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1. Introduction
In recent years, the temperature stress caused by global 
warming is one of the major causes of losses of yield and 
dry matter content, particularly in temperate climates 
(Wahid et al., 2007; Hancock et al., 2014). Relative to 1850–
1900, global surface temperature change for the end of the 
21st century (2081–2100) is projected to likely exceed 1.5 
°C (IPCC, 2014). When plants are exposed to heat stress, 
inhibition of photosynthesis, damage to cell membranes, 
senescence, and cell death may occur (Xu et al., 2006). 
Plants can acquire thermotolerance (heat acclimation) to 
lethal high temperatures if they are first exposed to mild 
nonlethal heat stress (He et al., 2005).

Reactive oxygen species (ROS) are produced as 
normal products of plant cellular metabolism. Various 
environmental stresses such as heat lead to excessive 
production of ROS, causing oxidative stress in plants 
(Ergin et al., 2012; Krishnamurthy and Rathinasabapathi, 
2013). The ROS inhibit enzymes and have harmful 

effects on important cellular components (Ershova et 
al., 2011; Sharma et al., 2012). Major ROS-scavenging 
mechanisms include enzymatic systems consisting of 
superoxide dismutase (SOD) (EC 1.15.1.1), catalase 
(CAT), peroxidases (POD) (EC 1.11.1.x), ascorbate 
peroxidase (APX), and glutathione reductase (GR) and 
nonenzymatic systems consisting of ascorbic acid (AsA) 
and glutathione (GSH) (Foyer and Noctor, 2005; Kaushik 
and Roychoudhury, 2014). Previous studies indicated 
that changes in antioxidant enzymes and antioxidants 
contributed to plant resistance to high temperatures (Yin 
et al., 2008; He and Huang, 2010). 

The protection of protein structures and functions 
are vital for the survival of the cell under stress (Wang et 
al., 2004). Proline may interact with enzymes to preserve 
protein structure and activities (Kishor et al., 2005). Heat 
stress has a negative effect on protein structure and activity 
(Hasanuzzaman et al., 2013). The most common molecular 
response of plants submitted to heat stress is the expression 
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of heat shock proteins (HSPs) (Wahid and Close, 2007). 
The HSPs are responsible for protein folding, assembly, 
translocation, and destruction in many normal cellular 
processes, and they prevent denaturation of proteins when 
under stress (Wang et al., 2004; Hartl et al., 2011). 

The high temperatures associated with global 
climate change are expected to be a limiting factor for 
the cultivation and yield of strawberry plants as well as 
many other plant species in the future. Kesici et al. (2013) 
reported on the heat stress tolerance of 15 strawberry 
cultivars (‘Aromas’, ‘Camarosa’, ‘Carmine’, ‘Cal. Giant 3’, 
‘Cal. Giant 5’, ‘Elsanta’, ‘Fern’, ‘Festival’, ‘Honeoye’, ‘Kabarla’, 
‘Redlands Hope’ (‘R. Hope’), ‘Ruby Gem’, ‘Selva’, ‘Sweet 
Charlie’, and ‘Whitney’). The cultivars ‘Elsanta’, ‘R. Hope’, 
and ‘Camarosa’ were determined to be relatively heat-
tolerant, whereas ‘Whitney’, ‘Fern’, ‘Festival’, and ‘Cal. 
Giant 3’ (CG3) were relatively heat-sensitive among the 
cultivars. However, based on our current understanding, 
the enzymatic and nonenzymatic antioxidant defense 
mechanisms and the role of HSPs that develop under high 
temperature stress of strawberry plants have not been fully 
clarified. The objective of the present study was to evaluate 
the effects of high temperature stress and heat acclimation 
on the antioxidative defense mechanisms and HSPs using 
two strawberry cvs., ‘CG3’ and ‘R. Hope’, categorized as 
heat-sensitive and heat-tolerant, respectively.

