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The Hilbert Problem for

Generalized Q-Holomorphic Functions
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Abstract. In this work, we extended classical Hilbert boundary value problem to
generalized Q-holomorphic functions by replacing the condition that the solution
vanishes at infinity by that the solution has a finite order of growth at infinity.
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1. Introduction

Douglis [5] and Bojarskĭı [4] developed an analogous of analytic function for
elliptic systems in the plane of the form

wz − qwz = 0, (1)

where w is an m × 1 vector and q is an m × m quasi-diagonal matrix. Also
Bojarskĭı assumed that all eigenvalues of Q are less than 1. Such systems are
considered because they arise from the reduction of general elliptic systems of
first order in the plane to a standart canonical form. Subsequently Douglis and
Bojarkii’s theory has been used to study elliptic systems in the form

wz − qwz = aw + bw

and the solution of such equations were called generalized (or pseudo) hyperan-
alytic functions. Work in this direction appear in [7, 8, 10, 11]. These results
extend the generalized (or ”‘pseudo”’) analytic function theory of Bers [3] and
Vekua [15]. Also classical boundary value problems for analytic functions were
extended to generalized hyperanalytic functions. A good survey of the methods
encountered in hyperanalytic case may be found in [2, 9].
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In [12], Hile noticed that what appears to be the essential property of elliptic
systems in the plane for which one can obtain a useful extension of analytic
function theory is the self commuting property of the variable matrix Q, which
means

Q (z1)Q (z2) = Q (z2)Q (z1)

for any two points z1, z2 in the domain G0 of Q. Further such a Qmatrix can not
be brought into quasi-diagonal form of Bojarskĭı by a similarity transformation.
So Hile [12] attempts to extend the results of Douglis and Bojarskĭı to a wider
class of systems in the same form with equation (1). If Q (z) is self-commuting
in G0 and if Q (z) has no eigenvalues of magnitude 1 for each z in G0, then Hile
called the system (1) generalized Beltrami system and the solutions of such a
system are called Q-holomorphic functions. Later in [13, 14] using Vekua and
Bers techniques a function theory as given for the equation

wz −Qwz + Aw +Bw = 0, (2)

where the unknown w(z) = {wij(z)} is anm×s complex matrix, Q(z) = {qij(z)}
is a self commuting complex matrix with dimension m×m, and qk,k−1 6= 0 for
k = 1, . . .m. A = {aij(z)} and B = {bij(z)} are commuting with Q. Solutions
of such equation were called generalized Q-holomorphic functions.

In this work, we generalize the classical Hilbert boundary value problem for
analytic functions to the solutions of the equation (2) with the jump condition

w+ −Hw− = h

where H is commuting with Q and h is an m × s complex matrix. In general,
there is no similarity principle for generalized Q-holomorphic functions; hence
the local behavior of these functions is not the same as for Q-holomorphic func-
tions. Consequently this forces us to impose some conditions on coefficients of
equation (2). For this reason we assume that the coefficients have also compact
support. Also we assume that Q is commuting with Q.

We recall next a few elementary properties associated with the operator
D := ∂

∂z
−Q ∂

∂z
. First there exits a so called generating solution φ (z) := φ0 (z)+

N (z) which satisfies the equation Dφ = 0, where N is the nilpotent part of φ
and φ0 is the main diagonal term of φ satisfying the Beltrami equation

∂φ0
∂z

− λ
∂φ0
∂z

= 0

where |λ| 6= 1. Moreover φ(z) has the following property:

∥∥(φ (ζ)− φ (z))−1
∥∥ ≤ M

|ζ − z|
. (3)



The Hilbert Problem 537

2. Fundamental kernels

The fundamental kernels permit the formulation of the Hilbert boundary value
problem for generalized Q-holomorphic functions as a Cauchy type integral
relation.

Lemma 2.1. Let G be a regular domain, and u ∈ C(G), Du ∈ Lp(G) where
2 < p <∞. Then

∫

Γ

dφ (z) u (z) = 2i

∫∫

G

φz (z)Du (z) dx dy ,

where u commutes with Q in G.

Proof. Let {ψn} be a sequence in C1
c (G) such that ψn → Du in Lp(G). By

Theorem 3.6 in [13], JGψn → JG(Du) pointwise uniformly in the whole plane C.
In Theorem 6 given in [12], we set v = φ, u = Jψn, to obtain

∫

Γ

dφ(z) (JGψn) (z) = 2i

∫∫
φz (z)ψn (z) dx dy.

Letting n→∞, we have

∫

Γ

dφ (z) (JGDu) (z) = 2i

∫∫

G

φz (z)Du (z) dx dy .

By [13, Corollary 3.4], in G, JG (Du) = u−Φ, where Φ is Q-holomorphic in G.
Furthermore JG (Du), u ∈ C

(
G
)
, and thus Φ ∈ C

(
G
)
. Now we may use [12,

Corollary 7] with w ≡ Φ, to conclude
∫
Γ
dφ (z) Φ (z) = 0, and the lemma is

proved.

