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Abstract
In a previous paper by the authors, a new approach between algebra and analysis has
been recently developed. In detail, it has been generally described how one can
express some algebraic properties in terms of special generating functions. To
continue the study of this approach, in here, we state and prove that the presentation
which has the minimal number of generators of the split extension of two finite
monogenic monoids has different sets of generating functions (such that the number
of these functions is equal to the number of generators) that represent the exponent
sums of the generating pictures of this presentation. This study can be thought of as a
mixture of pure analysis, topology and geometry within the purposes of this journal.
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1 Introduction and preliminaries
Associated with any (connected) topological space X is its fundamental group π(X) or
-complex (Squier complex) D(X). This can often be specified by means of a presenta-
tion. A presentation of a group G or monoid M consists of a set of generators of G or
M, together with a collection of relations amongst these generators, such that any other
relation amongst the generators is derivable (in a precise sense) from the given relations.
Algebraic information about π(X) or D(X) can be used to obtain topological informa-
tion about X (cf. []). Many techniques of this branch of mathematics are purely algebraic,
and it is possible to achieve much using these techniques. However, in recent years many
techniques involving geometric ideas have emerged and are proving more fruitful. These
geometric techniques involve graph theory, the theory of tessellations of various surfaces
and covering space theory, to name a few.
The number of vertex-colorings of a graph is given by a polynomial on the number of

used colors (see []). Based on this polynomial, one can define the chromatic number as
the minimum number of colors such that the chromatic polynomial is positive. Recently,
our attention has been drawn to the paper [] which is a generalization on the chromatic
polynomial of a graph subdivision, and basically the authors determine the chromatic
number for a simple graph and then present the generalized polynomial for a particu-
lar case of graph subdivision. In this reference, the main idea was to express some graph
theoretical parameters in terms of special functions. In a similarmannerwithin algebra, by
considering a group or a monoid presentationP , an approximation from algebra to analy-
sis has been recently developed []. To do that, the authors supposedP satisfies the special
algebraic properties either efficiency or inefficiency while it is minimal. (The reason for
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choosing efficiency or (minimal) inefficiency was to have an advantage to work on a min-
imal number of generators.) Then it was investigated whether some generating functions
can be applied, and then it was studied what kind of new properties can be obtained by
considering special generating functions over P . In fact, to investigate this theory, P has
been taken as the presentation of the split extensionZn�Z andZ�Z, respectively. Since
the results in [] imply a new studying area for graphs in the meaning of representation of
parameters by generating functions, the results in [] will be also given an opportunity to
make a new classification of infinite groups and monoids by using generating functions.
This paper can be thought of as another version of []. Our general aim here is to define

some generating functions in terms of the minimality of the given presentation. This will
imply that the minimal number of generators can be represented as generating functions.
Similarly as in [], our approximation will be applied by considering the split extension.
Here, the split extension will be defined as a semi-direct product of two finite monogenic
(cyclic) monoids (we may refer to [] for details on these monoids). It is obvious that the
split extension of two finite structures will also be finite. So, the main difference between
the results in here and in the paper [] lies in this fact. Because, while a classification over
special cases of infinite groups ormonoidswas given in [], the classification in the present
paper only focuses on the finite monoids. It is well known that giving some different ap-
proximations over finite cases is also as important as giving those over infinite cases.
In the following first subsection, as supportive material, some algebraic facts over

split extensions (equivalently, semi-direct products), presentations of finite monogenic
monoids, a trivializer set of these presentations and efficiency (equivalently, p-Cockcroft
property) are reminded. In Section , we present the main material of this paper as two
separate subsections. In the first subsection, we present some known results about neces-
sary conditions for the presentation, sayPM , of the split extension of two finitemonogenic
monoids to be p-Cockcroft (see Proposition . below) and to be minimal but inefficient
(see Proposition . below). In the final subsection, as a result of all theories until there, we
introduce generating functions related to our title (see Theorems ., . and . below).
In Section , by considering one of the functions defined in the previous section, we study
this function in the meaning of again generating functions and functional equations (see
Theorems . and . below).

1.1 Fundamentals of the algebraic part
This subsection should be completely thought of as a part of the expressions in the begin-
ning of this paper.
Let P = [X; r] be a monoid presentation where a typical element R ∈ r has the form

R+ = R–. Here R+, R– are words on X (that is, elements of the free monoid F(X) on X). The
monoid defined by [X; r] is the quotient of F(X) by the smallest congruence generated by r.
We have a (Squier) graph � = �(X; r) associated with [X; r], where the vertices are the

elements of F(X) and the edges are the -tuples e = (U ,R, ε,V ), where U ,V ∈ F(X), R ∈ r
and ε = ±. The initial, terminal and inversion functions for an edge e as given above are
defined by ι(e) =URεV , τ (e) =UR–εV and e– = (U ,R, –ε,V ).
Two paths π and π ′ in a -complex are equivalent if there is a finite sequence of paths