2. Materials and methods
2.1. Plant material
‘R. Hope’ (heat tolerant) and ‘CG3’ (heat sensitive) 
strawberry seedlings (Kesici et al., 2013) were planted 
in 140 × 120 mm pots using a perlite, peat, and garden 
soil (1:1:1) mixture. The plants were grown for 8 weeks 
(6th–7th leaf stage) in a greenhouse with day/night 
temperatures of 30/15 °C and average relative humidity 
of 65%. The plants were watered on a need basis to avoid 
any water stress and were provided with Actagro (7-7-7) 
nutrient solution (Actagro LLC, Biola, CA, USA) weekly.
2.2. Heat stress applications
The controlled heat tests were applied to the leaf samples 
based on the method of Arora et al. (1998), with some 
modifications. Third leaves from the top of the plants were 
collected and five plants were used for each treatment. 
Some part of the collected leaves was used as control (kept 
in greenhouse at 30/15 °C day/night temperature) and the 
other part was placed into Pyrex tubes with caps, which 
were placed into a temperature controlled water bath. The 
temperature was increased stepwise (1 °C per 10 min) 
to 35, 40, 43, 46, 49, 52, 55, and 60 °C to impose gradual 
heat stress (GHS), and the leaves were exposed to each 
temperature step for 2 h. Additional leaf samples were also 
placed into test tubes and put directly into the water bath at 
each temperature step to impose heat-shock stress (HSS).

2.3. Cell membrane injury
The membrane thermostability using leaf discs was 
measured according to the procedure of Arora et al. (1998), 
with some modifications (Gulen and Eris, 2003). Ion 
leakage was measured with a conductivity meter (WTW 
TetraCon 325 model, InoLab Cond Level 1, Weilheim, 
Germany). The percentage of injury at each temperature 
was calculated from ion leakage data using the equation

Injury % = [(L(t)% − L(c)%)/(100 − L(c)%)] × 100,
where L(t) and L (c) are the percentage ion leakage for the 
heat applications or control samples, respectively (Arora 
et al., 1992).
2.4. Analyses of nonenzymatic antioxidants
The total ascorbic acid level (AsA) was determined 
according to Law et al. (1983). For this purpose, 1 g of 
leaf sample was homogenized in 5% metaphosphoric acid 
and was centrifuged at 22,000 × g for 15 min. The reaction 
mixture contained 0.2 mL of the supernatant and 150 mM 
Na-PO4 buffer (pH 7.4) and 10 mM dithiothreitol (DTT). 
Following incubation for 15 min at room temperature, 
0.5% N-ethylmaleimide was added. After addition of the 
following reagents: 10% trichloroacetic acid (TCA), 44% 
ortho-phosphoric acid, 4% 2,2´-bipyridyl, and 0.2 mL of 3% 
FeCl3 the mixtures were incubated for 40 min at 40 °C. The 
absorbance was read at 525 nm using a spectrophotometer 
(Beckman Coulter, Inc., Fullerton, CA, USA). 

Using the method of Ellman (1959), GSH contents of 
samples were determined in supernatants described as 
above.
2.5. Analyses of enzymatic antioxidants
The enzymes were extracted at 0–4 °C from 0.5 g of leaves 
in 1.0% polyvinylpyrrolidone-40 (PVP-40) and extraction 
solution (for APX, 50 mM K-PO4 buffer, pH 7.8, and 50 
mM ascorbate; for CAT, 100 mM K-PO4 buffer, pH 7.0, 0.1 
mM (EDTA), and 0.1% Triton; and for GR, 50 mM K-PO4, 
pH 7.6, and 0.1 mM EDTA) (Turhan et al., 2008). The 
homogenates were centrifuged at 15,000 × g for 20 min 
at 4 °C and the supernatants were used for the enzymatic 
assays. The APX activity was determined by decreasing 
in the absorbance of the oxidized ascorbate at 290 nm 
(Beckman Coulter, Inc., Fullerton, CA, USA) according to 
Nakano and Asada (1980). The CAT was assayed by the 
consumption of H2O2 at 240 nm (Rao et al., 1996). The 
GR activity was determined by following the oxidation 
of β-nicotinamide adenine dinucleotide phosphate 
(NADPH) at 340 nm (Cakmak and Marschner, 1992). 
2.6. Protein analyses
To determine free proline level, 0.5-g leaf samples were 
homogenized in 3% sulfosalicylic acid and centrifuged 
at 5000 × g at 4 °C for 15 min (Bates et al., 1973). The 
mixture was heated at 100 °C for 1 h in a water bath after 
the addition of acid ninhydrin and glacial acetic acid. The 
reaction was then stopped by ice bath. The mixture was 
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extracted with toluene and the absorbance of the fraction 
with toluene aspired from the liquid phase was read at 
520  nm (Beckman Coulter, Inc., Fullerton, CA, USA). 
Proline concentration was determined by calibration 
curve and expressed as µmol proline g−1 FW.

