ̃ẽ1, ξ] = (1 − µ

2
)ẽ1 − λϕ̃ẽ1,

xi) [ẽ1, ϕ̃ẽ1] = − 1

2λ
(ϕ̃ẽ1)(λ)ẽ1 +

1

2λ
ẽ1(λ)ϕ̃ẽ1 + 2ξ.(5.16)

Proposition 5.8. Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν = const.)-contact metric manifold with
ξ(IM ) = 0 and suppose that (ϕ̃, ξ, η, g̃) be the canonical paracontact metric structure induced on M. Then
the following equation holds

(5.17) ∇̃ξh̃ = 2h̃ϕ̃+ νh̃.

Proof. Taking ξ(µ) = ν(µ − 2) and ξ(λ) = νλ into account and using the relations (5.15), (5.16) we get
requested relation. �

We suppose that (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν)-contact metric manifold with ξ(IM ) = 0.
Let (ϕ̃, ξ, η, g̃) be the canonical paracontact metric structure induced on M , according to Theorem 5.3.
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By (2.4) and (5.16), and after very long computations we obtain that

(5.18) R̃(ẽ1, ϕ̃ẽ1)ξ = (
1

λ
(
µ

2
− 1)ẽ1(λ)−

1

2
ẽ1(µ))ẽ1 + (

1

λ
(
µ

2
− 1)(ϕ̃ẽ1)(λ)−

1

2
(ϕ̃ẽ1)(µ))ϕ̃ẽ1.

By using Theorem 5.2 and ẽ1 = (e − ϕe)/
√
2, ϕ̃ẽ1 = (e + ϕe)/

√
2 in (5.18) one can check that in fact

R̃(ẽ1, ϕ̃ẽ1)ξ = 0. Now if we use (4.1), we have

(5.19) R̃(ẽ1, ϕ̃ẽ1)ξ = −σ̃(ẽ1)ϕ̃ẽ1 + σ̃(ϕ̃ẽ1)ẽ1.

Comparing R̃(ẽ1, ϕ̃ẽ1)ξ = 0 with (5.19), we get

(5.20) σ̃(ẽ1) = σ̃(ϕ̃ẽ1) = 0.

So ξ is an eigenvector of Ricci operator Q̃.

Remark 5.9. From (1.3) and (5.16) we have

∇̃∗∇̃ξ = −∇̃ẽ1∇̃ẽ1ξ + ∇̃∇̃ẽ1
ẽ1
ξ + ∇̃ϕ̃ẽ1∇̃ϕ̃ẽ1ξ −∇∇ϕ̃ẽ1

ϕ̃ẽ1ξ

= (
1

λ
(
µ

2
− 1)(ϕ̃ẽ1)(λ)−

1

2
(ϕ̃ẽ1)(µ))ẽ1

+(
1

λ
(
µ

2
− 1)ẽ1(λ)−

1

2
ẽ1(µ))ϕ̃ẽ1(5.21)

+((2− µ

2
)2 +

µ2

4
− 2λ2)ξ.

Then by using again Theorem 5.2 and ẽ1 = (e − ϕe)/
√
2, ϕ̃ẽ1 = (e + ϕe)/

√
2 in (5.21) and after long

computations one can prove that the last relation reduces to

(5.22) ∇̃∗∇̃ξ = 2ξ.

By virtue of (5.22), we see immediately that ξ is harmonic vector field on (M, ϕ̃, ξ, η, g̃).

So we can give following theorem:

Theorem 5.10. Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν = const)-contact metric manifold with
ξ(IM ) = 0 and let (ϕ̃, ξ, η, g̃) be the canonical paracontact metric structure induced on M , according to
Theorem 5.3. Then the characteristic vector field ξ is an eigenvector of the Ricci operator .

By using previous theorem and same procedure as in Case 3 of the proof of Theorem 1.2, we obtain
following theorem.

Theorem 5.11. Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ, ν = const)-contact metric manifold with
ξ(IM ) = 0 and let (ϕ̃, ξ, η, g̃) be the canonical paracontact metric structure induced on M , according to
Theorem 5.3. Then the curvature tensor field of the Levi Civita connection of (M, g̃) verifies the following
relation

R̃(X,Y )ξ = (κ− 2)(η(Y )X − η(X)Y ) + 2(η(Y )h̃X − η(X)h̃Y )− ν(η(Y )ϕ̃h̃X − η(X)ϕ̃h̃Y ).

Acknowledgement: The authors wish to thank to G. Calvaruso, D. Perrone and Q. Pan for useful
comments on the manuscript.
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