
Novel guess functions for efficient
analysis of Raman fiber amplifiers

Fikri Serdar Gokhan
Department of Electrical and Electronics Engineering,

Faculty of Engineering and Architecture, Gazikent University,
Gaziantep, Turkey, and

Gunes Yilmaz
Faculty of Engineering andArchitecture, Department of Electronics Engineering,

Uludag University, Gorukle, Turkey

Abstract

Purpose – The aim of the paper is to demonstrate a fast numerical solution for Raman fiber amplifier
equations using proposed guess functions and MATLAB intrinsic properties. MATLAB BVP solvers are
addressed for the solution.

Design/methodology/approach – The guess functions proposed for the solution of RFA equations
using MATLAB BVP solvers are derived from Taylor expansion of pump and signal wave near the
boundary to specifically obtain convergence for the initial mesh point. The guess functions increase
simulation speed significantly. In order to improve the simulation speed further, vectorization and
analytical Jacobians are introduced. Comparisons among bvp4c and bvp5c have been made with
respect to total pump power, number of signals, vectorization with/without analytical Jacobians, fiber
length, relative tolerance and continuation method. The simulations are performed to determine the
effect of the run time on the choice of the number of equally spaced mesh points (N) in the initial guess,
and thus optimal N values are found.

Findings – MATLAB BVP solvers have been proven to be effective for the numerical solution of
RFAs with the proposed guess functions. In particular, with vectorizing, run time reduction is between
2.1 and 5.4 times for bvp4c and between 1.6 and 2.1 times for bvp5c and in addition to vectorizing,
with the introduction of the analytical Jacobians, the reduction is between 2.4 and 6.2 times for bvp4c
and 1.7 and 2.2 times for bvp5c, respectively, depending on the total pump power between 1,000 mW
and 2,000 mW and the number of signals. Also, simulation results show that the efficiency of the
solution with proposed guess functions is improved more than six times compared with those of
previously reported continuation methods. Results show that the proposed guess functions with the
vectorization and analytical Jacobians can be used for the performance evaluation of RFAs for the high
power systems/long gain fiber span.

Practical implications – The robust improvement of the solution proposed in this paper lies in the
fact that the derived guess functions for the RFAs are highly effective in the sense that they assist the
solver to converge to the solution for any total pump power value in a wide range from 1 to 3,000 mW
and for any fiber lengths ranging 1 to 200 km which are used in practical applications. Hence, it is
practicable for the performance evaluation of the existing RFA networks.

Originality/value – The novelty of this method is that, starting with the co-propagating single
pump and signal RFA schema, the authors derived the guess function specifically for the initial mesh
points rather than using its analytical approximations. Moreover, the solution is generalized for
co-/counter propagating pumps/signals with the curve fitted coefficient(s).
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1. Introduction
RFAs, which are widely commercialized nonlinear optical devices in telecommunications,
are being used in almost every new long-haul and ultralong-haul fiber-optic transmission
system. RFAs have become very attractive for broad bandwidth applications since they
improve the noise figure and reduce the nonlinear penalty of fiber systems. Moreover,
they allow for longer amplifier spans, higher bit rates, closer channel spacing and operation
near the zero-dispersion wavelength (Islam, 2002). The practical demands for and increased
research interest in RFAs have implied reasonable and efficient simulation methods
for the performance evaluation of RFAs before the real amplifiers are manufactured.

The problem of RFA modeling has been widely discussed for quite some time and
numerous models have been presented for RFA simulation (Kidorf et al., 1999;
Mandelbaum and Bolshtyanshy, 2003). The mathematical model describing the
interactions among the lightwaves in RFA is a nonlinear two-point boundary value
problem (BVP). The available numerical methods to solve this RFA propagation
equation usually suffer from exhaustive computing run times, especially when the
bandwidth of the RFA is wide and the number of the signal channels is large.

The common techniques to solve BVPs can be classified as either shooting methods
or finite difference methods. A shooting method starts from an initial guess and treats
the problem as an initial value problem (IVP). Then an iteration method is used to correct
the initial guess until the boundary conditions are satisfied. Finite difference methods
use information from the previous mesh points. Since multistep finite difference
methods improve the accuracy of the solution at each step, they can effectively decrease
the computing time with the same accuracy (Liu and Zhang, 2004).

