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We introduce and investigate a four-dimensional hidden hyperchaotic system without equilibria, which is obtained by augmenting
the three-dimensional self-exciting homopolar disc dynamo due to Moffatt with an additional control variable. Synchronization of
two such coupled disc dynamo models is investigated by active control and sliding mode control methods. Numerical integrations
show that slidingmode control provides a better synchronization in time but causes chattering.The solution is obtained by switching
to active control when the synchronization errors become very small. In addition, the electronic circuit of the four-dimensional
hyperchaotic system has been realized in ORCAD-PSpice and on the oscilloscope by amplitude values, verifying the results from
the numerical experiments.

1. Introduction

Hyperchaos is a feature of a chaotic system having more
than one positive Lyapunov exponent [1]. Because of potential
theoretical and practical applications in technology, such
as secure communications, lasers, nonlinear circuits, neural
networks, generation, control, and synchronization, hyper-
chaos has featured as an important research area in nonlinear
science [2–5]. The theory about hidden hyperchaos with
either only stable or no equilibrium states is still in its infancy
and has only recently been understood by mathematicians
[6–9].

In 1979,Moffatt identified inconsistencies in themodeling
of a simple self-exciting homopolar disc dynamo because of
the neglect of induced azimuthal eddy currents, which can
be resolved by introducing a segmented disc dynamo [10].

Here we investigate hidden hyperchaos, synchronization, and
electronic circuit realization for a higher-dimensional version
of the self-exciting homopolar disc dynamo, which was not
yet completely well understood.

Since Pecora and Carroll [11] investigated synchroniza-
tion in chaotic systems in 1990, such behavior has become
an important research area in nonlinear science, not only for
understanding the complicated phenomena in various fields
but also for its potential applications especially in secure
communication and image encryption. Two indistinguish-
able chaotic systems, starting fromnonidentical initial values,
would evolve in time to completely different trajectories
because of the sensitive dependence of chaotic systems to
their initial values. The aim of synchronizing chaos is to
ensure that the states track the desired trajectory. Many effec-
tivemethods exist to deal with synchronization of chaotic and
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hyperchaotic systems. These include active control [12–20],
passive control [21], sliding mode control [22–31], adaptive
control [32], and backstepping design [33]. Of these, active
control is an important simple method used in the syn-
chronization of nonlinear systems. It maintains asymptotic
stability at zero error by eliminating the nonlinear terms
and making all the eigenvalues have negative real parts. The
other commonly preferred method, sliding mode control,
maintains the synchronization by enforcing the error system
to stay on a constructed sliding surface.

The first model with a simple electronic application was
realized by Chua et al. [34]. In the following years, many
electronic circuit applications such as simple RLC, RC circuits
[35–37], oscillators [38, 39], power circuits [40, 41], and
capacitor circuits which show chaotic features were improved
upon. On the one hand, numerous electronic circuit realiza-
tions with interesting features, which mimic novel chaotic
and hyperchaotic systems, have been proposed in recent years
[3, 42–45].

Current interest in hidden hyperchaotic attractors moti-
vates us to study an extension about the self-exciting hom-
opolar disc dynamo [10] to 4D homopolar dynamo without
equilibria. The existence of hidden hyperchaotic attractors in
this new disc dynamo is confirmed. Synchronization of two
such coupled 4D self-exciting homopolar disc dynamo sys-
tems is analyzed with active and sliding mode control meth-
ods. Moreover, we have designed an electronic circuit and
have used an oscilloscope to view the hyperchaotic rescaled
dynamo without equilibria, implemented in real time.

2. Model and Hidden Hyperchaos of 4D
Self-Exciting Homopolar Disc Dynamo
System without Equilibria

Dynamo models have been the object of much interest in
order to understand both the generation of magnetic fields
and their reversals in astrophysics. Moffatt [10] extended
the simplest self-exciting Bullard dynamo to include radial
magnetic diffusion, to produce the disc dynamo model,
written nondimensionally as𝑥̇ = 𝑟 (𝑦 − 𝑥) ,̇𝑦 = 𝑚𝑥 − (1 + 𝑚) 𝑦 + 𝑥𝑧,𝑧̇ = 𝑔 [1 + 𝑚𝑥2 − (1 + 𝑚) 𝑥𝑦] , (1)

where 𝑥, 𝑦, and 𝑧 are state variables and 𝑟, 𝑚, and 𝑔 are
positive parameters. 𝑥 and 𝑦 represent the magnetic fluxes
due to radial and azimuthal current distributions, respec-
tively. 𝑧 denotes the angular velocity of the disc. 𝑔 is the
applied torque; 𝑟 and 𝑚 are the constants which depend on
the inductances and the electrical resistance of the dynamo.