Definition 2.2. For fixed A and B, we define the operator

Cw ≡ Dw + Aw +Bw (4)

and an associated operator

C̃v ≡ Dv − Av +B∗v

where B∗ is defined by
B∗ = φ−1z φzB

Theorem 2.3. Let G be a regular domain, and A and B ∈ Lp(G) with 2 < p <

∞. If w and v ∈ C(G), and satisfy, in G, Cw = 0, C̃v = 0, then the integral
− 1
2i

∫
Γ
dφ(z)v(z)w(z) is a real matrix, where v is commuting with Q.
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Proof. Since w, v ∈ C(G), we have Dw = −Aw − Bw and Dv = Av − B∗v ∈
Lp(G). By Lemma 2.1 and [13, Theorem 3.9],

−1

2i

∫

Γ

dφvw = −

∫∫

G

φzD (vw) dx dy

= −

∫∫

G

φz [vDw + (Dv)w] dx dy

=

∫∫

G

(
φzBvw + φzBvw

)
dx dy

which is a real matrix.

Theorem 2.4. Let A and B be commuting with Q in Lp,2 (C), where 2 < p <∞.
Then there exist a complex matrix of two variables commuting with Q, X1 (z, ζ)
and X2 (z, ζ), with the properties

1. in C− {ζ}, for j = 1, 2,

DzXj (z, ζ) + A (z)Xj (z, ζ) +B (z)Xj (z, ζ) = 0

(here Dz denotes our differential operator D where differentiation is with
respect to the variable z rather than ζ);

2. for Xj ∈ B
α (C), α = p−2

p
, and ωj (z) = O

(
|z|−α

)
as |z| → ∞, j = 1, 2,

X1 (z, ζ) =
1

2
(φ (ζ)− φ (z))−1 exp [ω1 (z)− ω1 (ζ)]

X2 (z, ζ) = −
i

2
(φ (ζ)− φ (z))−1 exp [ω2 (z)− ω2 (ζ)] .

Proof. We temporarily fix a point ζ in C, and define a function B̂ by

B̂ = (φ (z)− φ (ζ)) (φ (z)− φ (ζ))
−1
B (z) .

We have B̂ ∈ Lp,2 (C) , since

∥∥∥B̂ (z)
∥∥∥ ≤

∥∥(φ (z)− φ (ζ))−1
∥∥ ‖(φ (z)− φ (ζ))‖ ‖B (z)‖ ≤M (Q) ‖B (z)‖ .

Let us consider the integral equation

w (z) + J̃w (z)− J̃w (ζ) = 1, z ∈ C , (5)

where J̃w = J
(
Aw + B̂w

)
. If we define an operator S̃ by

(
S̃w
)
(z) = J̃w (z)− J̃w (ζ) , z ∈ C ,
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then equation (5) may be written as

w (z) +
(
S̃w
)
(z) = 1 . (6)

Since by [13, Theorem 4.3], J̃ is compact in the space B (C), S̃ is compact in
B (C). Therefore, in order to show that equation (5) has a unique solution
in B(C), it is sufficient to show the homogeneous equation has only the zero
solution. Suppose that v ∈ B(C) satisfies

v (z) + J̃v (z)− J̃v (ζ) = 0, z ∈ C.

Differetiating this equation, we obtain

Dv + Av + B̂v = 0.

Since v(ζ) = 0, by [13, Corollary 4.2], v = 0.

Thus we may let w be the unique solution to equation (5). By [13, The-
orem 4.4] this solution is commuting with Q. Differentiating equation (5), we
obtain

Dw + Aw + B̂w = 0 .

By [13, Theorem 4.1], w has the form w(z) = C expω1(z), where C is a lower
diagonal constant matrix, ω1 is a matrix valued function in B0,α, α = p−2

p
and

ω1(z) = O(|z|α). But since w(ζ) = 1, we conclude C = exp [−ω1(ζ)], and
w (z) = exp [ω1 (z)− ω1 (ζ)] ≡ w (z, ζ) . We now set

X1 (z, ζ) ≡
1

2
(φ (ζ)− φ (z))−1w (z, ζ)

=
1

2
(φ (ζ)− φ (z))−1 exp [ω1 (z)− ω1 (ζ)] .

Then, for z ∈ C− {ζ},

DzX1 (z, ζ) =
(φ (ζ)− φ (z))−1

2
Dzw (z, ζ)

=
(φ (ζ)− φ (z))−1

2

(
−Aw (z, ζ)− B̂w (z, ζ)

)

= −A (z)X1 (z, ζ)−B (z)X1 (z, ζ).

For the proof of X2 we replace the 1 on the right-hand sides of equations (5)
and (6) by −i. This serves to define the functions w2 = −i exp(ω2(z) − ω2(ζ))
and X2 (z, ζ) =

1
2
(φ(ζ)− φ(z))−1w2(z, ζ).
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Definition 2.5. The fundamental kernels Ω1 and Ω2, associated with A and B
in Lp,2(C), are

Ω1 (z, ζ) ≡ X1 (z, ζ) + iX2 (z, ζ) (7)

Ω2 (z, ζ) ≡ X1 (z, ζ)− iX2 (z, ζ) , (8)

where X1 and X2 are the functions described in Theorem 2.4.