Total soluble proteins (TSPs) were extracted from leaf 
tissues using the methods described by Arora et al. (1992). 
Leaf tissues (1 g) were homogenized at 4 °C in borate 
buffer (50 mM sodium tetraborate, 50 mM ascorbic acid, 
1% β-mercaptoethanol, and 1 mM PMSF, pH 9.0). The 
homogenates were centrifugated at 26,000 × g for 1.5 h at 
4 °C. TSP content of supernatant was measured with the 
Bradford assay as described by Arora and Wisniewski (1994).

The proteins were precipitated with trichloroacetic 
acid (TCA) (Lim et al., 1999; Gulen et al., 2005). The 
protein pellets were washed three times with cold acetone. 
Dried protein pellets were rehydrated with 100 µL of SDS-
PAGE sample buffer. Equal amounts of total protein (30 
µg) were loaded into the wells and separated by SDS-PAGE 
and the gels were visualized via Coomassie stain (Arora et 
al., 1992). 

For immunoblots, the proteins were probed with a 
1:1500 dilution of the antibody directed against HSP60 and 
HSP70 [Monoclonal Anti-Heat Shock Protein 60 and 70 
antibody produced in mice (Sigma)]. The immunoreactive 
bands were detected with the alkaline phosphatase 
assay using a ProtoBlot Western Blot AP Kit (Promega). 
The band images on the membranes were compared 
densitometrically using the Public Domain NIH Image 
program (available on the internet at http://rsb.info.NIH.
gov/nih-image/). 
2.7. Statistical analyses
The experiment was arranged in a randomized block 
design with three replications. Each replicate consisted 
of 10 plants. The data were tested with SPSS 13.0 for 
Windows, and mean separation was determined with 
Duncan’s test at P ≤ 0.05. 

3. Results 
3.1. Cell membrane injury
In general, injury (expressed by reference to controls) was 
higher in HSS than in GHS (Figure 1). The lowest average 

Figure 1. Effect of high temperature on injury in leaves of strawberry cultivars. Exposed to gradual heat stress (GHS) (A), exposed to 
heat-shock stress (HSS) (B). Values are means from three replications and vertical bars indicate ± SE. *Significant difference between 
GHS and HSS at a given cultivar (P ≤ 0.05).
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injury was observed at 35 °C in both applications, whereas 
the highest one was at 49 °C in GHS (76% ‘CG3’ and 
63% ‘R. Hope’) and 60 °C (84% in ‘CG3’ and 72% in ‘R. 
Hope’) at 60 °C in HSS applications. The highest injury was 
observed in ‘CG3’ at all temperatures for both applications. 
No significant difference was detected among interaction 
of heat stress type and cultivars (Table).
3.2. Nonenzymatic antioxidants
The highest total AsA content was observed in ‘CG3’ (3.47 
mg g–1 FW) at 40 °C in HSS and the lowest in ‘CG3’ (0.50 
mg g–1 FW) at 55 °C in GHS (Figure 2). The effects of heat 
stress type, temperature, cultivar, and interactions on AsA 
were statistically significant (Table). In general, the total 
GSH content of ‘CG3’ plants was higher than that of ‘R. 
Hope’ plants (Figure 2). Despite this result, the effects of 
all independent variables and interactions on GSH were 
statistically significant (Table).
3.3. Enzymatic antioxidants
The APX activities of both cultivars indicated significant 
differences between GHS and HSS (Figure 3). The APX 
activity was significantly greater in GHS than in HSS. The 
highest and the lowest enzyme activity were detected in 
GHS application in ‘R. Hope’ at 60 °C (4.80 µmol mg–1 

protein) and in HSS application in ‘CG3’ at 35 °C (0.39 

µmol mg–1 protein), respectively. Thus, the effects of heat 
stress type, temperature, cultivar, and interactions on APX 
activity were found statistically significant (Table). 

