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ÖZET 

 

Doktora Tezi 

 

KİNAZOLİN-3-OKSİTLERİN SENTEZLERİ, KARAKTERİZASYONLARI VE 

TÜREVLENDİRİLMELERİ 

 

Rashinikumar  SINGH SAMANDRAM 

 

Bursa Uludağ Üniversitesi 

Fen Bilimleri Enstitüsü 

Kimya Anabilim Dalı 

 

Danışman: Prof. Dr. Necdet COŞKUN 
 

2-Aminobenzaldehit, 1-(2-aminofenil)etanon ve 2-aminofenil fenil metanon oksimler 1, 

karşılık gelen 1,2-dihidrokinazolin-3-oksitleri vermek üzere aromatik aldehitlerle 

reaksiyona sokuldu. Oda sıcaklığında çevreye zarar vermeyen H2O2-tungstat oksidan 

sistemi kullanılarak yüksek verimlerle bir dizi kinazolin-3-oksit 3’e  dönüştürüldü. 

Bileşik 3'ün sentezi için yüksek verimli tek kap prosedürü de geliştirilmiştir. 2-Aril-

kinazolin 3-oksitlerin arilboronik asitlerle C-4 arilasyonlarında oksidan bileşen olarak 

manganez triasetatın kullanımı rapor edilmiştir. Yeni yöntem, iyi ila yüksek verimlerde 

yeni 2,4-diarillenmiş kinazolin 3-oksitler hazırlamak için uygulanmıştır. Yöntemin, her 

iki aromatik halka üzerinde çeşitli sübstitüentleri tolere ettiği, oksijensizleşme ve 

kinazolin-4(3H)-one'ye yeniden düzenleme gibi dezavantajları olmadığı gösterilmiştir. 

Kinazolin-3-oksitler 3'ün, karşılık gelen N-(2-(((hidroksiimino)metil)fenil)-benzamidler 

9'u vermek üzere ZrOCl2 varlığında hidrolitik halka açılmasına maruz kaldıkları 

gösterilmiştir. 9 bileşikleri, katalitik miktarlarda bir asit beraberinde DMSO içinde tekrar 

halkalaştırılmıştır.  

 
 

Anahtar Kelimeler: 1,2-dihidrokinazolin-3-oksit, H2O2 oksidasyonu, N-oksitler, 

Kinazolin, Kinazolin-3-oksit, Kinazolin-4(3H)-on, C-H aktivasyonu, Mn(OAc)3 
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ABSTRACT 

 

PhD Thesis 

 

 

SYNTHESIS, CHARACTERIZATION AND DERIVATIZATIONS OF 

QUINAZOLIN-3-OXIDES 

 

Rashinikumar  SINGH SAMANDRAM 

 

 Bursa Uludağ University  

Graduate School of Natural and Applied Sciences 

Department of Chemistry 

 

Supervisor: Prof. Dr. Necdet COŞKUN 

 

2-Aminobenzaldehyde, 1-(2-aminophenyl)ethanone and 2-aminophenyl phenyl 

methanone oximes 1 were reacted with aromatic aldehydes to give the corresponding 1,2-

dihydroquinazoline-3-oxides 2. The latter were converted in high yields to a series of 

quinazoline-3-oxides 3 using environmentally benign H2O2-tungstate oxidant system at 

room temperature.  High yielding one-pot procedure was also developed for the synthesis 

of compounds 3. The use of manganese triacetate as an oxidant component in the C-4 

arylations of 2-aryl-quinazoline 3-oxides with arylboronic acids is reported. The new 

protocol was applied to prepare new 2,4-diarylated quinazoline 3-oxides in good to high 

yields. The method was shown to tolerate variety of substituents on both aromatic rings 

and no complications as deoxygenation and rearrangement to quinazolin-4(3H)-one were 

observed. Quinazoline-3-oxides 3 were shown to undergo hydrolytic ring opening in the 

presence of ZrOCl2 to give the corresponding N-(2-((hydroxyimino)methyl)phenyl)-

benzamides 9. The latter can be recyclized in DMSO using catalytic amounts of an acid.  

 
 

Key words: 1,2-dihydroquinazoline-3-oxide, H2O2 oxidation; N-oxides, Quinazoline, 

Quinazoline-3-oxide, Quinazolin-4(3H)-one, C-H activation, Mn(OAc)3  
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1. INTRODUCTION 

 

The quinazoline skeleton can be found in both natural and synthetic organic compounds. 

Quinazoline alkaloids and their analogues have piqued researchers interest worldwide 

since the 19th century, showing their numerous bioactivities (Shang et al. 2018).  Anti-

cancer, anti-microbial, anti-convulsant, and anti-hyperlipidemic properties of 

quinazoline-based scaffolds have been discovered (Auti et al. 2020, Hameed et al. 2018, 

Bhatia et al. 2020, Shagufta and Ahmad 2017). To produce synthetic medications and to 

make more effective medicines, a large variety of quinazoline derivatives have been 

manufactured (gefitinib, erlotinib, raltitrexed, prazosin, doxazosin etc.) Recent advances 

in eco-friendly, green, and efficient (in most cases) synthesis methods for obtaining 

quinazoline and quinazolinone derivatives from inexpensive and widely available 

commercial feedstocks are discussed (Khan et al. 2015).  

C-H activation has become a useful technique in molecular sciences, material sciences, 

crop protection, drug discovery, and the pharmaceutical industries are just a few of the 

areas where it can be used. The discovery of less toxic, low-cost 3d metal catalysts for C-

H activation has gotten a lot of attention (Gandeepan et al. 2019, Ackermann 2020, Zhao 

et al. 2020,  Chen et al. 2015, Asensio et al. 2020, Ackermann et al. 2016). Approaches to 

functionalize N-heterocyclic N-oxides using C-H activation (e.g. pyridine and quinoline 

N-oxides) have been reported in the literature (Shen et al. 2014, Yuan and Qu 2017, 

Bering and Antonchick 2015, Mai et al. 2012). The oxidative coupling of quinazoline 3-

oxides and unactivated aldehydes was reported using a copper catalyst (Scheme. 1.2; (1)), 

(Fan et al. 2016). In the presence of TBHP, the C-4 position of quinazoline 3-oxides was 

alkylated with ethers. The reaction is carried out in a metal-free environment and gives 

moderate to good yield. (Scheme. 1.2; (2)) (Yang et al. 2018). Highly effective copper-

catalyzed oxidative functionalization of benzylic C(sp3)–H bonds using quinazoline 3-

oxides was also described (Scheme. 1.2; (3)) (Fan et al. 2018). This method provides a 

wide range of quinazolin-4(3H)-one derivative in good to excellent yields. It has also 

been reported that 4-(indole-3-yl)quinazolines can be synthesized via cross-

dehydrogenative coupling of quinazoline 3-oxides and indoles in an air atmosphere 

(Scheme. 1.2; (4)) (Yang et al. 2019). A number of biheteroaryl compounds were 

produced in good yields. Manganese is an excellent contender for long-term C-H 
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activation catalysis. Manganese catalysis is particularly cost-effective because it is the 

twelfth most prevalent element in the earth crust and the third most abundant transition 

metal after iron and titanium (Gandeepan et al. 2019). A review of the literature found 

that Mn(III) acetate is only occasionally used in C-H activation methods. Through an 

oxidative cross-coupling of arylboronic acids with quinoxalin-2-ones, it gives 3-aryl 

quinoxalin-2-one derivatives (Ramesh et al. 2018). A reaction of arylboronic acids and 

arylpropiolic acids by using Mn(III) acetate give diaryl 1,2-diketones via radical pathway 

in moderate to good yields (Lv et al. 2015).  

In a previous investigation, the product of quinazoline-1-ols and their ring expansion 

upon carbamoylation with aryl isocyanates have been described (Coşkun and  

Çetin 2004). Then, the H2O2-tungstate system was used to oxidize 2-substituted-1,2,3,4-

tetrahydroquinazolines. It gives regioselectively the appropriate quinazoline-1-oxides  

(Coşkun  and Çetin 2007). In the same report, photochemical and thermal properties were 

thoroughly examined. In this work, the synthesis of 1,2-dihydroquinazoline-3-oxides and 

their eco-friendly transformation into quinazoline-3-oxides using H2O2-tungstate oxidant 

system is reported (Scheme 1.1).   

 

 

Scheme 1.1. The synthesis of 1,2-dihydroquinazoline- and quinazoline-3-oxides. 
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Scheme 1.2. C–H bond activation reaction of quinazoline 3-oxides. 

 

Then under mild reaction conditions, we describe high yielding wide substrate scope C-

4 arylations of 2-arylquinazoline 3-oxides with arylboronic acids in the presence of 

Mn(III) acetate dihydrate (Scheme 1.3).     
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Scheme 1.3. C–H bond activation reaction of quinazoline 3-oxides. 

 

Further we report on the hydrolytic ring-opening of quinazoline-3-oxides 3 in the 

presence of ZrOCl2 to give the corresponding N-(2-((hydroxyimino)methyl)phenyl)-

benzamides 9. The latter can be recyclized in DMSO using catalytic amounts of an acid 

(Scheme 1.4). 

 

 

 

Scheme 1.4. Hydrolysis of compound 3 and recyclization of compound 9. 
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2. LITERATURE REVIEW 

 

2.1. Biologically active natural and synthetic quinazoline derivatives  

 

The major biological activity of quinazoline and quinazolinone skeletons in diverse 

disciplines is dependent mainly on the substituents of quinazoline compounds, as 

previously stated. Different substituted quinazoline compounds have been shown to have 

antihypertensive, antineoplastic, depressive, and antipsychotic properties, while others 

have analgesic, antipsychotic, antiarrhythmic, and cancer-fighting properties (Heba 2020, 

Pati and Banerjee 2013, Rajput and Mishra 2012, Vijayakumar et al. 2013, Auti et al. 

2020). 

 

2.1.1. Anticancer activity of quinazoline derivatives.  

 

Gawad et al. (2010) reported that (1) 2-,((2-(4-chlorophenyl),-2-oxoethyl)thio)-3-(4-

methoxyphenyl)quinazolin-4(3H)-one and (2) 3-(4-chlorophenyl)-2-((2-(4-

methoxyphenyl)-2-oxoethyl)thio)quinazolin-4(3H)-one have been shown to have 

extensive anticancer activity against many cell types. And antitumor activity has been 

shown in many quinazoline derivatives containing the thiosemicarbazide moiety (He et 

al. 2012). Compounds are (3) 4-fluoro-N-(2-(quinazolin-4-yl)hydrazine-1-

carbonothioyl)benzamide, (4) N-(2-(quinazolin-4-yl)hydrazine-1-

carbonothioyl)benzamide and (5) 4-chloro-N-(2-(quinazolin-4-yl)hydrazine-1-

carbonothioyl).  
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Figure 2.1. Structure of quinazoline (3,4,5) and quinazolinone (1,2) derivatives showing 

anticancer activity. 

 

2.1.2. Antibacterial activity of quinazoline derivatives. 

 

Alafeefy et al. (2011) reported that (6) 2-iodo-6-(thiophen-2-yl),benzo[4,5],imidazo[1,2-

c]quinazoline, (7) 4-(6-methyl-2-(piperidin-1-yl)quinazolin-4-yl)benzoic acid, (8) 4-(4-

phenylquinazolin-2-yl)morpholine and (9) N,N-dimethyl-4-(6-methyl-2-

morpholinoquinazolin-4-yl)aniline possess remarkable activity toward Gram-negative 

bacteria E. Coli.  
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Figure 2.2. Structure of quinazolines (6 to 9) having antibacterial activity. 

 

2.1.3. Antiviral activity of quinazoline derivatives. 

 

Kumar et al. (2010) reported that a collection of Schiff bases of various 2-phenyl, 

quinazoline-4(3)H-one derivatives posses antiviral activity.  

 

 

Figure 2.3. Structure of quinazolines (10 to 12) having antiviral activity. 
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2.1.4. Antimutagenic activity of quinazoline derivatives. 

 

Sharma and Singh (2009) reported that (13) (S)-1-(4-aminoquinazolin-2-yl)ethan-1-ol 

possess great antimutagenic activity when tested by using E. coli and Salmonella 

typhimurium and WP2uvrA teste strains. 

 

 

Figure 2.4. Structure of quinazolines (13) having antimutagenic activity.  

 

2.1.5. Antioxidant activity of quinazoline derivatives. 

 

Selvam et al. (2010) reported the DPPH test, hydrogen peroxide scavenging activity and 

nitric oxide scavenging activity were used to investigate the antioxidant activity of 

various new thiazoloquinazoline derivatives, and they were found to exhibit high potent 

antioxidant activity. 

 

 

Figure 2.5. Structure of quinazolines (14,15) having antioxidant activity.  
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2.1.6. Industrial uses of quinazoline derivatives. 

 

Armarego (1963) review reported that quinazolines in drug manufacture, certain 

quinazoline derivatives condensed with aminoanthraquinones could be used as a dye-

stuff. Nitrosubstituted 4-hydroxyquinazolines suppress colour stains or use as a coating 

in photography. 

 

2.2. Synthesis of Quinazolines. 

 

2.2.1. Methods based on o-aminoarylketone as starting material 

 

Zhang et al. (2010) reported a reaction between 2-aminobenzophenones 10 and benzylic 

amines 11 following sp3 C-H functionalization was used to establish a simple and new 

approach to the synthesis of 2-phenylquinazolines 12.  

 

 

Scheme 2.1. Synthesis of quinazolines from 2-aminobenzophenone  with benzylic amine  

as starting material 

 

Karnakar et al. (2011) described a method based on the reaction between 2-

aminobenzophenones 13 and benzylamines 14 using a catalytic amount of ceric 

ammonium nitrate (CAN)–TBHP in acetonitrile to give 2-phenylquinazolines 15 in good 

yields.  

 

 

Scheme 2.2. Synthesis of quinazolines  from 2-aminobenzophenone with benzylamine  

as starting material 
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Anand et al. (2012) reported the synthesis of 2-phenylquinazolines 18 from 2-

aminoarylketones 16 and benzyl amines 17 in the presence of (MRIONC) catalyst with 

TBHP. It was discovered that MRIONC is a new and highly efficient green catalyst.  

 

Scheme 2.3. Synthesis of quinazolines  from 2-aminoarylketone  with benzylamine  as 

starting material 

 

Yan et al. (2015) described a method based on a reaction between o-aminoarylketone 19 

or 23 and tertiary amines 20 performed under an oxygen atmosphere in the presence of 

iodine-catalyst to develop quinazolines 21 and quinazolinones 24 in excellent yields. This 

method is metal-free, peroxide-free and simple to apply with various substrates and 

represents a new avenue for multiple C-N bond formations. 

 
 

Scheme 2.4. Synthesis of quinazoline  and quinazolinones  from o-aminoarylketone  as 

starting material 

 

 Yan et al. (2016) reported a method based on the reaction of arylacetic acids with 2-

aminoarylketones 25 and ammonium acetate 26 in the presence of an effective copper-

catalyst under an oxygen atmosphere. This reaction opens up a new way to developed 2-

arylquinazolines 27 with good yields by forming numerous C–N bonds. This technique 
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uses a low-cost copper catalyst, molecular oxygen as an oxidant, H2O and CO2 as wastes, 

and a wide range of substrates. 

 

 

Figure 2.5. Synthesis of quinazolines  from 2-aminoarylketones  with arylacetic acids  

starting material 

 

Deshmukh and Bhanage (2018) reported the cost-effective and eco-friendly synthesis of 

quinazolines 31 from 2-aminobenzaldehydes 28 and 2-aminobenzophenones 29 with 

benzylamines 30 in the presence of molecular iodine catalyst under oxygen atmosphere.  

 

 

Scheme 2.6. Synthesis of quinazolines  from 2-aminobenzophenone  and 2-

aminobenzylalcohol  as starting material 

 

Kirinde and Yi (2019) reported the dehydrogenative coupling of 2-aminophenyl ketones 

35 and 2-aminophenylamides 33 with amines 34 to give quinazoline 36 and 

quinazolinone 32 products in the presence of ruthenium ([Ru]/L) catalyst. Without using 

reactive reagents or the formation of any toxic byproducts, quinazoline and quinazolinone 

derivatives can be synthesized. 



   

 

12 

 

 

Scheme 2.7. Synthesis of quinazoline  and quinazolinones  from 2-aminophenylketones  

and 2-aminophenylamides  as starting materials 

 

 

Chan et al. (2020) reported the formation of substituted quinazolines 39 from 

functionalized 2-aminobenzophenones 37 with different benzaldehydes 38 in the 

presence of TMSOTf catalyst and hexamethyldisilazane (HMDS) under neat, metal-free, 

and microwave irradiation conditions gives gaseous ammonia.  

 

 

Scheme 2.8. Synthesis of quinazolines  from 2-aminobenzophenone  with benzaldehyde  

as starting material 

 

2.2.2. Methods based on o-aminobenzylalcohol and o-aminobenzylamine as starting 

material 

 

Han et al. (2012) reported a method based on the reaction of aldehydes with 2-

aminobenzylamines in the presence of  CuCl/DABCO/4-HO-TEMPO catalysts under O2 

atm. to develop 2-substituted quinazolines. 
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Scheme 2.9. Synthesis of quinazolines  from 2-aminobenzylalcohol  with aldehydes  as 

starting material 

 

 Chen et al. (2013) reported the reaction of 2-aminobenzylalcohol 43 with aldehydes 44 

using cerium nitrate hexahydrate and ammonia 45 in the presence of copper-catalyst.  

 

Scheme 2.10. Synthesis of quinazolines  from 2-aminobenzylalcohol, aldehydes  and 

ammonia  as starting material 

 

 

Gopalaiah et al. (2017) reported a method based on the reaction of 2-aminobenzyl 

alcohols 47 with benzylamines 48 in the presence of iron catalyst to give  2-

aryl/heteroaryl quinazolines 49.  