By modifying the characteristics of the segmented disc
dynamo (1), hidden chaotic or hyperchaotic spiral attractors
have been observed numerically under special initial condi-
tions with two symmetric stable node-foci. This leads to the
interesting and striking observation of multiple attractors for
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Figure 1: Bifurcation diagram of system (2) without equilibria
versus parameter𝑚 in [0.5, 1.5].

a broad range of parameters. As in many nonlinear dynam-
ical systems, the occurrence of multiple attractors implies
the existence of multistability in the self-exciting dynamo,
with the long-term behavior being fundamentally different
depending on which basin of attraction the initial conditions
belong. Now, we introduce a dislocated feedback controller to
system (1) as a new state 𝑤 and translate 𝑧 to 𝑧 − 𝑚 to result
in following 4D system:𝑥̇ = 𝑟 (𝑦 − 𝑥) + 𝑤,̇𝑦 = − (1 + 𝑚) 𝑦 + 𝑥𝑧,𝑧̇ = 𝑔 [1 + 𝑚𝑥2 − (1 + 𝑚) 𝑥𝑦] ,𝑤̇ = −𝑘𝑦, (2)

where 𝑘 is a positive parameter. Although system (2) is similar
to the algebraic forms of hyperchaotic Lorenz, Chen, Lü, and
unified systems, they are not topologically equivalent [46–
52]. The proposed system (2) will be a way of understanding
the generation of magnetic fields and their reversals in the
Earth, the Sun, and other astrophysical bodies. Figure 1 shows
a bifurcation diagram exhibiting a period-doubling route
to chaos of the peak of 𝑧 (𝑧max) of system (2) versus the
parameters 𝑚 ∈ [0.5, 1], 𝑟 = 8, 𝑔 = 35, and 𝑘 = 3. There
are some periodic windows in the chaotic region. Plots of the
Lyapunov exponents about 𝑚 ∈ [0.5, 1.5] are shown in
Figure 2. Figure 3 indicates that system (2) is indeed hidden
hyperchaotic for initial states (1.13, 0.5, 0.8, and 1.5) and
parameter𝑚 = 0.5. Its Lyapunov exponents are 0.4113, 0.2233,
0.0000, and −10.1345) and Kaplan-Yorke dimension is𝐷KY =
3.0626.

To find the equilibrium states of system (2), we set 𝑥̇ =̇𝑦 = 𝑧̇ = 𝑤̇ = 0 and solve 𝑟 (𝑦 − 𝑥) + 𝑤 = 0,− (1 + 𝑚) 𝑦 + 𝑥𝑧 = 0,𝑔 [1 + 𝑚𝑥2 − (1 + 𝑚) 𝑥𝑦] = 0,−𝑘𝑦 = 0. (3)
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Figure 2: Lyapunov exponents LE1, LE2, LE3, and LE4 of system (2) without equilibria versus parameter𝑚 in [0.5, 1.5].

There seems to be two equilibria: 𝐸1(1/√−𝑚, 0, 0,𝑟/√−𝑚) and 𝐸2(−1/√−𝑚, 0, 0, −𝑟/√−𝑚); however, because𝑚 is positive, hyperchaotic self-exciting homopolar disc dy-
namo system (2) has no real equilibria.