Generally IVPs have a unique solution. However, BVP is different from IVP in the sense
that it may have no solution or a single solution, or multiple solutions. In order to direct the
solver for the solution of interest, it is necessary to assist the solver by informing it with a
guess. Computation of the solution of interest and whether any solution is achieved or not
depends strongly on the initial guess. Therefore, when solving BVPs the user must
provide a guess for the solution, not only to identify the solution of interest but also to
assist the solver in computing the desired solution (Kierzenka and Shampine, 2001).

The most difficult part for the solution of BVPs is to provide an initial estimation to
the solution. MATLAB BVP solvers call for users to provide guesses for the mesh and
solution that will lead to convergence. Although MATLAB BVP solvers take an unusual
approach to the control of error in case of having poor guesses for the mesh and
solution, especially for the nonlinear BVP, a good guess is necessary to obtain
convergence (Shampine et al., 2003). Recently, a continuation method with the simple
guess values which are equal to the boundary values has been proposed and
demonstrated using MATLAB BVP solvers (Gokhan and Yilmaz, 2009). In this method,
once the convergence length is computed, computation for the remaining length is
calculated by the continuation process. However, at each step of augmenting the
length/power, the computation process is performed once again which increases
the computation time. It is natural that if the convergence length is augmented for the
whole interval, the computation is performed only once and the simulation time is
decreased substantially. Extending the convergence length for whole length of the fiber
distance requires efficient guess values/functions. Therefore, for the RFA equations,
supplying an efficient guess not only improves the speed of the solution but it is also
necessary to achieve the solution of interest.
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In order to significantly improve the simulation speed of RFA equations compared
with the continuation method, MATLAB BVP solvers with highly efficient guess
functions are introduced and numerically demonstrated in this paper. The guess
functions are deliberately derived for the initial mesh points, because even when a
guess function is supplied that is a good approximation for the solution, the solver uses
its values only on the initial mesh (Shampine et al., 2003). By using the co-propagating
one pump and one signal Raman amplifier scheme, the guess functions are derived
from Taylor expansion of the pump and signal wave near the end points. With the help
of the MATLAB Symbolic Toolbox, Taylor series expansions with four terms of pump
and signal evolutions near z ¼ 0 are obtained. Thereafter, the derived guess functions
are curve fitted to the real solution and fitting coefficient is obtained with the help of
the MATLAB Curve Fitting Toolbox. The results of this research have demonstrated
that for the backward propagation, where the pump is inserted at z ¼ L, the same
guess functions with the negative sign and different fitting coefficient can be used.
The novelty of this method is that, without any necessity for the continuation method,
the derivation of the approximate solution for the initial mesh is enough to yield
convergence for the whole interval. Numerical results show that compared with the
continuation method, by using the proposed guess functions the efficiency is improved
between 5.6 and 10 times with bvp4c and between 11.2 and 13 times with bvp5c
depending on the total pump power between 1,000 and 2,000 mW and number of
signals. In order to improve the solvers’ efficiency and reduce the run time further,
we have used MATLAB intrinsic speeding-up properties such as vectorization and
supplying analytical Jacobians for evalution of the differential equations. Simulation
results show that, with vectorizing, this reduction is between 2.1 and 5.4 times for
bvp4c and between 1.6 and 2.1 times for bvp5c and in addition to vectorizing if the
analytical Jacobians are introduced this reduction is between 2.4 and 6.2 times for
bvp4c and 1.7 and 2.2 times for bvp5c, respectively, depending on the total pump
power between 1,000 and 2,000 mW and number of signals.