Theorem 2.6. The fundamental kernels Ω1 and Ω2 satisfy:

1. for each ζ in C, in C − {ζ}

DzΩ1 (z, ζ) + A (z) Ω1 (z, ζ) +B (z) Ω2 (z, ζ) = 0

DzΩ2 (z, ζ) + A (z) Ω2 (z, ζ) +B (z) Ω1 (z, ζ) = 0 ;

2. for fixed ζ, and j = 1, 2,

‖Ω1 (z, ζ)‖ = O
(
|z|−1

)
as |z| → ∞ ;

3. as |z − ζ| → 0,

∥∥Ω1 (z, ζ)− (φ (ζ)− φ (z))−1
∥∥ = O

(
|z − ζ|−

2

p

)
(9)

‖Ω2 (z, ζ)‖ = O
(
|z − ζ|−

2

p

)
. (10)

Proof. Property 1 is readily verified from 1. of Theorem 2.4. Property 2 follow
from the relations

Ω1 (z, ζ) =
(φ (z)− φ (ζ))−1

2
[exp (ω1 (z)− ω1 (z)) + exp (ω2 (z)− ω2 (z))]

Ω2 (z, ζ) =
(φ (z)− φ (ζ))−1

2
[exp (ω1 (z)− ω1 (z))− exp (ω2 (z)− ω2 (z))]

because each ωj is bounded in C, and by (3).

To show 3., first when zI + N is an m × m complex matrix where N is
nilpotent, it is possible to write

exp(z +N) = (exp z)
m−1∑

k=0

Nk

k!
,

and it is easily seen that the matrix valued function exp(z + N) is uniformly
Lipshitz continuous whenever z + N remains bounded. Hence, since ωj is in
B0,α(C) we have the result.



The Hilbert Problem 541

Theorem 2.7. Let G be a regular domain, and let A and B be in Lp,2(C) where
2 < p <∞. Furthermore let w be in C(G) and satisfy Cw = Dw+Aw+Bw = 0

in G. If Ω̃1 and Ω̃2 are the fundamental kernels for the associated equation
C̃v = Dv − Av +B∗v, then

−P−1

∫

Γ

{
dφ (ζ) Ω̃1 (ζ, z)w (ζ)− dφ (ζ) Ω̃2 (ζ, z)w (ζ)

}
=

{
w (z) , if z ∈ G,

0, if z /∈ G ,

where the constant matrix P is defined by

P =

∫

|z|=1

(zI + zQ)−1 (Idz +Qdz) ,

is called P -value for the generalized Beltrami system (see [12, p. 107]).

Proof. Let X̃1 and X̃2 be the corresponding solutions of C̃v = 0 as described in
Theorem 2.4. Using Theorem 2.3, we obtain the formulas, for j = 1, 2,

∫

Γ

{
dφ (ζ) X̃j (ζ, z)w (ζ)− dφ (ζ) X̃j (ζ, z)w (ζ)

}

=





∫

|ζ−z|=ε

{
dφ (ζ) X̃j (ζ, z)w (ζ)− dφ (ζ) X̃j (ζ, z)w (ζ)

}
if z ∈ G

0, if z /∈ G,

where ε is a sufficiently small positive number. We multiply by i the equation
for j = 2 and add to the equation for j = 1 to obtain

∫

Γ

{
dφ (ζ) Ω̃1 (ζ, z)w (ζ)− dφ (ζ) Ω̃2 (ζ, z)w (ζ)

}

=





∫

|ζ−z|=ε

{
dφ (ζ) Ω̃1 (ζ, z)w (ζ)− dφ (ζ) Ω̃2 (ζ, z)w (ζ)

}
if z ∈ G

0, if z /∈ G.

Using (9) and (10) we obtain, for z in G,

lim
ε→0

∫

|ζ−z|=ε

{
dφ (ζ) Ω̃1 (ζ, z)w (ζ)− dφ (ζ) Ω̃2 (ζ, z)w (ζ)

}

= lim
ε→0

∫

|ζ−z|=ε

dφ (ζ) (φ (z)− φ (ζ))w (ζ) .

But Hile showed (see [12, p. 114]), using the continuity of w, that the latter
limit is Pw(z). Thus the theorem is proved.
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Theorem 2.8. Let A and B be in Lp,2 (C), where 2 < p < ∞. Let Ω1, Ω2 be

the fundamental kernels for the equation Cw = Dw+Aw+Bw = 0 and Ω̃1, Ω̃2

be the fundamental kernels for the equation C̃v = Dv − Av + B∗v = 0. Then,
for z 6= ζ,

Ω1 (z, ζ) = −Ω̃1 (ζ, z) , Ω2 (z, ζ) = −Ω̃2 (ζ, z).

Proof. Let z, ζ be fixed, z 6= ζ, and let ε be small enough such that 0 < ε <
|z − ζ| < 1

ε
. Then by the previous theorem, for j = 1, 2,

Xj (z, ζ) = −P
−1

∫

|s−ζ|= 1

ε

dφ (s) Ω̃1 (s, z)Xj (s, ζ)

+ P−1

∫

|s−ζ|= 1

ε

dφ (s) Ω̃2 (s, z)Xj (s, ζ)

+ P−1

∫

|s−ζ|=ε

dφ (s) Ω̃1 (s, z)Xj (s, ζ)

+ P−1

∫

|s−ζ|=ε

dφ (s) Ω̃2 (s, z)Xj (s, ζ) .