3. Synchronization of the 4D Self-Exciting
Homopolar Disc Dynamo System

For synchronization, two self-exciting homopolar disc
dynamo hyperchaotic systems are coupled together with dif-
ferent initial values. The driver system, 𝑥, controls the re-
sponse system, 𝑦. They are given, respectively, by

̇𝑥1 = 𝑟 (𝑥2 − 𝑥1) + 𝑥4,̇𝑥2 = − (1 + 𝑚) 𝑥2 + 𝑥1𝑥3,̇𝑥3 = 𝑔 [1 + 𝑚𝑥21 − (1 + 𝑚) 𝑥1𝑥2] ,̇𝑥4 = −𝑘𝑥2,
(4)

̇𝑦1 = 𝑟 (𝑦2 − 𝑦1) + 𝑦4,̇𝑦2 = − (1 + 𝑚) 𝑦2 + 𝑦1𝑦3 + 𝑢1,̇𝑦3 = 𝑔 [1 + 𝑚𝑦21 − (1 + 𝑚) 𝑦1𝑦2] + 𝑢2,̇𝑦4 = −𝑘𝑦2,
(5)

where 𝑢1 and 𝑢2 in system (5) are the control functions to
be determined. The synchronization errors are obtained by
subtracting the driver and response systems. Thus, they are

defined as 𝑒𝑖 = 𝑦𝑖−𝑥𝑖 (for 𝑖 = 1, 2, 3, 4) and the error dynamics
become as follows:̇𝑒1 = 𝑟 (𝑒2 − 𝑒1) + 𝑒4,̇𝑒2 = − (1 + 𝑚) 𝑒2 + 𝑦1𝑦3 − 𝑥1𝑥3 + 𝑢1,̇𝑒3 = 𝑔 [𝑚 (𝑦21 − 𝑥21) − (1 + 𝑚) (𝑦1𝑦2 − 𝑥1𝑥2)] + 𝑢2,̇𝑒4 = −𝑘𝑒2.

(6)

Our objective is to make system (6) asymptotically stable at
the zero error state.

3.1. Active Control. The nonlinear terms in system (6) can be
eliminated by defining the control functions 𝑢1 and 𝑢2 as in
the following:𝑢1 = −𝑦1𝑦3 + 𝑥1𝑥3 + V1,𝑢2 = −𝑔 [𝑚 (𝑦21 − 𝑥21) − (1 + 𝑚) (𝑦1𝑦2 − 𝑥1𝑥2)] + V2. (7)

Then, substituting (7) into system (6) giveṡ𝑒1 = 𝑟 (𝑒2 − 𝑒1) + 𝑒4,̇𝑒2 = − (1 + 𝑚) 𝑒2 + V1,̇𝑒3 = V2,̇𝑒4 = −𝑘𝑒2.
(8)

This implies that the equations in system (8) are linear.
Provided that the proper choices of control inputs V1 and V2
stabilize the error system (8), then 𝑒1, 𝑒2, 𝑒3, and 𝑒4 will con-
verge to zero as 𝑡 → +∞. Then, the synchronization of two
identical self-exciting homopolar disc dynamo hyperchaotic
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Figure 3: Hyperchaotic attractor of four-dimensional self-exciting homopolar disc dynamo system (2) without equilibria for 𝑟 = 8, 𝑔 = 35,𝑘 = 3, and𝑚 = 0.5.
systemswill be achieved. A number of choices are possible for
control functions V1 and V2. They are simply taken as

V1 = (1 + 𝑚 − 𝑘1) 𝑒2 − 𝑟𝑒1 + 𝑘𝑒4,
V2 = −𝑘2𝑒3, (9)

where 𝑘1 and 𝑘2 are positive control gains. Substituting (9)
to system (8) gives the following synchronization error dy-
namics: ̇𝑒1 = 𝑟 (𝑒2 − 𝑒1) + 𝑒4,̇𝑒2 = −𝑟𝑒1 − 𝑘1𝑒2 + 𝑘𝑒4,̇𝑒3 = −𝑘2𝑒3,̇𝑒4 = −𝑘𝑒2.

(10)

The associated characteristic matrix of system (10) is

𝐴 =(−𝑟 −𝑟 0 1−𝑟 −𝑘1 0 𝑘0 0 −𝑘2 00 −𝑘 0 0). (11)

For the particular choice of control functions in (9), the
closed loop system (10) has all of its eigenspectrum in the

negative half plane since all of the parameters 𝑟, 𝑘, 𝑘1, and𝑘2 are positive. So, this choice leads to a stable system where
the error states 𝑒1, 𝑒2, 𝑒3, and 𝑒4 tend to zero as time 𝑡 tends to
infinity. Synchronization of two identical hyperchaotic self-
exciting homopolar disc dynamos is therefore completedwith
the active control method.