 

 

Scheme 2.11. Synthesis of quinazolines  from 2-aminobenzylalcohol  with benzylamine  

as starting material 

 

Parua et al. (2018) described eco-friendly ways for the synthesis of quinazolines 54 by 

dehydrogenative coupling of 2-aminobenzylamine 51 with benzyl alcohol 53 (Path A) 

and 2-aminobenzylalcohol 53 with benzonitrile 52 (Path B), both catalyzed by Ni catalyst. 

Tetraaza macrocyclic ligands are used to make nickel catalysts. Ligands like 6,15-

dimethyl-8,17-diphenyltetraaza[14]annulene (MeTAA) or 

tetramethyltetraaza[14]annulene (MeTAA) (MePhTAA)) have been used to make the 

corresponding  Ni catalyst.  
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Scheme 2.12. Synthesis of quinazolines  from 2-aminobenzylalcohol  and 2-

aminobenzylamine as starting material 

 

Chakraborty et al. (2019) described the synthesis of quinolines 57, 2-aminoquinolines 61 

and quinazolines 59  by coupling reaction of 2-aminobenzylalcohol 55 with acetophenone 

56 (Path A) and 2-aminobenzylalcohol 55 with benzonitrile 58 (Path B) & (Path C), in 

the presence of   Ni(II) catalyst.  
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Scheme 2.13. Synthesis of quinoline, 2-aminoquinoline  and quinazolines  from 2-

aminobenzylalcohol as starting material and Ni as catalyst. 

 

2.2.3. Methods based on 2-aminoarylalkanone, O-phenyl oximes as starting material 

 

Cubillo et al. (2009) described the preparation of quinazolines 65 by a reaction of 2-

aminoarylalkanone O-phenyl oximes 62 and aldehydes 63 in the presence of ZnCl2 

catalyst under microwave irradiation, in the absence of ZnCl2 catalyst, it gives 

dihydroquinazolines 64. 
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Scheme 2.14. Synthesis of dihydroquinazoline  and quinazolines  from 2-

aminoarylalkanone O-phenyl oximes  as starting material 

 

2.2.4. Methods based on ortho-halogenated benzonitriles as starting material 

 

Yang et al. (2009) reported a method based on a reaction of substituted 2-

bromobenzonitriles 66 with amidines 67 or guanidine 68 in the presence of copper-

catalyst to give 4-aminoquinazoline 69 and 2,4-diaminoquinazolines 70 derivatives. 

 
 

Scheme 2.15. Synthesis of quinazolines from ortho-bromo benzonitriles  as starting 

material 
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Jia et al. (2015) reported the synthesis of 2-phenylquinazolin-4-amines 74 from 

commercially available ortho-halogenated benzonitriles 71, aldehydes 72, and sodium 

azide 73 in the presence of Fe/Cu based catalyst.  

 

Scheme 2.16. Synthesis of quinazolines from ortho-halogenated benzonitriles  as starting 

material 

 

2.2.5. Methods based on (2-bromophenyl)methylamine as starting material 

 

Liu et al. (2013) reported a method based on the reaction of (2-

bromophenyl)methylamines 75 and amidine hydrochlorides 76 in the presence of CuBr 

catalyst under air atm to give quinazoline 77 derivatives in excellent yield.  

 

 

Scheme 2.17. Synthesis of quinazolines from (2-bromophenyl)methylamine  as starting 

material 

 

2.2.6. Methods based on 2-iodo- or 2-bromobenzimidamides as starting material 

 

Yang et al. (2017) reported a method based on the reaction of 2-iodo- or 2-

bromobenzimidamides 78, aldehydes 79, and sodium azide 80 in the presence of copper-

catalyst to give 4-aminoquinazolines 81. It gives 50–90% yield. 

Scheme 2.18. Synthesis of quinazolines  from 2-iodo- or 2-bromobenzimidamides  as 

starting material 
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2.2.7. Methods based on 2-nitrobenzaldehyde as starting material 

 

Yin et al. (2012) reported a route to the synthesis of diaminoquinazolines 84 had been 

developed by condensation of cyanoimidate−amine reductive cyclization in the presence 

of the iron−HCl system. It shows a two-step synthesis of tricyclic quinazolines 85, which 

is affected by cyanoimidation and reductive cyclization from 2-nitrobenzaldehydes 82. It 

shows that the synthesis of tricyclic quinazolinones 86 in good yields relies on the 

selective hydrolysis of tricyclic quinazolines 85 in the base or acid system. 

 

Scheme 2.19. Synthesis of quinazolines based on 2-nitrobenzaldehyde  as starting 

material 

 

2.2.8. Methods based on quinazolin-4-ones as starting material 

 

Qiu et al. (2013) reported a method based on the reaction of quinazolin-4-ones 87 and 

arylboronic acid 88 in the presence of palladium catalyst and TsCl to give 4-

arylquinazolines 89 in high yield. 
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Scheme 2.20. Synthesis of quinazolines  based on arylation of quinazolin-4-ones as 

starting material 

 

Chen et al. (2015) reported a method based on synthesising 4-

(dimethylamino)quinazolines 91 via direct amination of quinazolin-4(3H)-ones 90. Using 

N, N-dimethylformamide as a nitrogen source, the C–OH bond is activated by 4-

toluenesulfonyl chloride at room temperature. 

 

Scheme 2.21. Synthesis of quinazolines based on amination of quinazolin-4-ones  as 

starting material 

 

2.2.9. Methods based on azirines with anthranils as starting material 

 

Sun et al. (2020) reported a reaction of 3-aryl-2H-azirines 92 with anthranils 93 in the 

presence of Cu/Ag-catalyst and AcOH under oxygen atm to give (quinazolin2-

yl)methanone 95 derivatives.  

 

 

 

Scheme 2.22. Synthesis of quinazolines  based on azirines  with anthranils  as starting 

material 
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2.2.10. Methods based on arylamidines as starting material 

 

Lin et al. (2014) reported a synthesis of quinazolines 96 and benzimidazoles 98 from 

amidines 97 via iodine(III) oxidative C−C and C−N bond formation in nonpolar and polar 

solvents, respectively. Further synthesis of quinazolines 96 in polar solvent was 

developed by TEMPO as catalyst, and K2S2O8 as an oxidant. 

 

 

Scheme 2.23. Synthesis of quinazolines  and benzimidazoles  based on arylamidines  as 

starting material 

 

2.2.11. Methods based on C-H functionalization 

 

Wang et al. (2011) reported a method based on the reaction of N-arylamidines 99 and 

isonitriles 100 in the presence of Pd catalyst with a base to give 4-amino-2-

aryl(alkyl)quinazolines 101. 

 

 

Scheme 2.24. Synthesis of quinazolines  based on N-arylamidines  with isonitriles  as 

starting material 

 

Wang and Jiao (2016) reported a method based on the reaction of imidate ester 102 with 

alkyl azides 103 in the presence of rhodium- and copper-co-catalyst under oxygen atm to 

give the multisubstituted quinazoline 104. 
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Scheme 2.25. Synthesis of quinazolines  based on C−H annulation with alkyl azides  as 

starting material 

 

Wang et al. (2016) reported a method based on the reaction of benzimidates 105 and 

dioxazolones 106 in the presence of [Cp*RhCl2]2/AgBF4 catalyst to give highly 

substituted quinazoline 107. 

 

 

Scheme 2.26. Synthesis of quinazolines based on N-arylamidines with dioxazolones as 

starting material 

 

Wang et al. (2016) reported the synthesis of quinazolines 109,111, in the presence of 

Co(III)-catalyst via activation of benzimidates 110 and N-sulfinylimines 108. Under 

Co(III) catalysis, dioxazolones 112 were used as a nitrile synthon, and subsequent 

coupling with arenes such as N-sulfinylimines 108 and benzimidates 110 bearing a 

functionalizable directing group provided easy access to two classes of quinazolines 109 

& 111. 
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Scheme 2.27. Synthesis of quinazolines based on N-sulfinylimines and benzimidates as 

starting material 

 

Nguyen et al. (2020)  reported the condensation of 2-nitrobenzyl alcohols 113 with 

arylacetic acids 114 for producing substituted quinazolines 116. Urea 115 is used as a 

nitrogen supply, elemental sulfur as a promoter, DABCO as a base, and DMSO as a 

solvent in this transformation. The reaction conditions were compatible with 

functionalities such as chloro, fluoro, trifluoromethyl, thienyl and indolyl groups.  

 

 

Scheme 2.28. Synthesis of quinazolines based on 2-nitrobenzylalcohol as starting 

material 
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2.2.12. Methods based on benzonitriles and 2-ethynylanilines as starting material 

 

Wang et al. (2018) reported the synthesis of substituted quinazolines 118,120, from 

benzonitriles 119 and 2-ethynylanilines 117 using molecular oxygen (O2) as the only 

oxidant in the presence of a copper-catalyst. In this method, the mild catalytic system 

enabled the effective cleavage of the C-C triple bond, as well as new C-N and C-C bonds 

is constructed.  

 

 

                                               

 

Scheme 2.29. Synthesis of quinazolines based on benzonitriles and 2-ethynylanilines as 

starting material 

 

2.2.13. Methods based on oxidative amination of N-H ketimines as starting material 

  

Chen et al. (2018) reported the reaction of commercially available 2-alkylamino 

benzonitriles 121 with various Grignard reagents led to 2-alkylamino N-H ketimine 122 

species. Following oxidation with tert-BuOOH in the presence of iron-catalyst allows the 

formation of quinazolines 123 in good yield. 

 

Scheme 2.30. Synthesis of quinazolines based on oxidative amination of N-H ketimines 

as starting material 
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2.2.14. Methods based on N,N'-disubstituted amidines as starting material  

 

Lv et al. (2016) reported an I2/KI oxidative bond formation reaction in DMSO to produce 

quinazolines 125 from N,N'-disubstituted amidines 124 in the presence of K2CO3.  

 

Scheme 2.31. Synthesis of quinazolines based on N,N'-disubstituted amidines as starting 

material 

 

Shen et al. (2016) reported the synthesis of disubstituted quinazolines 127 from 

commercially available amidines 126 in the presence of photoredox organocatalyst via 

visible light-mediated oxidative C-C bond formation. 

 

 

Scheme 2.32. Synthesis of quinazolines based on amidines as starting material 

 

2.2.15. Methods based on N-sulfonyl,-1,2,3,-triazoles as starting material 

 

Lei et al. (2016) reported a method based on the synthesis of quinazoline 132 derivatives 

by annulation of N-sulfonyl-1,2,3-triazoles 130 with 2,1-benzisoxazoles 131 in the 

presence of  Rh(II)-catalyst. N-sulfonyl-1,2,3-triazole 130 has been used as an aza-[2C]-

component in cycloadditions. In the meantime, a Rh(II)-catalyzed formal [3+2] 

cycloaddition of N-sulfonyl,-1,2,3-triazoles 130 with 2,1-benzisoxazoles 131 is described 

allowing the synthesis of functionalized imidazole 128 derivatives.  



   

 

25 

 

 

Scheme 2.33. Synthesis of quinazoline and imidazoles based on N-sulfonyl-1,2,3-

triazoles as starting material 

 

2.2.16. Methods based on o-aminobenzylamine as starting material 

 

Hati and Sen (2016) reported that o-iodoxybenzoic acid (IBX) mediated tandem reaction 

of commercially available o-aminobenzylamine 134 and aldehydes resulted in the simple 

synthesis of diversely substituted quinazolines 135 and 3,4-dihydroquinazolines 133. The 

reactions yielded between 50-96%.  

 

 

Scheme 2.34. Synthesis of quinazoline and 3,4-dihydroquinazolines based on o-

aminobenzylamine as starting material 

 

Ma et al. (2019) reported the synthesis of quinazoline 137, and quinazolinones 139 via 

oxidative coupling reaction of amines 136 and aldehydes in aqueous solution under mild 

conditions using H2O2 as the oxidant in the presence of Fe-Fe3C@NC-800 catalyst.  

 

Scheme 2.35. Synthesis of quinazoline and quinazolinones based on o-

aminobenzylamine as starting material 
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2.2.17. Methods based on anilides as starting material 

 

Ferrini et al. (2007) reported the synthesis of 2,4-dialkyl or aryl quinazolines 142 in three 

steps starting from commercially available anilides 140. Initially, a photochemically 

induced Fries rearrangement of the anilides resulted in numerous o-aminoacylbenzene 

141 derivatives. They are acylated to give  the corresponding acilamides which underwent 

fast reaction under MW activation in the presence of ammonium formate.  

 

 

Scheme 2.36. Synthesis of quinazolines based on anilides as starting material 

 

2.2.18. Methods based on 4-chloro-2,6-dimethoxypyrimidine as starting material 

 

Choy et al. (2000) described the synthesis of novel 10-membered pyrimidine enediynes 

145 (1 & 2) in seven to eight steps. The ability of these compounds to undergo Bergman 

cyclization both thermally and photochemically were studied. In i-PrOH, alcohol 1 

cyclized both thermally and photochemically, but ketone 2 exclusively cyclized 

thermally. Under the right conditions, both chemicals were also found to cleave dsDNA. 

  

 

Scheme 2.37. Synthesis of quinazolines based on 4-chloro-2,6-dimethoxypyrimidine as 

starting material 
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2.2.19. Methods based on (E)-2-nitrobenzaldehyde O-methyl oximes as starting 

material 

 

Wang et al. (2014) reported the synthesis of 2-arylquinazoline 148 via various (E)-2-

nitrobenzaldehyde O-methyl oximes 146 interacted readily with alcohols or benzyl 

amines 147 in the presence of Pd catalyst. Similarly, 1-(2-nitrophenyl)ethanone, urea, and 

benzyl alcohols could be used to make heterocyclic compounds.  

 

 

 

Scheme 2.38. Synthesis of quinazolines based on (E)-2-nitrobenzaldehyde O-methyl 

oximes as starting material 

 

2.2.20. Methods based on N-(2-cyanoaryl) benzamides as starting material 

 

Zhu et al. (2018)  reported the synthesis of 2,4-disubstituted quinazolines 151 from the 

reaction of arylboronic acids 150 with N-(2-cyanoaryl)benzamides 149 in the presence of 

Pd-L1 catalyst. Halogen and hydroxyl substituents, in particular, are well tolerated and 

are open to future synthetic elaborations. 

 

 

 

 

Scheme 2.39. Synthesis of quinazolines based on N-(2-cyanoaryl) benzamides as starting 

material. 
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2.3. Methods for the synthesis of quinazoline-3-oxide derivatives. 

 

2.3.1. Methods based on chloroacetyl chloride as starting material 

 

Jürgen (1994) reported a reaction of 1-(2-aminophenyl) ethanone oxime 152 with 

chloroacetyl chloride in glacial acetic acid, at 50°C. It gives quinazoline-3-oxide 153 

derivatives after 10 minutes of stirring. 

 

 

 

Scheme 2.40. Synthesis of quinazoline-3-oxide derivatives from 2-aminoaryl oxime 

derivatives. 

 

2.3.2. Methods based on 1,2-dihydro-4-(2-flourophenyl)quinazoline-3-oxide as 

starting material 

 

Walser and Flynn (1974) reported 2-fluorophenylquinazoline-3-oxide 156 derivatives are 

produced by oxidizing 1,2-dihydro-4-(2-fluorophenyl)quinazoline-3-oxide 154 with 

MnO2 in methylene chloride. 2-Fluorophenylquinazoline 155 is obtained by treating 

acetic anhydride with 1,2-dihydro-4-(2-fluorophenyl)quinazoline-3-oxide 154. 

. 

 

 

Scheme 2.41. Synthesis of 2-fluorophenylquinazoline-3-oxides and 2-

fluorophenylquinazolines from 1,2-dihydro-4-(2-fluorophenyl)quinazoline-3-oxides. 
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2.3.3. Methods based on 2-aminoaryl ketones as starting material 

 

Madabhushi et al. (2014) reported the reaction of a hydroxamic acid 158 with 2-aminoaryl 

ketones 157 in the presence of zinc(II) triflate catalyst under reflux. It gives disubstituted 

quinazoline 3-oxides 159 with 62-95% yield. 

 

Scheme 2.42. Synthesis of disubstituted quinazoline-3-oxides from 2-aminoaryl ketones. 

 

2.3.4 Methods based on ketoximes and 1,4,2-dioxazol-5-ones as starting material 

 

Wang et al. (2016) reported a method based on the reaction of ketoximes 160 and 1,4,2-

dioxazol-5-ones 161 in the presence of Rh(III) and Zn(II) as catalysts to give quinazoline 

N-oxides 162. 

 

 

Scheme 2.43. Synthesis of disubstituted quinazoline-3-oxides from ketoximes and 1,4,2-

dioxazol-5-ones as starting material. 

 

2.3.5. Methods based on 2-amino-5-chlorobenzophenone E-oxime and  2-(N-

methylideneamine)benzophenone oxime as starting material 

 

Olasik et al. (2004) reported 2-(N-methylideneamine)benzophenone oxime 164 is 

produced by combining 2-amino-5-benzophenone E-oxime 163 with suitable aldehydes 

or ketones. The 1,2-dihydroquinazoline-3-oxides 165 were generated by cyclo-

condensation of oxime in acetic acid. 
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Scheme 2.44. Synthesis of 1,2-dihydroquinazoline -3-oxides derivatives from oxime. 

 

2.3.6. Methods based on (E)-1-(2-aminophenyl)ethan-1-one oxime as starting 

material 

 

Chen and Yang (2013) reported the synthesis of 1,2-dihydroquinazoline-3-oxides 166 in 

the presence of a p-TsOH catalyst, from a condensation reaction of (E)-1-(2-

aminophenyl)ethan-1-one oxime 168 and aldehydes. Without using any external 

sensitizers, 1,2-dihydroquinazoline 3-oxides 166 were exposed to visible light in 

acetonitrile, a variety of quinazolines 167 with good to excellent yields were generated. 