2. Theoretical model
The mathematical model of a multi-pumped RFA includes a large number of effects,
the most important of which, for the purposes of the present consideration,
pump-pump, signal-pump, signal-signal interactions and fiber attenuation experienced
by both pump and signal waves. In the steady state, propagation equations governing
the power evolutions of pump and signals in RFA can be expressed as the following
systems of nonlinearly coupled differential equations (Perlin and Winful, 2002):

^
dPk

dz
¼2akPkþ

Xk21

j¼1

gðvj;kÞ

GAeff

PjPk2
Xmþn

j¼kþ1

vk
vj

gðvk;jÞ

GAeff

PjPk k¼ 1;2;3; . . . ;nþm ð2:1Þ

The minus and plus symbols denote the backward-propagating pump waves and
forward-propagating signal waves, respectively. The frequencies are numerated in
decreasing order (vk . vj for i , j), indexes k ¼ 1, . . . ,n correspond to the
backward-propagating pump waves and indexes k ¼ n þ 1, . . . , n þ m correspond
to the forward-propagating signal waves. Here, values Pk, vk and ak describe,
respectively, the power, frequency and attenuation coefficient for the kth wave, k ¼ 1,
2, . . . , n þ m. g(vj,k) is the Raman gain coefficient from wave j to k measured with a
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pump at frequency vref, that is, g(vj, k) ¼ vj/vref £ gR (vj 2 vk) and g(vk, j) is the Raman
gain coefficient from wave k to j measured with a pump at frequency vref, that is,
g(vk,j) ¼ vk/vref £ gR (vk 2 vj). The frequency ratio vk/vj denotes vibrational losses. Aeff

is the effective area of optical fiber and G is the polarization factor, the value which lies
between 1 and 2. For a backward-pumped amplifier with length L, signal beams are
inserted at z ¼ 0 and pump beams inserted at z ¼ L. The boundary conditions for this
system are:

PP ðz ¼ LÞ ¼ PL ð2:2Þ

PSðz ¼ 0Þ ¼ P0 ð2:3Þ

where PP and PS show the power of the pumps and signals, respectively. In this system
we have the power of signals at z ¼ 0(P0) and the power of pumps at z ¼ L(PL).

3. The proposed guess functions and implementation
Estimates are provided for both the solution and the mesh. For the solution, the guess
may be the value or the function. It must be emphasized that the solver uses its values
only on the initial mesh even though it may have used a guess function. Therefore, if
the estimation for the initial mesh is calculated, the solver is able to compute the
solution for the subsequent mesh points.

3.1 Derivation of guess functions
In order to estimate the guess function for the distributed multi-pumped (RFA)
equations, forward-pumping RFA configuration with single pump and signal can be
exploited. In this configuration, the differential equation system describing the
intensities of signal and pump waves under the influence of Raman scattering during
their propagation through the medium are represented by:

d

dz
IS ¼

gR

G
IP IS 2 aSIS ð3:1aÞ

d

dz
IP ¼ 2

vP

vS

gR
G

IP I S 2 aPIP ð3:1bÞ

where Ip and Is describe intensity of pump and signal, respectively; gR is Raman gain;
vP and vS are pump and signal wavelengths, respectively; aP and aS are attenuation
constants for pump and signal waves, respectively. G is a factor that includes the
relative polarization between the pump and stokes waves.

The boundary conditions for this system are:

PP ðz ¼ 0Þ ¼ Ppð0Þ ð3:2aÞ

PSðz ¼ 0Þ ¼ PSð0Þ ð3:2bÞ

where PP(0) and PS(0) show the initial power of the pumps and signals, respectively.
In order to find the estimation for the initial mesh we may look for the analytical

approximations in the form of Taylor series near the left boundary which is z ¼ 0 and
then generalize this guess for z ¼ L. Exploiting the MATLAB Symbolic Toolbox
functionality, we use the following script to substitute four terms of Taylor series
expansions into equations (3.1).
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% ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼
syms z A B C D E F Is Ip gr gamma wp ws alpha_s alpha_p Is0 Ip0
Eqn1 Eqn2 Eqn3
Is ¼ Is0 þ A*z þ B*ẑ 2 þ C*ẑ 3;
Ip ¼ Ip0 þ D*z þ E*ẑ 2 þ F*ẑ 3;
Eqn1 ¼ collect(diff(Is,‘z’)-(gr/gamma)*Ip*
Is þ alpha_s*Is)
Eqn2 ¼ collect(collect(diff(Ip,‘z’) þ (wp/ws)*(gr/gamma)*
Ip*Is þ alpha_p*Ip), z)
% gamma ¼ G, alpha_s ¼ aS, alpha_p ¼ ap, Is0 ¼ Is(0),
Ip0 ¼ Ip(0)
% ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼
It must be emphasized that we have taken into account the initial/boundary
conditions (3.2). This script produces the output:

Eqn15

2gR=G*F*C*z ^6þ ð2gR=G*E*C2 gR=G*F*BÞ*z
5 þ ···

ð2gR=G*D*C2 gR=G*E*B2 gR=G*F*AÞ*z
4 þ ···

ðaS*C 2 gR=G*Ipð0Þ*C 2 gR=G*D*B 2 gR=G*E*A

2gR=G*F*Isð0ÞÞ*z
3 þ ···

ð2gR=G*Ipð0Þ*B2 gR=G*D*A2 gr=G*E*Isð0Þ þ 3*Cþ aS*BÞ*z2 þ · · ·

ð2*B2 gR=G*Ipð0Þ*A2 gR=G*D*ISð0Þ þ aS*AÞ*z

þAþ aS*ISð0Þ2 gR=G*Ipð0Þ*Isð0Þ

ð3:3aÞ
Eqn2¼

wp=ws*gR=G*F*C*z ^6þðwp=ws*gR=G
*E*Cþwp=ws*gr=G*F*BÞ*z

5þ

wp=ws*gR=G*D*Cþwp=ws*gR=G*E*Bþwp=ws*gR=G*F*AÞ*z
4þ···

ðaP*Fþwp=ws*gR=G*IPð0Þ*Cþwp=ws*gR=G*D*B

þwp=ws*gR=G*E*Aþwp=ws*gR=G*F*ISð0ÞÞ*z
3þ···

ðwp=ws*gR=G*Ipð0Þ*Bþwp=ws*gR=G*D*A

þwp=ws*gR=G*E*ISð0Þþ3*FþaP*EÞ*z2 þ · · ·

ð2*Eþwp=ws*gR=G*IPð0Þ*Aþwp=ws*gR=G*D*ISð0ÞþaP*DÞ*zþ · · ·

DþaP*IPð0Þþwp=ws*gR=G*Ipð0Þ*Isð0Þ

ð3:3bÞ

We are interested in the behavior as z ! 0 and so, the higher the power of z, the less
effect it has in these expansions. Our goal is to satisfy the equations as well as possible,
so we want to choose coefficients that make as many successive terms zero as possible,
starting with the lowest power. To eliminate the constant terms, we see from the
expansions that we must take:

A ¼ 2ISð0Þ* ðas*G2 gR*IPð0ÞÞ=G ð3:4aÞ
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D ¼ 2IPð0Þ* ðap*ws*Gþ wp*gR*ISð0ÞÞ=ws=G ð3:4bÞ

Next, to eliminate in terms in z we must take:

B ¼ 21=2* ð2gR *IPð0Þ*A2 gR *D*ISð0Þ þ as*A*GÞ=G ð3:5aÞ

E ¼ 21=2* ðwp*gR*IPð0Þ*Aþ wp*gR*D*ISð0Þ*ap*D*ws*GÞ=ws=G ð3:5bÞ

Next, to eliminate in terms in z 2 we must take:

C ¼ 1=3* ðgR*Ipð0Þ*Bþ gR*D*Aþ gR*E*ISð0Þ2 as*B*GÞ=G ð3:6aÞ

F ¼ 21=3*ðwp*gR*Ipð0Þ*Bþ wp*gR*D*A

þ wp*gR*E*ISð0Þ þ aP*E*ws*GÞ=ws=G
ð3:6bÞ

We thus conclude that, for small values of z, we have:

ISðzÞ < IS0þ A*zþ B*z
2 þ C*z

3 ð3:7aÞ

IPðzÞ < IP0þ D*zþ E*z
2 þ F*z

3 ð3:7bÞ

Figures 1 and 2 show the comparison of real and estimated solutions for pump and
signal power evolution, respectively.

In Figure 1 the first 15 km and in Figure 2 the first 4 km, the real solution exactly
matches with the Taylor series expansion. Therefore, if the first four terms of a Taylor
expansion is used as guess functions for the FRA equations, they will be adequate for
the computation of not only the initial mesh points but also the following ones.

