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Abstract

Let f be a cusp form of weight + 1/2 and at most quadratic nebentype character whose
Fourier coefficientsi(n) are all real. We study an equidistribution conjecture ofiBier and
Kohnen for the signs af(n). We prove this conjecture for certain subfamilies of coéfits that
are accessible via the Shimura lift by using the Sato-Tatedésiribution theorem for integral
weight modular forms. Firstly, an unconditional proof isei for the family{a(tp?)}, wheret
is a squarefree number apduns through the primes. In this case, the result is in tefmsitural
density. To prove it for the familya(tn?)},, wheret is a squarefree number anduns through
all natural numbers, we assume the existence of a suitatdeterm for the convergence of the
Sato-Tate distribution, which is weaker than one conjectloy Akiyama and Tanigawa. In this
case, the results are in terms of Dedekind-Dirichlet dgnsit
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1 Introduction

The signs of the coefficients of half-integral weight modular forms hévacied some recent atten-
tion. In particular, Bruinier and Kohnen conjectured an equidistributiosigris. Using the Shimura
lift and the Sato-Tate equidistribution theorem we obtain results towards thjisotore.

Throughout this paper, the notation is as follows. ket 2, 4 | N be integersy a Dirichlet
character moduldV s.t.x? = 1 and letf = > °°  a(n)q" € Sk+1/2(NV, x) be a non-zero cuspidal
Hecke eigenform (for operatof&,. for primesp { N) of weightk + % (see[15], p. 458) with real
coefficients. LetF; = .20, Ay (n)q™ € Sax(N/2,x?) be the Hecke eigenform (for operatdfs
for primesp t N) of weight 2k corresponding tgf under the Shimura lift for a fixed squarefree
such thata(t) # 0 (see Section|3). We work under the assumption fhadoes not have complex
multiplication.

The question about the sign changes of coefficients of half integrahtwsigdular forms has been
asked by Bruinier and Kohnen in [4] and there it was shown that theeseg{ia (tn?) },,cn of coef-
ficients of half integral weight modular forms has infinitely many sign changeer the additional
hypothesis that a certaii—function has no zeros in the intenv@, 1) (later this hypothesis has been

*Uludag University, Deparment of Mathematics, Faculty of Arts and ®eien 16059 Gorukle, Bursa, Turkey,
ilker.inam@gmail.com

fUniversité du Luxembourg, Faculté des Sciences, de la Technologie é&¢ Communication, 6, rue Richard
Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg, gadese@uni.lu



removed in[[7]). In addition to this partly conditional result, the authors capeith a suggestion
supported by some numerical experiments. They claimed that half of thcmydt are positive
among all non-zero coefficients due to observations on computations orameefexample of weight
11/2 given in [10] and for one example of weight2 given in [5] for indices up td 0®. This claim is
also supported by different examples of weight 3/2 in computations done in the preparatiaegso

of [6] for indices up to107. In [8], Kohnen, Lau and Wu also study the sign change problem on
specific sets of integers. They establish lower bounds of the best [gossiler of magnitude for the
number of those coefficients that have the same signs. These give anémgmt on some results in
[4] and [7]. Although the problem of the equidistribution of signs has breentioned informally in

[4], the conjecture was only given in [8] formally.

In this paper we improve the previously known results towards the Brufoaren conjecture
by proving the equidistribution of the signs pf(¢n?)},, for n running through the set of primes (see
Theorem 4.1) and through the set of all positive integers (see Cordla)y The former result is
formulated in terms of natural density, the latter for Dedekind-Dirichlet ithgnSor the latter result,
we have to assume a certain error term for the convergence of the &atdi3tribution for integral
weight modular forms, which is weaker than an error term conjecturedkijafa and Tanigawa [1].
Relying on the Shimura lift as in the papers cited above, the techniques afethenp article also do
not extend to study the equidistribution of the signdefn)},, whenn runs through the squarefree
integers.

The ideas and techniques of the present paper have been adapteddsinttha Kumar tg-
exponents of generalised modular functions [9]. In a sequel to this {2brkvritten together with
Sara Arias-de-Reyna, we extend the main theorem to the case Fytteas complex multiplication
and we also weaken the assumption on the error bound.