Except for 2-(p-nitrophenyl) substituted substrate, 2-(p-nitrophenyl) substituted substrate 

is transformed into quinazoline 3-oxide 169 in the presence of ruthenium photoredox 

catalyst. 
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Scheme 2.45. Synthesis of 1,2-dihydroquinazoline-3-oxides, quinazoline-3-oxides and 

quinazolines based on (E)-1-(2-aminophenyl)ethan-1-one oxime as starting material. 

 

 

2.3.7. Methods based on 1-(2-(methylamino)phenyl)ethanone oxime as starting 

material 

 

Wu and Yang (2016) described a condensation reaction of arylaldehyde and 1-(2-

(methylamino)phenyl)ethanone oxime 170 in ethanol in the presence of p-TsOH. It gives 

1,4-dimethyl-2-phenyl-1,2-dihydroquinazoline 3-oxides or 1-methyl-2-phenyl-1,2-

dihydroquinazoline,3-oxides 171 as a product. In the absence of any photosensitizers 

from outside sources, 1-methyl-2-phenylquinazolin-4(1H)-ones 172 were produced in 

good yield by exposing 1,4-dimethyl-2-phenyl-1,2-dihydroquinazoline 3-oxides or 1-

methyl-2-phenyl-1,2-dihydroquinazoline, 3-oxides 171 to visible light in acetonitrile. 

 

 

 

Scheme 2.46. Synthesis of 1,2-dihydroquinazoline 3-oxides, and quinazolinones based 

on 1-(2-(methylamino)phenyl)ethanone oxime as starting material. 
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2.3.8. Methods based on amidoxime as starting material 

 

Heilig (1994) reported a reaction of amidoxime 173 and boron trifluoride etherate gives 

corresponding substituted quinazoline-3-oxides 174. 

 

 

 

Scheme 2.47. Synthesis of quinazoline-3-oxides based on amido oxime as starting 

material. 

 

2.3.9. Methods based on (E)-1-(2-aminophenyl)ethan-1-one oxime as starting 

material 

 

Ye et al. (2019) reported a condensation reaction of oxime 175 and aldehydes in the 

presence of p-TsOH catalyst to give 1,2-dihydroquinazoline-3-oxides 176. The 

corresponding 1,2-dihydroquinazoline-3-oxides 176 converted into quinazoline-3-oxides 

177 by using active MnO2.  

 

 

 

Scheme 2.48. Synthesis of 1,2-dihydroquinazoline-3-oxides and quinazoline-3-oxides 

starting from (E)-1-(2-aminophenyl)ethan-1-one oxime. 
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2.3.10. Methods based on o-amino-ketoximes as starting material 

 

Atmaram et al. (1982) reported dihydro-quinazoline N-oxides 180 from the condensation 

reaction of o-aminoketoximes 178 and arylaldehydes 179. Later, they were converted into 

quinazoline-3-oxide 181 in the presence of lead tetracetate as oxidant. 

 

 

 

Scheme 2.49. Synthesis of 1,2-dihydroquinazoline-3-oxides, quinazoline-3-oxides 

starting from o-amino-ketoximes. 

 

Lessel (1995) reported the cyclocondensation of o-aminophenyl-substituted keto-oximes 

182 and amidoximes (R1=NH2) with carbonyl compounds 183 to give 1,2-

dihydroquinazoline-3-oxides 184.  

 

 

 

Scheme 2.50. Synthesis of 1,2-dihydroquinazoline-3-oxides  based on o-amino keto-

oxime and amido-oximes as starting material.  

 

2.3.11. Methods based on 2-azidobenzaldehyde as starting material 

 

Pathare et al. (2019) reported the three-component reaction of 2-azidobenzaldehyde 185, 

isonitrile 186 and hydroxylamine hydrochloride 187 in the presence of  palladium catalyst 

to give quinazoline-3-oxides 188. 
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Scheme 2.51. Synthesis of quinazoline-3-oxides based on 2-azidobenzaldehyde as 

starting material 

 

 

2.3.12. Methods based on o-aminobenzamide oxime as starting material 

 

Korbonits and Kolonits (1986) reported a condensation reaction of  (Z)-2-amino-N'-

hydroxybenzimidamide 189 with aldehydes 190 gives (E)-2-alkyl-2,3-

dihydroquinazolin-4(1H)-one oxime 191. Contrary to previous statements, the reaction 

between aldehydes and o-aminobenzamide oxime gives 4-amino-1,2-dihydroquinazoline 

3-oxides.  

 

 

 

Scheme 2.52. Synthesis of (E)-2-alkyl-2,3-dihydroquinazolin-4(1H)-one oxime, 1,2-

dihydro quinazoline-3-oxide and quinazoline-3-oxides. 

 

2.4. C–H bond activation reaction of quinazoline 3-oxides. 

 

2.4.1. Coupling reaction of quinazoline-3-oxide with alkylidenecyclopropane. 

 

An et al. (2014) reported three-component reaction of quinazoline-3-oxide 194, 

alkylidenecyclopropanes 195 and water under mild conditions in the presence of copper 

catalyst. This reaction involved [3+2] cycloaddition and intramolecular rearrangement to 

N-(2-(5-oxa-6-azaspiro[2.4]hept-6-en-7-yl)phenyl)formamides 196. 
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Scheme 2.53. A reaction of quinazoline 3-oxides with alkylidene- cyclopropane. 

 

2.4.2. Coupling reaction of quinazoline-3-oxide with unactivated aldehydes. 

 

Fan et al. (2016) described the oxidative coupling reaction of quinazoline 3-oxides 197 

and unactivated aldehydes 198 in the presence of copper catalyst and TBHP as an oxidant. 

To give a mixture of quinazoline ketones 199 and quinazolinone esters 200. 

 

 

Scheme 2.54. A reaction of quinazoline-3-oxides with various aldehydes. 

 

2.4.3. Coupling reaction of quinazoline-3-oxide with benzylic C(sp3)–H bonds. 

 

Fan et al. (2018) reported functionalization of benzylic C–H bonds 202 with quinazoline 

3-oxides 201 in the presence of copper-catalyst. Using TBHP as an oxidant, this approach 

produces a broad range of quinazolin-4(3H)-one derivatives 203 with good yields. 

 

Scheme 2.55. A reaction of quinazoline 3-oxides with benzylic C–H bond. 
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A possible reaction mechanism was proposed for this reaction, as shown in (Fig.2.61) 

The Cu(II) catalyst reacts with TBHP to give the tert-butylperoxy radical and a Cu(I) 

species. Following that, when the tert-butylperoxy radical is added to quinazoline 3-oxide 

give O-centered radical A, which interacts with Cu(I) to give an organocopper(II) species 

B while simultaneously eliminating t-BuOH. TBHP, on the other hand, n-Bu4NI is 

oxidised by TBHP to provide the ammonium hypoiodite [Bu4N]+[IO]- or [Bu4N]+[IO2]-. 

The benzyl radical was then formed when the ammonium hypoiodite interacted with the 

benzyl C–H bond. Organocopper(II) species B captured the benzyl radical, resulting in 

Cu(III) species C. The reductive elimination produces a Cu(I) species by completing the 

C–O bond. The catalytic cycle was finished when Cu(I) was oxidized to generate the 

Cu(II) catalyst. 
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Scheme 2.56. A plausible reaction mechanism of benzylic C–H bonds with quinazoline 

3-oxides. 

 

2.4.4. Coupling reaction of quinazoline-3-oxide with ethers. 

 

Yang et al. (2018)  described cross-coupling reaction of quinazoline 3-oxide 204 with 

1,4-dioxane 205, in the presence of TBPB as an oxidant component. New quinazoline-

containing heterocyclic compounds 206 were prepared with good yields under metal-free 

conditions. 
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Scheme 2.57. A reaction of quinazoline 3-oxide with 1,4-dioxane. 

 

 

2.4.5. Coupling reaction of quinazoline-3-oxide with 1-methylindole. 

 

Yang et al. (2019) reported the cross-dehydrogenative coupling of quinazoline-3-oxides 

207 with indoles 208 in the presence of a Cu catalyst in an air atmosphere to produce 4-

(indole-3-yl)quinazolines 209. It gives moderate to good yields, and several biheteroaryl 

compounds were produced. 

 

 

Scheme 2.58. A reaction of quinazoline-3-oxides with 1-methylindole. 

 

2.4.6. Cycloaddition of quinazoline-3-oxide with acrylates. 

 

Yin et al. (2020) reported [3+2] cycloaddition of quinazoline-3-oxides 210 with acrylates 

211 to make a range of isoxazolo[2,3-c] quinazolines 212. In 1,4-dioxane, the 

corresponding isoxazolo[2,3-c] quinazolines 212 can be produced in good yields. 

 

Scheme 2.59. Cycloaddition of quinazoline-3-oxides with acrylates. 
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2.5. Synthetic methods for quinazoline-1-oxide derivatives. 

 

2.5.1. Methods based on quinazoline as a starting material. 

 

Hayashi and Higashino (1964)  reported the oxidation of quinazoline 213 with perphthalic 

acid and ether to give quinazolines-1-oxides 214,215. A little amount of the alkali soluble 

2-hydroxy compound was also produced after the oxidation with perphthalic acid. 

 

 

Scheme 2.60. Synthesis of quinazoline-1-oxides based on quinazoline as a starting 

material. 

 

2.5.2. Methods based on 2-aminobenzylamine as a starting material. 

 

Coşkun and Çetin (2007) reported quinazolin-1-oxides 218 were synthesis by the 

oxidation of tetrahydroquinazolines 217 with H2O2–tungstate, and their ambient light 

photochemistry were studied.  In this protocol, Substituent effects on their photochemical 

cyclization were also studied with its solvent effect. 

 

 

Scheme 2.61. Synthesis of quinazoline-1-oxide based on 2-aminobenzylamine as a 

starting material. 
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2.6. C-H functionalization of quinazoline-1-oxide. 

 

2.6.1. Methods based on Alkenylation of Quinazoline-1-oxides. 

 

Wu et al. (2009) reported a reaction of quinazoline-1-oxide 219 with ethylacrylate 220 in 

the presence of Pd catalyst under external-Oxidant-Free to give alkenylation of 

quinazoline 221.  

 

 

 

Scheme 2.62. C-H functionalization of quinazoline-1-oxide with ethylacrylate. 
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3. MATERIALS and METHODS 

 

3.1. Instrument used in this study. 

 

Melting points 

 

An electrothermal digital melting point equipment was used to record melting points.  

 

Nuclear Magnetic Resonance. 

 

Bruker 600, Jeol 500, and Agilent 400 MHz spectrometers were used to record 1H and 

13C NMR spectra. 

 

Elemental analysis. 

 

The elemental analyses were performed on a TruSpec and EuroEA 3000 CHNS analysers, 

the exact mass of some of the compounds were detected using waters SYNAPT G1 

HRMS,  

 

Infrared spectroscopy. 

 

IR spectrum were recorded on a Jasco FT/IR 6600. 

 

3.2. Chemicals used in this study. 

 

The compounds were dried at room temperature in a vacuum oven. using technical grade 

solvents, column chromatography was done using 70-230 mesh (0,063-0,200 mm) silica 

gel and preparative TLC with silica gel 60 HF254 (90% <45 m). all of the reagents used 

in this study came from commercial sources and were utilized without further 

purification. 
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3.2.1. Chemicals of analytical purity. 

 

PRODUCT CODE NAME 

A9628 ALDRICH 2-Aminobenzaldehyde 

210250 SIGMA-ALDRICH Hydroxylamine sulfate 

324930 ALDRICH Zinc powder 

N10845 ALDRICH 3-Nitrobenzaldehyde 

D130605 ALDRICH 2,5-Dimethoxybenzaldehyde 

N10802 ALDRICH 2-Nitrobenzaldehyde 

T35602 ALDRICH p-Tolualdehyde 

185914 SIGMA-ALDRICH Furfural 

124974 ALDRICH 2-Chlorobenzaldehyde 

117552 ALDRICH o-Tolualdehyde 

P5833 SIGMA-ALDRICH Potassium carbonate 

12310 ALDRICH Iron 

A88107 ALDRICH p-Anisaldehyde 

112216 ALDRICH 4-Chlorobenzaldehyde 

B57400 ALDRICH 4-Bromobenzaldehyde 

B1334 SIGMA-ALDRICH Benzaldehyde 

202126 ALDRICH Cesium carbonate 

320331 SIGMA-ALDRICH Hydrochloric acid 

239313 SIGMA-ALDRICH Sodium sulfate 

06858 SIGMA-ALDRICH Celite® S 

499145 SIGMA-ALDRICH Ammonia solution 

483052 ALDRICH Silver tetrafluoroborate 

A6283 SIGMA-ALDRICH Acetic acid 

225657 ALDRICH Zirconiumoxychloride octahydride 

216763 SIGMA-ALDRICH Hydrogen peroxide solution 

223336 SIGMA-ALDRICH Manganese triacetate dihydrate 

P20009 ALDRICH Phenylboronic acid 

417599 ALDRICH 4-Methoxyphenylboronic acid 

393614 ALDRICH m-Tolylboronic acid 
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417548 ALDRICH 4-Chlorophenylboronic acid 

1.06008 EMD MILLIPORE Methanol 

32205 SIGMA-ALDRICH Ethanol 

1.00668 EMD MILLIPORE Dichloromethane 

676764 SIGMA-ALDRICH Tetrahydrofuran 

208752 SIGMA-ALDRICH Hexane 

1.00003 EMD MILLIPORE Acetonitrile 

D4540 SIGMA Dimethyl sulfoxide 

32299 SIGMA-ALDRICH Petroleum ether 

1.09646 EMD MILLIPORE Benzene 

494488 SIGMA-ALDRICH N,N-Dimethylformamide 

1.00014 EMD MILLIPORE Acetone 

319929 SIGMA-ALDRICH 1,2-Dichloroethane 

1.00849 EMD MILLIPORE Toluene 

1.02432 EMD MILLIPORE Chloroform 

613339 SIGMA-ALDRICH Formamide solution 

01870 SIGMA-ALDRICH Silica gel 60 ADAMANT™ on TLC plates 

1.07734 EMD MILLIPORE Silica gel 60 (0.06-0.20 mm) 

S7795 SIGMA-ALDRICH Sodium carbonate 
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3.3. Experimental Procedures and Spectral data of the compounds  

 

3.3.1. Synthesis of Oximes 1:  

 

General procedure: The amino carbonyl (2-aminobenzaldehyde, 1-(2-

aminophenyl)ethanone and 2-aminophenyl phenyl methanone) (33 mmol) and 

hydroxylamine sulfate (4.92 g, 30 mmol) were dissolved in MeOH/H2O (35 mL, 6/1) and 

the reaction mixture stirred at ambient temperature and the reaction was monitored by 

TLC. After completion of the reaction the unreacted hydroxylamine sulfate was filtered 

off. Water was added to the mixture (20 mL) and extracted with chloroform (4X25 mL). 

The combined organic phases were dried over anhydrous Na2SO4, filtered and the solvent 

evaporated under reduced pressure. The residue was purified by flash column 

chromatography (Hexane and ethyl acetate) or recrystallization from CH2Cl2: Hexane. 

The NMR spectra of the starting oximes 1 were identical with those reported in the 

literature (Bella et al. 2004, Counceller et al. 2008).  

 

3.3.2. Preparation of compounds 2a-m  

 

General procedure: To a solution of amino oxime (1 mmol) in EtOH (20 mL) aldehyde 

(1 mmol) was added at room temperature and stirred for 24 h (for compounds 2k-m, 47 

h). The precipitating product was isolated by filtration trough a sintered glass funnel and 

washed with warm hexane. In the case of 2f the solvent was evaporated and the crude 

was treated with warm hexane. Recrystallization from acetonitrile provided yellow 

coloured crystals. 

 

2-(p-Nitrophenyl)-1,2-dihydroquinazoline 3-oxide 2a. Yield 97% (0.261 g). Yellow 

crystals, mp 196-197 oC. IR; νN-H 3213 cm-1; 1H, NMR (600 MHz, DMSO-d6) δ 8.23 (d, 

J = 8.8 Hz, 2H), 7.96 (s, 1H), 7.78 – 7.72 (m, 3H), 7.17 – 7.09 (m, 2H), 6.86 (d, J = 8.0 

Hz, 1H), 6.74 (t, J = 7.5 Hz, 1H), 6.28 (d, J = 3.1 Hz, 1H). 13C, NMR (151 MHz, DMSO-

d6) δ 148.2, 145.9, 139.3, 131.2, 130.8, 128.5, 126.0, 124.1, 119.6, 116.4, 114.4, 78.9. 

Anal Calcd for C14H11N3O3 (269.26): C, 62.45, H, 4.12, N, 15.61. Found C, 62.51, H, 

4.14, N, 15.54.  
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2-(p-Chlorophenyl)-1,2-dihydroquinazoline 3-oxide 2b. Yield 96% (0.248 g). Yellow 

crystals, mp 187-188 oC. IR; νN-H 3228 cm-1; 1H, NMR (600 MHz, DMSO-d6) δ 7.89 (s, 

1H), 7.59 (d, J = 2.9 Hz, 1H), 752 – 7.48 (m, 2H), 7.46 – 7.41 (m, 2H), 7.19 – 7.06 (m, 

2H), 6.83 (d, J = 8.0 Hz, 1H), 6.72 (td, J = 7.5, 1.1 Hz, 1H), 6.10 (d, J = 2.8 Hz, 1H). 13C, 

NMR (151 MHz, DMSO-d6) δ 139.6, 138.2, 132.5, 131.8, 130.8, 130.6, 129.3, 125.8, 

119.3, 116.4, 114.2, 79.2. Anal. Calcd for C14H11ClN2O (258.71); C, 65.00; H, 4.29; N, 

10.83; Found C, 65.07; H, 4.30; N, 10.80. 