Using Theorem 2.6 and the relations (9), (10), we obtain the estimates

∥∥∥Ω̃j (s, z)
∥∥∥ , ‖Xj (s, z)‖ = O

(
|s|−1

)
as |s| → ∞

∥∥∥∥∥X1 (s, ζ)−
(φ (ζ)− φ (z))−1

2

∥∥∥∥∥ = O
(
|s− ζ|−

2

p

)
as |s− ζ| → ∞

∥∥∥∥∥X2 (s, ζ)−
(φ (ζ)− φ (z))−1

2i

∥∥∥∥∥ = O
(
|s− ζ|−

2

p

)
as |s− ζ| → ∞.

Letting ε→ 0, we therefore obtain

X1 (z, ζ) = lim
ε→0

P−1

2

{∫

|s−ζ|=ε

dφ (s) Ω̃1 (s, z) [φ (ζ)− φ (z)]−1

−

∫

|s−ζ|=ε

dφ (s) Ω̃2 (s, z) [φ (ζ)− φ (z)]−1
}

X2 (z, ζ) = lim
ε→0

−iP−1

2

{∫

|s−ζ|=ε

dφ (s) Ω̃1 (s, z) [φ (ζ)− φ (z)]−1

−

∫

|s−ζ|=ε

dφ (s) Ω̃2 (s, z) [φ (ζ)− φ (z)]−1
}
.
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As in the proof of the previous theorem, we remark that Hile has shown (see
[12, p. 114]) that the above limits are

X1 (z, ζ) = −
1

2

[
Ω̃1 (ζ, z) + Ω̃2 (ζ, z)

]

X2 (z, ζ) = −
1

2i

[
Ω̃1 (ζ, z)− Ω̃2 (ζ, z)

]
.

The relations (7), (8) complete the proof.

Theorem 2.9. Let G be a regular domain, and A and B in Lp,2 (C) where 2 <
p <∞. Furthermore, let w be in C

(
G
)
and satisfy Cw = Dw+Aw+Bw = 0

in G. Then

P−1

∫

Γ

[
dφ (ζ) Ω1 (z, ζ)w (ζ)− dφ (ζ)Ω2 (z, ζ)w (ζ)

]
=

{
w (z) , if z ∈ G

0, if z /∈ G.

3. The Plemelj formulas

Let Γ = Γ0 +Γ1 + · · ·+Γr be a collection of r+ 1 disjoint contours in C1,α (C)
and let the interior of the contour Γ0 contain the other contours. By G+ we
denote the (r + 1)-connected domain interior for Γ0 and exterior for Γ1, . . . ,Γr.
By G− we denote the complement of G+ + Γ in the entire complex plane. To
be definite, we assume that the origin lies in G+. As usual, we orient Γ0 so
that it is counterclockwise positive, and thus clockwise positive for the other
contours Γk.

Let us first show that we can define the singular Cauchy integral

Sϕ (τ) := 2P−1

∫

Γ

dφ (ζ) [φ (ζ)− φ (τ)]−1 ϕ (τ)

in a principal value sense when τ ∈ Γ and ϕ is Hölder continuous on Γ. We
assume that each contour composing Γ is parameterized with respect to the arc
length from some fixed point on the contour. For τ ∈ Γ, 0 < ε, let Γε = Γ\{ζ :
|ζ − τ | < ε} and τi (ε) be the endpoints of Γε.

For simplification, we introduce ∆ (ζ, τ) = N(ζ)−N(τ)
φ0(ζ)−φ0(τ)

. Then

∫

Γε

dφ (ζ) [φ (ζ)− φ (τ)]−1 =

∫

Γε

(dφ0 (ζ) + dN (ζ))
m−1∑

k=0

(−1)k∆k (ζ, τ) .

Since

∆k dN (ζ)

φ0 (ζ)− φ0 (τ)
=

1

k + 1
d∆k+1 +∆k+1 dφ0 (ζ)

φ0 (ζ)− φ0 (τ)
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we have

dφ (ζ) [φ (ζ)− φ (τ)]−1 =
dφ0 (ζ)

φ0 (ζ)− φ0 (τ)
+

m−1∑

k=1

(−1)k−1

k
d∆k(ζ, τ).

Thus

lim
ε→0

∫

Γε

dφ (ζ) [φ (ζ)− φ (τ)]−1 = lim
ε→0

∫

Γε

dφ0 (ζ)

φ0 (ζ)− φ0 (τ)

+ lim
ε→0

∫

Γε

m−1∑

k=1

(−1)k−1

k
d

(
N (ζ)−N (τ)

φ0 (ζ)− φ0 (τ)

)k

.

Define for ζ, τ ∈ Γ

Θ (ζ, τ) =





N(ζ)−N(τ)
φ0(ζ)−φ0(τ)

, ζ 6= τ
.

N(ζ)
.