π = π,π, . . . ,πm = π ′, where for  ≤ i ≤ m, the path πi is obtained from πi– either by
inserting or deleting a pair ee– of inverse edges or else by inserting or deleting a defining
path for one of the -cells of the complex. There is an equivalence relation, ∼, on paths in
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� which is generated by (e · ι(e))(τ (e) ·e) ∼ (ι(e) ·e)(e ·τ (e)) for any edges e and e of
�. This corresponds to requiring the closed paths (e · ι(e))(τ (e) · e)(e– · τ (e))(ι(e) · e– )
at the vertex ι(e)ι(e) to be the defining paths for the -cells of a -complex having � as its
-skeleton. This -complex is called the Squier complex of P and denoted by D(P) (see,
for example, [–]). The paths in D(P) can be represented by geometric configurations,
called monoid pictures. We assume here that the reader is familiar with monoid pictures
(see [, Section ], [, Section ] or [, Section ]). Typically, we will use blackboard bold,
e.g., A, B, C, P, as notation for monoid pictures. Atomic monoid pictures are pictures
which correspond to paths of length . Write [|U ,R, ε,V |] for the atomic picture which
corresponds to the edge (U ,R, ε,V ) of the Squier complex.Whenever we can concatenate
two paths π and π ′ in � to form the path ππ ′, then we can concatenate the correspond-
ing monoid pictures P and P

′ to form a monoid picture PP
′ corresponding to ππ ′. The

equivalence of paths in the Squier complex corresponds to an equivalence of monoid pic-
tures. That is, two monoid pictures P and P

′ are equivalent if there is a finite sequence
of monoid pictures P = P,P, . . . ,Pm = P

′ where, for  ≤ i ≤ m, the monoid picture Pi is
obtained from the picture Pi– either by inserting or deleting a subpicture AA

–, where
A is an atomic monoid picture, or else by replacing a subpicture (A · ι(B))(τ (A) · B) by
(ι(A) ·B)(A · τ (B)) or vice versa, where A and B are atomic monoid pictures.
A monoid picture is called a spherical monoid picture when the corresponding path in

the Squier complex is a closed path. SupposeY is a collection of spherical monoid pictures
over P . Two monoid pictures P and P

′ are equivalent relative to Y if there is a finite se-
quence ofmonoid pictures P = P,P, . . . ,Pm = P′ where, for ≤ i≤ m, themonoid picture
Pi is obtained from the picture Pi– either by the insertion, deletion and replacement op-
erations of the previous paragraph or else by inserting or deleting a subpicture of the form
W ·Y ·V or of the formW ·Y– ·V , whereW ,V ∈ F(X) and Y ∈ Y. By definition, a set Y
of spherical monoid pictures over P is a trivializer of D(P) if every spherical monoid pic-
ture is equivalent to an empty picture relative to Y. By [, Theorem .], if Y is a trivializer
for the Squier complex, then the elements of Y generate the first homology group of the
Squier complex. The trivializer is also called a set of generating pictures. Some examples
and more details of the trivializer can be found in [–].
For anymonoid picture P overP and for any R ∈ r, expR(P) denotes the exponent sum of

R in P which is the number of positive discs labeled by R+, minus the number of negative
discs labeled by R–. For a non-negative integer n,P is said to be n-Cockcroft if expR(P) ≡ 
(modn), (where congruence (mod) is taken to be equality) for allR ∈ r and for all spherical
pictures P over P . Then a monoidM is said to be n-Cockcroft if it admits an n-Cockcroft
presentation. In fact, to verify the n-Cockcroft property, it is enough to check for pictures
P ∈ Y, where Y is a trivializer (see [, ]). The -Cockcroft property is usually just called
Cockcroft. In general, we take n to be equal to  or a prime p. Examples of monoid pre-
sentations with Cockcroft and p-Cockcroft properties can be found in [].
Suppose that P = [X; r] is a finite presentation for a monoid M. Then the Euler char-

acteristic χ (P) is defined by χ (P) =  – |X| + |r| and δ(M) is defined by δ(M) =  –
rkZ(H(M)) + d(H(M)). In unpublished work, Pride has shown that χ (P) ≥ δ(M). With
this background, we define the finitemonoid presentationP to be efficient if χ (P) = δ(M),
and we define the monoid M to be efficient if it has an efficient presentation. Moreover,
a presentation P forM is calledminimal if χ (P) ≤ χ (P) for all presentations P ofM.
There is also interest in finding inefficient finitely presented monoids since if we can find
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a minimal presentation P for a monoid M such that P is not efficient, then we have
χ (P ′) ≥ χ (P) > δ(M) for all presentations P ′ defining the same monoidM. Thus, there
is no efficient presentation forM, that is,M is not an efficient monoid.
The following theorem was first given in []. (The group version of this result was

proved by Epstein in [].)