2 Density and regular sets of primes

Let P denote the set of all prime numbers. We first recall some definitionsSLEtP be a set of

primes. It is said to haveatural densityd(.S) if the limit lim, . “f(%) exists and is equal td(.5),

wheren(z) = #{p < = | p € P} is the prime number counting function ang(z) ::1#{]9 <

1
z—1

and is equal t@(.S) (the limitlim,_,,+ is defined via sequences of real numbers tendingftom
the right). If S has a natural density, then it also has a Dirichlet density and the two cainkile
in [12], p. 343f, we callS regular if there is a functiorny(z) holomorphic onRe(z) > 1 such that
Y pes 3= = 0(S)log (327) + g(2). Note thatP is a regular set of primes of Dirichlet density We
collect some more straight forward properties of regular sets of primes iimilbwing lemma.

x | p € S}. The setS is said to haveDirichlet densityd(.S) if the limit lim,_,;+ 1217(651) exists
og

Lemma 2.1. (a) LetS be any set of primes such that the se@§es % converges to a finite value.
ThenS has a Dirichlet density equal to.

(b) LetS be a regular set of primes. Then the Dirichlet densitySo 0 if and only if the series

1 S
>_pes  converges to a finite value.

(c) LetSy,S2 be two regular sets of primes having the same Dirichlet densgity) = 6(S52). Then
the function)_ s, o= — 3" ,cs, o= iS analytic onRe(z) > 1.

For our application in Section 5 we need regular sets of primes. Hencepwvanolude a propo-
sition showing that if a set of prime$ has a natural density and the convergence satisfies a certain
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error term, then it is regular. This is may be known, but, we are not awaaayoreference; so we

include a full proof.

Proposition 2.2. Let.S C P have natural density(S). Call E(x) := T;S((f)) —d(S) the error function.

Suppose that there are > 0, C' > 0 and M > 0 such that for all: > A we have E(z)| < Cz™.
ThenS is a regular set of primes.

Proof. We will use the notatiorDs(z) = 3 ¢ ]% andD(z) == >_ cp L. We abbreviatel :=

pZ
d(S), putg(z) := E(z)m(z) and f(z) :== Y02, g(n) (& — (n—:l)z . As g() is a step function with
jumps only at integers, we have

o0 nt1 1 S
f(z):z-nz::zg(n)/n xzﬂdx:z'/2 iif)ldaz

From Theorem 29 of [14], we know that(x) < W for x > 55, yielding [g(z)| < C - 7(x) -
zTe<C-

xlfa

1 Thus forRe(z) > 1 — § we get

log(z)—
> g(x)dx > |g(@)| 1
< — < R
’/55 AR ‘— /55 xRe(z)Hd‘T <C 55 x1+% da.

As the last integral is convergent, we conclude th@at) is an analytic function ofRe(z) > 1. Since
for Re(z) > 1 we have

o0

1 1
Ds(z) = 7;2 (dm(n) — g(n)) (; - W) =dD(z) + f(2)
B =ms(n)
the proposition follows aB is regular of densityt. O

Finally we recall a notion of density on sets of natural numbers analogotistaf Dirichlet
density. A subsetl C N is said to havDedekind-Dirichlet density(A) if the limit lim,_,;+(z —
)Yl nea L exists and is equal t6(A). If A C N has a natural density (defined in the evident
way), then it also has a Dedekind-Dirichlet density, and they are the same.

3 Shimura lift and Sato-Tate equidistribution

We continue to use the notation described in the introduction. We now summamisepsoperties of
the Shimura lift that are proved in [15] and Chapter 2 of [13]. There islifext relation between the
Fourier coefficients of and those of its liftF;, namely

4 tn?
Ai(n) == ZXt,N(d)dk 1a(ﬁ)a (3.1)
din
where x; y denotes the charactaf, y(d) = x(d) %SN% . As we assumef to be a Hecke

eigenform for the Hecke operat@i., F; is an eigenform for the Hecke operatfy, for all primes
pt N. Infact, in this casé} = a(t)F, whereF is a normalised Hecke eigenform independent. of



Moreover, from the Euler product formula for the Fourier coefficigritsalf integral weight modular
forms, one obtains the multiplicativity relation foimn, n) = 1

a(tm?)a(tn?) = a(t)a(tm?n?). (3.2)

Note that the assumption thatbe (at most) quadratic implies that has real coefficients if does.
Furthermore, the coefficients @ satisfy the Ramanujan-Petersson bow%@g—)] < 212 We
normalise them by letting
A
By(p) : (p)

= 2a(t)ph—172
Recall now that we are assumitig without complex multiplication. One defines tBato-Tate mea-
surey to be the probability measure on the interjaal,, 1] given by%\/l — t2dt.

Theorem B of [3], case 3 with = 1, gives the importanato-Tate equidistribution theorefor

L'o(N), which applies in particular t6" = %

€ [-1,1].

Theorem 3.1(Barnet-Lamb, Geraghty, Harris, Tayloletk > 1 and letF' = > ., A(n)q¢" be a
normalised cuspidal Hecke eigenform of weightfor I'q(/V') without complex multiplication. Then
the numbersB(p) = QpAkE’ﬁ)/z are p-equidistributed in[—1, 1], whenp runs through the primes not
dividing N.