φ0(ζ)

∣∣∣
s=sτ

, ζ = τ ,

where sτ is the value of the arc-length parameter corresponding to τ , and over-
dots denote differentation with respect to s. Since N , φ0 and τ (s) all have
Hölder continuous first derivatives with respect to their arguments, we conclude
that Θ (ζ, τ) is Hölder continuous with respect to each argument, separetely.
Moreover

lim
ε→0

∫

Γε

dφ (ζ) [φ (ζ)− φ (τ)]−1 = lim
ε→0

∫

Γε

dφ0 (ζ)

φ0 (ζ)− φ0 (τ)

+ lim
ε→0

m−1∑

k=1

(−1)k−1

k
[Θ (ζ, τ)]k

∣∣∣
τ2(ε)

τ1(ε)

= lim
ε→0

∫

Γε

dφ0 (ζ)

φ0 (ζ)− φ0 (τ)
.

Since φ0 is a solution of the Beltrami equation, it can be shown that the Beltrami
equation has a solution ρ (z) ∈ C1,α (C) (see [15, Chapter II]). This solution can
be found by ρ (z) = φ0 (z) in the case of |λ| ≤ q0 < 1 and by ρ (z) = φ0 (z) in
the case of |λ| ≥ q0 > 1 with nonegative constant q0. Hence we have

lim
ε→0

∫

Γε

dφ0 (ζ)

φ0 (ζ)− φ0 (τ)
= lim

ε→0
log

φ0 (τ2 (ε))− φ0 (τ)

φ0 (τ1 (ε))− φ0 (τ)

=

{
πi, |λ| ≤ q0 < 1

−πi, |λ| ≥ q0 > 1

=
P

2
.
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Thus in view of the assumed Hölder continuity of ϕ,

lim
ε→0

2P−1

∫

Γε

dφ (ζ) [φ (ζ)− φ (τ)]−1 ϕ (ζ)

= lim
ε→0

2P−1

∫

Γε

dφ (ζ) [φ (ζ)− φ (τ)]−1 (ϕ (ζ)− ϕ (τ)) + ϕ (τ) .

Note that the integrand of the last integral is weakly singular, and hence this
term is defined in the usual sense. Hence for the principal value of Sϕ, we have

(Sϕ) (τ) = lim
ε→0

2P−1

∫

Γε

dφ (ζ) [φ (ζ)− φ (τ)]−1 ϕ (ζ)

= 2P−1

∫

Γ

dφ (ζ) [φ (ζ)− φ (τ)]−1 (ϕ (ζ)− ϕ (τ)) + ϕ (τ) . (11)

If

Φϕ (z) := P−1

∫

Γ

dφ (ζ) [φ (ζ)− φ (τ)]−1 ϕ (ζ) , z ∈ G+ ∪G− , (12)

then for τ ∈ Γ

(Φϕ)+ (τ) = P−1

∫

Γ

dφ (ζ) [φ (ζ)− φ (τ)]−1 (ϕ (ζ)− ϕ (τ))

+ lim
z∈G+

z→τ

P−1

∫

Γ

dφ (ζ) [φ (ζ)− φ (τ)]−1 ϕ (τ)

=
1

2
(Sϕ) (τ) +

1

2
ϕ (τ) .

With an analogous argument, that is, for τ ∈ Γ, z ∈ G− and z → τ we obtain

(Φϕ)− (τ) =
1

2
(Sϕ) (τ)−

1

2
ϕ (τ) .

Also it is easily seen that the Hölder continuity of Φ follows from the Hölder
continuity of the Cauchy integral (see [6, p. 41]) and the Hölder continuity of
first derivatives of Beltrami homeomorphisms. Thus we have

Theorem 3.1. Let ϕ be an m × s complex matrix in Cα (Γ) and let Sϕ and
Φϕ be as defined in (11) and (12). Then

(Φϕ)+ (τ) =
1

2
(Sϕ) (τ) +

1

2
ϕ (τ)

(Φϕ)− (τ) =
1

2
(Sϕ) (τ)−

1

2
ϕ (τ) .

Moreover, Φ is Hölder continuous in G+ and G−.
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Lemma 3.2. If ϕ is an m× s complex matrix in Cα (Γ), then

w (z) = P−1

∫

Γ

{
dφ (ζ) Ω1 (z, ζ)ϕ (ζ)− dφ (ζ)Ω2 (z, ζ)ϕ (ζ)

}
(13)

is a generalized Q-holomorphic function in each component of C−Γ and fulfills

w+ (τ) = w (τ) +
1

2
ϕ (τ) , w− (τ) = w (τ)−

1

2
ϕ (τ) (14)

where τ ∈ Γ. The first integral in (13) for τ ∈ Γ has to be understood in the
Cauchy principal-value sense.

Proof. Because of the local behavior of the kernels as |ζ − z| → 0,

Ω1 (z, ζ) = [φ (ζ)− φ (z)]−1 +O
(
|ζ − z|−

2

p

)

Ω1 (z, ζ) = O
(
|ζ − z|−

2

p

)

and the Plemelj formula for paremeter dependent integrals (see [6, p. 51]), it
follows that

(w − Φ)+ (τ) = (w − Φ) (τ) = (w − Φ)− (τ) (τ ∈ Γ) .

Therefore w − Φ is continuous even on Γ, and (14) follows.