Figure 1.
Comparison of real

solution and estimated
solution of pump power

for the forward-pumping
RFA configuration with
single pump and signal
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However, in order to determine the guess functions for multi-pumped RFAs, real
solution of the pump and signal curves are fitted to the Taylor series expansion curves
of single pumped RFA, and fitting coefficient is determined. By the help of the
MATLAB Curve Fitting Toolbox, the fitting coefficient is estimated as K1 < 1022.
Therefore, the guess functions for RFA will be:

PSðzÞ < K1 · ISðzÞ ·Aeff < K1 · ðISð0Þ þ A · zþ B · z 2 þ C · z3Þ ·Aeff ð3:8aÞ

PP ðzÞ < K1 · I pðzÞ ·Aeff < K1 · ðI pð0Þ þ D · zþ E · z 2 þ F · z 3Þ ·Aeff ð3:8bÞ

Equations (3.8a) and (3.8b) are used for the forward-pumping RFA configuration. For
the backward-pumping RFA configuration when the pump wave is inserted from
z ¼ L, the sign of the equation (3.8a) remains same but the sign of the equation (3.8b)
will be the opposite and the fitting coefficient for backward wave (here pump) is
estimated as K2 < 1021:

PSðzÞ < K1 · ISðzÞ ·Aeff < K1 · ðISð0Þ þ A · zþ B · z 2 þ C · z3Þ ·Aeff ð3:9aÞ

PP ðzÞ < 2K2 · I pðzÞ ·Aeff < 2K2 · ðI pð0Þ þ D · zþ E · z2 þ F · z 3Þ ·Aeff ð3:9bÞ

Therefore, K1 < 1022, for waves which are propagating z ¼ 0 to z ¼ L and
K2 < 1021, for waves which are propagating z ¼ L to z ¼ 0.

3.2 Coding guess functions
The guess is supplied to MATLAB BVP solvers using the auxiliary function bvpinit.
This function accepts the guess structure using two arguments. The first argument of
the guess deals with supplying a mesh structure that reveals the behavior of the

Figure 2.
Comparison of real
solution and estimated
solution of signal power
for the forward-pumping
RFA configuration with
single pump and signal
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solution. The second argument of the structure deals with supplying the guessed
values of the solution or the function for computing the guessed values of the solution
on the mesh that is specified with the first argument of the guess structure. For
example:

solinit ¼ bvpinit ðlinspace ð0;L;NÞ;@guessÞ; ð3:10Þ

Here N equally spaced points in [0, L] (L is the fiber length) are tried and the guess is
provided by means of a function guess. In Section 3.3, the guess function with a script
for the backward-pumping RFA configuration including ten pumps and 80 signals is
illustrated.

3.3 Script for the guess functions
% ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼
function v ¼ guess(x)
global Ip0 Is0 Aeff gamma wp ws alpha_s alpha_p
% For Backward pumping RFA configuration (counter propagating
pump and signals)
% gamma ¼ G, alpha_s ¼ aS, alpha_p ¼ ap, Is0 ¼ Is(0), Ip0 ¼
Ip(0)
K1 ¼ 1e-2;
K2 ¼ 1e-1;
A ¼ -Is0*(alpha_s*gamma-gr*Ip0)/gamma
D ¼ -Ip0*(alpha_p*ws*gamma þ wp*gr*Is0)/ws/gamma
E ¼ -1/2*(wp*gr*Ip0*A þ wp*gr*D*Is0 þ alpha_p*D*ws
*gamma)/ws/gamma
B ¼ -1/2*(2gr*Ip0*A-gr*D*Is0 þ alpha_s*A*gamma)/gamma
C ¼ 1/3*(gr*Ip0*B þ gr*D*A þ gr*E*Is0-alpha_s*B*gamma)/
gamma
F ¼ 21/3*(wp*gr* Ip0*B þ wp*gr* D*A þ wp*gr* E*Is0 þ alpha_
p*E*ws*gamma)/ws/gamma
Guess_for_signals ¼ K1*(Is0 þ A*x þ B*