Theorem . Let P be a monoid presentation. Then P is efficient if and only if it is p-
Cockcroft for some prime p.

LetM be a monoid with the presentation P = [X; r], and let

P(l) =
⊕
S∈r

ZMeS

be the free left ZM-module with basis {eS : S ∈ r}. For an atomic picture A = (U ,S, ε,V )
(where U ,V ∈ F(x), S ∈ r, ε = ±), we define eval(l)(A) = εUeS ∈ P(l), where U ∈ M(P).
For any spherical monoid picture P, we then define

eval(l)(P) =
n∑
i=

eval(l)(Ai) ∈ P(l). ()

Let λP,S be the coefficient of eS in eval(l)(P). So, we can write

eval(l)(P) =
∑
S∈r

λP,SeS ∈ P(l). ()

Let I(l) (P) be a two-sided ideal of ZM generated by the elements λP,S , where P is a spher-
ical monoid picture and S ∈ r. Then this ideal is called the second Fox ideal of P . More
specifically, for a trivializer Y of D(P), the set I(l) (P) is generated (as two-sided ideal) by
the elements λP,S , where P ∈ Y and S ∈ r. We note that all this above material given by the
consideration ‘left’ can also be applied to ‘right’ for a monoidM.
The definition and a standard presentation for the semi-direct product of two monoids

can be found in [, , , ]. Let A and K be arbitrary monoids with associated presen-
tations PA = [X; r] and PK = [Y ; s], respectively. Let M = K �θ A be the corresponding
semi-direct product of these two monoids, where θ is a monoid homomorphism from A
to End(K). (We note that the reader can find some examples of monoid endomorphisms
in [].) The elements of M can be regarded as ordered pairs (a,k) where a ∈ A, k ∈ K
with multiplication given by (a,k)(a′,k′) = (aa′, (kθa′ )k′). The monoids A and K are identi-
fied with the submonoids ofM having elements (a, ) and (,k), respectively. We want to
define standard presentations forM. For every x ∈ X and y ∈ Y , choose a word, which we
denote by yθx, on Y such that [yθx] = [y]θ[x] as an element of K . To establish notation, let
us denote the relation yx = x(yθx) on X ∪ Y by Tyx and write t for the set of relations Tyx.
Then, for any choice of the words yθx,

PM = [Y ,X; s, r, t] ()

is a standard monoid presentation for the semi-direct productM.
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In [], a finite trivializer set has been constructed for the standard presentation PM, as
given in (), for the semi-direct product M. We will essentially follow [] in describing
this trivializer set using spherical pictures and certain non-spherical subpictures of these.
If W = yy · · · ym is a positive word on Y , then for any x ∈ X, we denote the word

(yθx)(yθx) · · · (ymθx) byWθx. If U = xx · · ·xn is a positive word on X, then for any y ∈ Y ,
we denote the word (· · · ((yθx )θx )θx · · · )θxn by yθU , and this can be represented by a
monoid picture, say AU ,y, as in Figure (b). For y ∈ Y and the relation R+ = R– in the
relation set r, we have two important special cases, AR+,y and AR–,y, of this considera-
tion. We should note that these non-spherical pictures consist of only Tyx-discs (x ∈ X).
Let S ∈ s and x ∈ X. Since [S+θx]PK = [S–θx]PK , there is a non-spherical picture, say BS,x,
over PK with ι(BS,x) = S+θx and τ (BS,x) = S–θx. Further, let R+ = R– be a relation R ∈ r and
y ∈ Y . Since θ is a homomorphism, by the definition on yθU , we have that yθR+ and yθR–
must represent the same element of the monoid K . That is, [yθR+]PK = [yθR–]PK . Hence,
there is a non-spherical picture over PK which we denote by Cy,θR with ι(Cy,θR ) = yθR+ and
τ (Cy,θR ) = yθR– . In fact, theremay bemany different ways to construct the picturesBS,x and
Cy,θR . These pictures must exist, but they are not unique. On the other hand, the picture
AU ,y will depend upon our choices for words yθx, but this is unique once these choices are
made.
After all, for x ∈ X, y ∈ Y , R ∈ r and S ∈ s, one can construct spherical monoid pictures,

say PS,x and PR,y, by using the non-spherical pictures BS,x, AR+,y, AR–,y and Cy,θR (see Fig-
ures ,  and  for the examples of these pictures). Let XA and XK be trivializer sets of
D(PA) andD(PK ), respectively. Also, let C = {PS,x : S ∈ s,x ∈ X} and C = {PR,y : R ∈ r, y ∈
Y }. Then, by [, ], it is known that for a presentation PM, as in (), a trivializer set of
D(PM) is XM =XA ∪XK ∪C ∪C.