Similar results were obtained for CAT activity (Figure 
3). The highest and the lowest enzyme activity were 
detected in GHS application in ‘R. Hope’ at 55 °C (152.19 
nmol mg–1 prot.) and in HSS application in ‘CG3’ at 35 °C 
(19.81 nmol mg–1 prot.), respectively. The results of the 
analysis of variance (Table) indicated that the effects of all 
independent variables and interactions on CAT activity 
were statistically significant. 

Effect of high temperature on GR activity is shown in 
Figure 3. In terms of GR activity, no significant differences 
were detected between interactions of heat stress type 
and temperatures or interactions of heat stress type and 
cultivars (Table). 
3.4. Protein analysis
The proline contents of cultivars were significantly higher 
in GHS application than in HSS application (Figure 4). The 
highest proline content was measured in ‘R. Hope’ (3748.68 
µM g–1 FW) at 43 °C in GHS application and the lowest 
in ‘CG3’ (145.64 µM g–1 FW) at 60 °C in HSS application. 
However, no significant difference was detected between 
the interaction of heat stress type and cultivars (Table).

Table. Results of analysis of variance (ANOVA) on the effects of heat stress type (H), temperature (T), cultivar (Cv.), and the interactions 
on injury, ascorbic acid (AsA), glutathione (GSH), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), proline, 
and total soluble proteins (TSP). Numbers represent F values relative to a significance level of 0.05.

Dependent variable
Independent variable

H T Cv. H × T H × Cv. T × Cv. H × T × Cv.

Injury 706.182
(P < 0.001)

5758.764
(P < 0.001)

491.820
(P < 0.001)

643.835
(P < 0.001)

0.966
NS

29.906
(P < 0.001)

14.251
(P < 0.001)

AsA 1259.795
(P < 0.001)

130.306
(P < 0.001)

34.193
(P < 0.001)

122.342
(P < 0.001)

105.825
(P < 0.001)

223.500
(P < 0.001)

74.537
(P < 0.001)

GSH 317.213
(P < 0.001)

57.512
(P < 0.001)

674.476
(P < 0.001)

16.894
(P < 0.001)

81.855
(P < 0.001)

46.658
(P < 0.001)

18.267
(P < 0.001)

APX activity 188.792
(P < 0.001)

335.119
(P < 0.001)

350.216
(P < 0.001)

27.051
(P < 0.001)

66.236
(P < 0.001)

22.512
(P < 0.001)

23.479
(P < 0.001)

CAT activity 2607.480
(P < 0.001)

858.944
(P < 0.001)

1451.229
(P < 0.001)

354.300
(P < 0.001)

127.234
(P < 0.001)

192.442
(P < 0.001)

83.453
(P < 0.001)

GR activity 14.816
(P < 0.001)

15.866
(P < 0.001)

30.626
(P < 0.001)

3.118
NS

3.094
NS

8.871
(P < 0.001)

19.864
(P < 0.001)

Proline 1406.975
(P < 0.001)

301.727
(P < 0.001)

404.814
(P < 0.001)

195.856
(P < 0.001)

8.233
NS

48.125
(P < 0.001)

54.191
(P < 0.001)

TSP 1542.484
(P < 0.001)

8283.217
(P < 0.001)

258.563
(P < 0.001)

737.745
(P < 0.001)

14.542
(P < 0.001)

272.387
(P < 0.001)

53.369
(P < 0.001)

NS Nonsignificant
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Heat stress decreased TSP content in both GHS and 
HSS applications (Figure 4). The TSP contents decreased 
depending on the temperature, with it being highest (2.53 
mg g–1 FW) in leaf tissues from control (unstressed) plants 

in ‘R. Hope’ and lowest (0.08 mg g–1 FW) in leaf tissues 
from HSS plants in ‘CG3’ at 60 °C. The analysis of variance 
indicated that the effects of all independent variables and 
interactions on TSP content were significant (Table).