x 2̂ þ C*xˆ3)*Aeff;
Guess_for_pumps ¼ 2K2*(Ip0 þ D*x þ E*x̂ 2 þ F*x̂ 3)*Aeff;
% For Forward-pumping RFA configuration (co-propagating pump
and signals)
% Guess_for_signals ¼ K1*(Is0 þ A*x þ B*x̂ 2 þ C*x̂ 3)*Aeff;
% Guess_for_pumps ¼ K1*(Ip0 þ D*x þ E*x̂ 2 þ F*x̂ 3)*Aeff;
v ¼ zeros(90,1);
v(1:10) ¼ Guess_for_pumps;
v(11:90) ¼ Guess_for_signals;
% ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

4. Effectiveness and convergence
In order to verify the convergence of the proposed guess functions, simulations are
performed with ten pumps and 80 signals. In the simulations, it is assumed that the
signals range from 189.4 to 197.4 THz (1,519-1,583 nm) with a power of
0.5 mW/channel: Aeff ¼ 80mm2, G ¼ 2, L ¼ 60 km and vref ¼ 196.4 THz (1,511 nm).

Raman fiber
amplifiers

337



Depending on the wavelength, fiber losses vary between a ¼ 0.20-0.23 dB/km for
signals and a ¼ 0.26-0.23 dB/km for pumps, respectively, (Figure 3). The wavelengths
of the pumps are 1,415, 1,421, 1,430, 1,435, 1,442, 1,450, 1,463, 1,470, 1,475 and 1,499 nm.
The proposed guess functions are used for two pumping configurations, backward and
bi-directional. For the simulation of backward pumping configuration in Figure 4, all
the pumps are backward propagating and their powers are spaced between 70 and 320
(total power is 2,000 mW). For the simulation of bi-directional pumping configuration,
in Figure 5 seven forward-propagating and three backward-propagating pumps are
used; their powers are spaced between 70 and 320 mW (total power is 2,000 mW).
The wavelengths of the forward-propagating pumps are 1,415, 1,421, 1,450, 1,463,
1,470, 1,475 and 1,499 nm and backward-propagating pumps are 1,430, 1,435 and
1,442 nm. Table I shows the pump powers at the beginning and end of the fiber for
backward and bi-directional pumping, respectively.

In order to verify the proposed guess method and to demonstrate its performance
improvement with respect to total pump powers and fiber length, a series of RFAs with
different total pump powers and fiber lengths are simulated. Numerical simulations are
performed to prove that the guess functions which are derived from the Taylor series
expansions are accurate enough to ensure the convergence for any total pump power
value in a wide range from 1 to 3,000 mW and for any fiber length ranging 1-200 km.
Consequently, the proposed guess functions can be used for the performance
evaluation of RFAs for the high power systems/long gain fiber span with forward,
backward, or bi-directional pumping configurations. The calculations are performed in
MATLAB 7.5 on a personal laptop computer with an Intel Centrino Duo 1.83 GHz
processor.

The simulations are performed for the effect of the run time on the choice of the
number of equally spaced mesh points (N) in the initial guess (3.10). In these

Figure 3.
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simulations, four pump powers are considered. All the backward-propagating pumps
have an equal power of 100, 130, 170 and 200 mW (total power 1,000, 1,300, 1,700 and
2,000 mW), respectively. For each pump power level, the simulations are performed
with 20, 40, 60 and 80 signals.

When the number of initial mesh points less than required is specified, the solvers
failed because the behavior of the solution is not revealed on a mesh of so few points.
Thereafter, the mesh points are increased step by step until convergence is
accomplished. However, it must be emphasized that, in general, increasing the initial
mesh points is accompanied by increasing run time. Consequently, when the mesh

Figure 5.
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points (N) more than the required are specified the run time is increased. Therefore, in
order to achieve the shortest run time, the value of N has to be optimized. The optimal
number of initial mesh points (N) is where the solver has just converged to the solution
robustly or one or two points above. With respect to the simulations for the given
parameters, the optimal number of N is found between 4 and 7. Table II shows the
optimal N values related with the simulation parameters.