2 Generators over the semi-direct product of finite cyclic monoids
In fact, this is the main section of the paper and it will be given as two subsections under
the names of Part I and Part II. Since we will define generating functions by considering
the exponent sums of the generating pictures over the presentation of this semi-direct
product, the first subsection is aimed to define these generating pictures and the related
results about them.

2.1 Part I: generating pictures
In this subsection, we will mainly present the efficiency (equivalently, p-Cockcroft prop-
erty for a prime p by Theorem .) for the semi-direct products of finite cyclic monoids.
Let A and K be two finite cyclic monoids with presentations

PA =
[
x;xμ = xλ

]
and PK =

[
y; yk = yl

]
()

respectively, where l,k,λ,μ ∈ Z
+ such that l < k and λ < μ, or equivalently,

μ = λ + r ( ≤ r ≤ μ – ) and k = l +ω ( ≤ ω ≤ k – ). ()

Due to [], a trivializer set XK (and similarly XA) of the Squier complexD(PK ) (and sim-
ilarly D(PA)) is given by the pictures Pm

k,l ( ≤ m≤ k – ), as in Figure .
Let ψi (≤ i≤ k –) be an endomorphism of K . Then we have a mapping x –→ End(K),

x 
–→ ψi. In fact this induces a homomorphism θ : A –→ End(K), x 
–→ ψi if and only if

http://www.fixedpointtheoryandapplications.com/content/2013/1/15


Çevik et al. Fixed Point Theory and Applications 2013, 2013:15 Page 6 of 18
http://www.fixedpointtheoryandapplications.com/content/2013/1/15

ψ
μ
i = ψλ

i . Since ψ
μ
i and ψλ

i are equal if and only if they agree on the generator y of K , we
must have

[
yi

μ]
=

[
yi

λ]
. ()

We then have the semi-direct productM = K �θ A and, by [], a standard presentation

PM = [y,x;S,R,Tyx], ()

as in (), for the monoidM where

S : yk = yl, R : xμ = xλ and Tyx : yx = xyi.

In the rest of the paper, we will assume that the equality in Equation () holds when we
talk about the semi-direct productM of K by A.
The subpicture BS,x can be drawn as in Figure (a), and in fact, by considering this sub-

picture, we clearly have

expS(BS,x) = i.

As it is seen in Figure (b), we also have the subpicture AR+,y (and similarly AR–,y) with

expTyx (AR+,y) =  + i + i + · · · + iμ– =
iμ – 
i – 

and

expTyx (AR–,y) =  + i + i + · · · + iλ– =
iλ – 
i – 

.

By equality (), we must have [yiμ ] = [yiλ ]. Hence, by [], the subpicture Cy,θR with

ι(Cy,θR ) = yi
μ
, τ (Cy,θR ) = yi

λ
and expS(Cy,θR ) =

iμ – iλ

k – l

can be depicted as in Figure .
After all, the whole generating pictures PS,x and PR,y can be drawn as in Figure .
The following result states necessary and sufficient conditions for the presentation of

the split extension of two finite monogenic monoids to be efficient.

Proposition . ([]) Let p be a prime. Suppose that K �θ A is a monoid with the associ-
ated monoid presentation PM , as in (). Then PM is p-Cockcroft (equivalently efficient) if
and only if

p | k – l, p | i – , p
∣∣∣ iμ – iλ

k – l
, p

∣∣∣ iμ – iλ

i – 
.

Remark . To be an example of Proposition ., one can take
• k = , l = , μ = , λ =  or k = , l = , μ = , λ =  while p =  and i =  to get
-Cockcroft property for the presentation PM in (), or more generally

http://www.fixedpointtheoryandapplications.com/content/2013/1/15
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• for any prime p, k = (p + )[ (p+)
p–

p ] + , l = , μ = p +  = i and λ =  to get p-Cockcroft
property for the presentation PM in ().

Considering Theorem ., one can say that the monoid presentation PM , as in (), is
efficient if and only if there is a prime p such that

expy(S)≡  (modp), expS(BS,x)≡  (modp),

expTyx (Cy,θR ) ≡  (modp), expTyx (AR,y) ≡  (modp).

In particular, if we choose expS(BS,x) = i =  or , then PM will be inefficient.
Recall that, by the meaning of finite cyclic monoids, expy(S) = k – l cannot be equal to .

We also note that a similar proof for the following result about minimal but inefficiency
of PM can be found in [].

Proposition . Let M be the semi-direct product of K by A, and let PM , as in (), be the
presentation for M where l,k,λ,μ, i ∈ Z

+ and l < k, λ < μ. If i =  and the subtraction k – l
is not even and not equal to , then PM is minimal but inefficient.