This has the following simple corollary, which we formulate for the ShimuraFijft

Corollary 3.2. Let[a,b] C [~1,1] be a subinterval and, ; := {p prime| p { N, B(p) € [a,b]}.
ThenS, ; has natural density equal t% f; V1 — t2dt.

4 Equidistribution of signs for {a(tp?)}, prime

Our main unconditional result is the following theorem.

Theorem 4.1. We use the assumptions from the introduction, in particdlahas no complex multi-
plication. Define the set of primes

P-g := {p € Pla(tp?) > 0}

and similarlyP.o, P>, P<o, andP—q (depending orf andt).
Then the set®-, P—o, P>o, P<o have natural density/2 and the seP—, has natural density.

Proof. Denote byr~o(z) := #{p < z | p € Pso} and similarlyr.o(x), 7>o(z), T7<o(z), and
m—o(z). Since dividingf by a(t) does not affect the assertions of the theorem, we may and do
assumex(t) = 1. In that case; is a normalised eigenform. Equation (3.1) specialiseg(tp®) =
Ay(p) — xe.n(p)p*~! for all primesp, implying the equivalence:

xt,N (p)
2,/p
The idea is to use the Sato-Tate equidistribution to show{ thép)| dominates the termy; v (p)p* !

. R ; 1 xen P _ 1 ;
for ‘most’ primes. Lete > 0. Since for allp > ;> one ha 5 /b | = 75 < 6 We obtain

a(tp?) > 0 < By(p) >

mso(z) + 7T(41?) > #{p < x prime| B:(p) > €}. (4.1)
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By Corollary 3.2, we havéim,_.., == p”:EZ') B®)>¢k — ([, 1]). This implies that

lim inf m>0(2)
R @)

> p([e; 1))

for all ¢ > 0, whence we can concludin inf, . ”;gﬂg‘;) > p(0,1]) = %

A similar argument yield$im infgHOO ’rfr(of)”) > ([0, 1]) = 3. Usingm<o(z) = m(z) — T>0(z)

giveslim sup,_, ’T;?x(f) < u([0,1]) = £, thus showing thalim, . ”;?()) exists and is equal td,

whence by definitior?-, has natural densﬂy}. The arguments foP.(z), P>o(z), P<o(x) are
exactly the same, and the conclusionlfary, immediately follows. Ol

We next show that the sets of primes in Theorem 4.1 are regular if the Stt@duidistribution
converges with a certain error term. A stronger error term was congettoy Akiyama-Tanigawa
(see[11], Conjecture 2.2, and Conjecture 1, on p. 1204 in [1]).

Theorem 4.2. We make the same assumptions as in Theorem 4.1. We additionally asstuthertha
areC' > 0 anda > 0 such that for all subinterval:, b] C [-1, 1] one has
#{p <z prime| 54 € [a,b]} c
. — pu(la, b)) < —

7(x) T

Then the set®-, Pg, P>, P<o, andPP—, are regular sets of primes.

Proof. We start as in the proof of Theorem 4.1 up to Equation (4.1) and plug in tbheterm to get
foralle > 0and allx > 0

1
ms0(2) + (1 5) > #{p < @ prime| By(p) > ¢}
-« —o 1
2 =Cn(2)z™" + p(le, )7 (z) 2 ~Cm(2)a™ + (5 — u((0, €]))m(2).
Using the estimateg([0,¢]) = [5 V1 — 2dt < e and 55— ( E= m(x) < W' which is valid for
x > 55 (seel[14] Theorem 29 A on p. 211), we get
7T>0( ) 71 (C.CC_Q e+ (log(x) + 2) ) 701‘%—04

m(x) 2~ —4xe?(log(4€?) + 4)

for someC; > 0 and allz big enough, where for the last inequality we set 2~2%. The same
argument withro(x) yields
7T<0( ) 1 —Chx @

3
Vv
o

Usingmso(z) = 7(z) — m<o(z), we get%gg)x) — <=2 — 1 < Cyzm@. Thus, one has

mo(@) 1| G
m(x) 2| = x>
Proposition 2.2 now implies thdt.  is a regular set of primes. The regularityf is obtained in
the same way, implying also the regularity®f, P>y andP<o. O

Remark4.3 Assume the setup of Theorem 4.1. [etb] C [—1, 1] be a subinterval. Then using the

same arguments as in the proof of Theorem 4.1 one can show that theosetes{p | 2@‘;)(;7’;)1/2 €

[a,b]} has a natural density equal d[a, b]). Similarly, a more general version of Theorem 4.2 also
holds.