Figure 2. Effect of high temperature on nonenzymatic antioxidants in leaves of strawberry cultivars. Total ascorbic acid (AsA) content 
exposed to gradual heat stress (GHS) (A), total AsA heat-shock stress (HSS) (B), Total glutathione (GSH) content exposed to GHS (C), 
Total GSH content exposed to HSS (D). Values are means from three replications and vertical bars indicate ± SE. *Significant difference 
between GHS and HSS at a given cultivar (P ≤ 0.05).

Figure 3. Effect of high temperature on antioxidant enzyme activities in leaves of strawberry cultivars. The activity of ascorbate 
peroxidase (APX) exposed to gradual heat stress (GHS) (A), the activity of APX exposed to heat-shock stress (HSS) (B), the activity 
of catalase (CAT) exposed to GHS (C), the activity of CAT exposed to HSS (D), the activity of glutathione reductase (GR) exposed to 
GHS (E), the activity of GR exposed to HSS (F). Values are means from three replications and vertical bars indicate ± SE. *Significant 
difference between GHS and HSS at a given cultivar (P ≤ 0.05).
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Immunoblotting analysis was performed against HSP60 
and HSP70 of leaf tissues subjected to high temperatures. 
The bands on the immunoblot of HSP60 were sharp and 
detectable, whereas the bands on the immunoblot of 
HSP70 were faint and barely visible. Therefore, only the 
results of HSP60 are presented. The immunoblotting 
results for HSP60 indicated only the 23 kDa protein band 

with different band intensities according to cultivars and 
temperatures with GHS and HSS applications (Figures 5 
and 6). The highest and the lowest intensity of HSP60 were 
measured in ‘CG3’ (Figure 5) at 46 °C and at 40 °C in GHS 
application, respectively. Generally, the synthesis of the 23 
kDa HSP was more intense in ‘R. Hope’ than in ‘CG3’ at all 
temperatures of GHS and HSS (Figures 5 and 6).

Figure 4. Effect of high temperature on proline and total soluble protein (TSP) contents in leaves of strawberry cultivars. Proline content 
exposed to gradual heat stress (GHS) (A), proline content exposed to heat-shock stress (HSS) (B), TSP content exposed to GHS (C), TSP 
content exposed to HSS (D). Values are means from three replications and vertical bars indicate ± SE. *Significant difference between 
GHS and HSS at a given cultivar (P ≤ 0.05).

Figure 5. SDS-PAGE protein profiles obtained from strawberry cultivars exposed to gradual heat stress (GHS). In each lane, 30 µg of 
protein was loaded. Molecular weight markers (MW) and the molecular mass (kDa) are shown on the left-hand side. The arrow on the 
right mark indicates the position of proteins that changed under heat stress (A). Anti-HSP60 immunoblots of the 23 kDa leaf proteins 
and band intensities were based on quantitative measurements. For immunoblotting, 30 µg of protein was loaded in each lane (B).
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4. Discussion
Following high temperature exposure, cellular injury was 
significantly increased in both GHS and HSS leaf tissues in 
the current study. In addition, exposure to HSS increased 
the injury of leaves compared with exposure to GHS 
(Figure 1). In other words, GHS application might play 
a role in gaining heat acclimation due to longer exposure 
time. Similarly, it was reported that GHS increased heat 
stress tolerance of strawberry and lablab bean plants in 
previous studies (Gulen and Eris 2003, 2004; D’Souza and 
Devaraj, 2013). Plants can acquire thermotolerance when 
exposed to sublethal high temperatures for a short time or 
mild high temperatures for a longer time (Yarwood, 1961; 
Sung et al., 2003; He et al., 2005; Carvalho et al., 2015). The 
sensitive cultivar, ‘CG3’, showed the highest injury at all 
temperatures for both applications. Previously, Kesici et al. 
(2013) also reported that more cellular injury occurred to 
‘CG3’ than to ‘R. Hope’, which was in agreement with the 
current study. 