Remark . To be an example of Proposition ., we can consider the following:
• For an odd positive integer t, one can take k = t, l = t, μ = t, λ = t and i =  in the
presentation given in (). Since k – l = t �= n (n ∈ Z+), the presentation is minimal
but inefficient.

• For all s, t ∈ Z
+ such that s < t, one can take k = t + , l = s, μ = k – l, λ =  and i = 

in the presentation given in (). Since k – l = (t – s) +  �= n (n ∈ Z
+), the

presentation is minimal while it is inefficient.

2.2 Part II: generating functions
By considering the pictures defined in the previous section and also the evaluations ob-
tained from them, we will define the related generating functions. In another words, by
taking into account Propositions . and ., we will reach our main aim over monoids of
this paper.
We firstly recall that, as noted in [, Remark .], if a monoid presentation satisfies effi-

ciency or inefficiency (while it is minimal), then it always has a minimal number of gener-
ators. Working with the minimal number of elements gives a great opportunity to define
related generating functions over this presentation. This will be one of the key points in
our results.
Our first result of this section is related to the connection of the monoid presentation

in () with array polynomials. In fact array polynomials Sna(x) are defined by means of the
generating function

(et – )aetx

x!
=

∞∑
n=

Sna(x)
tn

n!

(cf. [–]). According to the same references, array polynomials can also be defined as
the form

Sna(x) =

a!

a∑
j=

(–)a–j
(
a
j

)
(x + j)n. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/15
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Since the coefficients of array polynomials are integers, they find very large application
area, especially in system control (cf. []). In fact, these integer coefficients give us the
opportunity to use these polynomials in our case. We should note that there also exist
some other polynomials, namely Dickson, Bell, Abel, Mittag-Leffler etc., which have inte-
ger coefficients which will not be handled in this paper.
From (), we know thatμ = λ+r, where  ≤ r ≤ μ–.Hence, by considering themeaning

and conditions of Proposition ., we obtain the following theorem as one of the main
results of this paper.

Theorem . The efficient presentation PM defined in () has a set of generating func-
tions

p(x) = Snn(x) – iS(x), p(y) = (k – l)Snn(y),

p(x) = iλ(ir–)
i– Snn(x), p(y) = iλ(ir–)

k–l Snn(y),

}
()

where Sna(x) and Sna(y) are defined as in ().

Proof Let us consider the generating pictures PS,x, PR,y (in Figure ) with their non-
spherical subpictures defined in Figures  and , and the generating pictures of finite
monogenic monoids defined in Figure . Recall that by counting the exponent sums of
the discs R, S and Tyx in the related pictures, the conditions of Proposition . have been
obtained []. (For more similar results and applications, one can see the papers [, ].)
To reach our aim in the proof, we first need to calculate eval(l)(PS,x), eval(l)(PR,y),

eval(l)(Pm
k,l) ( ≤ m ≤ k – ) and eval(l)(Pn

λ+r,λ) ( ≤ n ≤ (λ + r) – ). By Equations () and
(), we have

eval(l)(PS,x) =
(
 – x

(
eval(l)(BS,x)

))
eS +

(
∂MS
∂y

)
eTyx ,

eval(l)(PR,y) =
(
eval(l)(AR+,y) – eval(l)(AR–,y)

)
eTyx + ( – y)eR +

(
eval(l)(Cy,θR )

)
eS,

where ∂
∂y denotes the Fox derivation []. Also, for each  ≤ m ≤ k –  and  ≤ n ≤ (λ +

r) – ,

eval(l)
(
P
m
k,l

)
=

(
 – yk–m

)
eS and eval(l)

(
P
n
λ+r,λ

)
=

(
 – x(λ+r)–n

)
eR.

Therefore, by the definition, the second Fox ideal I(l) (PM) of the presentation PM in () is
generated by the polynomial elements

 – x(eval(l)(BS,x)), ∂MS
∂y ,

eval(l)(AR+,x) – eval(l)(AR–,x), eval(l)(Cy,θR ),
 – yk–,  – yk–, . . . ,  – y,  – x(λ+r)–,  – x(λ+r)–, . . . ,  – x.

⎫⎪⎪⎬
⎪⎪⎭ ()

We need to keep our calculations going to other evaluations in the above polynomial
elements. To do that, one can consider the augmentation map aug : ZM –→ Z, b 
–→ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/15
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Under this map, it is easy to see that

aug(eval(l)(BS,x)) = expS(BS,x) = i,

aug( ∂MS
∂y ) = expy(S) = k – l,

aug(eval(l)(AR+,y) – eval(l)(AR–,y)) = expTyx (PR,y) = iλ+r–iλ
i– ,

aug(eval(l)(Cy,θR )) = expS(PR,y) = iλ+r–iλ
k–l

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

()

and for each ≤ m ≤ k –  and  ≤ n≤ (λ + r) – ,

aug
(
eval(l)

(
P
m
k,l

))
=  and aug

(
eval(l)

(
P
n
λ+r,λ

))
= .