Theorem 3.3. In order that the Hölder continuous function γ given on Γ rep-
resents the boundary value of w+ of a solution of (4) which is Hölder continuous

in the closure Ĝ+ of G+ and vanishes at infinity, the conditions

Re

∫

Γ

dφ (ζ) v (ζ) γ (ζ) = 0 (15)
∫

Γ

[
dφ (ζ) Ω1 (z, ζ) γ (ζ)− dφ (ζ)Ω2 (z, ζ) γ (ζ)

]
= 0

(
z ∈ G−

)
(16)

are necessary. Here equation (15) holds for every solution v of the associated

equation Dv − Av +B∗v = 0 of (4) defined in Ĝ+.

Proof. Equation (15) is readily verified in Theorem 2.3. To see the validity
of (16) one has to consider

u (z) =

{
u1 (z)− w (z) , z ∈ G+

u1 (z) , z ∈ G−

u1 (z) = P−1

∫

Γ

[
dφ (ζ) Ω1 (z, ζ) γ (ζ)− dφ (ζ)Ω2 (z, ζ) γ (ζ)

] (17)
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which fulfils the boundary condition u+ − u− = (u1)+ − (u1)− − w+ = γ − w+
of Γ and u (z) = O

(
|z|−1

)
(z →∞) . If on Γ w+ = γ, then u is a continuous

generalized Q-holomorphic function in C. For u, we have

s∑

l=1

(
∂u1l
∂z

− λ
∂u1l
∂z

)
e1l +

m∑

i=2

s∑

l=1

(
∂uil
∂z

−

i∑

j=1

qij
∂ujl
∂z

)
eil

+
m∑

i=1

s∑

l=1

i∑

j=1

(aijujl + bijujl) e
il = 0 ,

(18)

where
(
eil
)
denotes the m× s matrix in which the entry at the ith row and jth

column is 1 and the other terms are 0. For i = 1, we obtain

∂u1l
∂z

− λ
∂u1l
∂z

+ a0u1l + b0u1l = 0.

Since u1l is bounded and vanishes at infinity, it is equal to zero by the similarity
principle [15]. Similarly we continue successively taking i = 2, . . . ,m in (18),
we obtain u ≡ 0.

Theorem 3.4. The condition (16) is sufficient for γ to be the boundary value
of a generalized Q-holomorphic function in G+.

Proof. The function u1 given in (17) is a generalized Q−holomorphic function in
G+ and G− and (u1)+−(u1)− = γ on Γ. Since (16) holds, u1 vanishes identically
in G− so that (u1)− ≡ 0 on Γ.

4. The Hilbert boundary value problem

We consider the problem

Dw + Aw +Bw = 0, w (∞) = 0

w+ −Hw− = h on Γ ,
(19)

where Q is commuting with Q, A, B and H are commuting with Q and h
is an m × s complex matrix. We assume that A and B vanish outside of
some bounded domain G∗ and A,B ∈ Lp(G∗) for some p > 2. The boundary
matrix H is assumed to be Hölder continuous on Γ and detH 6= 0.

If f is commuting with Q, then f can be written as f = f0I + Nf , where
Nf is nilpotent (see [13, p. 438]). From this fact we may define, for a complex
matrix which is commuting with Q as in hyperanalytic case,

exp f = ef0

(
m−1∑

k=0

1

k!
(Nf )

k

)

log f = log f0 +
m−1∑

k=0

(−1)k−1

k

(
Nf

f0

)k

, f0 6= 0 . (20)
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The functions exp f and log f are also commuting with Q.

Theorem 4.1. Let f and g be complex matrices commuting with Q. Then

1. ef+g = efeg;

2. log ef = elog f = f, f0 6= 0.

Proof. The assertions 1. and 2. can be obtained by collecting powers of nilpo-
tent parts.

All other elementary properties of exponents and logorithms can be derived
from 1. and 2.

Definition 4.2. The index of problem (19) is

κ :=
1

2π
∆Γ argH0 =

1

2πi

∫

Γ

d logH0 =
r∑

k=0

λk,

whereλk =
1
2π
∆Γk argH0, k = 0, . . . , r, and Γk is traversed positively.

As in the analytic case (see [6, p. 95]) we seek a canonical factorization of
the matrix H = H0I +NH commuting with Q, where NH is the nilpotent part
of H.

Let us start by seeking a Q-holomorphic function commuting with Q and
satisfying the jump condition

χ+ (τ)−H (τ)χ− (τ) = 0, τ ∈ Γ.

For a matrix commuting with Q, it is clear that detH 6= 0 is equivalent to
H0 (τ) 6= 0. Taking logarithms, we obtain

logχ+ (τ)− logχ− (τ) = logH (τ) . (21)

Observe from (20) that all considerations concerning single valuedness reduce
to those of logH0. Thus logH is single valued if the change in the argument of
H0 is zero after traversing any of the bounding curves Γk.

Let zk be a fixed point in the interior of Γk, k = 1, . . . , r. Also let

P (z) =
r∏

k=1

[φ (z)− φ (zk)]
λk .

