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Computational Modeling of Magnetic Properties and Glass
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A model based on artificial neural network was designed for the simulation and estimation of glass forming

ability parameters and saturation magnetization and coercivity of bulk glassy alloys. Its performance is evaluated
by the influences of different kinds of alloys and elements on the glass forming ability and magnetic properties.
The values of glass forming ability parameters and saturation magnetization and coercivity values estimated by
artificial neural network agree well with the experimental values, indicating that the model is reliable and adequate.

PACS numbers: 64.70.pe, 84.35.+i, 75.50.Vv, 75.50.Kj

1. Introduction
Recently, there are many researches to fabricate bulk

amorphous alloys in different systems, with different ge-
ometries and good magnetic characteristics for specific
applications [1]. Studies focused on evaluating glass
forming ability (GFA) benefit much from the determina-
tion of several thermal parameters such as glass transi-
tion temperature (Tg), crystallization temperature (Tx),
and melting (liquidus) temperature (Tl). The reduced
glass transition temperature (Trg) criterion has proved
to be generally applicable to all alloy systems [2]. Artifi-
cial neural networks (ANNs) have been applied in many
areas [3, 4], because of these features.

In this paper, the GFA parameters (Tg, Tx and Trg),
saturation magnetization (Js) and coercivity (Hc) are
modelled using previously reported data of magnetic bulk
glassy alloys.

2. ANN applications to GFA of magnetic bulk
glassy alloys

A total of 95 input vectors were available in the train-
ing data set of experimental data [5–17] for 100 magnetic
glassy alloys with different chemical compositions. A set
of data was used for testing the network. Matlab™ has
been used for training the networks, giving the advantage
of rapid network development through flexible choices of
algorithms, output functions and other training parame-
ters, thereby enhancing accuracy. A multilayered neural
network, which has 20 input neurons, 5 output neurons,
10 neurons of hidden layer and full connectivity between
neurons, was developed. The number of hidden layers
and the number of neurons in hidden layer were deter-
mined through trial and error to be optimal. The input
parameters were atomic percent of elements (Fe, Co, Nb,
B, Zr, Mo, W, Si, Ni, Ta, Ti, Cr, Y, Cu, Al, Hf, P,
C, Ga) of magnetic bulk glassy alloys and densities of al-
loys (ρ). The output parameters were Tg, Tx, Trg, and Js
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and Hc. The network has been trained by using the ge-
netic and the Levenberg–Marquardt algorithm with the
hyperbolic tangent transfer function in hidden layer, sig-
moid transfer function in output layer and 1000 epochs.
After the network was trained, the mean squared error
was found to be 0.0015. When the network has been
tested with training data set, the linear correlation coef-
ficient was found to be on average 99% for the Tg, Tx,
Trg, Js and Hc.

3. Results and discussion

Table compares predictions and previously reported
experimental data in the literature of the GFA param-
eters and magnetic values for 7 magnetic glassy alloys.
These alloys are within the training data set. The av-
erage absolute difference for the predictions and experi-
mental data is about 2%. This shows that the ANN has
an acceptable prediction capability for the alloys within
the training data.

Fig. 1. Plot of the measured Hc versus the network
outputs.

Figure 1 shows the Hc values versus the network
outputs for all training data set. The diagonal line
in this graph shows perfect match between measure-
ment and network output. Figure 2 also compares
between prediction of ANN and experimental Js and
Hc values for Fe68.2C7.0Si3.3B5.5P8.7Cr2.3Al2.0Co3.0,
Fe74.25B14.85Si9.9Nb1, Fe36Co36B19.2Si4.8Nb4 and
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Fig. 2. Comparison of predicted and measured Js and
Hc for untrained data.

Fe73Nb4Hf3B20 magnetic bulk glassy alloys which
are not included to training data. The correlation is
approximately found to be 99%.

The proposed method has some inherent limitations
which make it not a general solution. The trained neural
network is based on a specific set of chemical composi-
tion of magnetic bulk amorphous alloys. For very differ-
ent chemical compositions, a series of experiments would
have to be performed again to obtain input vectors for
a new ANN or the proposed ANN training. If the ANN
input vectors could include the GFA and magnetic perfor-
mance information and of new bulk glassy alloys, many
more experimental data would have to be done to meet
the accuracy requirements for a more general solution.
However, since the neural model presented in this work
has accuracy and requires no tremendous computational
efforts and less background information about the bulk
glassy alloys, it can be used to predict more accurately
and easily the GFA and magnetic values of these alloys.