Now, by using () and keeping in our mind the coefficients of array polynomials are
integer, we clearly have

Sna(b) =

⎧⎪⎪⎨
⎪⎪⎩
bn; a = ,

b; a =  and n = ,

; k = n or n = a = .

Then, by reformulating the elements in () and () of the second Fox ideal I(l) (PM), we
arrive at the functions in () as desired. �

Considering Remark ., we obtain the following corollary as a consequence of Theo-
rem ..

Corollary . For any prime p, the presentation

PM =
[
y,x; y(p+)[

(p+)p–
p ]+ = y,xp+ = x, yx = xyp+

]
has a set of generating functions

p(x) = Snn(x) – (p + )S(x), p(y) = (p + )
[
(p + )p – 

p

]
Snn(y),

p(x) =
(p + )[(p + )p – ]

p
Snn(x), p(y) = pSnn(y).

In Proposition ., the minimality (while satisfying inefficiency) of the presentation PM

was expressed in (). Thus, by considering the meaning and conditions of Proposition .,
we obtain the following theorem as another main result of this paper. Since the proof is
quite similar to the proof of Theorem ., we omit it.

Theorem . The inefficient but minimal presentation PM defined in () has a set of gen-
erating functions

p(x) = Snn(x) – S(x), p(y) = (k – l)Snn(y),

p(x) = λ
(
r – 

)
Snn(x), p(y) =

λ(r – )
k – l

Snn(y),

where k – l is an odd integer and Sna(x) and Sna(y) are defined as in ().

http://www.fixedpointtheoryandapplications.com/content/2013/1/15
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By considering Remark ., we can have the following consequences of Theorem ..

Corollary . For an odd positive integer t, the presentation

PM =
[
y,x; yt = yt ,xt = xt , yx = xy

]
has a set of generating functions

p(x) = Snn(x) – S(x), p(y) = tSnn(y),

p(x) = t
(
t – 

)
Snn(x), p(y) =

t(t – )
t

Snn(y).

Corollary . For any positive integers s and t with the condition s < t, the presentation

PM =
[
y,x; yt+ = ys,x(t–s)+ = x, yx = xy

]
has a set of generating functions

p(x) = Snn(x) – S(x), p(y) =
[
(t – s) + 

]
Snn(y),

p(x) = 
[
(t–s) – 

]
Snn(x), p(y) =

[(t–s) – ]
(t – s) + 

Snn(y).

Remark . Since both presentations in Propositions . and . have theminimal num-
ber of generators because of their efficiency or inefficiency (but minimal) status, this sit-
uation affected very positively the number and type of generating functions defined on
them.

At this point, we should note that for t �= t ∈ R
+, γ ∈ C, a ∈ N, generalized array

type polynomials Sn
a (x; t, t;γ ) related to the non-negative real parameters have been re-

cently developed (in []) and some elementary properties including recurrence relations
of these polynomials have been derived. In fact, by setting t = γ =  and t = e, Equation
() is obtained.

Remark . For a future project, one can study the generalization of Theorems . and
. by using Sn

a (x; t, t;γ ).

The remaining goal of this section is to make a connection between the presentation
PM in () and Stirling numbers of the second kind (cf. [, –] and the references of
these papers). In fact, Stirling numbers of the second kind S(n,a) are defined by means of
the generating function

(et – )a

a!
=

∞∑
n=

S(n,a)
tn

n!

(see [, ]). According to [, Theorem , Remark ], Stirling numbers can also be de-
fined as the form

S(n,a) =

a!

a∑
j=

(–)j
(
a
j

)
(k – j)n.

http://www.fixedpointtheoryandapplications.com/content/2013/1/15
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We remind that these numbers satisfy the well-known properties

S(n,a) =

⎧⎪⎪⎨
⎪⎪⎩
; a =  or a = n,( n

)
; a = n – ,

δn,; a = ,

where δn, denotes the Kronecker symbol (see [, ]). It is known that Stirling numbers
are used in combinatorics, in number theory, in discrete probability distributions for find-
ing higher-order moments, etc.We finally note that since S(n,a) is the number of ways to
partition a set of n objects into k groups, these numbers find an application area in com-
binatorics and in theory of partitions.
In addition to the above formulas, for S(n,a), by [, , ], we also have

xn =
n∑

a=

(
x
a

)
a!S(n,a) ()

as a formula for Stirling numbers. Therefore, by taking n =  and n =  in Equation (),
the polynomial elements of the second Fox ideal I(l) (PM) of the presentationPM in () can
be restated as follows:

x – ix =
∑

a=
( x
a
)
a!S(,a) – i

∑
a=

( x
a
)
a!S(,a),

(k – l)y = (k – l)
∑

a=
( y
a
)
a!S(,a),

iλ(ir–)
i– x = iλ(ir–)

i–
∑

a=
( x
a
)
a!S(,a),

iλ(ir–)
k–l y = iλ(ir–)

k–l
∑

a=
( y
a
)
a!S(,a).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

()

After that, as a different version of Theorem . (and so Theorem .), we present the
following result.