 

2-(3-Bromophenyl)-1,2-dihydroquinazoline 3-oxide 2c. Yield 99% (0.300 g). Yellow 

crystals, mp 176-177 oC. IR; νN-H 3215 cm-1; 1H, NMR (600 MHz, DMSO-d6) δ 7.93 (s, 

1H), 7.69 – 7.61 (m, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.33 (t, J = 

7.9 Hz, 1H), 7.17 – 7.07 (m, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.73 (t, J = 7.5 Hz, 1H), 6.12 

(d, J = 2.8 Hz, 1H). 13C, NMR (151 MHz, DMSO-d6) δ 141.3, 139.5, 132.1, 131.2, 131.1, 

130.8, 129.8, 126.0, 125.9, 122.0, 119.4, 116.2, 114.2, 78.9. Anal. Calcd for 

C14H11BrN2O (303.15); C, 55.47, H, 3.66, N, 9.24, Found C, 55.59, H,3.65, N, 9.26. 

 

2-(3-Chlorophenyl)-1,2-dihydroquinazoline 3-oxide 2d. Yield 94% (0.243 g). Yellow 

crystals, mp 169-170 oC. IR; νN-H 3226 cm-1; 1H, NMR (600 MHz, DMSO-d6) δ 7.93 (s, 

1H), 7.64 (d, J = 2.7 Hz, 1H), 7.52 (s, 1H), 7.41 (dt, J = 9.8, 7.3 Hz, 3H), 7.16 – 7.09 (m, 

2H), 6.84 (d, J = 8.0 Hz, 1H), 6.76 – 6.71 (m, 1H), 6.12 (d, J = 2.8 Hz, 1H). 13C, NMR 

(151 MHz, DMSO-d6) δ 141.1, 139.5, 133.5, 131.2, 130.9, 130.8, 129.2, 126.9, 126.0, 

125.6, 119.4, 116.2, 114.2, 78.9. Anal. Calcd for C14H11ClN2O (258.71); C, 65.00, H, 

4.29, N, 10.83, Found C, 64.97, H, 4.30, N, 10.81. 

 

2-(p-Methoxyphenyl)-1,2-dihydroquinazoline 3-oxide 2e. Yield 53% (0.135 g). 

Yellow crystals, mp 174-175 oC. IR; νN-H 3185 cm-1; 1H, NMR (400 MHz, CDCl3) δ 7.73 

(s, 1H), 7.52 (d, J = 8.6 Hz, 2H), 7.23 (t, J = 7.7 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.90 

(t, J = 7.9 Hz, 3H), 6.80 (d, J = 7.9 Hz, 1H), 6.10 (d, J = 2.2 Hz, 1H), 4.82 (s, 1H), 3.82 

(s, 3H). 13C, NMR (101 MHz, CDCl3) δ 153.2, 138.5, 131.6, 130.7, 129.3, 128.6, 125.8, 

122.8, 120.5, 114.2, 114.1, 80.2, 55.3. Anal. Calcd for C15H14N2O2 (254.28); C, 70.85, H, 

5.55, N, 11.02, Found C, 70.76, H, 5.57, N,11.00. 
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2-Phenyl-1,2-dihydroquinazoline 3-oxide (2f). Yield 94% 0.211 g. Yellow crystals, mp 

139-140 oC. IR; νN-H 3152 cm-1; 1H, NMR (500 MHz, CDCl3 ) δ 7.83 (s, 1H), 7.60 – 7.48 

(m, 1H), 7.41 (dt, J = 8.7, 4.6 Hz, 2H), 7.35 – 7.25 (m, 3H), 7.08 – 7.00 (m, 2H), 6.75 (d, 

J = 7.9 Hz, 1H), 6.65 (td, J = 7.5, 0.8 Hz, 1H), 6.00 (d, J = 2.6 Hz, 1H). 13C, NMR (126 

MHz ) δ 139.9, 139.0, 130.6, 130.5, 129.3, 128.8, 127.0, 125.8, 119.1, 116.4, 114.0, 79.8; 

Anal. Calcd for C14H12N2O (224.26), C, 74.98, H, 5.39, N, 12.49. Found C, 74.72, H, 

5.40, N, 12.48. 

 

2-(p-Bromophenyl)-1,2-dihydroquinazoline 3-oxide 2g. Yield 96% (0.291 g). Yellow 

crystals, mp 198-199 oC. IR; νN-H 3232 cm-1; 1H, NMR (600 MHz, DMSO-d6) δ 7.89 (s, 

1H), 7.64 – 7.54 (m, 3H), 7.43 (d, J = 8.1 Hz, 2H), 7.16 – 7.07 (m, 2H), 6.82 (d, J = 8.0 

Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 6.08 (d, J = 2.9 Hz, 1H). 13C, NMR (151 MHz, DMSO) 

δ 139.6, 138.2, 132.5, 131.8, 130.8, 130.6, 129.3, 125.8, 119.3, 116.4, 114.2, 79.2. Anal. 

Calcd for C14H11BrN2O (303.15); C, 55.47, H, 3.66, N, 9.24. Found C, 55.63, H, 3.65, N, 

9.20. 

 

2-(3,4-Dimethoxyphenyl)-1,2-dihydroquinazoline 3-oxide 2h. Yield 96% (0.273 g). 

Yellow crystals, mp 141-142 oC. IR; νN-H 3221 cm-1; 1H, NMR (600 MHz, DMSO-d6) δ 

7.84 (s, 1H), 7.53 (d, J = 2.7 Hz, 1H), 7.15 – 7.08 (m, 2H), 7.07 (dd, J = 7.8,1.5 Hz, 1H), 

6.95 (dd, J = 8.4, 2.0 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 6.70 (td, 

J = 7.5,1.1 Hz, 1H), 5.97 (d, J = 2.5 Hz, 1H), 3.70 (d, J = 17.5 Hz, 6H). 13C, NMR (151 

MHz, DMSO-d6) δ 149.6, 148.9, 140.0, 131.1, 130.4, 130.3, 125.6, 119.3, 119.0, 116.5, 

114.0, 111.8, 110.9, 79.7, 56.0, 55.9. Anal. Calcd for C16H16N2O3 (284.31), C, 67.59, H, 

5.67, N, 9.85. Found C, 67.64, H, 5.69, N, 9.86. 

 

2-(4-Methylphenyl)-1,2-dihydroquinazoline 3-oxide 2i. Yield 68% (0.162 g). Yellow 

crystals, mp 157-158 oC. 1H, NMR (400 MHz, CDCl3) δ 7.66 (s, 1H), 7.41 (d, J = 8.1 Hz, 

2H), 7.20 – 7.08 (m, 3H), 7.01 (d, J = 7.6 Hz, 1H), 6.82 (dd, J = 11.0, 4.0 Hz, 1H), 6.77 

– 6.69 (m, 1H), 6.05 (d, J = 2.6 Hz, 1H), 4.94 (s, 1H), 2.30 (s, 3H). 13C, NMR (101 MHz, 

CDCl3) δ 139.6, 138.6, 134.2, 131.8, 130.7, 129.4, 126.9, 125.8, 120.3, 116.4, 114.3, 80.0, 

21.0. Anal. Calcd for C15H14N2O (238.29), C, 75.61; H, 5.92; N, 11.76. Found C, 75.50; 

H, 5.92; N, 11.71. 
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2-(Furan-2-yl)-1,2-dihydroquinazoline 3-oxide 2j. Yield 50% (0.107 g). Yellow 

crystals, mp 118-119 oC. IR; νN-H 3125 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.73 (s, 1H), 

7.39 (d, J = 1.4 Hz, 1H), 7.21 (td, J = 7.9, 1.3 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.89 (t, 

J = 7.5 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.45 (d, J = 3.3 Hz, 1H), 6.33 (dd, J = 3.3, 1.8 

Hz, 1H), 6.13 (d, J = 2.9 Hz, 1H), 4.91 (s, 1H).  13C NMR (101 MHz, CDCl3) δ 143.7, 

138.1, 131.9, 130.9, 125.9, 120.7, 116.2, 114.5, 110.6, 109.8, 74.60. Anal. Calcd for 

C12H10N2O2 (214.22), C, 67.28, H, 4.71, N, 13.08, Found C, 67.10, H, 4.70, N, 13.10. 

 

4-Methyl-2-(4-nitrophenyl)-1,2-dihydroquinazoline 3-oxide 2k. Yield 79% (0.224 g). 

Yellow crystals, mp 167-168 oC; Lit mp 166-167 oC. 1H, NMR (400 MHz, CDCl3) δ 8.15 

(d, J = 8.7 Hz, 2H), 7.75 (d, J = 8.7 Hz, 2H), 7.27 – 7.20 (m, 2H), 7.01 – 6.88 (m, 2H), 

6.25 (d, J = 4.2 Hz, 1H), 5.28 (d, J = 3.9 Hz, 1H), 2.46 (s, 3H). 13C, NMR (101 MHz, 

CDCl3) δ 148.3, 144.2, 140.7, 137.7, 130.6, 127.9, 124.9, 123.8, 121.6, 118.6, 116.3, 78.6, 

12.5 (Y.-C. Chen and Yang 2013). 

 

2-(4-Methoxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide 2l. Yield 84% (0.225 

g). Yellow crystals, mp 160-161 oC; Lit  mp 164-165 oC.1H, NMR (400 MHz, CDCl3) δ 

7.41 (d, J = 8.1 Hz, 2H), 7.24 – 7.13 (m, 2H), 6.88 (t, J = 7.5 Hz, 1H), 6.85-6.75 (m, 3H), 

6.05 (d, J = 2.2 Hz, 1H), 5.08 (s, 1H), 3.76 (s, 3H), 2.42 (s, 3H). 13C, NMR (101 MHz, 

CDCl3) δ 160.2, 140.0, 139.1, 130.1, 129.8, 128.2, 124.6, 120.2, 117.9, 114.8, 113.9, 79.2, 

55.3, 12.4. 

 

2-(4-Nitrophenyl)-4-phenyl-1,2-dihydroquinazoline 3-oxide 2m. Yield 73% (0.242 g). 

Yellow crystals, mp 191-192 oC.  1H, NMR (400 MHz, CDCl3) δ 8.20 – 8.17 (m, 2H), 

7.88 (d, J = 8.7 Hz, 2H), 7.53 – 7.43 (m, 5H), 7.25 – 7.20 (m, 1H), 6.95 (d, J = 7.9 Hz, 

1H), 6.87 – 6.79 (m, 2H), 6.30 (d, J = 4.9 Hz, 1H), 5.37 (d, J = 4.8 Hz, 1H). 13C, NMR 

(101 MHz, CDCl3) δ 148.1, 143.7, 140.7, 138.1, 130.2, 129.9, 129.6 (2C), 128.3, 127.7, 

127.0, 123.6, 121.5, 119.6, 117.0, 79.5. Anal. Calcd for C20H15N3O3 (345.36), C, 69.56; 

H, 4.38; N, 12.17; Found C, 69.40, H, 4.39, N, 12.12. 
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3.3.3. General procedure of preparation of compounds 3a-m. 

 

To a solution of substrate 2a-m (1 mmol) in THF (4 mL), H2O2 (4 mmol, 35%, 0.389 g) 

and Na2WO4.2H2O (0.05 mmol, 0.017 g) were added and the mixture was stirred at room 

temperature for compounds 3a-j (20-24 h). For the compounds 3k-m the reaction was 

performed at 60 oC (47 h). After evaporation of the solvent water was added (15 mL) and 

the mixture basified with 10% NaOH, the mixture was extracted with chloroform (3x15 

mL) and the combined extracts were dried over anhydrous Na2SO4, filtered. The residue 

after evaporation of the solvent was subjected to flash column chromatography using 

silica gel as an adsorbent and ethyl acetate–petroleum ether as eluent mixture. The 

isolated products were recrystallized from acetonitrile.  

 

2-(p-Nitrophenyl) quinazoline 3-oxide 3a. Yield 92% (0.246 g). Yellow crystals, mp 

233-234 oC. 1H, NMR (600 MHz, DMSO-d6) δ 9.47 (s, 1H), 8.50 (d, J = 9.0 Hz, 2H), 

8.39 (d, J = 9.0 Hz, 2H), 8.06 (d, J =8.3 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 8.4 

Hz, 1H), 7.79 (t, J = 8.1 Hz, 1H); 13C, NMR (151 MHz, DMSO) δ 153.3, 148.8, 142.6, 

140.3, 138.7, 132.4, 132.0, 130.8, 128.4, 125.4, 125.0, 123.3. Anal Calcd for C14H9N3O3 

(267.24); C, 62.92, H, 3.39, N, 15.72. Found C, 62.94, H, 3.39, N,15.69.  

 

2-(p-Chlorophenyl) quinazoline 3-oxide 3b. Yield 70% (0.180 g), (78% from one-pot). 

Yellow crystals, mp 160-162 oC; Lit. mp.161-162 oC. 1H, NMR (600 MHz, CDCl3) δ 9.04 

(s, 1H), 8.43 (d, J = 8.2 Hz, 2H), 8.06 (d, J = 8.4 Hz, 1H), 7.80 (t, J =7.7 Hz, 1H), 7.75 

(d, J = 8.1 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H). 13C, NMR (151 

MHz, CDCl3) δ 154.2, 142.3, 141.4, 137.5, 132.1, 131.9, 130.2, 129.9, 128.6, 128.4, 

124.2, 121.3. (Necdet Coşkun and Çetin 2007) 

 

2-(3-Bromophenyl) quinazoline 3-oxide 3c. Yield 64% (0.193 g), (77% from one-pot). 

Yellow crystals, mp 189-190 oC. 1H. NMR (600 MHz, CDCl3) δ 9.11 (s, 1H), 8.57 (s, 

1H), 8.41 (d, J = 7.9 Hz, 1H), 8.10 (d, J = 8.5 Hz 1H), 7.84 (t, J = 7.7 Hz, 1H), 7.78 (d, J 

= 8.2 Hz, 1H), 7.72 (t, J = 8.2 Hz, 2H), 7.43 (t, J = 7.8 Hz, 1H). 13C, NMR (151 MHz, 

CDCl3) δ 140.6, 134.2, 133.4, 133.3, 132.4, 130.5, 130.2, 129.6, 129.1, 128.7, 124.4, 
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122.3, 122.1, 120.5. Anal Calcd for C14H9BrN2O (301.14); C, 55.84, H, 3.01, N, 9.30. 

Found C, 55.77, H, 3.02, N, 9.33. 

 

2-(3-Chlorophenyl) quinazoline 3-oxide 3d. Yield 73% (0.187 g). Yellow crystals, mp 

176-177 oC. 1H NMR (600 MHz, CDCl3) δ 9.06 (s, 1H), 8.40 (t, J = 1.9 Hz, 1H), 8.33 

(dt, J = 7.8, 1.4 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.80 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 

7.74 (dd, J = 8.3, 1.4 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.52 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 

7.46 (t, J = 7.9 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 142.3, 141.4, 134.2, 134.1, 133.3, 

132.2, 131.2, 130.4, 130.1, 129.5, 129.3, 128.6, 124.2, 124.0. Anal. Calcd for 

C14H9ClN2O (256.69), C, 65.51, H, 3.53, N, 10.91. Found C, 65.60, H, 3.52, N,10.85. 

 

2-(p-Methoxyphenyl) quinazoline-3-oxide 3e. Yield 68% (0.171 g), (75% from one-

pot). Yellow crystals, mp 136-137 oC. 1H, NMR (400 MHz, CDCl3) δ 8.96 (s, 1H), 8.45 

(d, J = 8.6 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.76 – 7.63 (m, 2H), 7.57 (ddd, J = 8.1, 6.9, 

1.1 Hz, 1H), 7.00 (d, J = 8.6 Hz, 3H), 3.86 (s, 3H). 13C, NMR (101 MHz, CDCl3) δ 158.6, 

132.4, 131.7, 130.3, 128.9, 128.3, 124.1, 116.8, 116.3, 116.1, 113.4, 113.4, 55.4. Anal. 

Calcd for C15H12N2O2 (252.27); C, 71.42, H, 4.79, N, 11.10. Found C, 71.22, H, 4.75, N, 

11.08. 

 

2-Phenylquinazoline 3-oxide 3f. Yield 65% (0.144 g) (69% from one-pot). Yellow 

crystals, mp 126-127 oC. 1H, NMR (400 MHz, CDCl3) δ 8.98 (s, 1H), 8.38 – 8.28 (m, 

2H), 8.02 (d, J = 8.4 Hz, 1H), 7.77 – 7.58 (m, 3H), 7.57 – 7.44 (m, 3H). 13C NMR (101 

MHz, CDCl3) δ 155.3, 141.8, 141.2, 131.8, 131.7, 131.1, 130.3, 129.6, 128.5, 128.1, 

124.0, 123.9. Anal. Calcd for C14H10N2O (222.24); C, 75.66, H, 4.54, N, 12.60. Found C, 

75.58, H, 4.56, N, 12.59. 

 

2-(4-Bromophenyl)quinazoline 3-oxide 3g. Yield 66% (0.199 g), (70% from one-pot). 