The main diagonal term of φ (z)−κ P (z)H (z) is

φ0 (z)
−κ

r∏

k=1

[φ0 (z)− φ0 (zk)]
λk H0 (z) ,
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and

∆Γk arg φ0 (z)
−κ

r∏

l=1

[φ0 (z)− φ0 (zl)]
λl H0 (z) = 0, k = 0, . . . , r.

Thus if Ĥ = log
[
φ (z)−κ P (z)H (z)

]
, then Ĥ is single valued and Hölder con-

tinuous on Γ. Instead of (21) we write

log [P (τ)χ+ (τ)]− log [φ (τ)κ χ− (τ)] = Ĥ,

and we have as a consequence of the Plemelj formulas

χ (z) =

{
P−1 (z) expP−1

∫
Γ
dφ (ζ) [φ (ζ)− φ (z)]−1 Ĥ, z ∈ G+

φ (z)−κ expP−1
∫
Γ
dφ (ζ) [φ (ζ)− φ (z)]−1 Ĥ, z ∈ G−.

Thus H (τ) = χ+ (τ) (χ0)− (τ)φ (τ)κ for τ ∈ Γ, where

[χ0 (z)]
−1 = expP−1

∫

Γ

dφ (ζ) [φ (ζ)− φ (z)]−1 Ĥ, z ∈ G−

and since φ, Ĥ are commuting with Q, χ0 is also commuting with Q (see [13,
p. 438]).

Definition 4.3. H (τ) = χ+ (τ) (χ0)− (τ)φ (τ)κ, τ ∈ Γ, is a canonical factor-
ization of H if

1. χ (z) is aQ-holomorphic function, invertible and commuting withQ in G+;

2. χ0 (z) is a Q-holomorphic function in G−, invertible in G− ∪ {∞} and
commuting with Q;

3. κ is an integer.

Let us return to the Hilbert problem for solutions to Dw + Aw + Bw = 0.
Define for a given function w

w̃ =

{
χ−1 (z)w (z) , z ∈ G+

χ0 (z)w (z) , z ∈ G−.

The problem (19) is clearly equivalent to

Dw̃ + Aw̃ + B̃w̃ = 0, w̃ (∞) = 0

w̃+ (τ)− φ (τ)κ w̃− (τ) = h̃ on Γ ,
(22)

where h̃ = χ−1h and

B̃ =

{
χ−1Bχ, z ∈ G+

χ0Bχ
−1
0 , z ∈ G−.
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Case 1: κ = 0. If Ω̃1 and Ω̃2 are fundamental kernels for A and B̃, then

w̃ = P−1

∫

Γ

[
dφ (ζ) Ω̃1 (z, ζ) h̃ (ζ)− dφ (ζ)Ω̃2 (z, ζ) h̃ (ζ)

]
(23)

is the unique solution of (22). Thereby the following theorem is proved.

Theorem 4.4. In case κ = 0, the general solution of (22) is given by (23).

Case 2: κ > 0. We seek first a special solution having the property that
limz→∞ φ (z)κ w̃ (z) = 0. For such a solution w̃, let

w̃1 :=

{
w̃ (z) , z ∈ G+

φ (z)κ w̃ (z) , z ∈ G−.

Then w̃1 is a solution to the Hilbert problem

Dw̃1 + Aw̃1 + B̃1w̃1 = 0, w̃1 (∞) = 0

(̃w1)+ (τ)− (̃w1)− (τ) = h̃ on Γ,

where

B̃1 =

{
B̃ (z) , z ∈ G+

φ (z)κ φ (z)
−κ
B̃, z ∈ G−

}
∈ Lp,2 (C) .

The solution of this problem is uniquely defined by

w̃1 = P−1

∫

Γ

{
dφ (ζ) Ω̃

(1)
1 (z, ζ) h̃ (ζ)− dφ (ζ)Ω̃

(1)
2 (z, ζ) h̃ (ζ)

}
, (24)

where Ω̃
(1)
k (k = 1, 2) are fundamental kernels belonging to A, B̃1. With this

solution we find a special solution to problem (22) which is

w̃ (z) =

{
w̃1 (z) , z ∈ G+

φ (z)−κ w̃1 (z) , z ∈ G−.

To complete the solution to the problem we must characterize all solutions to
the homogeneous problem (h̃ = 0). Let (F̂k, Ĝk) be a generating pair associated

with A and B̃1φ
k
φ−k, k = 0, . . . , κ−1, then (see [14, p. 944]) F̂k, Ĝk are bounded

and continuous solutions of Dw+Aw+ B̃1φ
k
φ−kw = 0 in the entire plane such

that F̂k (∞) = I, Ĝk (∞) = iI. Then for k = 0, . . . , κ− 1, the functions

F̃k :=

{
φ (z)k F̂k (z) , z ∈ G+

φ (z)k−κ F̂k (z) z ∈ G−

G̃k :=

{
φ (z)k Ĝk (z) , z ∈ G+

φ (z)k−κ Ĝk (z) z ∈ G−

(25)
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form a set of solutions for problem (22) with h̃ = 0 such that F̃k and G̃k have
poles of order k − κ at infinity.