Theorem . The efficient presentation PM in () has a set of generating functions in
terms of Stirling numbers as given in (). By taking i =  and k – l is an odd positive inte-
ger, we get a set of generating functions in terms of Stirling numbers for the inefficient but
minimal presentation of the form as defined in ().

Furthermore, in a recent work, Simsek [] has constructed the generalized γ -Stirling
numbers of the second kind S(n, v;a,b;γ ) related to non-negative real parameters (a,b ∈
R

+, a �= b, a complex number γ and v ∈ N). In fact, this new generalization is defined by
the generating function as the equality

fS,v(t;a,b;γ ) =
(γ bt – at)v

v!
=

∞∑
n=

S(n, v;a,b;γ ) t
n

n!
. ()

By setting a =  and b = e in (), one can obtain the γ -Stirling numbers of the second kind
S(n, v;γ ) which are defined by the generating function

(γ et – )v

v!
=

∞∑
n=

S(n, v;γ )
tn

n!

http://www.fixedpointtheoryandapplications.com/content/2013/1/15
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(see [, ]). According to the same references, by substituting γ =  into the above equa-
tion, the Stirling numbers of the second kind S(n, v) are obtained.
By considering this new generalization S(n, v;a,b;γ ), in [, Theorem ], the equality

S(n, v;a,b;γ ) = 
v!

n∑
j=

(–)j
(
v
j

)
γ v–j(j lna + (v – j) lnb

)n ()

has also been obtained for γ -Stirling numbers of the second kind. In fact, by setting a = 
and b = e in (), one can get the following equality on γ -Stirling numbers:

S(n, v;γ ) =

v!

v∑
j=

(
v
j

)
λ(v–j)(–)j(v – j)n ()

(see [, ]).
Hence, we can present the following note.

Remark . It is clearly seen that Stirling numbers have been only considered in
Theorems . and . (and the corollaries about them). However, one can also study
the γ -Stirling numbers S(n, v;γ ) defined in () and generalized γ -Stirling numbers
S(n, v;a,b;γ ) defined in () to obtain different types of generating functions.

3 The constant function related tomain results
In Theorems ., . and ., we have actually used

iλ(ir – )
i – 

and
iλ(ir – )
k – l

as the constants of defined generating functions. In this section, by representing these con-
stants as a single function (see Equation () below), we investigate some new properties
over it.
Hence, let us consider the analytic function

f (z, r,λ,k, l) =
zλ+r – zλ

k – l
, ()

where z ∈ C and r,λ,k, l ∈ Z
+. To reach our aim, let us first replace the complex element

z by a positive integer i in (), and then apply some fundamental algebraic progress to it.
Therefore,

f (i, r,λ,k, l) =
iλ+r – iλ

k – l
=

iλ

k – l
(
ir – 

)

=
iλ

k – l
(i – )

(
ir– + · · · + 

)
=

iλ

k – l
(i – )φr–(i), ()

where φr–(i) is a cyclotomic polynomial having degree r – . By considering finite powers
of the function f (z, r,λ,k, l) given in (), we can get

Y (z) =
[
f (z, r,λ,k, l)

]m =
m!
m!

(
zλ+r – zλ

k – l

)m

, ()

which is actuallym-times algebraic multiplication of the function f .
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Now, if we replace z by et , then we get

Y
(
et

)
=
m!
m!

(
et(λ+r) – etλ

k – l

)m

=
m!
k – l

emtλ (etr – )m

m!

=
m!
k – l

emtλ
∞∑
n=

S(n,m)rn
tn

n!
, ()

where S(n,m) defines the Stirling numbers of the second-kind

=
m!
k – l

∞∑
n=

mnλn tn

n!

∞∑
n=

S(n,m)rn
tn

n!
. ()

Further, by applying the Cauchy multiplication in (), we finally obtain

Y
(
et

)
=

m!
k – l

∞∑
n=

[ n∑
a=

(
n
a

)
S(a,m)ramn–aλn–a

]
tn

n!
.

All these above processes imply the following result.

Theorem .

(
f
(
et , r,λ,k, l

))m =
∞∑
n=

an
k – l

tn

n!
, ()

where

an =m!
n∑

a=

(
n
a

)
S(a,m)ramn–aλn–a

and S(a,m) denotes the Stirling numbers of second kind.

Some properties of the function Y (z) = [f (z, r,λ,k, l)]m in () can be expressed as fol-
lows:
• If z ∈C, then Y (z) is an analytic function, and then it has a power series as defined in
the above theorem with Equation ().