Yellow crystals, mp 173-174 oC. 1H, NMR (400 MHz, CDCl3) δ 9.00 (s, 1H), 8.39 – 8.25 

(m, 2H), 8.03 (d, J = 8.4 Hz, 1H), 7.78 (ddd, J = 8.4, 6.8, 1.6 Hz, 1H), 7.74 – 7.69 (m, 

1H), 7.69 – 7.63 (m, 3H). 13C, NMR (101 MHz, CDCl3) δ 142.0, 132.0, 131.3, 131.3, 

130.6, 130.6, 130.2, 129.8, 128.5, 125.9, 124.1, 120.6. Anal Calcd for C14H9BrN2O 

(301,14) C, 55.84; H, 3.01; N, 9.30. Found C, 55.64; H, 3.00; N, 9.25. 
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2-(3,4-Dimethoxyphenyl)quinazoline 3-oxide 3h.  Yield 73% (0.206 g). Yellow 

crystals, mp 151-152 oC. 1H, NMR (400 MHz, CDCl3) δ 8.99 (s, 1H), 8.21 (dd, J = 8.5, 

2.0 Hz, 1H), 8.13 (d, J = 2.0 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.76 (ddd, J = 8.4, 6.9, 1.4 

Hz, 1H), 7.70 (d, J = 7.3 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.04 – 6.99 (m, 1H), 4.01 (s, 3H), 

3.99 (s, 3H). 13C, NMR (101 MHz, CDCl3) δ 154.5, 151.6, 148.2, 142.1, 141.4, 131.7, 

129.3, 128.3, 124.5, 124.2, 124.0, 123.5, 113.3, 110.3, 56.1, 56.0. Anal Calcd for 

C16H14N2O3 (282,30) C, 68.08; H, 5.00; N, 9.92. Found C, 68.00; H, 4.99; N, 9.90. 

 

2-(p-Tolyl)quinazoline-3-oxide 3i.  Yield 79% (0.187 g), (81% from one-pot). Yellow 

crystals, mp 126-127 oC. 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H), 8.31 (d, J = 4.6 Hz, 

2H), 8.05 (d, J = 8.4 Hz, 1H), 7.84 – 7.56 (m, 3H), 7.35 (d, J = 4.4 Hz, 2H), 2.47 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 141.3, 141.2, 130.8, 130.6, 130.0, 129.5, 129.4, 129.0, 

128.7, 128.6, 125.0, 123.8, 21.6. Anal. Calcd for C15H12N2O (236.27) C, 76.25; H, 5.12; 

N, 11.86. Found C, 76.15; H, 5.11; N, 11.90. 

 

2-(Furan-2-yl)quinazoline 3-oxide 3j. Yield 67% (0.142 g). Yellow crystals, mp 158-

159 oC. 1H, NMR (400 MHz, CDCl3) δ 9.02 (s, 1H), 8.31 (d, J = 3.4 Hz, 1H), 8.14 (d, J 

= 8.5 Hz, 1H), 7.84 – 7.76 (m, 2H), 7.71 (d, J = 7.9 Hz, 1H), 7.63 (t, J = 6.8 Hz, 1H), 6.71 

(dd, J = 3.5, 1.7 Hz, 1H). 13C, NMR (101 MHz, CDCl3) δ 146.5, 144.6, 141.9, 141.4, 

132.2, 129.3, 128.4, 124.2, 121.5, 120.5, 112.7, 108.6. Anal Calcd for C12H8N2O2 

(212.21) C, 67.92; H, 3.80; N, 13.20. Found C, 67.90; H, 3.82; N, 13.18. 

 

4-Methyl-2-(4-nitrophenyl)quinazoline 3-oxide 3k. Yield 72% (0.202 g). Yellow 

crystals, mp 167-168 oC; Lit mp 167-168 oC. 1H, NMR (400 MHz, CDCl3) δ 8.56 (d, J = 

8.8 Hz, 2H), 8.36 (d, J = 8.8 Hz, 2H), 8.07 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 

7.81 (t, J = 7.1 Hz, 1H), 7.74 (t, J = 7.2 Hz, 1H), 2.96 (s, 3H). 13C, NMR (101 MHz, 

CDCl3) δ 152.4, 152.1, 148.8, 140.3, 138.6, 131.6, 130.1, 129.7, 129.5, 123.9, 123.4, 

123.0, 13.4. (Y.-C. Chen and Yang 2013) 

 

2-(4-methoxyphenyl)-4-methylquinazoline 3-oxide 3l. Yield 84% (0.224 g). Yellow 

crystals, mp 157-158 oC; Lit mp 158-159 oC. 1H, NMR (400 MHz, CDCl3) δ 8.44 (d, J = 

8.6 Hz, 2H), 8.03 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 
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7.70 – 7.60 (m, 1H), 7.04 (d, J = 8.6 Hz, 2H), 3.88 (d, J = 26.7 Hz, 3H), 2.95 (s, 3H). 13C, 

NMR (101 MHz, CDCl3 ) δ 161.7, 154.2, 152.6, 140.6, 132.4, 130.2, 129.6, 128.8, 124.9, 

123.2, 113.3, 100.9, 55.5, 13.4. (Ye et al. 2019) 

 

2-(4-Nitrophenyl)-4-phenylquinazoline 3-oxide 3m. Yield 73% (0.251 g). Yellow 

crystals, mp 179-180 oC. 1H, NMR (400 MHz, CDCl3) δ 8.64 (d, J = 8.9 Hz, 2H), 8.35 

(d, J = 8.9 Hz, 2H), 8.12 (d, J = 8.4 Hz, 1H), 7.84 – 7.77 (m, 1H), 7.68 – 7.59 (m, 6H), 

7.55 (d, J = 8.1 Hz, 1H). 13C, NMR (101 MHz, CDCl3) δ 153.2, 152.1, 148.8, 141.2, 

138.4, 131.8, 131.5, 130.4, 130.1, 129.9, 129.1, 128.9, 128.7, 125.2, 124.2, 122.9. Anal. 

Calcd for C20H13N3O3 (343.34) C, 69.97; H, 3.82; N, 12.24, Found C, 69.81; H, 3.80; N, 

12.25. 

2-(3-methoxyphenyl)-1,2-dihydroquinazoline 3-oxide 3n. Yield 68% (0.171 g), 

Yellow crystals, mp 179-180 oC. 1H NMR (400 MHz, cdcl3) δ 7.68 (s, 1H), 7.30 – 7.22 

(m, 1H), 7.18 (td, J = 7.7, 1.5 Hz, 1H), 7.13 (dd, J = 7.4, 1.5 Hz, 2H), 7.03 (dd, J = 7.7, 

1.4 Hz, 1H), 6.92 – 6.81 (m, 2H), 6.77 (d, J = 8.0 Hz, 1H), 6.07 (d, J = 3.0 Hz, 1H), 5.03 

(d, J = 3.3 Hz, 1H), 3.76 (s, 3H). 13C NMR (101 MHz, cdcl3) δ 159.8, 138.6, 138.4, 131.8, 

130.8, 129.8, 125.8, 120.4, 119.1, 116.4, 115.1, 114.4, 112.4, 80.2, 55.2. 

 

3.3.4. One-pot procedure for the preparation of compounds 3b,c,e-g,i.  

 

To a solution of amino oxime 1 (1 mmol) in THF (4 mL) aldehyde (1 mmol) was added 

at room temperature and after an hour H2O2 (4 mmol, 35%, 0.389 g) and Na2WO4.2H2O 

(0.05 mmol, 0.017 g) were added and the mixture was stirred for 24 h. The isolation 

procedure is the same for compounds 3 obtained according to the general procedure 

starting from isolated 2. 
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3.3.5. Synthesis of compounds 4.  

 

General Procedure: To a suspension of quinazoline 3-oxides 3 (0.2 mmol) in MeCN (1 

mL), arylboronic acids (0.6 mmol), and Mn(OAc)32H2O (0.6 mmol, 0.160 g) were added, 

and the mixture was stirred at 60 oC for 44 h. The reaction mixture was diluted with 

CH2Cl2, then washed with water for three times. The resulting organic phase was dried 

over anhydrous Na2SO4 and concentrated under vacuum. The crude product was purified 

by silica gel column chromatography using ethyl acetate/petroleum ether (1:2) as eluent 

to obtain the desired products. 

 

2-(4-Nitrophenyl)-4-phenylquinazoline-3-oxide 4a. Yield 71% (0.049 g). Yellow solid, 

mp 184-185 oC; 1H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 8.9 Hz, 2H), 8.35 (d, J = 8.9 

Hz, 2H), 8.12 (d, J = 8.4 Hz, 1H), 7.84 – 7.77 (m, 1H), 7.68 – 7.59 (m, 6H), 7.55 (d, J = 

8.1 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 153.2, 152.1, 148.8, 141.2, 138.4, 131.8, 

131.5, 130.4, 130.1, 129.9, 129.1, 128.9, 128.7, 125.2, 124.2, 122.9.   HRMS (ESI-TOF-

MS) Calcd for [C20H14N3O3]
+ 

 m/z = 344.1035 Found 344.1035. 

 

2-(4-Chlorophenyl)-4-phenylquinazoline-3-oxide 4b. Yield 72% (0.048 g). Yellow 

solid, mp 183-184 oC; 1H NMR (400 MHz, CDCl3) δ 8.45 – 8.38 (m, 2H), 8.07 (d, J = 

8.4 Hz, 1H), 7.74 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.65 – 7.52 (m, 6H), 7.51 – 7.44 (m, 

3H). 13C NMR (101 MHz, CDCl3) δ 149.8, 141.1, 137.0, 132.1, 131.5, 131.1, 130.8,” 

130.2, 129.9, 129.3, 129.1, 128.7, 128.0, 126.7, 125.0, 121.4. HRMS (ESI-TOF-MS) 

Calcd for [C20H14N2OCl]+ 
 m/z = 333.0795 Found 333.0795. 

 

 2-(3-Bromophenyl)-4-phenylquinazoline 3-oxide 4c. Yield 74% (0.056 g). Yellow 

solid, mp 161-162 oC; 1H NMR (400 MHz, CDCl3) δ 8.65 – 8.59 (m, 1H), 8.37 (d, J = 

7.9 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.81 – 7.72 (m, 1H), 7.69 – 7.47 (m, 8H), 7.38 (t, J 

= 8.0 Hz, 1H). 13C NMR (101 MHz, CDCl3,) δ 143.8, 141.0, 134.2, 133.8, 133.4, 131.1, 

130.2, 129.9, 129.5, 129.3, 129.0, 128.9, 128.8, 128.7, 125.0, 124.3, 123.9, 121.8. HRMS 

(ESI-TOF-MS) Calcd for [C20H14N2OBr]+  m/z = 377.0289 Found 377.0289. 
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2-(3-Nitrophenyl)-4-phenylquinazoline 3-oxide 4d. Yield 70% (0.048 g). Yellow solid, 

mp 165-166 oC; 1H NMR (400 MHz, CDCl3) δ 9.39 – 9.28 (m, 1H), 8.86 (d, J = 7.9 Hz, 

1H), 8.38 (dd, J = 8.2, 1.2 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.86 – 7.75 (m, 1H), 7.71 – 

7.45 (m, 8H). 13C NMR (101 MHz, CDCl3) δ 152.8, 152.0, 147.9, 141.1, 136.5, 134.0, 

131.5, 130.4, 130.0, 129.9, 129.0, 128.9, 128.8, 128.7, 126.0, 125.4, 125.2, 124.1. HRMS 

(ESI-TOF-MS) Calcd for [C20H14N3O3]
+  m/z = 344.1035 Found 344.1035. 

 

2-(4-Methoxyphenyl)-4-phenylquinazoline 3-oxide 4e. Yield 83% (0.055 g). Yellow 

solid, mp  201-202 oC; 1H NMR (400 MHz, CDCl3) δ 8.56 – 8.45 (m, 2H), 8.06 (d, J = 

8.4 Hz, 1H), 7.78 – 7.69 (m, 1H), 7.62 (dd, J = 11.8, 4.1 Hz, 5H), 7.55 – 7.42 (m, 2H), 

7.07 – 6.97 (m, 2H), 3.90 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 161.7, 145.5, 141.2, 

135.2, 132.7, 130.8, 130.0, 129.9, 129.5, 128.7, 128.6, 124.9, 124.7, 123.5, 113.6, 113.2, 

55.4. HRMS (ESI-TOF-MS) Calcd for [C21H17N2O2]
+ 

 m/z = 329.1290 Found 329.1290. 

 

2,4-Diphenylquinazoline 3-oxide 4f. Yield 75% (0.045 g). Yellow solid, mp 159-160 

oC; 1H NMR (400 MHz, CDCl3) δ 8.40 – 8.34 (m, 2H), 8.09 (d, J = 8.4 Hz, 1H), 7.74 

(ddd, J = 8.4, 6.6, 1.7 Hz, 1H), 7.68 – 7.48 (m, 10H). 13C NMR (101 MHz, CDCl3) δ 

155.5, 151.4, 141.1, 132.4, 130.9, 130.8, 130.5, 130.3, 130.1, 130.0, 129.2, 128.8, 128.7, 

127.8, 125.0, 123.8. HRMS (ESI-TOF-MS) Calcd for [C20H15N2O]+ 
 m/z = 299.1184 

Found 299.1184. 

 

2-(4-Bromophenyl)-4-phenylquinazoline 3-oxide 4g. Yield 71% (0.054 g). Yellow 

solid, mp 178-179 oC; 1H NMR (400 MHz, CDCl3) δ 8.39 – 8.30 (m, 2H), 8.07 (d, J = 8.4 

Hz, 1H), 7.74 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.69 – 7.45 (m, 9H). 13C NMR (101 MHz, 

CDCl3) δ 154.4, 151.7, 141.1, 132.3, 131.3, 131.1(2C), 131.0, 130.2, 129.9, 129.4, 129.1, 

128.7, 125.6, 125.1, 123.8, HRMS (ESI-TOF-MS) Calcd for [C20H14N2OBr]+ 
 m/z = 

377.0289 Found 377.0289. 

 

2-(3,4-Dimethoxyphenyl)-4-phenylquinazoline 3-oxide 4h. Yield 76% (0.055 g). 

Yellow solid, mp  153-154 oC; 1H NMR (400 MHz, CDCl3) δ 8.20 (dd, J = 11.1, 2.6 Hz, 

2H), 8.08 (d, J = 8.4 Hz, 1H), 7.73 (dd, J = 11.1, 4.1 Hz, 1H), 7.68 – 7.55 (m, 5H), 7.56 

– 7.48 (m, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 3.98 (d, J = 2.4 Hz, 
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6H). 13C NMR (101 MHz, CDCl3) δ 156.3, 154.7, 151.4, 148.0, 141.2, 130.9, 130.0, 

129.9, 129.5, 128.8, 128.6, 125.0, 123.5, 120.4, 117.2, 115.5, 113.7, 110.2, 56.1, 56.0. 

HRMS (ESI-TOF-MS) Calcd for [C22 H19N2O3]
+ 

 m/z = 359.1396 Found 359.1396. 

 

4-Phenyl-2-(p-tolyl)quinazoline 3-oxide 4i. Yield 83% (0.052 g). Yellow solid, mp 149-

150 oC; Lit(Ye et al. 2019)  mp 182–183℃; 1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 

8.2 Hz, 2H), 8.08 (d, J = 8.4 Hz, 1H), 7.73 (ddd, J = 8.3, 6.7, 1.6 Hz, 1H), 7.68 – 7.56 (m, 

5H), 7.56 – 7.45 (m, 2H), 7.32 (d, J = 8.2 Hz, 2H), 2.44 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 155.5, 151.4, 141.3, 141.2, 131.6, 131.3, 130.8, 130.6, 130.0, 129.5, 129.4, 

128.9, 128.7, 128.5, 125.0, 123.7, 21.6.  

 

2-(Furan-2-yl)-4-phenylquinazoline 3-oxide 4j. Yield 78% (0.045 g). Yellow solid, mp 

226-227 oC; 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 3.5 Hz, 1H), 8.17 (d, J = 8.5 Hz, 

1H), 7.82 (d, J = 1.8 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.62 (q, J = 6.4 Hz, 5H), 7.55 – 

7.42 (m, 2H), 6.67 (dd, J = 3.6, 1.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 146.5, 145.3, 

141.4, 139.1, 131.6, 130.4, 130.1, 129.9, 129.4, 129.1, 128.7, 125.2, 122.8, 122.4, 112.8, 

109.9. HRMS (ESI-TOF-MS) Calcd for [C18 H13N2O2]
+ 

 m/z = 289.0977 Found 289.0977. 

 

2-(4-Nitrophenyl)-4-(m-tolyl)quinazoline 3-oxide 4k. Yield 78% (0.056 g). Yellow 

solid, mp 170-171oC; 1H NMR (400 MHz, CDCl3) δ 8.67 – 8.59 (m, 2H), 8.34 (dd, J = 

9.1, 2.1 Hz, 2H), 8.13 – 8.06 (m, 1H), 7.83 – 7.74 (m, 1H), 7.60 (dd, J = 9.1, 5.0 Hz, 1H), 

7.52 (dd, J = 9.5, 6.0 Hz, 2H), 7.41 (dd, J = 14.9, 6.4 Hz, 3H), 2.47 (s, 3H). 13C NMR 

(101 MHz, CDCl3) δ 146.3, 131.8, 131.4, 131.2, 130.8, 130.4, 130.1, 130.0, 129.4, 129.0, 

128.9, 128.8, 128.7, 126.9, 126.8, 125.3, 124.1, 122.9, 29.7. HRMS (ESI-TOF-MS) 

Calcd for [C21 H16N3O3]
+ 

 m/z = 358.1192 Found 358.1192. 

 

4-(4-Bromophenyl)-2-(4-nitrophenyl)quinazoline 3-oxide 4l. Yield 74% (0.063 g). 

Yellow solid, mp 149-150 oC; 1H NMR (400 MHz, CDCl3) δ 8.63 – 8.57 (m, 2H), 8.35 

(dd, J = 9.1, 2.0 Hz, 2H), 8.14 – 8.07 (m, 1H), 7.83 – 7.73 (m, 3H), 7.67 – 7.58 (m, 1H), 

7.57 – 7.49 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 150.9, 147.6, 132.2, 132.1, 132.0, 

131.8, 131.7, 131.6, 130.4, 130.3, 129.5, 129.4, 129.2, 124.8, 123.8, 122.9. HRMS (ESI-

TOF-MS) Calcd for [C20H13N3O3Br]+ 
 m/z = 422.0140 Found 422.0140. 
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4-(4-Chlorophenyl)-2-(4-nitrophenyl)quinazoline 3-oxide 4m. Yield 72% (0.055 g). 