Let
∑κ−1

k=0

(
F̃kλk + G̃kµk

)
= 0, where λk and µk are m × s real matrices,

then from
κ−1∑

k=0

(
φk−κ+1F̂kλk + φk−κ+1Ĝkµk

)
= 0

it follows by letting z tend to infinity that λκ−1 ≡ 0, µκ−1 ≡ 0 (see [14, p. 945]).
Proceding term by term one obtains λk ≡ 0, µk ≡ 0 (0 ≤ k ≤ κ − 1). On the

other hand
∑κ−1

k=0

(
F̃kλk + G̃kµk

)
is a solution of (22) for h̃ = 0.

Theorem 4.5. Every solution of the homogeneous problem (22) has the form

κ−1∑

k=0

(
F̃kλk + G̃kµk

)
,

where F̃k, G̃k, (k = 0, . . . , κ− 1) are defined by (25) and λk and µk are real
m× s matrices.

Proof. Let w̃ be arbitary solution of homogeneous problem (22) . As A and

B̃ vanish near infinity, w̃ is Q−holomorphic there and satisfies the asymptotic
condition w̃ (z) = O

(
|z|l−κ

)
for some 0 ≤ l ≤ κ− 1. Let

w0 := w̃ −
l∑

k=0

(
F̃kλk + G̃kµk

)
,

where λk and µk real matrices are to be determined. If we choose λl + iµl =
limz→∞ φ (z)κ−l w̃ (z), then w0 must be O

(
|z|l−κ−1

)
at infinity. Proceeding in

this manner, we conclude that with the choices

λν + iµν = lim
z→∞

φ (z)κ−ν
{
w̃ −

l∑

k=ν+1

(
F̃kλk + G̃kµk

)}

for ν = l, l − 1, . . . , 0, the function w0 is O
(
|z|−κ−1

)
. Consequently,

w̃0 :=

{
w0, z ∈ G+

φκw0, z ∈ G−

defines a function in C and vanishes at infinity, and consequently w̃0 = 0.
Therefore w̃ =

∑l

k=0

(
F̃kλk + G̃kµk

)
.

This proves the following theorem.



552 S. Hızlıyel

Theorem 4.6. The general solution of (22) with nonnegative index has the
form

w̃ (z) =
κ−1∑

k=0

(
F̃kλk + G̃kµk

)
+

{
w̃1 (z) , z ∈ G+

φ (z)−κ w̃1 (z) , z ∈ G− ,

where λk, µk (0 ≤ k ≤ κ− 1) are arbitary realm×s matrices. Here w̃1 is defined

by (24), and F̃k and G̃k are special solutions of the homogeneous problem (22)
given by the formula (25)

Case 3: κ < 0. In the problem (22) again we let

w̃1 :=

{
w̃ (z) , z ∈ G+

φ (z)κ w̃ (z) , z ∈ G− ,

then w̃1 is a solution to

Dw̃1 + Aw̃1 + B̃1w̃1 = 0, w̃1 (∞) = O
(
|z|κ−1

)

(w̃1)+ − (w̃1)− = h̃ on Γ,

where

B̃1 (z) :=

{
B̃ (z) , z ∈ G+

φ (z)κ φ (z)
−κ
B̃ (z) , z ∈ G−.

The solution, if any, is given by

w̃1 = P−1

∫

Γ

{
dφ (ζ) Ω̃

(1)
1 (z, ζ) h̃ (ζ)− dφ (ζ)Ω̃

(1)
2 (z, ζ) h̃ (ζ)

}
. (26)

Since w = χw̃1 and χ has a pole of order −κ at infinity w̃1 vanishes at infinity
and, moreover, has a zero of order greater than or equal to one. So w has a pole
of order not exceeding −κ−1. In view of the assumption that A and B̃1 vanish
in a neigborhood of infinity, w̃1 is Q-holomorphic at infinity and therefore it
is expanded in a series of negative powers of φ, i.e., w̃1 =

∑∞
k=1 φ

−kck for |z|
big enough (see [12, p. 116]). Hence the first κ coefficients have to vanish,
namely ck = 0 (0 ≤ k ≤ −κ− 1) in order that w be regular at infinity. As the

coefficients A and B̃1 vanish in a neigborhood of infinity, we have

Ω
(1)
1 (z, ζ) = [φ (ζ)− φ (z)]−1

Ω
(1)
2 (z, ζ) = 0
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so that

w̃1(z) = P−1

∫

Γ

dφ (ζ) [φ (ζ)− φ (z)]−1 h̃ (ζ)
(
z ∈ G−

)
.

By this, the coefficients ck have the form

ck = P−1

∫

Γ

dφ (ζ)φk−1 (ζ) h̃(ζ) (k ∈ N)

and the additional conditions on h̃ are seen to be
∫

Γ

dφ (ζ)φk−1 (ζ) h̃(ζ) = 0 (1 ≤ k ≤ −κ− 1) . (27)

Theorem 4.7. In the case of negative index, the nonhomegenous problem (22)
is in general unsolvable. In order that it be solvable it is necassary and sufficient
that h̃ satisfies −κ− 1 condition (27). In this case the unique solution (as well
as in the case κ = −1) is given by

w̃ =

{
w̃1, z ∈ G+

φ−κw̃1, z ∈ G− ,

where w̃1 is defined by (26).
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