• If z ∈R, then Y (z) is a continuous function which is actually a polynomial function
having degree λ + r.

• If we replace z by et in (), we obtain the second kind Stirling numbers.

Remark . Settingm =  in (), one can easily see that

f
(
et , r,λ,k, l

)
=

∞∑
n=

[ n∑
a=

( n
a
)
raλn–a

k – l

]
tn

n!
,

since S(n, ) = .
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By considering [, Eq. (.)] and Equation (), we can extend Remark . to a general
natural numberm >  as in the following theorem.

Theorem .

(
et(λ+r) – etλ

k – l

)m

=
m!
k – l

∞∑
n=

Sn
m(mλ)rn

tn

n!
,

where Sn
m(mλ) denotes the array polynomials.

As it was seen, only the function defined in () itself is enough to represent almost
all the conditions in Propositions . and .. Thus, we can express the following remark
which depicts some new studying areas for a future project.

Remark .
• If we replace z by i, then we can study the changes on the generating pictures defined
in Figures , ,  and . By playing on this function, one can hope to apply some
operations (as defined in [, ]) on the pictures, and so it could happen to represent

Figure 1 Generating pictures of finite monogenic monoids.

Figure 2 Two subpictures of the generating pictures.
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Figure 3 Subpicture Cy,θR of the generating picture.

Figure 4 Collection of the generating pictures ofPM in (7).

these algebraic operations by generating functions to obtain efficiency or inefficiency
(while minimality holds).

• While z ∈C and z ∈R, analytic and functional equations can be studied.
• As we have partially done in the above, replacing z by et , one can study the generating
functions of array polynomials and Stirling numbers.

http://www.fixedpointtheoryandapplications.com/content/2013/1/15
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3.1 Some other properties over this constant
Let us consider the first derivation of the function in (). We then have

f ′(z, r,λ,k, l) =
(λ + r)zλ+r– – λzλ–

k – l
=

λzλ+r– – λzλ–

k – l
+
rzλ+r–

k – l

=
λzλ–

k – l
(
zr – 

)
+
rzλ+r–

k – l
,

or equivalently,

f ′(z, r,λ,k, l) =
λzλ–

k – l
(z – )φr–(z) +

rzλ+r–

k – l
. ()

In (), replacing z by i, we get

f ′(i, r,λ,k, l) =
λiλ–

k – l
(i – )φr–(i) +

riλ+r–

k – l
= λ

[
iλ–

k – l
(i – )φr–(i)

]
+
riλ+r–

k – l
,

and then by using (), we have

f ′(i, r,λ,k, l) =
λ

i
f (i, r,λ,k, l) +

riλ+r–

k – l
. ()

As the next step, let us calculate the second derivative of f (z, r,λ,k, l):

f ′′(z, r,λ,k, l) =
λ(λ + r – )zλ+r– – λ(λ – )zλ–

k – l
+
r(λ + r – )zλ+r–

k – l

=
λ(λ – )zλ–

k – l
(
zr – 

)
+
rzλ+r–

k – l
+
r(λ + r – )zλ+r–

k – l

=
λ(λ – )zλ–

k – l
(
zr – 

)
+
rzλ+r–

k – l
(λ + r – ),

and by collecting some terms in brackets, we get

f ′′(z, r,λ,k, l) =
(λ – )

z

(
λzλ–

k – l
(z – )φr–(z) +

rzλ+r–

k – l

)
+
rzλ+r–

k – l
(λ + r).

Now, using (), the second derivative of the function f (z, r,λ,k, l) will be equal to

f ′′(z, r,λ,k, l) =
(λ – )

z
f ′(z, r,λ,k, l) +

rzλ+r–

k – l
(λ + r). ()

Replacing z by i in () and using (), we obtain

f ′′(i, r,λ,k, l) =
(λ – )

i
f ′(i, r,λ,k, l) – riλ+r– +

riλ+r–

k – l
(λ + r)

=
λ(λ – )

i
f (i, r,λ,k, l) +

r(λ – )
i

iλ+r–

k – l
+
riλ+r–

k – l
(λ + r)

=
λ(λ – )

i
f (i, r,λ,k, l) +

[
r(λ – )

i
iλ+r–

k – l
+
r(λ + r – )

k – l

]
iλ+r–.
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By iterating these above derivations for the variable z, and then replacing z by i, we finally
obtain

f (m)(i, r,λ,k, l) =
λ(λ – ) · · · (λ –m + )

im
f (i, r,λ,k, l) +Aiλ+r–m

=m!
(

λ

m

)
i–mf (i, r,λ,k, l) +Aiλ+r–m,

where A stands for some constants.
This above theory is related to the functional equations. In fact, these above progresses

show that the presentation PM in () can be related to the functional equations.
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