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CERTAIN CURVATURE CONDITIONS ON
AN LP-SASAKIAN MANIFOLD WITH A COEFFICIENT α

Uday Chand De and Kadri Arslan

Abstract. The object of the present paper is to study certain curva-
ture restriction on an LP-Sasakian manifold with a coefficient α. Among
others it is shown that if an LP-Sasakian manifold with a coefficient α
is a manifold of constant curvature, then the manifold is the product
manifold. Also it is proved that a 3-dimensional Ricci semisymmetric
LP-Sasakian manifold with a constant coefficient α is a spaceform.

1. Introduction

In 1989, Matsumoto [6] introduced the notion of LP-Sasakian manifolds.
Then Mihai and Rosca [7] introduced the same notion independently and they
obtained several results in this manifold. In a recent paper, De, Shaikh, and
Sengupta [3] introduced the notion of LP-Sasakian manifolds with a coefficient
α which generalizes the notion of LP-Sasakian manifolds. Recently, T. Ikawa
and his coauthors [4], [5] studied Sasakian manifolds with Lorentzian metric
and obtained several results in this manifold. The object of the present paper
is to study certain curvature restriction on an LP-Sasakian manifold with a
coefficient α. After preliminaries, in Section 3 it is shown that if an LP-Sasakian
manifold Mn with a coefficient α is of constant curvature, then the vector field
ξ is a concircular vector field and as an important consequence of this theorem
we prove that such a manifold is the product manifold. In the last section we
study a 3-dimensional LP-Sasakian manifold with a constant coefficient α.

2. Preliminaries

Let Mn be an n-dimensional differentiable manifold endowed with a (1, 1)
tensor field φ, a contravariant vector field ξ, a covariant vector field η and
a Lorentzian metric g of type (0, 2) such that for each point p ∈ M , the
tensor gp : TpM × TpM → R is a non-degenerate inner product of signature
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(−,+,+, . . . ,+), where TpM denotes the tangent vector space of M at p and
R is the real number space, which satisfies

(2.1) η(ξ) = −1, φ2X = X + η(X)ξ,

(2.2) g(X, ξ) = η(X), g(φ X, φY ) = g(X, Y ) + η(X)η(Y )

for all vectors fields X and Y . Then such a structure (φ, ξ, η, g) is termed
as Lorentzian almost paracontact structure and the manifold Mn with the
structure (φ, ξ, η, g) is called Lorentzian almost paracontact manifold [6]. In a
Lorentzian almost paracontact manifold Mn, the following relations hold good
[6]:

(2.3) φ ξ = 0, η(φ X) = 0,

(2.4) Ω(X,Y ) = Ω(Y,X), where Ω = g(X,φY ).

In the Lorentzian almost paracontact manifold Mn, if the relations

(2.5)
(∇ZΩ)(X,Y ) = α[{g(X,Z) + η(X)η(Z)}η(Y )

+ {g(Y,Z) + η(Y )η(Z)}η(X)], (α 6=0)

(2.6) Ω(X,Y ) =
1
α

(∇X η)(Y ),

hold where ∇ denotes the operator of covariant differentiation with respect
to the Lorentzian metric g, then Mn is called an LP-Sasakian manifold with
a coefficient α [3]. An LP-Sasakian manifold with a coefficient 1 is an LP-
Sasakian manifold [6]. If a vector field V satisfies the equation of the following
form:

∇XV = βX + T (X)V,
where β is a non-zero scalar function and T is a non-zero 1-form, then V is
called a torse-forming vector field [9]. In a Lorentzian manifold Mn, if we
assume that ξ is a unit torse-forming vector field, then we have the equation:

(2.7) (∇Xη)(Y ) = α[g(X,Y ) + η(X)η(Y )],

where α is a non-zero scalar function. Hence the manifold admitting a unit
torse-forming vector field satisfying (2.7) is an LP-Sasakian manifold with a
coefficient α. Especially, if η satisfies

(2.8) (∇Xη)(Y ) = ε[g(X,Y ) + η(X)η(Y )], ε2 = 1,

then Mn is called an LSP-Sasakian manifold [6]. In particular, if α satisfies
(2.7) and the equation of the form:

(2.9) α(X) = pη(X), α(X) = ∇Xα,

where p is a scalar function. Then ξ is called a concircular vector field. A
Riemannian manifold satisfying the condition ∇S = 0, where S denotes the
Ricci tensor is called Ricci-symmetric. A Riemannian manifold satisfying the
condition R(X,Y ).S = 0 is called Ricci-symmetric [8] where R(X,Y ) denotes
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the derivation of the tensor algebra at each point of the tangent space. Let us
consider an LP-Sasakian manifold Mn (φ, ξ, η, g) with a coefficient α. Then
we have the following relations [3]:

(2.10)
η(R(X,Y )Z) = − α(X)Ω(Y, Z) + α(Y )Ω(X,Z)

+ α2{g(Y, Z)η(X)− g(X,Z)η(Y )},

(2.11) S(X, ξ) = − ψα(X) + (n− 1)α2η(X) + α(φX),

where R, S denote respectively the curvature tensor and the Ricci tensor of
the manifold and ψ = Trace(φ). We state the following results which will be
needed in latter sections.