3.2. SlidingMode Control. It can be seen from system (6) that
when 𝑒2 and 𝑒3 become zero, ̇𝑒4 will be zero and then ̇𝑒1 =−𝑟𝑒1. Therefore, when time goes to infinite, 𝑒1 will converge
to zero, too. Appropriate sliding surfaces for 𝑒2 and 𝑒3 can be,
respectively, designed as𝑠1 = 𝑒2 − 𝑘3𝑒4,𝑠2 = 𝑒3 − 𝑘4𝑒4, (12)

where 𝑘3 and 𝑘4 are positive control gains.
The attainability condition for sliding mode is 𝑠 ̇𝑠 < 0.

Provided that this condition is satisfied, the sliding mode
control functions are𝑢1 = (1 + 𝑚) 𝑒2 − 𝑦1𝑦3 + 𝑥1𝑥3 − 𝑘3𝑘𝑒2 − 𝑘5𝑠1− 𝑞1 sign (𝑠1) ,𝑢2 = −𝑔 [𝑚 (𝑦21 − 𝑥21) − (1 + 𝑚) (𝑦1𝑦2 − 𝑥1𝑥2)]− 𝑘4𝑘𝑒2 − 𝑘6𝑠2 − 𝑞2 sign (𝑠2) ,

(13)
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Figure 4: Time series of driver and response four-dimensional self-exciting homopolar disc dynamo hyperchaotic systems with the
controllers are activated at 𝑡 = 10.
where 𝑘5 and 𝑘6 are positive control gains. Large values of𝑘5 and 𝑘6 decrease the time 𝑡 taken to reach the sliding
surface but lead to chattering; small values of 𝑞1 and 𝑞2 reduce
chattering but increase the time to reach the sliding surface.
Here “sign” means the signum function.

The designed control functions (13) guarantee that system
(6) is held on the sliding surface 𝑠 = 0. The time derivations
of sliding surfaces arė𝑠1 = −𝑘5𝑠1 − 𝑞1 sign (𝑠1) ,̇𝑠2 = −𝑘6𝑠2 − 𝑞2 sign (𝑠2) . (14)

For the Lyapunov function𝑉 = 12 (𝑠21 + 𝑠22) , (15)

the time derivative of 𝑉 becomes𝑉̇ = −𝑘5𝑠21 − 𝑞1𝑠1 sign (𝑠1) − 𝑘6𝑠22 − 𝑞2𝑠2 sign (𝑠2) ≤ 0, (16)

where 𝑘5,6 ≥ 0. These conditions guarantee that the
constructed sliding surfaces 𝑠1 and 𝑠2 would asymptotically
stabilize to the zero synchronization error state, andwe obtain
synchronization between the two identical hyperchaotic self-
exciting homopolar disc dynamos via the sliding mode
control method.

3.3. Numerical Simulations. We now perform some numer-
ical experiments to show that synchronization occurs. We

use an ode45 integration solver function with a variable step
size. We take 𝑟 = 8, 𝑚 = 0.5, 𝑔 = 35, and 𝑘 = 3 to
ensure that hyperchaotic behavior occurs. The gains of the
active controllers are taken to be 𝑘1 = 1 and 𝑘2 = 1. The
gains of the sliding mode controllers are taken to be 𝑘3 = 1,𝑘4 = 1, 𝑘5 = 1, 𝑘6 = 1, 𝑞1 = 0.5, and 𝑞2 = 0.5. We
choose the initial conditions for the driver and response
systems to be (1.13, 0.5, 0.8, 1.5) and (1.3, 2, 11.1, 1.4), respec-
tively. The controllers are activated when 𝑡 = 10, and we
plot the synchronization simulations in Figure 4, while the
synchronization errors are plotted in Figure 5.