Yellow solid, mp 171-172 oC; 1H NMR (400 MHz, CDCl3) δ 8.60 (d, J = 8.8 Hz, 2H), 

8.35 (d, J = 8.8 Hz, 2H), 8.11 (d, J = 8.4 Hz, 1H), 7.81 (dd, J = 8.6, 6.8 Hz, 1H), 7.67 – 

7.57 (m, 5H), 7.53 (d, J = 8.3 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ  δ 149.0, 141.2, 

138.4, 136.9, 131.8, 131.7, 131.6, 130.5, 129.5, 129.4, 129.3, 127.1, 124.9, 123.9, 123.1, 

109.9. HRMS (ESI-TOF-MS) Calcd for [C20H13N3O3Cl]+ 
 m/z = 378.0645 Found 

378.0645. 

 

4-(4-Formylphenyl)-2-phenylquinazoline 3-oxide 4n.  Yield 75% (0.049 g). Yellow 

solid, mp   110-111 oC;1H NMR (400 MHz, CDCl3) δ 10.15 (s, 1H), 8.35 (dd, J = 7.8, 2.0 

Hz, 2H), 8.12 (dd, J = 10.4, 8.2 Hz, 3H), 7.83 (d, J = 8.1 Hz, 2H), 7.81 – 7.72 (m, 1H), 

7.62 – 7.46 (m, 5H). 13C NMR (101 MHz, CDCl3) δ 191.8, 141.4, 137.4, 135.8, 135.4, 

133.5, 132.2, 131.5, 131.3, 131.2, 130.7, 130.1, 129.8, 129.3, 128.2, 124.5, 123.5. HRMS 

(ESI-TOF-MS) Calcd for [C21H15N2O2]
+ m/z = 327.1134 Found 327.1134. 

 

4-(4-Methoxyphenyl)-2-(4-nitrophenyl)quinazoline 3-oxide 4o. Yield 76% (0.057 g). 

Yellow solid, mp 166-167 oC;1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 8.9 Hz, 2H), 

8.32 (d, J = 8.9 Hz, 2H), 8.08 (d, J = 8.4 Hz, 1H), 7.77 (ddd, J = 8.3, 6.5, 1.8 Hz, 1H), 

7.60 (dd, J = 18.1, 8.6 Hz, 4H), 7.13 (d, J = 8.7 Hz, 2H), 3.91 (s, 3H). 13C NMR (101 

MHz, CDCl3) δ 161.1, 152.0, 148.7, 141.2, 138.6, 136.1, 131.9, 131.7, 131.4, 129.9, 

129.0, 125.5, 124.2, 122.9, 120.4, 114.2, 55.5. HRMS (ESI-TOF-MS) Calcd for 

[C21H16N3O4]
+ 

 m/z = 374.1141 Found 374.1140. 

 

4-(4-Chlorophenyl)-2-phenylquinazoline 3-oxide 4p. Yield 71% (0.048 g). Yellow 

solid, mp 213-214 oC;1H NMR (400 MHz, CDCl3) δ 8.45 – 8.38 (m, 2H), 8.07 (d, J = 8.4 

Hz, 1H), 7.74 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.65 – 7.52 (m, 6H), 7.51 – 7.44 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 155.5, 150.2, 141.1, 136.3, 132.2, 131.6, 131.1, 131.0, 

129.4, 129.1, 129.0, 127.9, 127.6, 124.6, 123.6, 122.0. HRMS (ESI-TOF-MS) Calcd for 

[C20H14ClN2O]+ 
 m/z = 333.0795   Found 333.0795. 

 

4-(4-Bromophenyl)-2-phenylquinazoline 3-oxide 4q. Yield 73% (0.056 g). Yellow 

solid, mp 181-182 oC; 1H NMR (400 MHz, CDCl3) δ 8.37 – 8.30 (m, 2H), 8.09 (d, J = 8.4 
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Hz, 1H), 7.75 (dd, J = 7.9, 6.0 Hz, 3H), 7.61 – 7.45 (m, 7H). 13C NMR (101 MHz, CDCl3) 

δ 146.0, 135.0, 132.2, 132.0, 131.8, 131.2, 131.0, 130.5, 129.5, 129.0, 128.0, 127.9, 124.7, 

124.7, 123.5, 122.9. HRMS (ESI-TOF-MS) Calcd for [C20H14N2OBr]+ 
 m/z = 377.0289 

Found 377.0289. 

 

4-(4-Formylphenyl)-2-(4-methoxyphenyl)quinazoline 3-oxide 4r. Yield 76% (0.055 

g). Yellow solid, mp 175-176 oC; 1H NMR (400 MHz, CDCl3) δ 10.25 (s, 1H), 8.58 (d, J 

= 8.5 Hz, 2H), 8.20 (dd, J = 23.8, 8.1 Hz, 3H), 7.87 (dd, J = 33.3, 7.9 Hz, 3H), 7.62 (t, J 

= 7.8 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.5 Hz, 2H), 3.98 (s, 3H). 13C NMR 

(101 MHz, CDCl3) δ 191.7, 162.1, 155.0, 151.0, 141.9, 137.3, 135.4, 132.9, 131.8, 131.1, 

130.1, 129.4, 129.0, 124.7, 124.2, 123.1, 113.5, 55.6. HRMS (ESI-TOF-MS) Calcd for 

[C22H17N2O3]
+ 

 m/z = 357.1239 Found 357.1239. 

 

4-(m-Tolyl)-2-(p-tolyl)quinazoline 3-oxide 4s. Yield 76% (0.050 g). Yellow solid, mp 

123-124 oC; 1H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 8.1 Hz, 2H), 8.06 (d, J = 8.4 Hz, 

1H), 7.72 (t, J = 6.9 Hz, 1H), 7.62 – 7.13 (m, 8H), 2.46 (s, 3H), 2.43 (s, 3H). 13C NMR 

(101 MHz, CDCl3) δ 155.5, 151.7, 145.4, 141.3, 141.2, 138.5, 130.8, 130.6, 130.3, 129.6, 

129.3, 128.9, 128.7, 128.6, 127.0, 125.1, 124.5, 123.8, 21.6, 21.6. HRMS (ESI-TOF-MS) 

Calcd for [C22 H19N2O]+ 
 m/z = 327.1497 Found 327.1497. 

 

2-(2-Chlorophenyl)-4-phenylquinazoline 3-oxide 4t. Yield 73% (0.049 g). Yellow 

solid, mp 127-128 oC; 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 8.4 Hz, 1H), 7.79 (dd, 

J = 10.7, 4.0 Hz, 1H), 7.73 – 7.56 (m, 8H), 7.56 – 7.50 (m, 1H), 7.50 – 7.40 (m, 2H). 13C 

NMR (101 MHz, CDCl3) δ 155.7, 151.1, 140.9, 133.7, 133.1, 131.2, 131.1, 130.7, 130.5, 

130.4, 129.9, 129.6, 129.1, 128.7, 128.6, 127.0, 125.4, 124.3. HRMS (ESI-TOF-MS) 

Calcd for [C20H14N2OCl]+ m/z=333.0795 Found 333.0795. 

 

2-(4-Nitrophenyl)quinazoline 5. Yellow solid, mp 200-201 oC; 1H NMR (400 MHz, 

CDCl3) δ 9.53 (s, 1H), 8.83 (d, J = 8.9 Hz, 2H), 8.39 (d, J = 8.9 Hz, 2H), 8.15 (d, J = 8.4 

Hz, 1H), 8.00 (d, J = 8.1 Hz, 2H), 7.71 (t, J = 7.5 Hz, 1H).” The spectrum is identical 

with those in the literature.(Liu et al. 2013) 
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2-(4-Nitrophenyl)-4-phenylquinazoline 6. Yellow solid, mp 207-208 oC; Lit (Jianghe 

Zhu, Yinlin Shao, Kun Hu, Linjun Qi 2018) mp 207-209 oC. 1H NMR (400 MHz, CDCl3) 

δ 8.93 – 8.84 (m, 2H), 8.42 – 8.33 (m, 2H), 8.25 – 8.14 (m, 2H), 7.96 (ddd, J = 8.4, 6.9, 

1.4 Hz, 1H), 7.94 – 7.85 (m, 2H), 7.69 – 7.55 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 

168.5, 157.8, 151.4, 149.2, 137.1, 135.4, 134.2, 130.2, 130.1, 129.6, 129.5, 128.6, 128.1, 

127.2, 123.7, 121.9. 

 

2-(4-Nitrophenyl)quinazolin-4(3H)-one 7a. Yellow solid, mp 285-286 oC; Lit(Shabber 

Mohammed 2015) mp >300°C; 1H NMR (500 MHz, DMSO-d6) δ 11.86 (s, 1H), 8.33 (d, 

J = 8.4 Hz, 2H), 8.17 (d, J = 7.9 Hz, 1H), 8.05 (d, J = 8.3 Hz, 2H), 7.84 (t, J = 7.5 Hz, 

1H), 7.74 (d, J = 8.1 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H). 

 

2-(4-Bromophenyl)quinazolin-4(3H)-one 7b. Yellow solid, mp 289-290 oC; 

Lit(Shabber Mohammed 2015) mp 292- 295°C;  1H NMR (400 MHz, CDCl3) δ 10.14 (s, 

1H), 8.32 (d, J = 8.0 Hz, 1H), 8.03 – 7.96 (m, 2H), 7.85 – 7.80 (m, 2H), 7.74 – 7.68 (m, 

2H), 7.53 (dt, J = 8.1, 4.4 Hz, 1H). 

 

[1,1'-Biphenyl]-4,4'-dicarbaldehyde 8. Yellow solid, mp 128-129 oC; Lit(Seema 

Dwivedi, Soumik Bardhan 2014) mp 146-148 oC.  1H NMR (400 MHz, CDCl3) δ 10.18 

– 10.07 (m, 2H), 8.02 (dt, J = 8.3, 2.0 Hz, 4H), 7.91 – 7.72 (m, 4H). 13C NMR (101 MHz, 

CDCl3) δ 191.9, 145.7, 136.1, 130.5, 128.2. 
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3.3.6. Synthesis of compounds 9.  

 

General Procedure: ZrOCl2.8H2O (0.4 mmol, 0.128 g) was added to a suspension of 

quinazoline 3-oxides 3 (0.2 mmol) in MeOH (1 mL), and the mixture was stirred at 60 oC 

for 44 h. The reaction mixture was diluted with CH2Cl2 and then rinsed three times with 

water. The organic phase that resulted was dried over anhydrous Na2SO4 and vacuum 

concentrated. The crude product was purified using silica gel column chromatography 

with ethyl acetate/petroleum ether (1:2) as the eluent to achieve the desired products. 

 

 

N-(2-((Hydroxyimino)methyl)phenyl)-4-nitrobenzamide 9a. Yield 76% (0.048 g). 

Yellow solid, mp 210-211 oC  1H NMR (400 MHz, DMSO-d6) δ 11.72 (s, 1H), 11.58 (s, 

1H), 8.53 – 8.34 (m, 4H), 8.31 – 8.10 (m, 2H), 7.61 (dd, J = 7.8, 1.6 Hz, 1H), 7.44 (ddd, 

J = 8.5, 7.5, 1.6 Hz, 1H), 7.24 (td, J = 7.6, 1.2 Hz, 1H).  

13C NMR (101 MHz, DMSO-d6) δ 163.8, 150.6, 149.8, 140.1, 137.0, 131.0, 130.4, 129.4, 

125.0, 124.5, 122.3, 121.7. HRMS (ESI-TOF-MS) Calcd for [C14H12N3O4]
+ m/z=286. 

0822 Found 286.0828. 

 

4-Chloro-N-(2-((hydroxyimino)methyl)phenyl)benzamide 9b. Yield 78% (0.043 g). 

White solid, mp 184-185 oC.1H NMR (400 MHz, dmso) δ 11.69 (s, 1H), 11.41 (s, 1H), 

8.41 (d, J = 7.5 Hz, 1H), 8.34 (s, 1H), 7.97 (d, J = 8.6 Hz, 2H), 7.59 (t, J = 8.6 Hz, 3H), 

7.41 (t, J = 7.8 Hz, 1H), 7.26 – 7.13 (m, 1H).13C NMR (101 MHz, dmso) δ 164.7, 151.0, 

137.5, 133.6, 131.3, 130.5, 130.0, 129.6, 129.8, 124.8, 122.2, 121.6. 

 

N-(2-((Hydroxyimino)methyl)phenyl)-4-methylbenzamide 9c. Yield 82% (0.042 g). 

Yellow solid, mp 155-156oC.  1H NMR (400 MHz, dmso) δ 11.70 (s, 1H), 11.38 (s, 1H), 

8.50 (dd, J = 8.4, 1.2 Hz, 1H), 8.35 (s, 1H), 7.87 (d, J = 8.2 Hz, 2H), 7.55 (dd, J = 7.7, 

1.6 Hz, 1H), 7.49 – 7.31 (m, 3H), 7.17 (td, J = 7.5, 1.2 Hz, 1H), 2.38 (s, 3H).13C NMR 

(101 MHz, dmso) δ 165.4, 151.2, 142.6, 137.7, 131.8, 131.4, 130.3, 129.9, 127.9, 124.1, 

121.4, 121.0,  21.5 
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N-(2-((Hydroxyimino)methyl)phenyl)-4-methoxybenzamide 9d. Yield 86% (0.47 g). 

Yellow solid, mp 143-144 oC.  1H NMR (400 MHz, dmso) δ 11.71 (s, 1H), 11.36 (s, 1H), 

8.51 (dd, J = 8.3, 1.2 Hz, 1H), 8.36 (s, 1H), 8.00 – 7.89 (m, 2H), 7.55 (dd, J = 7.8, 1.6 

Hz, 1H), 7.40 (ddd, J = 8.6, 7.4, 1.6 Hz, 1H), 7.17 (td, J = 7.5, 1.2 Hz, 1H), 7.10 – 7.02 

(m, 2H), 3.84 (s, 3H).13C NMR (101 MHz, dmso) δ 165.0, 162.6, 151.3, 137.8, 131.4, 

130.3, 129.8, 126.7, 123.9, 121.3, 120.9, 114.6, 55.9. 

 

N-(2-((Hydroxyimino)methyl)phenyl)-3,4-dimethoxybenzamide 9e. Yield 81% 

(0.049 g). Yellow solid, mp 155-156oC. 1H NMR (400 MHz, dmso) δ 11.53 (s, 1H), 11.16 

(s, 1H), 8.33 (d,1H), 8.25 (s, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.47 

(ddd, J = 7.6, 5.6, 1.8 Hz, 1H), 7.40 (d, J = 2.1 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.99 (dd, 

J = 15.6, 8.5 Hz, 1H), 3.75 (d, J = 3.8 Hz, 6H). 13C NMR (101 MHz,) δ 164.7, 153.1, 

151.0, 142.4, 132.0, 131.0, 130.2, 129.6, 124.5, 124.0, 122.5, 121.1, 120.7, 113.9, 111.0, 

55.9, 55.8. 

 

4-Bromo-N-(2-((hydroxyimino)methyl)phenyl)benzamide 9f. Yield 80% (0.052 g). 

White solid, mp 181-182 oC. 1H NMR (400 MHz, dmso) δ 11.72 (s, 1H), 11.44 (s, 1H), 

8.50 – 8.32 (m, 2H), 8.00 – 7.87 (m, 2H), 7.82 – 7.71 (m, 2H), 7.66 – 7.56 (m, 1H), 7.43 

(d, J = 9.2 Hz, 1H), 7.23 (d, J = 6.5 Hz, 1H). 13C NMR (101 MHz, dmso) δ 164.9, 151.0, 

137.6, 134.0, 132.6, 131.3, 130.6, 130.2, 126.5, 124.8, 122.2, 121.6. 

 

2-Chloro-N-(2-((hydroxyimino)(phenyl)methyl)phenyl)benzamide 9g. Yield 76% 

(0.054 g). Yellow solid, mp 79-80  oC.1H NMR (400 MHz, dmso) δ 11.62 (s, 1H), 11.50 

(s, 1H),  7.91 – 6.82 (m, 13H). 13C NMR (101 MHz, dmso) δ 165.3, 154.0, 137.0, 136.9, 

136.1, 130.6, 130.5, 130.4, 130.2, 129.8, 129.6, 129.4, 128.8, 128.6, 127.6, 127.5, 126.0, 

125.9. 

 

N-(2-((Hydroxyimino)methyl)phenyl)benzamide 9h. Yield 83% (0.040 g). Yellow 

solid, mp 167-168 oC. 1H NMR (400 MHz, dmso) δ 11.73 (s, 1H), 11.44 (s, 1H), 8.50 

(dd, J = 8.4, 1.2 Hz, 1H), 8.37 (s, 1H), 8.05 – 7.95 (m, 2H), 7.67 – 7.54 (m, 4H), 7.42 

(ddd, J = 8.6, 7.4, 1.6 Hz, 1H), 7.20 (td, J = 7.5, 1.2 Hz, 1H). 13C NMR (101 MHz, dmso) 

δ 165.7, 151.3, 137.8, 134.7, 132.7, 131.5, 130.5, 129.6, 128.0, 124.5, 121.9, 121.4. 
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3.3.7. Recyclization procedure for the compound 9a-b.  