5 Equidistribution of signs for {a(tn?)},cxn

In this section we prove our equidistribution result for the signs of theficaftsa(tn?), whenn runs
through the natural numbers. The same arguments also work fienning throughk-free positive
integers for any: > 1.

Theorem 5.1. We make the same assumptions as in Thelorem 4.1. As in Theorem 4.Ztiweatd
assume that there a® > 0 anda > 0 such that for all subintervalg:, b] € [-1,1] one has

#{p < xprime| 2P ¢ [q,b]} c
e —ulla,b))| < 5.

We also assum&(t) > 0. We define the multiplicative (but, not completely multiplicative) function
1 ifa(tn?) >0,

s(n) =14 -1 ifa(tn?) <0,
0 ifa(tn?®) =0.

LetS(z) := 322, 2 e the Dirichlet series of(n).

nlnz

ThenS(z) is holomorphic forRe(z) > 1.

Proof. Sinces(n) is multiplicative because of Equation 3.2 and the assumption > 0, we have
the Euler producB(z) = [ ,cp > 1z 8 p*)p~F*. Taking logarithm ofS(z), we obtain

log S(= Z log ( +f+g(zp Z log ( 1—i+g(z p))

p€EP>0 pEP<o

+ > log (14 g(z.p),

pEP=o
whereg(z,p) := > >, SIEW) is a holomorphlc function oRe(z) > 1 in the variablez for fixed p.
Note that for allp, we havelg(z, p)| < m. Using this, we conclude that
log S(z Z — - Z — +/<;
p€P>o p€P<o

wherek(z) is holomorphic function foRe(z) > 1.

SinceP-y andP.q are regular set of primes having the same der&iby Theorem 4.2, we can
conclude thatog S(z) is analytic forRe(z) > 1 by Lemma 2.1. Since the exponential function is
holomorphic, we find thaf(z) is analytic forRe(z) > 1 by taking the exponential dbg S(z), as
was to be shown. O]

We now deduce our main density statement from Theorem 5.1.
Corollary 5.2. Assume the setting of Theorem5.1. Then the sets
{n € N|a(tn?) >0} and{n € N | a(tn?®) < 0}

have equal positive Dedekind-Dirichlet densities, that is, both are mhcisalf of the Dedekind-
Dirichlet density of the sefn € N | a(tn?) # 0}.



Proof. We assume without loss of generalitit) > 0, since the statement is invariant under replacing
f by —f. We use the notation of Theorem 5.1. Since the set of all natural numésis Bedekind-
Dirichlet density ofl (since the Riemann-zeta function has a pole of otdand residud at1), we

can write .
Iim (z —1 — =1.
zH1+(Z ) Z n*
neN

SinceS(z) = X 4 (m2)0 L - 2 a(tn2)<0 L is holomorphic forRe(z) > 1 by Theorem 5.1 (in fact,
much less suffices), we deduce

1 1
lim (2 — Y+ Y =1
ZHII{]_’_(Z 2 {2 n? nZ] !
a(tn?)>0 a(tn?)=0

Definet(n) := [s(n)]* andT'(z) := > %, tﬁlﬁ’). Sincet(n) is multiplicative, T'(z) has an Euler
product, which we use now. Put(z) :=

T(2)
Ok then

1 1 > 1
= ]I ((1pz)(1+pz+ > pm))

p,a(tp?)#£0 n=2,a(tp?")#0
1 |
[1 <(1 -+ nz)>
p,a(tp?)=0 p n=2 p
1 1
= 1I 1—1@““1(2717) 1 1—];+r2(z7p) :
p,a(tp?)#0 p,a(tp?)=0

whereri(z,p) andrs(z,p) are the remaining terms. Taking the logarithmAfz), we conclude
that}~, . (p2)=0 108 <1 - ]% + rg(sz)) is holomorphic onRe(z) > 1, sinceP— is a regular set

of primes of density0, by Theorem 4.2. Moreovezpva(tp%é0 log (1 — ﬁ + rl(z,p)) is also

holomorphic onRe(z) > 1. Taking the exponential shows thd{(z) = I#) is holomorphic for

((2)
Re(z) > 1. We obtainA(1) > 0 andlim, ,,+(z — 1)T(z) = A(1). Therefore we conclude that

the set{n € N | a(tn?) # 0} has a Dedekind-Dirichlet density equal #41). Hence, the limit

lim, 4 (2 = 1) Yy tm2)=0 L =1— A(1) exists. So we conclude that

_ 1 AQ)

lim (2 — — 29

S o) D e=
a(tn?)>0

This implies that the Dedekind-Dirichlet density of the two sets in the statemeptjasd and com-
pletes the proof. O
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