Figure 4 shows that both active and sliding mode con-
trollers achieve the synchronization of the four-dimensional
self-exciting homopolar disc dynamo hyperchaotic system.
Figure 5 also shows that, after the activation of controllers at𝑡 = 10, the synchronization errors approach zero asymptot-
ically, thereby validating the theoretical analyses. Synchro-
nization is complete for 𝑡 ≥ 16 with active control and for𝑡 ≥ 14 with sliding mode control. Activation of control at
different times gives similar synchronization performances.
The comparisons point out that the sliding mode control
scheme has the advantage of a faster synchronization time.
However, when the results are viewed more closely, as in
Figure 6, the chattering problemof slidingmode controllers is
evident. A solution is to switch to active control when the
mean squared error is less than 0.00001.The new results from
switching controllers are presented in Figure 7. It has no chat-
tering and the synchronization performance is similar to that
with the sliding mode control scheme.
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Figure 5: Synchronization errors between driver and response four-dimensional self-exciting homopolar disc dynamo hyperchaotic systems
with the controllers are activated at 𝑡 = 10: (a) active controllers and (b) sliding mode controllers.
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Figure 8: The electronic circuit schematic of the scaled hyperchaotic system (17).

4. Electronic Circuit Implementation
of the 4D Self-Exciting Homopolar
Disc Dynamo System

Because the values for 𝑥, 𝑦, and 𝑤 fall within the interval of(−15, 15), while 𝑧 falls within the interval of (−20, 25), 𝑧must
be rescaled for observations using the oscilloscope. We let𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧/2, and𝑊 = 𝑤 and consider the system:𝑋̇ = 𝑟 (𝑌 − 𝑋) +𝑊,𝑌̇ = − (1 + 𝑚)𝑌 + 2𝑋𝑍,𝑍̇ = 12𝑔 [1 + 𝑚𝑋2 − (1 + 𝑚)𝑋𝑌] ,𝑊̇ = −𝑘𝑌.

(17)

We can now design an electronic circuit for the scaled
hyperchaotic model (17) with parameters 𝑟 = 8, 𝑚 = 0.5,

𝑔 = 35, and 𝑘 = 3 and initial conditions (1.13, 0.5, 0.4, 1.5)
usingORCAD-PSpice.The schematic of the electronic circuit
is shown in Figure 8. We used resistors, capacitors, TL081
opamps, and AD633 multipliers with the values 𝑅1 = 𝑅2 =50Kohm, 𝑅3 = 400Kohm, 𝑅4 = 266.66Kohm, 𝑅5 = 20
Kohm, 𝑅6 = 133.33Kohm, 𝑅7 = 342Kohm, 𝑅8 = 4.6Kohm,𝑅9 = 1.5Kohm, 𝑅10 = 𝑅11 = 𝑅12 = 𝑅13 = 100Kohm,𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 1 nF, 𝑉𝑛 = −15V, and 𝑉𝑝 = 15V.
Since the AD633 multiplier IC is limited to between −10V
and +10V, the output voltage must be divided by 10V. Real-
time application of system (17) was realized with electronic
components and shown on the electronic card in Figure 9.

Outputs from the ORCAD-PSpice simulation and oscil-
loscope phase portraits for the scaled hyperchaotic system
(17) with parameters 𝑟 = 8, 𝑚 = 0.5, 𝑔 = 35, and 𝑘 = 3 are
given in Figures 10 and 11, respectively. The outputs verify
those of the hyperchaotic system, which was modeled using
MATLAB.
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Figure 9: The experimental circuit of the hyperchaotic circuit.
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Figure 10: The phase portraits of scaled hyperchaotic system (17) in ORCAD-PSpice.