In the present experiment, the highest total AsA 
content was observed in ‘CG3’ at 40 °C in HSS. Similarly, 
the total GSH content of ‘CG3’ was higher than that of ‘R. 
Hope’ in both applications and almost all temperatures 
(Figure 2). Plants exposed to extreme temperatures use 
many nonenzymatic antioxidants such as AsA and GSH 
to manage the injury caused by oxidative stress (Aksoy et 
al., 2015). AsA is a scavenger of ROS because of the ability 
to donate an electron and GSH prevents oxidation of –SH 
groups of enzymes by reacting with free radicals formed in 
the event of stress (Mullineaux and Rausch, 2005). Ergin et 
al. (2014) reported that high-temperature stress increased 
AsA contents in strawberry plants especially in tolerant 
genotypes. Similarly, heat acclimated turf grass had lower 
ROS production as a result of increased synthesis of 
AsA and GSH (Xu et al., 2006). However, in the current 

study, AsA and GSH were not effective for gaining 
thermotolerance in strawberry plants, possibly because of 
the other defense mechanisms that are responsible for the 
destruction of ROS in the cell. 

The APX and CAT activity were significantly greater 
in GHS than in HSS and the activity increased with 
temperature in ‘R. Hope’. Heat stress applications and 
temperatures did not affect the GR activity of cultivars 
(Figure 3). The significant increase in APX and CAT enzyme 
activities in the GHS application indicated that GHS 
application is more efficient in gaining thermotolerance in 
strawberry plants. The APX and CAT activities of ‘CG3’ 
did not increase with increasing temperatures in either 
application. This could be due to the nonacclimatization of 
the ‘CG3’ plants to increasing temperatures.

APX reduces H2O2 to water by using two molecules of 
AsA, while CAT catalyzes two molecules of H2O2 into water 
and oxygen (Sharma et al., 2012). Glutathione reductase 
catalyzes the reduction of glutathione disulfide (GSSG) to 
glutathione (GSH), which is a critical molecule in resisting 
oxidative stress (Arora et al., 2002). The absence of change 
in GR activity in response to temperatures and applications 
indicated that there was not a role for this enzyme in the 
antioxidant defense mechanism of strawberry plants. 
Similar to the current study, the APX activity of various 
plant species increased with temperature and time of 
application under high temperature stress (Almeselmani et 
al., 2006; Yin et al., 2008; He and Huang, 2010). By contrast, 
it was reported that the CAT activity of cool season grass 
species and peppers was reduced at high temperatures, and 
loss of CAT activity may be a consequence of membrane 
dysfunction (Jiang and Huang, 2001; Anderson, 2002). 
It was determined that GR activity was variable in many 
plant species during high temperature stress; for example, 
it can be increased (Kurganova et al., 1999; Chaitanya et 

Figure 6. SDS-PAGE protein profiles obtained from strawberry cultivars exposed to heat-shock stress (HSS). In each lane, 30 µg of protein 
was loaded. Molecular weight markers (MW) and the molecular mass (kDa) are shown on the left-hand side. The arrow on the right mark 
indicates the position of some proteins that changed under heat stress (A). Anti-HSP60 immunoblots of the 23 kDa leaf proteins and band 
intensities were based on quantitative measurements. For immunoblotting, 30 µg of protein was loaded in each lane (B).
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al., 2001; Kocsy et al., 2004), unchanged (Yin et al., 2008), 
or reduced (Jiang and Huang, 2001).

In the present study, the proline contents of cultivars 
were significantly higher in GHS than in HSS. Generally, 
the proline content in ‘R. Hope’ was higher than in ‘CG3’ 
at all temperatures (Figure 4). Similar to the findings of 
the current study, proline accumulation is more often 
observed in stress-tolerant plants than in sensitive ones 
(Chaitanya et al., 2001; Kumar et al., 2011; Naji and 
Devaraj, 2011). The proline content of cultivars, especially 
in ‘R. Hope’, was significantly increased at 43 °C and after it 
was decreased in GHS. The amino acid proline acts as ROS 
scavenger and protein stabilizer and is effective in stress 
tolerance (Xiong et al., 2012; Roychoudhury et al. 2015). 
Decrease in proline accumulation has been reported 
to have a role in activating the heat shock transcription 
factors for inducing the expression of HSPs in response to 
differential heat stress (Kumar et al., 2012). In this respect, 
reduction of the proline content might be the reason for 
HSP synthesis induction at 46 °C; thus strawberry plants 
can gain adaptation to high temperatures. 