Lemma 2.1 ([3]). In an LP-Sasakian manifold Mn with a non-constant coef-
ficient α, one of the following cases occurs:

(i) ψ2 = (n− 1)2.
(ii) α(Y ) = − pη(Y ), where p = α(ξ).

Lemma 2.2 ([3]). In a Lorentzian almost paracontact manifold Mn with struc-
ture (φ, ξ, η, g) satisfying Ω(X,Y ) = 1

α (∇Xη)(Y ), where α is a non-zero
scalar function, the vector field ξ is torse-forming if and only if the relation
ψ2 = (n− 1)2 holds good.

3. LP-Sasakian manifolds with a coefficient α which is
of constant curvature

We consider an LP-Sasakian manifold which is of constant curvature. Then
we have

(3.1) R(X,Y, Z,W ) =
r

n(n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )].

From (3.1) we have

(3.2) S(Y,Z) =
r

n
g(Y, Z)

which implies that the manifold is Einstein and hence the scalar curvature r of
the manifold is given by [3]

(3.3). r = n{pψ + (n− 1)α2}.
Putting Z = ξ in (3.2) we have by virtue of (2.11)

(3.4) α(φY ) = ψα(Y ) +
{ r
n
− (n− 1)α2

}
η(Y ).

Again from (3.1) we have by virtue of (2.2)

(3.5)
∑n

i=1

εiR(ei, Z, φY, φei) =
r

n(n− 1)
[ψΩ(Y, Z)− g(Y, Z)− η(Y )η(Z)],
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where {ei} is an orthonormal basis of the tangent space at any point of the
manifold and εi = g(ei, ei). Now in an LP-Sasakian manifold with a coefficient
α we have the following relation [3]:

(3.6)

S(Y, Z)−
n∑

i=1

εiR(ei, Z, φY, φei)

= {ψα(Z)− α(φZ)− (2n− 3)α2η(Z)}η(Y )

− (n− 2)α2g(Y, Z) + (p+ ψα2)Ω(Y, Z).

Using (3.2), (3.3), (3.4) and (3.5) in (3.6) we obtain

(3.7)

{
2(n− 1)α2 +

npψ

n− 1

}
g(Y, Z)−

{
2ψα2 + (1 +

ψ2

n− 1
)p

}
Ω(Y, Z)

+
{

2(n− 1)α2 +
npψ

n− 1

}
η(Y )η(Z) = 0.

We consider the case when α is not constant. In this case, taking a frame
field and contracting over Y and Z we obtain from (3.7) that

[(n− 1)2 − ψ2]
{

2α2 +
pψ

n− 1

}
= 0.

From this equation we find either

(3.8) ψ2 = (n− 1)2,

or

(3.9) pψ = −2(n− 1)α2.

If (3.9) holds, then from (3.3) we obtain

r = −n(n− 1)α2,

from which we find that α is constant, since r is constant, which contradicts
our assumption that α is non constant.

On the other hand, from (3.8) by virtue of Lemma 2.2 we conclude that ξ
is torse-forming. We have that

(∇Xη)(Y ) = β{g(X,Y ) + η(X)η(Y )}.
Then from (2.6) we get

Ω(X,Y ) =
β

α
{g(X,Y ) + η(X)η(Y )}

= g

(
β

α
(X + η(X)ξ), Y

)

and Ω(X,Y ) = g(φX, Y ).

Now from (3.4) and using φ(X) = X + η(X)ξ we obtain

α(Y + η(Y )ξ) = ψα(Y ) +
{
n(pψ + (n− 1)α2)

n
− (n− 1)α2

}
η(Y )
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or, α(Y ) + pη(Y ) = ψα(Y ) + pψη(Y )

or, α(Y )− ψα(Y ) = pψη(Y )− pη(Y )

or, (1− ψ)α(Y ) = p(−1 + ψ)η(Y )

or, α(Y ) = p

(−1 + ψ

1− ψ

)
η(Y ) = − pη(Y ).

In a similar way using φ(X) = −X+η(X)ξ in (3.4) we obtain α(X) = −pη(Y ).
Since g is non-singular, we have

φ(X) =
β

α
(X + η(X)ξ)

and

φ2(X) =
(
β

α

)2

(X + η(X)ξ).

It follows from (2.1) that (β
α )2 = 1 and hence, α = ±β. Thus we have

(3.10) φ(X) = ±(X + η(X)ξ.

Thus in both the cases we obtain

α(Y ) = −pη(Y ).

Hence we can state the following:

Theorem 3.1. If an LP-Sasakian manifold Mn with a coefficient α is a man-
ifold of constant curvature, then the vector field ξ is a concircular vector field.