TABLE
Predicted and measured the GFA and magnetic parameters for alloys used as training data.

Magnetic alloy composition Tg

[K]
Tg_ANN

[K]
Tx

[K]
Tx_ANN

[K]
Trg Trg_ANN

Js

[T]
Js_ANN

[T]
Hc

[A/m]
Hc_ANN

[A/m]

Fe72B22Y4Ti2 841.65 845.75 914.35 914.95 0.593 0.596 1.022 1.022 15.92 19.72

Fe76Si9B10P5 780 778 832 830 0.620 0.600 1.51 1.50 0.8 0.78

Fe60Co10Hf5Mo7B15Y3 879 877 943 942 0.594 0.597 0.533 0.622 79.58 79.67

Fe36Co36B19.2Si4.8Nb4 817 820 856 862 0.601 0.593 1.02 0.99 19.02 18.23

Fe72B22Y6 898.55 881.76 948.75 950.86 0.636 0.630 1.571 1.520 15.92 14.50

Fe66 W6Y6B22 897 886 981 976 0.599 0.601 0.64 0.64 2 2

Fe70Nb4Hf3B20Y3 850 853 924 916 0.592 0.591 1.05 1.04 2.1 1.9

4. Conclusion

The ANN has been successfully applied for the predic-
tion of the GFA parameters and magnetic properties of
bulk glassy alloys. The results are found to be in very
good agreement with previously reported data in liter-
ature. The developed ANN model can be used for the
prediction of GFA parameters and magnetic properties
of bulk glassy alloys.

Acknowledgments

This work was supported by the Commission of Sci-
entific Research projects of Uludag University, project
number UAP(F)-2010/19.

References

[1] C. Suryanarayana, I. Seki, A. Inoue, J. Non.-Cryst.
Solids 355, 355 (2009).

[2] A. Inoue, T. Zhang, H. Koshiba, J. Appl. Phys. 83,
6326 (1998).

[3] I. Kucuk, J. Magn. Magn. Mater. 305, 423 (2006).
[4] N. Kucuk, Ann. Nucl. Energy 35, 1787 (2008).
[5] Z. Longa, Y. Shao, G. Xie, P. Zhang, B. Shen, A. In-

oue, J. Alloys Comp. 462, 52 (2008).

[6] H.W. Chang, Y.C. Huang, C.W. Chang, C.H. Chiu,
W.C. Chang, J. Alloys Comp. 462, 68 (2008).

[7] F. Liu, S. Pang, R. Li, T. Zhang, J. Alloys Comp.
483, 613 (2009).

[8] B. Shen, C. Chang, Z. Zhang, A. Inoue, J. Appl. Phys.
102, 023515 (2007).

[9] B. Shen, M. Akiba, A. Inoue, Appl. Phys. Lett. 88,
131907 (2006).

[10] A. Makino, T. Kubota, C. Chang, M. Makabe, A. In-
oue, J. Magn. Magn. Mater. 320, 2499 (2008).

[11] B. Shen, C. Chang, A. Inoue, Intermetallics 15, 9
(2007).

[12] H.X. Li, H.Y. Jung, S. Yi, J. Magn. Magn. Mater.
320, 241 (2008).

[13] J.M. Barandiaran, J. Bezanilla, H.A. Davies, P. Paw-
lik, Sensor. Actuat. A-Phys. 129, 50 (2006).

[14] S.F. Guo, Z.Y. Wu, L. Liu, J. Alloys Comp. 468, 54
(2009).

[15] H.W. Chang, Y.C. Huang, C.W. Chang, C.C. Hsieh,
W.C. Chang, J. Alloys Comp. 472, 166 (2009).

[16] X.M. Huang, C.T. Chang, Z.Y. Chang, A. Inoue,
J.Z. Jiang, Matter. Sci. Eng. A-Struct. 527, 1952
(2010).

[17] S.F. Guo, Z.Y. Wu, L. Liu, J. Alloys Comp. 468, 54
(2009).