 

To a suspension of N-(2-((hydroxyimino)methyl)phenyl)-4-benzamide 9 (0.2 mmol) in 

DMSO (0.5 mL) in the presence of AcOH (20 mol%) catalyst and the mixture was stirred 

at 80 oC for 24 h. The reaction mixture was diluted with CH2Cl2 and then rinsed three 

times with water. The organic phase that resulted was dried over anhydrous Na2SO4 and 

vacuum concentrated. To achieve the desired products 3a-b, the crude product was 

purified using silica gel column chromatography with ethyl acetate/petroleum ether (1:2) 

as the eluent. 
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4. RESULTS and DISCUSSION 

 

4.1. Eco-friendly H2O2 oxidation of 1,2-dihydroquinazoline-3-oxides to quinazoline-

3-oxides. 

4.1.1. Optimization reaction conditions for the synthesis of compounds 2. 

 

As a continuation of our investigations on the reactions of cyclic nitrones like 3,4-

dihydroisoquinoline-2-oxides (Coşkun and Tunçman 2006)  and 2,5-dihydro-1H-

imidazole-3-oxides (Coşkun and Ay 1998, Coşkun and Çetin 2010) and photochemical 

conversions of quinazoline-1-oxides (Coşkun and Çetin 2007) we needed a series of 4-

unsubstituted-quinazoline-3-oxides 3a-j to investigate their photochemical as well as 

thermal behaviours. To begin with, we have prepared first compounds 2a-j from the 

reaction of amino oximes 1 with the corresponding aldehydes (Chen and Din 2013, 

Rasouli et al. 2017) (Scheme 4.1). The optimization (Table 1) of the reaction conditions 

was conducted in the case of aminobenzaldehyde oxime and p-nitrobenzaldehyde (Table 

4.1). 

Table 4.1. Optimization of the reaction conditions for the synthesis of compounds 2.

 

 

 

 

 

 

aAll reactions were performed in 20 mL of solvent using equivalent amounts of oxime 1 

(1 mmol) and the corresponding aldehyde. at room temperature the reaction mixtures 

were stirred for 24 h. In the case of entry 1, 0.02 mol% AgOTf was used as a catalyst.bThe 

solvent ratio is 1/1. 

Entrya Solvent (cat) Yield 

(%) 

1 CH2Cl2 (AgOTf) 94 

2 CH2Cl2 96 

3 CHCl3 96 

4 Benzene 93 

5 Toluene 94 

6 MeOH / H2O
b 91 

7 EtOH 97 



   

 

62 

 

The reaction was first performed in CH2Cl2 at room temperature using AgOTf as a 

catalyst and the corresponding 2a was obtained in 94% yield. The yield of the reaction in 

the same solvent was 96% when it was performed in the absence of the catalyst. 

Chloroform, benzene and toluene were also good media for the conversion of 1 into 2a. 

However, ethanol proved to be the best solvent for the reaction at room temperature. 

 

4.1.2. Synthesis of 1,2-dihydroquinazoline-3-oxides from the oxime. 

 

Equimolar amounts of amino oxime 1 and aromatic aldehydes were dissolved in ethanol 

and stirred at room temperature for ca 24 h. In all cases except 2f the products are 

precipitating and easily isolated by filtration. The precipitates were washed several times 

with warm hexane then dried under vacuum. The structures and the yields of compounds 

2a-m are presented in Table 4.2.  

Compounds 2k-l and 3k-l are known, (Chen and Yang 2013, Ye et al. 2019) however to 

the best of our knowledge a method for the synthesis and characterization data for 2a-j 

and 3a-j are not available in the literature. Therefore, we propose a simple high yielding 

procedures for the synthesis of compounds 2a-m and their oxidation with H2O2-tungstate 

in THF to the synthetically important quinazoline-3-oxides 3a-m. The newly prepared 

compounds were characterized by spectral as well as analytical methods. 
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Table 4.2. Structures and yieldsa,b of 1,2-dihydroquinazoline-3-oxides 2a-m. 

 
aIsolated yields: bReaction conditions: amino oxime 1 and aldehyde each 1 mmol, 

dissolved in EtOH (20 mL) were stirred at room temperature for 24 h (for compounds 2k-

m, 47 h).  
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4.1.3. Optimization of the reaction conditions for the synthesis of compounds 3. 

 

Compound 2a was subjected to oxidation with AgOTf, MnO2 and KMnO4 (Table 4.3, 

entries 1-3) in DMSO and the reaction product 3a was formed only in the cases of entries 

2-3 in low yields. No product formation was observed in the case of AgOTf (Table 4.3, 

entry 1). The use of MnO2 and KMnO4 without solvent did not produce the expected 3a 

(Table 4.3, entries 4-5). The use of KMnO4/MnO2 mixtures in DMSO and DMF or 

without solvent produced the quinazoline-3-oxide in moderate yields (Table 4.3, entries 

6-8). The oxidation of 2a with the H2O2-Na2WO4 in THF-H2O and THF provided the 

formation of product 3a in high yields at room temperature (Table 4.3, entries 9-10). The 

use of dry THF proved to be the better choice as a reaction solvent. 

 

Table 4.3. Optimization of the reaction conditions for the synthesis of compounds 3. 

 

Entry Solvent Oxidizing  

agent 
Time (h) Temp (oC) 

Yield  

(%)a 

1 DMSOb AgOTfc 8 90 - 

2 DMSOb MnO2
c 23 130 52 

3 DMSOb KMnO4
c 22 130 43 

4 - MnO2
c 8 rt - 

5 - KMnO4
c 5 rt - 

6 DMSOb KMnO4/ MnO2
d 23 100 49 

7 DMFb KMnO4/ MnO2
d 20 100 47 

8 - KMnO4/ MnO2
d 21 rt 52 

9 THF/H2O
f H2O2-Na2WO4

e 24 rt 74 

10 THFb H2O2-Na2WO4
e 24 rt 92 

aIsolated yields; bThe reactions were performed in 4 mL of solvent with 1 mmol of 2a; c1 

mmol of the oxidizer was used; dThe ratio is 0.3 / 0.7; e 4 / 0.05; f4 mL (1/1). 
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4.1.4. Synthesis of quinazoline-3-oxides 3 from the 1,2-quinazoline-3-oxides 2. 

 

Compounds 2a-m were subjected to H2O2-tungstate in THF under the optimized 

conditions to give compounds 3a-m in good to high yields (Table 4.4). The structures of 

compounds 3 were elucidated by elemental analysis, 1H and 13C NMR data. 4-Methyl-2-

(4-nitrophenyl)-1,2-dihydroquinazoline-3-oxide 2k was identical with the one obtained 

by irradiation of 1k in acetonitrile in the presence of Ru(bpy)3Cl2. ( Chen and Yang 2013) 

The first 4-unsubstituted quinazoline-3-oxide 3b was obtained in our lab as a by-product 

from the oxidation of corresponding tetrahydroquinazoline. (Coşkun and Çetin 2007) The 

physical and spectral data for 3b obtained by oxidation of 2b with H2O2-tungstate were 

the same as for our previously reported one. 

Table 4.4. Oxidation of 1,2-dihydroquinazoline-3-oxidesa,b 2a-m with H2O2-Na2WO4 in 

THF at rt. 

 

aIsolated yields; The yields in the parenthesis are according to the one-pot procedure. 
bReaction conditions: To the solution of compound 2 (1 mmol) in THF (4 mL), H2O2 (4 

mmol, 35%, 0.389 g) and Na2WO4.2H2O (0.05 mmol, 0.017 g) were added and at room 

temperature the mixture was stirred (for compounds 3a-j 20-24 h). For the compounds 

3k-m the reaction was performed at 60 oC (47 h).    
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4.1.5. Synthesis of quinazoline-3-oxides 3 from Oxime in one pot procedure. 

 

One-pot procedure involving the short time stirring of the amino oxime and aldehyde 

mixture in THF and addition of the oxidizing system provided compounds 3b, c,e-g,i with 

improved overall yields (Scheme 4.3, Table 4.4). 

 
Scheme 4.3. One-pot synthesis of compounds 3b,c,e-g,i 

 

 

4.2. Mn(OAc)3 Induced C-4 Arylations of quinazoline 3-oxides with arylboronic 

acids  

 

4.2.1. Search for oxidant in the direct arylation of compounds 3. 

 

The reaction between 2-(4-nitrophenyl)quinazoline 3-oxide 3a and phenylboronic acid 

was used as a model to find an oxidant in the C-4 arylation of quinazoline 3-oxides with 

arylboronic acids. The reactions were performed in MeCN at 60 oC (Table 1). C-H 

arylation product 4a is forming in trace amounts in the case of MnO2 (Table 1, entry 1). 

The work up of the reaction mixture after 23 h and column chromatography provided  2-

(4-nitrophenyl)-4-phenylquinazoline (Jianghe et al. 2018, Yizhe et al. 2016) and the 2-(4-

nitrophenyl)quinazoline  (Liu et al. 2013) in 70 and 25% yields respectively. 
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Table 4.5. Search for oxidant in the direct arylation of compounds 3. 

 

 
 

Entry Oxidanta  Yield (%) 

1 MnO2  trace 

2 Mn(OAc)3. 2H2O  42 

3 KMnO4  11 

4 ZrOCl2. 8H2O  0b 

5 CeO2  0 

6 H2O2  0 
a For 23 hours, 0.2 mmol of 4a was exposed to equivalent amounts of the oxidants and 

1.5 eqv of PhB(OH)2.
bThe product was N-(2-((hydroxyimino)methyl)phenyl)-4-

nitrobenzamide 

 

 

The isolated yields of the product in the cases of Mn(OAc)3. 2H2O and KMnO4 were 42 

and 11%, respectively (Table 4.5, entries 2-3). ZrOCl2. 8H2O, CeO2 and H2O2 proved to 

be inefficient oxidants in the C-H arylation of quinazoline 3-oxides (Table 4.5, 4-6). The 

reaction without oxidant did not produce any product after 44 h heating in acetonitrile. 

To our surprise, the reaction in the presence of ZrOCl2. 8H2O lead to a compound that 

was proved to be N-(2-((hydroxyimino)methyl)phenyl)-4-nitrobenzamide 9a (Scheme 

4.5). 

 

Scheme 4.5. Synthesis of compound 9a 
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4.2.2. Optimization of the arylation of quinazoline 3-oxide reaction conditions. 

 

Table 4.6. Optimization of the arylation of quinazoline 3-oxide reaction conditions.  

 

 
 

Entry
a 
 

Mn(OAc)3.2H2O 

(eqv) 

Solvent Time 

(h) 

Phenylboronic acid 

(eqv) 

Yield 

(%)b 

1  (1) MeCN 23 1.5 42 

2  (1) AcOH 23 1.5 0 

3  (1) Dioxane 23 1.5 34 

4  (1) DMSO 23 1.5 trace 

5  (1) Toluene 23 1.5 30 

6  (1) EtOH 23 1.5 0 

7  (1) MeOH 23 1.5 trace 

8  (1) MeCN 44 1.5 45 

9  (2.5) MeCN 44 3 63 

10  (3) MeCN 44 3 71 
aThe reactions were carried out at 60 oC using 3a (0.2 mmol), 1.0 mL of solvent, and 3a 

(0.2 mmol).bAfter column chromatography, yields are given for separated products. 
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The use of AcOH, DMSO, EtOH and MeOH did not produce any arylation product (Table 

4.6, entries 2,4,6-7). The yield in MeCN, dioxane and toluene were 42, 34 and 30%, 

respectively (Table 4.6, entries 1,3,5). Prolonging the reaction time slightly increased the 

yield (entry 8). Increasing the amount of the oxidant and the phenylboronic acid improved 

the yields (Table 4.6, entries 9-10). Under the optimized conditions, we have screened a 

series of bases like Cs2CO3, K2CO3, Na2CO3, NaHCO3 and NaOAc each 2 eqvs. TLC 

analysis of the reaction mixtures revealed that in the presence of Cs2CO3 4a was almost 

undetectable. The results in the cases of Na2CO3 and NaHCO3 were similar. Only in the 

cases of K2CO3 and NaOAc 2a was isolated in 66 and 67%, respectively. In the cases of 

Cs2CO3, Na2CO3 and NaHCO3, the products isolated were proved to be the 2-(4-

nitrophenyl)quinazolin-4(3H)-one (yield, 49, 45 and 59% respectively). Under the same 

conditions, 3b produced 2-(4-bromophenyl)quinazolin-4(3H)-one (yield, 42, 46 and 52% 

respectively). The mps and NMR characteristics of the corresponding quinazolin-4(3H)-

ones were the same as reported in the literature (Mohammed 2015).  The use of 20 mol% 

of copper salts like Cu(OAc)2 and CuCl diminished the reaction yields (62 and 64%, 

respectively). 

 

4.2.3. C-4 Phenylation of 2-arylquinazoline 3-oxides. 

 

C-2 Aryl(hetaryl) substituted compounds 3 were treated with phenylboronic acid under 

the optimized conditions to give the corresponding 4a-j in good to high (71-83%) yields 

(Table 4.7). It is seen that the developed method tolerates well all types of substituents on 

the aromatic rings at C-2 of the quinazoline 3-oxide ring. The second series of compounds 

4k-t was synthesized by combining compounds 3 and differently substituted arylboronic 

acids. Compounds 4 were isolated in 71-78% yields (Table 4.8) and characterized by 1H 

and 13C NMR analysis. The elemental composition of the newly prepared 4 was 

determined by HRMS analysis.  
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Table 4.7. C-4 Phenylation of 2-arylquinazoline 3-oxides.a,b 

 

 

 
 

aReaction conditions: (44 h), Mn(OAc)3.2H2O (0.6 mmol, 0.160 g), 60 oC, 1 (0.2 mmol), 

arylboronic acid (0.6 mmol), solvent (1.0 mL), bAfter column chromatography, yields are 

given for separated products. 
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Table 4.8. C-4 Arylation of 2-arylquinazoline 3-oxides.a,b 

 

 
 

aReaction conditions: (44 h), Mn(OAc)3.2H2O (0.6 mmol, 0.160 g), 60 oC, 1 (0.2 mmol), 

arylboronic acid (0.6 mmol), solvent (1.0 mL), bAfter column chromatography, yields are 

given for separated products. 
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4.2.4. A plausible mechanism for the Phenylation of 2-arylquinazoline 3-oxides. 

 

Mn(III) induced carbon-boron bond homolysis provides phenyl radical (Ramesh et al. 

2018)  A which attack the C-4 position of quinazoline 3-oxide 3 is producing intermediate 

B. One more electron transfer from B to Mn(III) could provide C, and its deprotonation 

facilitated by the acetate anion is giving rise to the formation of 4.   

 
 

Scheme 4.7. A possible process for the arylation of compounds 3 with arylboronic acids 

by Mn(OAc)3 

 

A byproduct from the reactions of (4-formylphenyl)boronic acid and the corresponding 

quinazoline 3-oxides was isolated as a yellow solid and characterized to be the 

corresponding [1,1'-Biphenyl]-4,4'-dicarbaldehyde. The formation of the latter is in good 

agreement with the proposed free radical pathway in the formation of compounds 4.  
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4.3. ZrOCl2 ring-opening of quinazoline-3-oxides and recyclization in DMSO using 

catalytic amounts of an acid 

  

Table 4.9. Optimization of the reaction conditions for the synthesis of compounds 9 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aReaction conditions: (23 h), the solvent (1.0 mL) and at 60 oC, 3a (0.2 mmol), ZrOCl2 

(0.4 mmol) bAfter column chromatography, yields are given for separated products. 

 

The reaction between 2-(4-nitrophenyl)quinazoline 3-oxide 3a and ZrOCl2.8H2O was 

utilized as a model to discover optimum reaction conditions for obtaining the desired ring-

opening product 9. Initially, the reactions were carried out in MeCN at 80oC. shows the 

desired product 9a in 25% yield (Table 4.9, entry 1). Like such examined, The yield in 

MeCN, DMSO, DMF, NMP and MeOH were 22, 24,28 and 42%, respectively (Table 

Entry ZrOCl2. 8H2O(eqv)   Solvent Yield of 9 (%) 

1  (1) MeCN 25 

2  (1) DMSO 22 

3  (1) DMF 24 

4  (1) NMP 28 

5  (1) MeOH 42 

6  (1) MeOH 46 

7  (1) MeOH 38 

8  (1) MeOH 58 

9  (1.5) MeOH 62 

10  (2) MeOH 76 

11  (2.5) MeOH 44 
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4.9, entries 2,3,4,5). The amount of ZrOCl2.8H2O was also examined. Increasing the 

amount of the ZrOCl2.8H2O from 1 to 2 equiv. Improved the yields, and product 9a 

obtained the highest yield (76%) (Table 4.9, entries 6-10). Further, increasing in the 

quantity of ZrOCl2.8H2O to 2.5 equiv. had no improvement on the yield (Table 4.9, entry 

11). 

 

4.3.1. ZrOCl2 ring-opening of quinazoline-3-oxides. 

 

Under optimal condition, quinazoline-3-oxides 3 were treated with ZrOCl2.8H2O to 

generate the corresponding 9a-h in good to high yields (76-86%)  (Table 10). This method 

appears to tolerate all forms of substituents on the aromatic rings at C-2 of the quinazoline 

3-oxide ring quite well. 1H and 13C NMR studies were used to describe the substance. 

HRMS analysis was used to identify the elemental makeup of the newly produced 9.  

 

4.3.2. A plausible mechanism for the ZrOCl2 induced ring-opening of quinazoline-

3-oxides. 

 

As indicated in (Scheme 4.9.) proposes a probable mechanism for this reaction. ZrOCl2 

reacts with quinazoline-3-oxide 3 via ZrOCl2 is co-ordinated into the N1-position and 

activated C2 position to attacked by the nucleophile of compound 3 to give intermediate 

1’. Then hydrolysis occurs when the H2O molecule nucleophile attacked to c2 position 

with intermediate 1’ to provide intermediate 1’’. Then release ZrOCl2 from intermediate 

1’’ to give the desired product 9. 