Regarding TSP content, it was reduced by high 
temperature in both GHS and HSS applications (Figure 4). 
This might be due to protein denaturation and inhibition 
of the protein synthesis at higher temperatures (Levitt, 
1980). The decrease in TSP was greater in the GHS 
application, suggesting that longer exposure time might 
have increased the degradation of proteins. Moreover, as 
some researchers noted, lower long-term temperatures can 
cause more damage than short-term higher temperatures 
(Willits and Peet, 1998). Previous studies also showed that 
TSP content of strawberry cultivars decreased, whereas 
newly synthesized proteins increased in response to stress 
(Gulen and Eris, 2003, 2004; Ledesma et al., 2004; Gulen 
et al., 2006). According to SDS-PAGE, the two proteins 
of approximately 40 kDa and 23 kDa that accumulated at 
higher temperatures could be responsible for a considerable 
gain in thermotolerance in GHS. 

Immunoblotting analysis revealed that the HSP70 
antibody did not react with any of the HSPs in ‘R. 
Hope’ and ‘CG3’. The HSP60 antibody, however, reacted 
with the 23 kDa HSP in both cultivars. The intensity of 
23 kDa HSP60 in GHS was prominently more than 
in HSS and more intense in ‘R. Hope’ than in ‘CG3’ at 
almost all temperatures (Figures 5 and 6). The 23 kDa 
HSP60 was detected even at control temperature, but 
it was significantly increased at 46 °C. When subjected 
to nonoptimal temperatures, plant cells preferentially 

upregulate the expression of specific proteins called HSPs 
that function as molecular chaperones. The HSPs help to 
protect cells against the deleterious effects of stress (Miller 
and Stillman, 2012; Qu et al., 2013). It has been reported 
that plants such as potato, arabidopsis, and rice begin to 
synthesize HSPs if they are exposed to heat stress (Savic et 
al., 2012; Zhong et al., 2013; Chen et al., 2014). Ledesma 
et al. (2004) identified the presence of 26 kDa small HSP 
in leaf tissues of strawberry plants using peaHSP antibody 
17.7. Possibly, there is another HSP belonging to different 
classes in strawberry plants; this HSP was visible in the 
SDS-PAGE gels (40 kDa) (Figures 5 and 6). To the best of 
our knowledge, there is no previous study related to heat 
stress in strawberry plants that found evidence for HSP60. 
However, under heavy metal stress, Wang et al. (2011) 
reported the accumulation of HSP60 and HSP70 proteins 
in spinach (Spinacia oleraceae L.). In the current study, 
the HSP60 contents of ‘R. Hope’ demonstrated that this 
cultivar responded to high temperatures with better use 
of protein metabolism and had a more powerful defense 
mechanism.

In conclusion, GHS application might play a role in 
enabling heat acclimation due to longer exposure time 
in strawberry plants. Nonenzymatic antioxidants such as 
AsA and GSH and enzymatic antioxidant such as GR were 
not effective in enabling thermotolerance in strawberry 
plants, possibly because other defense mechanisms 
were responsible for the destruction of ROS like APX 
and CAT in the cell. Reduction of the proline content 
might be the reason for HSP synthesis induction at 46 
°C; thus strawberry plants can gain adaptation to high 
temperatures. The higher enzyme activity and more proline 
and TSP content and accumulation of HSP60 of ‘R. Hope’ 
in comparison with ‘CG3’ at all temperatures indicate 
that this cultivar responded to high temperatures with 
better use of protein metabolism and had a more powerful 
defense mechanism. The 23 kDa HSP60 determined is 
the first HSP60 in strawberry plants and can be used as 
a marker. These differences will be useful for identifying 
differently expressed genes under high temperature and it 
will allow the development of tolerant strawberry varieties.
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