5. Reduction of the run time with MATLAB
The first technique which is used to reduce run time is vectorizing the evaluation
of the differential equations. Vectorization is a valuable tool for speeding up
MATLAB programs and this greatly reduces the run time (Shampine et al., 2003).
By vectorization, the function f(x, y) is coded so that when given a vector
x ¼ [x1,x2, . . .] and a corresponding array of column vectors y ¼ [y1, y2, . . .],
it returns an array of column vectors [f(x1, y1), f(x2, y2), . . .]). By default,
bvp4c and bvp5c approximate a Jacobian using finite differences. If the evaluation
of the Raman propagation equations is vectorized, the computation of the approximate
Jacobian is relieved and the run time is often greatly reduced. The evaluation of the
RFA equations is vectorized by changing the vectors to arrays and changing the
multiplication to an array multiplication. It can be coded by changing scalar quantities
like y(1) into arrays like y(1,:) and changing from scalar operations to array operations

Optimal N values
bvp4c bvp5c

Number of signals Number of signals
mW 20 40 60 80 20 40 60 80

100 4 5 5 6 4 5 5 6
130 5 5 7 7 5 6 6 7
170 6 6 6 6 6 6 6 6
200 6 6 6 6 6 6 6 6

Table II.
Optimal N values

Set 1 (total input pump
power is 2,000 mW)

Set 2 (seven forward and three backward pumps –
total input pump power is 2,000 mW)

Pp

(z ¼ 0)
(mW)

PS

(z ¼ L)
(mW)

Pp

(z ¼ 0)
(mW)

PS

(z ¼ L)
(mW)

0.1139 320 (1,415 nm) backward 320 (1,415 nm) forward 0.1329
0.1665 300 (1,421 nm) backward 300 (1,421 nm) forward 0.1393
0.2272 265 (1,430 nm) backward 0.1143 265 (1,430 nm) backward
0.2595 240 (1,435 nm) backward 0.0911 240 (1,435 nm) backward
0.3211 215 (1,442 nm) backward 0.058 215 (1,442 nm) backward
0.4322 200 (1,450 nm) backward 200 (1,450 nm) forward 0.030
0.8886 170 (1,463 nm) backward 170 (1,463 nm) forward 0.018
1.177 120 (1,470 nm) backward 120 (1,470 nm) forward 0.024
1.572 100 (1,475 nm) backward 100 (1,475 nm) forward 0.035
13.38 70 (1,499 nm) backward 70 (1,499 nm) forward 0.000135

Table I.
Pump powers for
backward and
bi-directional
configuration
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by replacing * and ˆ with . * and . ˆ , respectively. When vectorizing the Raman
propagation equations, the solver must be informed about the presence of vectorization
by means of the option “Vectorized”, “on”:

options ¼ bvpset ð‘Stats’;‘on’;‘RelTol’;1e2 3;‘Vectorized’;‘on’Þ;

The vectorization with the piece of code is illustrated in Section 5.1.

5.1 Illustration of vectorization with the piece of code
% ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼
function dydx ¼ bvp_nonvectorized_ode(x,y)
global k12(1,4) k12(2,4)
% Before vectorization
dydx ¼ [k12(1,4)*y(1)*y(4) þ k12(2,4)*y(2)*y(4)]; end
% After vectorization
function dydx ¼ bvp_vectorized_ode(x,y)
global k12(1,4) k12(2,4)
dydx ¼ [k12(1,4).*y(1,:).*y(4,:) þ k12(2,4).*y(2,:).
*y(4,:)]; end
% ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

The second technique is that of supplying analytical partial derivatives or to supply a
function for evaluating the Jacobian matrix. This is because, in general, BVPs are
solved much faster with analytical partial derivatives. However, this is not an easy
task for 80 signal and 10 pumps which require a 90 £ 90 analytical partial derivative
matrix. Therefore, for the RFA equations it is less preferable since it is too much
trouble and inconvenient, although MATLAB Symbolic Toolbox can be exploited when
obtaining analytical Jacobians. The third technique is to supply analytical partial
derivatives for the boundary conditions. However, it has less effect on the computation
time compared with supplying analytical Jacobians and vectorization. The solver
permits the user to supply as much information as possible. It must be emphasized that
supplying more information for the solvers results in a shorter computation run time.