 

 

 

Scheme 4.9. Probable mechanism for the ZrOCl2 induced ring-opening of quinazoline-

3-oxides. 
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Table 4.10. ZrOCl2 ring-opening of quinazoline-3-oxides 3.a-b 

 

 

 
aReaction conditions: (23-24 h), the solvent (1.0 mL) and at 60 oC, 3a (0.2 mmol), ZrOCl2 

(0.4 mmol) bafter column chromatography, byields are given for separated products. 
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4.3.3. Recyclization of compound 9 

 

N-(2-((hydroxyimino)methyl)phenyl)-4-benzamide 9a-b (0.2 mmol) in DMSO (0.5 mL) 

in the presence of AcOH (20 mol%) catalyst and at 80 oC, the mixture was stirred for 24 

h. to give the desire product 3a-b as 62% & 65% yield (Scheme 4.10, Table 4.10). 

 

 

 

 

Scheme 4.10. Synthesis of quinazoline-3-oxides 3 from N-(2-((hydroxyimino)methyl) 

phenyl)-4-benzamide 9. 
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5. CONCLUSION  

 

5.1. Eco-friendly H2O2 oxidation of 1,2-dihydroquinazoline-3-oxides to quinazoline-

3-oxides  

 

Thus the developed methods provide the synthesis of 1,2-dihydroquinazoline- 2a-m and 

quinazoline-3-oxides 3a-m in high yields at room temperature. The method for the 

synthesis of compounds 2 involves the none photochemical, expensive metal complexes 

free condensation of compounds 1 with the corresponding aldehydes. The ease of the 

product isolation, simply filtering the formed precipitate, is another advantage to worth 

mentioning. Compounds 3 were prepared by oxidation of isolated 2 in high yields at room 

temperature using H2O2-tungstate system. Compounds 3 can also be obtained in improved 

overall yields and for shorter reaction times when the mixture of 1 and the aromatic 

aldehyde in THF is treated with the above mentioned oxidizing system.   

  

5.2.  Mn(OAc)3 Induced C-4 Arylations of quinazoline 3-oxides with arylboronic 

acids. 

 

A novel method for the synthesis of 2,4-diarylated quinazoline 3-oxides 4a-t was 

developed. The starting 2-aryl-quinazoline 3-oxides 3, available according to our 

previously reported procedure, were arylated in good to high yields using arylboronic 

acids. An easily removable solvent like acetonitrile was proved to be the best among the 

screened solvent series. Manganese triacetate was demonstrated to be the best oxidant in 

comparison with MnO2, KMnO4, ZrOCl2 8H2O, CeO2 and H2O2. A variety of substituents 

on the C2-Ar group and on the arylboronic acid were well tolerated under the optimized 

reaction conditions. A plausible free radical reaction mechanism involving the aryl radical 

addition to C-4 and the single-electron oxidation of the latter was discussed. The reaction 

of 2-(p-nitrophenyl)-1,2-dihydroquinazoline 3-oxide with ZrOCl2.8H2O in MeOH lead to 

the formation of hydrolytic ring-opening product (E)-N-(2-

((hydroxyimino)methyl)phenyl)-4-nitrobenzamide. 
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5.3. ZrOCl2 ring-opening of quinazoline-3-oxides and recyclization in DMSO using 

catalytic amounts of an acid 

 

N-(2-((hydroxyimino)methyl)phenyl)-4-benzamide 9a-h was synthesized using a new 

technique. The starting quinazoline 3-oxides 3, available according to our previously 

reported procedure, were ring opening in good to high yields by using ZrOCl2.8H2O. 

Methanol, a readily removable solvent, was found to be the best of the screening solvent 

series. Under the optimized reaction conditions, a variety of substituents on the C2-Ar 

group and on the arylboronic acid were well tolerated. It can be recycled in DMSO with 

catalytic quantities of acid to produce quinazoline-3-oxides 3. 
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APPX 1 IR and NMR spectra of compound 1 
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APPX 1.2 1H NMR (600 MHz, Chloroform-d) of compound 1 

 

 

APPX 1.3 13C NMR (151 MHz, Chloroform-d) of compound 1 
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APPX 2 IR and NMR Spectra of compound 2 

 

 

 

 

APPX 2.1 IR Spectra of compound 2a 
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APPX 2.2 1H NMR (600 MHz, DMSO-d6) of compound 2a  

 

 

APPX 2.313C NMR (151 MHz, DMSO-d6) of compound 2a 
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APPX 2.4 IR Spectra of compound 2b 
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APPX 2.5 1H NMR (600 MHz, DMSO-d6) of compound 2b 

 

 

APPX 2.6 13C NMR (151 MHz, DMSO) of compound 2b 
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APPX 2.7 IR spectra of compound 2c 
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APPX 2.8 1H NMR (600 MHz, DMSO-d6) of compound 2c 

 

 

APPX 2.9 13C NMR (151 MHz, DMSO-d6) of compound 2c 



   

 

95 

 

 

 
APPX 2.10 IR spectra of compound 2d 
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APPX 2.11 1H NMR (600 MHz, DMSO-d6) of compound 2d 

 

 

APPX 2.12 13C NMR (151 MHz, DMSO) of compound 2d 
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APPX 2.13 IR spectra of compound 2e 
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APPX 2.14 1H NMR (400 MHz, CDCl3) of compound 2e 
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APPX 2.16 IR spectra of compound 2f 

 

 



   

 

100 

 

 

APPX 2.17 1H NMR (500 MHz, DMSO-d6) of compound 2f 
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101 

 

 

 

APPX 2.19 IR spectra of compound 2g 
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APPX 2.20 1H NMR (600 MHz, DMSO-d6) of compound 2g 

 

 

APPX 2.21 13C NMR (151 MHz, DMSO) of compound 2g 
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APPX 2.22 IR spectra of compound 2h 
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APPX 2.23 1H NMR (600 MHz, DMSO-d6) of compound 2h 

 

 

APPX 2.24 13C NMR (151 MHz, DMSO-d6) of compound 2h 
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 APPX 2.25 IR spectra of compound 2i 

 

 



   

 

106 

 

 

APPX 2.26 1H NMR (400 MHz, Chloroform-d) of compound 2i 

 

 

APPX 2.27 13C NMR (101 MHz, Chloroform-d) of compound 2i 
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APPX 2.28 IR spectra of compound 2j 
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APPX 2.29 1H NMR (400 MHz, Chloroform-d) of compound 2j 

 

 

APPX 2.30 13C NMR (101 MHz, CDCl3) of compound 2j 
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APPX 2.31 1H NMR (400 MHz, Chloroform-d) of compound 2k 
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APPX 2.33 1H NMR (400 MHz, Chloroform-d) of compound 2l 

 

 

APPX 2.34 13C NMR (101 MHz, CDCl3) of compound 2l 
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APPX 2.35 1H NMR (400 MHz, Chloroform-d) of compound 2m 

 

 

APPX 2.36 13C NMR (101 MHz, CDCl3) of compound 2m  



   

 

112 

 

APPX 3 IR and NMR Spectra of compound 3 
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APPX 3.2 1H NMR (600 MHz, DMSO-d6) of compound 3a 

 

APPX 3.3 13C NMR (151 MHz, DMSO) of compound 3a 
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APPX 3.4 IR spectra of compound 3b 
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APPX 3.5 1H NMR (600 MHz, Chloroform-d) of compound 3b 

 

 

APPX 3.6 13C NMR (151 MHz, CDCl3) of compound 3b 
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APPX 3.7 IR spectra of compound 3c 
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APPX 3.81H NMR (600 MHz, Chloroform-d) of compound 3c 

 

 

APPX 3.9 13C NMR (151 MHz, Chloroform-d) of compound 3c 
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APPX 3.10 IR spectra of compound 3d 
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APPX 3.11 1H NMR (600 MHz, Chloroform-d) of compound 3d 

 

 

APPX 3.12 13C NMR (151 MHz, Chloroform-d) of compound 3d 
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APPX 3.13 IR spectra of compound 3e 
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APPX 3.14 1H NMR (400 MHz, Chloroform-d) of compound 3e 

 

 

APPX 3.15 13C NMR (101 MHz, Chloroform-d) of compound 3e 
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APPX 3.16 IR spectra of compound 3f 
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APPX 3.17 1H NMR (400 MHz, Chloroform-d) of compound 3f 

 

 

APPX 3.18 13C NMR (101 MHz, Chloroform-d) of compound 3f 
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APPX 3.19 IR spectra of compound 3g 
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APPX 3.20 1H NMR (400 MHz, Chloroform-d) of compound 3g 

 

 

APPX 3.21 13C NMR (101 MHz, Chloroform-d) of compound 3g 
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APPX 3.22 1H NMR (400 MHz, Chloroform-d) of compound 3h 

 

 

APPX 3.23 13C NMR (101 MHz, Chloroform-d) of compound 3h 
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APPX 3.24 1H NMR (400 MHz, Chloroform-d) of compound 3i 

 

 

APPX 3.25 13C NMR (101 MHz, Chloroform-d) of compound 3i 
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APPX 3.26 1H NMR (400 MHz, Chloroform-d) of compound 3j 

 

 

APPX 3.27 13C NMR (101 MHz, Chloroform-d) of compound 3j 
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APPX 3.28 1H NMR (400 MHz, Chloroform-d) of compound 3k 

 

 

APPX 3.29 13C NMR (101 MHz, Chloroform-d) of compound 3k 
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APPX 3.30 1H NMR (400 MHz, Chloroform-d) of compound 3l 

 

 

APPX 3.31 13C NMR (101 MHz, Chloroform-d) of compound 3l 
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APPX 3.32 1H NMR (400 MHz, Chloroform-d) of compound 3m 

 

 

APPX 3.33 13C NMR (101 MHz, Chloroform-d) of compound 3m 
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APPX 3.34 1H NMR (400 MHz, Chloroform-d) of compound 3n 

 

 

 

 

APPX 3.35 13C NMR (101 MHz, Chloroform-d) of compound 3n  
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APPX 4 NMR and HRMS Spectra of compound 4 

 

 

APPX 4.1 1H NMR (400 MHz, Chloroform-d) of compound 4a 

 

 

APPX 4.2 13C NMR (101 MHz, Chloroform-d) of compound 4a 
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APPX 4.3 HRMS (ESI-TOF-MS) of compound 4a 
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APPX 4.4 1H NMR (400 MHz, Chloroform-d) of compound 4b 

 

 

APPX 4.5 13C NMR (101 MHz, Chloroform-d) of compound 4b 
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APPX 4.6 HRMS (ESI-TOF-MS) of compound 4b 
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APPX 4.7 1H NMR (400 MHz, Chloroform-d) of compound 4c 

 

 

APPX 4.813C NMR (101 MHz, Chloroform-d) of compound 4c 
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APPX 4.9 HRMS (ESI-TOF-MS) of compound 4c 
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APPX 4.10 1H NMR (400 MHz, Chloroform-d) of compound 4d 

 

 

APPX 4.11 13C NMR (101 MHz, Chloroform-d) of compound 4d 
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APPX 4.12 HRMS (ESI-TOF-MS) of compound 4d 
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APPX 4.13 1H NMR (400 MHz, Chloroform-d) of compound 4e 

 

 

APPX 4.14 13C NMR (101 MHz, Chloroform-d) of compound 4e 
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APPX 4.15 HRMS (ESI-TOF-MS) of compound 4e 
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APPX 4.16 1H NMR (400 MHz, Chloroform-d) of compound 4f 

 

 

APPX 4.17 13C NMR (101 MHz, Chloroform-d) of compound 4f 
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APPX 4.18 HRMS (ESI-TOF-MS) of compound 4f 
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APPX 4.19 1H NMR (400 MHz, Chloroform-d) of compound 4g 

 

 

APPX 4.20 13C NMR (101 MHz, Chloroform-d) of compound 4g 
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APPX 4.21 HRMS (ESI-TOF-MS) of compound 4g 
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APPX 4.22 1H NMR (400 MHz, Chloroform-d) of compound 4h 

 

 

APPX 4.23 13C NMR (101 MHz, Chloroform-d) of compound 4h 
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APPX 4.24 HRMS (ESI-TOF-MS) of compound 4h 
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APPX 4.25 1H NMR (400 MHz, Chloroform-d) of compound 4i 

 

 

APPX 4.26 13C NMR (101 MHz, Chloroform-d) of compound 4i 
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APPX 4.27 HRMS (ESI-TOF-MS) of compound 4i 
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APPX 4.28 1H NMR (400 MHz, Chloroform-d) of compound 4j 

 

 

APPX 4.29 13C NMR (101 MHz, Chloroform-d) of compound 4j 
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APPX 4.30 HRMS (ESI-TOF-MS) of compound 4j 
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APPX 4.31 1H NMR (400 MHz, Chloroform-d) of compound 4k 

 

 

APPX 4.32 13C NMR (101 MHz, Chloroform-d) of compound 4k 
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APPX 4.33 HRMS (ESI-TOF-MS) of compound 4k 
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APPX 4.34 1H NMR (400 MHz, Chloroform-d) of compound 4l 

 

 

APPX 4.35 13C NMR (101 MHz, Chloroform-d) of compound 4l 
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APPX 4.36 HRMS (ESI-TOF-MS) of compound 4l 
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APPX 4.37 1H NMR (400 MHz, Chloroform-d) of compound 4m 

 

 

APPX 4.38 13C NMR (101 MHz, Chloroform-d) of compound 4m 
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APPX 4.39 HRMS (ESI-TOF-MS) of compound 4m 
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APPX 4.40 1H NMR (400 MHz, Chloroform-d) of compound 4n 

 

 

APPX 4.41 13C NMR (101 MHz, Chloroform-d) of compound 4n 
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APPX 4.42 HRMS (ESI-TOF-MS) of compound 4n 
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APPX 4.43 1H NMR (400 MHz, Chloroform-d) of compound 4o 

 

 

APPX 4.44 13C NMR (101 MHz, Chloroform-d) of compound 4o 
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APPX 4.45 HRMS (ESI-TOF-MS) of compound 4o 
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APPX 4.46 1H NMR (400 MHz, Chloroform-d) of compound 4p 

 

 

 

APPX 4.47 13C NMR (101 MHz, Chloroform-d) of compound 4p 
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APPX 4.48 HRMS (ESI-TOF-MS) of compound 4p 
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APPX 4.49 1H NMR (400 MHz, Chloroform-d) of compound 4q 

 

 

APPX 4.50 13C NMR (101 MHz, Chloroform-d) of compound 4q 
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APPX 4.51 HRMS (ESI-TOF-MS) of compound 4q 
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APPX 4.52 1H NMR (400 MHz, Chloroform-d) of compound 4r 

 

 

APPX 4.53 13C NMR (101 MHz, Chloroform-d) of compound 4r 



   

 

168 

 

 

 

APPX 4.54 HRMS (ESI-TOF-MS) of compound 4r 
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APPX 4.55 1H NMR (400 MHz, Chloroform-d) of compound 4s 

 

 

APPX 4.56 13C NMR (101 MHz, Chloroform-d) of compound 4s 
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APPX 4.57 HRMS (ESI-TOF-MS) of compound 4s 
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APPX 4.58 1H NMR (400 MHz, Chloroform-d) of compound 4t 

 

 

APPX 4.59 13C NMR (101 MHz, Chloroform-d) of compound 4t 
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APPX 4.60 HRMS (ESI-TOF-MS) of compound 4t 
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APPX 5  NMR Spectra of compound 5 

 

 

APPX 5.1 1H NMR (500 MHz, Chloroform-d) of Compound 5 

 

APPX 5.2 13C NMR (125 MHz, Chloroform-d) of compound 5  
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APPX 6 NMR Spectra of compound 6 

 

APPX 6.1 1H NMR (400 MHz, Chloroform-d) of compound 6 

 

APPX 6.2 13C NMR (101 MHz, Chloroform-d) of compound 6 
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 APPX 7 NMR Spectra of compound 7 

 

 

APPX 7.1  1H NMR (500 MHz, DMSO-d6) of compound 7a 
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APPX 7.21H NMR (400 MHz, Chloroform-d6) of compound 7b 
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APPX 8  NMR Spectra of compound 8 

 

 

APPX 8.1 1H NMR (400 MHz, Chloroform-d) of compound 8 

 

APPX 8.2 13C NMR (101 MHz, Chloroform-d) of compound 8  
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APPX 9 NMR and HRMS Spectra of compound 9 

 

 

APPX 9.1 1H NMR (400 MHz, DMSO-d6) of compound 9a 

 

APPX 9.2 13C NMR (101 MHz, DMSO-d6) of compound 9a 
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APPX 9.3 Supporting file-1HRMS (ESI-TOF-MS) of compound 9a 
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APPX 9.4 1H NMR (400 MHz, DMSO-d6) of compound 9b 

 

 
APPX 9.5 13C NMR (101 MHz, DMSO-d6) of compound 9b 
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APPX 9.6 1H NMR (400 MHz, DMSO-d6) of compound 9c 

   

 

APPX 9.7 13C NMR (101 MHz, DMSO-d6) of compound 9c 
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APPX 9.8 1H NMR (400 MHz, DMSO-d6) of compound 9d 

 

 

APPX 9.9 13C NMR (101 MHz, DMSO-d6) of compound 9d 
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APPX 9.10 1H NMR (400 MHz, DMSO-d6) of compound 9e 

 

 

APPX 9.11 13C NMR (101 MHz, DMSO-d6) of compound 9e 
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APPX 9.12 1H NMR (400 MHz, DMSO-d6) of compound 9f 

 

APPX 9.13 13C NMR (101 MHz, DMSO-d6) of compound 9f 
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APPX 9.14 1H NMR (400 MHz, DMSO-d6) of compound 9g 

 

 

APPX 9.15 13C NMR (101 MHz, DMSO-d6) of compound 9g 
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APPX 9.16 1H NMR (400 MHz, DMSO-d6) of compound 9h 

 

 
 

 

APPX 9.17 13C NMR (101 MHz, DMSO-d6) of compound 9h  
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