Again since ξ is a concircular vector field, we have

(3.11) ∇Xξ = α[X + η(X)ξ],

where α(Y ) = pη(Y ), where p is a scalar function.
Let ξ⊥ denote the (n−1)-dimensional distribution in an LP-Sasakian mani-

fold with coefficient α orthogonal to ξ. If X and Y belong to ξ⊥, where Y 6=λX,
then

(3.12) g(X, ξ) = 0

and

(3.13) g(Y, ξ) = 0.

Since (∇Xg)(Y, ξ) = 0, it follows from (3.11) and (3.13) that

g(∇XY, ξ) = g(∇Xξ, Y ) = αg(X,Y ).

Similarly, we get

g(∇Y X, ξ) = g(∇Y ξ,X) = αg(X,Y ).

Hence

(3.14) g(∇XY, ξ) = g(∇Y X, ξ).
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Now [X,Y ] = ∇XY −∇Y X. Therefore

g([X,Y ], ξ) = g(∇XY −∇Y X, ξ) = 0 by (3.14).

Hence [X,Y ] is orthogonal to ξ, i.e., [X,Y ] belong to ξ⊥. Thus the distribution
ξ⊥ is involutive [2]. Hence from Frobenius’ theorem [2] it follows that ξ⊥ is
integrable. This implies that if an LP-Sasakian manifold with a coefficient α
is a manifold of constant curvature, then it is a product manifold. We can
therefore state the following theorem.

Theorem 3.2. If an LP-Sasakian manifold with a coefficient α is a manifold
of constant curvature, then the manifold is the product manifold.

4. 3-dimensional LP-Sasakian manifold with a constant coefficient α

Let us consider a 3-dimensional LP-Sasakian manifold with a constant coef-
ficient α. In a 3-dimensional Riemannian manifold we have

(4.1)
R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

− r

2
[g(Y,Z)X − g(X,Z)Y ],

where Q is the Ricci operator, i.e., g(QX,Y ) = S(X,Y ) and r is the scalar
curvature of the manifold.

Since α is constant and dimension of the manifold is 3, equations (2.10) and
(2.11) reduce to

(4.2) η(R(X,Y )Z) = α2[g(Y, Z)η(X)− g(X,Z)η(Y )],

(4.3) S(X, ξ) = 2 α2η(X).

From (4.2) we get

(4.4) R(X,Y )ξ = α2[η(Y )X − η(X)Y ].

Putting Z = ξ in (4.1) and using (4.4) we have

(4.5) η(Y )QX − η(X)QY =
(r

2
− α2

)
[η(Y )X − η(X)Y ].

Putting Y = ξ in (4.5) and using (2.1) and (4.3), we get

(4.6) QX =
1
2

{
(r − 2α2)X + (r − 6α2)η(X)ξ

}

i.e.,

S(X,Y ) =
1
2

{
(r − 2α2)g(X,Y ) + (r − 6α2)η(X)η(Y )

}
.

An LP-Sasakian manifold is said to be a space form if the manifold is a
space of constant curvature. We assume that ψ = trace of φ 6= 0, i.e., ξ is not
harmonic [1].
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Using (4.6) in (4.1), we get

(4.7)
R(X,Y )Z =

r − 4α2

2
[g(Y, Z)X − g(X,Z)Y ] +

r − 6α2

2
[g(Y,Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ].

Hence we can state the following:

Theorem 4.1. A 3-dimensional LP-Sasakian manifold with a constant coeffi-
cient α is a space form if and only if the scalar curvature r = 6α2.

Next we consider a 3-dimensional LP-Sasakian manifold with constant co-
efficient α which satisfies the condition

(4.8) R(X,Y ).S = 0.

From (4.8) we have

(4.9) S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0.

Again from (4.2) we get

(4.10) R(X, ξ)Z = α2[η(Z)X − g(X,Z)ξ].

Putting Y = ξ in (4.9) and using (4.10) we get

(4.11) η(U)S(X,V )− g(X,U)S(ξ, V ) + η(V )S(U,X)− g(X,V )S(U, ξ) = 0.

Since α2 6=0 using (4.3) in (4.11) we have

(4.12) η(U)S(X,V )−2α2g(X,U)η(V )+η(V )S(U,X)−2α2g(X,V )η(V ) = 0.

Taking a frame field and contracting over X and U from (4.12) we obtain

(4.13) S(ξ, V )− 8α2η(V ) + rη(V ) = 0.

Using (4.3) in (4.13) we obtain

(r − 6α2)η(V ) = 0.

This gives r = 6α2 (since η(V ) 6=0), which implies by Theorem 4.1 that the
manifold is a space form.

Hence we can state the following:

Theorem 4.2. A 3-dimensional Ricci semi-symmetric LP-Sasakian manifold
with a constant coefficient α is a space form.

Since ∇S = 0 implies R(X,Y ).S = 0, we get the following:

Corollary. A 3-dimensional Ricci symmetric LP-Sasakian manifold with a
constant coefficient α is a space form.
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