Figures 6 and 7 show the simulation time as a function of the number of signals for
bvp4c and bvp5c, respectively. Figures 6(a) and 7(a) show the simulation time
without vectorization and without the introduction of analytical Jacobians. Figures 6(b)
and 7(b) show the simulation time when both techniques are used. Figure 8 shows the
efficiency of vectorization with/without the introduction of analytical Jacobians for
bvp4c and bvp5c, respectively. From the figures, it can be seen that simulation time
is reduced with the introduction of analytical Jacobians and vectorization. Simulation
results show that, with vectorizing, this reduction is between 2.1 and 5.4 times for
bvp4c and between 1.6 and 2.1 times for bvp5c and in addition to vectorizing if the
analytical Jacobians are introduced this reduction is between 2.4 and 6.2 times for
bvp4c and between 1.7 and 2.2 times for bvp5c, respectively, depending on the total
pump power between 1,000 and 2,000 mW and number of signals.

Figure 9 shows the comparison of the simulation times with proposed guess
functions and the continuation method proposed by Gokhan and Yilmaz (2009).
Apparently, by using the proposed guess functions the efficiency is improved between
5.6 and 10 times with bvp4c and between 11.2 and 13 times with bvp5c depending
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Figure 7.
Simulation time as a
function of the signal
counts with the MATLAB
bvp5c solver
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Figure 8.
Efficiency of run time with
vectorization and/or
introduction of analytical
Jacobians with the
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(b) MATLAB bvp5c solver
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counts with the MATLAB
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on the total pump power between 1,000 and 2,000 mW and number of signals. With the
proposed guess functions the convergence length proposed by Gokhan and Yilmaz
(2009) is augmented for the whole interval [0, L ] and this makes the continuation
method unnecessary.

In order to analyze the effect of the fiber length and relative tolerance (Rel. Tol.) on
the run time, simulations are performed using the bvp4c solver. In the simulations,
the RFA equations are vectorized and 60 signals with 2,000 mW total power are used.
Figure 10(a) shows the simulation time as a function of the fiber length. Figure 10(b)
shows the simulation time as a function of the relative tolerance.

Figure 10(a) shows that the simulation time grows linearly with the fiber length and
in Figure 10(b) it can be seen that the simulation time does not change with relative
tolerance value. We believe that there are two main reasons for this. The first reason is
that the solver is able to compute the solution with the same number of mesh points

Figure 9.
Comparison of the

solutions with proposed
guess functions and
continuation method

proposed by Gokhan and
Yilmaz (2009) in terms of
simulation time with the
(a) MATLAB bvp4c and

(b) MATLAB bvp5c solver
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with the relative tolerance between 10212 and 1023. The second reason is that the
proposed guess functions are good enough to assist the solver to compute the solution
using the same number of mesh points with stringent relative tolerance values.

6. Conclusion
This paper has proposed and demonstrated the use of efficient guess functions for
MATLAB BVP solvers in order to effect a significant improvement in the simulation
speed of RFA equations. Exploiting the fact that the MATLAB BVP solvers use the
guess values only on the initial mesh, guess functions are derived from the Taylor
expansion of the pump and signal wave near the boundary. The efficiency of the
solution with guess functions is mainly improved by the use of vectorization and
the introduction of analytical Jacobians. Thus, the most time-consuming calculation of
the Jacobian matrix has been dramatically relieved. In particular, with vectorizing,
run time reduction is between 2.1 and 5.4 times for bvp4c and between 1.6 and 2.1
times for bvp5c and in addition to vectorizing, with the introduction of the analytical
Jacobians the reduction is between 2.4 and 6.2 times for bvp4c and 1.7 and 2.2 times
for bvp5c, respectively, depending on the total pump power between 1,000 and
2,000 mW and the number of signals. Also, simulation results show that the efficiency
of the solution with proposed guess functions is improved more than six times
compared with those of previously reported methods. These guess functions using
vectorization and analytical Jacobians can be used for the performance evaluation of
distributed multi-pumped RFAs in the design of forward, backward and bi-directional
RFAs for high power/long gain fiber spans.
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