5. Conclusion

In this paper, we propose a novel four-dimensional self-
exciting homopolar disc dynamo without equilibria, but
exhibiting hidden hyperchaos. Furthermore, active control

and slidingmode control methods are applied to synchronize
two coupled four-dimensional dynamo systems. The feasi-
bility of active controllers is ensured by requiring that the
spectrum of eigenvalues of the synchronized error system
falls in the left half plane. A Lyapunov function is proposed to
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Figure 11: The phase portraits of scaled hyperchaotic system (17) with 𝑟 = 8,𝑚 = 0.5, 𝑔 = 35, and 𝑘 = 3 on the oscilloscope.

guarantee the asymptotic stability of sliding surfaces and
convergence to zero synchronization error. Numerical inte-
grations are presented to compare the performances of the
two controllers. Sliding mode control scheme gives better
results but has chattering. Solution is provided by a switch to
active controllers when chattering starts. An electronic circuit
for the rescaled system is implemented via the ORCAD-
PSpice program. Numerical simulations validated the theo-
retical analyses. This physical example will form the basis of
more systematic studies of hyperchaos without equilibria in a
future study.
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[1] O. E. Rössler, “An equation for hyperchaos,” Physics Letters A,
vol. 71, no. 2-3, pp. 155–157, 1979.

[2] P. Arena, S. Baglio, L. Fortuna, and G.Manganaro, “Hyperchaos
from cellular neural networks,” Electronics Letters, vol. 31, no. 4,
pp. 250-251, 1995.

[3] Q. Li, S. Tang, H. Zeng, and T. Zhou, “On hyperchaos in a small
memristive neural network,”Nonlinear Dynamics, vol. 78, no. 2,
pp. 1087–1099, 2014.

[4] L. Liu, C. Liu, and Y. Zhang, “Theoretical analysis and circuit
implementation of a novel complicated hyperchaotic system,”
Nonlinear Dynamics, vol. 66, no. 4, pp. 707–715, 2011.



10 Complexity

[5] C. B. Li, I. Pehlivan, J. C. Sprott, and A. Akgul, “A novel four-
wing strange attractor born in bistability,” IEICE Electronics
Express, vol. 12, no. 4, pp. 1–12, 2015.

[6] M. A. Kiseleva, N. V. Kuznetsov, and G. A. Leonov, “Hidden
attractors in electromechanical systems with and without equi-
libria,” IFAC-PapersOnLine, vol. 49, no. 14, pp. 51–55, 2016.

[7] G. A. Leonov and N. V. Kuznetsov, “Hidden attractors in dy-
namical systems: From hidden oscillations in Hilbert-Kolmog-
orov, Aizerman and Kalman problems to hidden chaotic attrac-
tor in Chua circuits,” International Journal of Bifurcation and
Chaos, vol. 23, no. 1, Article ID 1330002, 2013.

[8] Z.Wei, P. Yu,W. Zhang, andM. Yao, “Study of hidden attractors,
multiple limit cycles from Hopf bifurcation and boundedness
of motion in the generalized hyperchaotic Rabinovich system,”
Nonlinear Dynamics, vol. 82, no. 1-2, pp. 131–141, 2015.

[9] Z. C. Wei and W. Zhang, “Hidden hyperchaotic attractors in a
modified Lorenz-Stenflo system with only one stable equilib-
rium,” International Journal of Bifurcation and Chaos, vol. 24,
no. 10, Article ID 1450127, 2014.

[10] H. K. Moffatt, “A self-consistent treatment of simple dynamo
systems,” Geophysical & Astrophysical Fluid Dynamics, vol. 14,
no. 1, pp. 147–166, 1979.

[11] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic
systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824,
1990.

[12] H. N. Agiza and M. T. Yassen, “Synchronization of Rossler and
Chen chaotic dynamical systems using active control,” Physics
Letters A, vol. 278, no. 4, pp. 191–197, 2001.

[13] E.-W. Bai and K. E. Lonngren, “Synchronization of two Lorenz
systems using active control,”Chaos, Solitons and Fractals, vol. 8,
no. 1, pp. 51–58, 1997.

[14] M. M. El-Dessoky, “Synchronization and anti-synchronization
of a hyperchaotic Chen system,” Chaos, Solitons and Fractals,
vol. 39, no. 4, pp. 1790–1797, 2009.

[15] A. Goksu, U. E. Kocamaz, and Y. Uyaroglu, “Synchronization
and control of chaos in supply chain management,” Computers
and Industrial Engineering, vol. 86, pp. 107–115, 2015.

[16] G.-H. Li, “An active control synchronization for two modified
Chua circuits,” Chinese Physics, vol. 14, no. 3, pp. 472–475, 2005.
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