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Pure Bending of Elliptical Ring Sector with
Cross Section of Multi-Connected Region
Composed of Confocal Ellipses*

Yagar PALA**

In this study, internal stresses of an elliptical ring sector with the cross section of
a multi connected region composed of two confocal ellipses, subjected to pure bending
are analyzed. Gohner’s method is used for analysis and therefore, some difficulties
caused by elliptical coordinates are eliminated. The analysis is limited to determining
the first correction to the initial stress state for pure bending of an elliptical ring sector
with the cross section of two confocal ellipses.
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1. Introduction

In this study, we consider the symmetric elastic
stress distribution of an elastic toroidal ring sector
subjected to pure bending under the effect of moments
applied to its free ends. The cross section of the ring
sector consists of two confocal ellipses. Such an
investigation will enable the study of a toroidal ring
sector whose cross-section consists of two concentric
circles.

The present work extends the works of Lang"*®
who derived analytical expressions for the pure bend-
ing of an elliptical ring sector in forms particularly
useful for ring sectors with small amounts of &IR,
where & and R are the coordinate parameter and the
radius of the ring, respectively. Lang also provided
some formulas for a circular ring sector as a special
case and obtained the same results for the circular
ring sector given in Ref. (3). Stress field in a circular
ring sector was studied by Gohner'® and the other
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authors®~®. Gohner obtained analytical results for a
circular toroidal ring sector by using the method of
successive approximations. Lang’s work is a generali-
zation of circular sections which includes the elliptical
sections.

At this point, we are concerned with the stress
distribution of a toroidal ring sector with a cross
section composed of two concentric circles. Such an
analysis enables us to examine elbow pipe elements.
However, it is more convenient to formulate the
problem by considering an elliptic ring sector with a
cross section consisting of two confocal ellipses since
it will provide a generalization, and the cross section
of the ring sector may have nearly elliptical shape
near the neck owing to the ovalization under the effect
of bending moments. For this aim, in this work, we
take into account the elliptical ring sector with the
section consisting of two confocal ellipses. There are
two method used for the analysis: the method of
toroidal elasticity'®? and the method of Gthner®. In
view of the simplicity, we use the method of Gthner to
avoid the use of elliptical coordinates.

The analysis is limited to determining the first
correction to the initial stress state for pure bending
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of an elliptical ring sector.
2. Analysis

Consider an elliptical ring sector subjected to
bending moments as shown in Fig. 1. Coordinates are
chosen as in Fig. 1(b). We use the cylindrical coordi-
nate system for the analysis. Notations for stresses in
this case are o,, 0s, 0z, Trs, Trz and 7s.. Displacements
corresponding to radial, circumferential and z direc-
tions will be given as u, v and w, respectively.
However, if a couple of moments are applied to the
free ends of the ring in the ring plane (see, Fig. 1),
these moments produce symmetric deformations and
the stresses 7 and 7s: vanish. The remaining stress
components must satisfy the equilibrium equations

00y | Otrz
or Tz 0z + 20 ¥ =0
OZ'rz an Trz ( 1 )
o Tzt 0
and the corresponding compatibility equations
Vio,— 2'(0 —0s)+51— 1 aZ@ =0
T A RN RV
V2o, +Zp( 0, — ""H(ﬁy) L ‘ff? =0
(2)
2 1 @
Vo, + T =0
2 1 1 O _
Vi — FElichs (A+v) oroz =0,

where V2 and @ are */ox*+3*/0y* and or+ oo+t 0,
respectively. It must be remembered that the body
forces are neglected in this formulation.

Now, introducing the transformations

r=R—-§& {=2z2 (3)
Egs. (1) and (2) can be rewritten as

90e _ Jter _ Oe—0n _

or 9 R-¢ (4)
Ot 0oy Ta -0
o0& 0¢ R—-&

and
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Fig. 1 Elliptic ring sector subjected to pure bending
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using the transformation equations (3), where v is
Poisson’s ratio. As a first approximation, we assume
that the initial stress state in the toroidal ring sector
is identical with the stress state arising in the pure
bending of prismatic bars:

(Ge)o:(az)o:(h:)o:o, (Ua)oZ*CEf, (6)
where ¢ is a constant to be determined. In order to
obtain a second approximation, we assume that & is
small compared to R. Thus, £/R can be taken as zero.
Under this assumption, Eqs. (4) and (5) give

0(ge) _ 0(zee) _cEE =0

o0& ot R

zgh dad
o0& 2le

(7)

and

(8)

Azech— 1+1/ oEor =0

Next we introduce a stress function ¢ such that

24 e 2pt ¢
75 (b*E°+ a’t b)+a§z (9)

Oe= 2bR
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where a and b are the principal axes of the outer
ellipse. Such a selection of stress field satisfies the
equilibrium equations. We note here that the stress
field proposed is chosen such that no coupling between
the dimensions of two ellipses occurs. Otherwise, as
will be seen in the following, there would have been no
possibility of reducing the general expressions to the
case of circular sections.

The boundary condition that the stress function ¢
must satisfy is obtained from the boundary
equations®

X=lIoe+ mre

Y =moc+ lre,
where X, Y and [, m are the surface tractions and
cosine directions, respectively. Since there exists no
surface traction on the surface and /=d¢/ds and m=
—dE&/ds, we can write

Wl3)=0 &30 ay

where s is a line element on the surface. Thus, d¢/0¢
and 0¢/0& are constants on the surface and ¢=0 and
dé/dn=0 on the force-free surface. We keep in mind
here that the stress function ¢ must also be zero on
the inner surface defined by the boundary equation
x?/c?+y*/d*=1, where ¢ and d are the principal axes
of the inner ellipse.

The sum of the first three compatibility equations

(10)

is
__cE
A= R (12)
Subtracting
__(2tv\cE
dov=—(312)% (13)
from Eq. (12), we have
__1 cE
A(OE+G§)— l+1/ R . (14)

On the other hand, since

ot o= g (DS - )+ Ag,  (15)
it is found that

A(6£+J§) AA¢+ bZR(a +b2) (16)

Thus, from Egs. (14) and (16), we obtain

 cE(—uwb—(1+v)dd)
Ad="""2R(T+1)

The stress function ¢ must be chosen such that it
becomes zero on the outer and inner surfaces, and this

can be achieved by taking

¢_7C£1‘ga [(b252+ azé«z_

(17

dzbz)(d252+C2§2*C2d2)],

(18)

where A, is a constant to be determined.
Using Eq. (18), we obtain
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ddp=-CEAe CEAo CEAo 3 brd*+ d? ) + (b2t + a*td?)]. (19)

The comparison of Egs. (17) and (19) leads to
*8[vb2+(1+ v)a’]

T+ )3+ 2D + (PP + dfdD)]
(20)
We take the stress ¢ in the form of'”
093%[C0+C152+ C2§2], (21)

where ¢o, ¢1 and ¢: are constants to be determined. ¢o
can be determined from the fact that there is no
resultant force on the cross section of the ring:

N=0= faedgdgz% [fco+ e+ catrrasas.

(22)
This integral must be integrated over the section
surrounded by two ellipses (see, Fig. 1(b)). The
result is

[e(ba®— dc®) + e ab®— cd®)).

(23)
¢ and ¢ can be determined from the compatibility
equations. To this end, we again write the stress fields
Oe, 0z, 09 and 7re using Eq. (18):

Co™ 4(ab cd)

o= 2b2R(b252+a £ ab?)+ cgg(,[ 2g24 2p2
_#3]

d;:%—%ﬁ—"[ﬂ%”uf{z—uﬂ

TECZ%E(;:;O [b2c?+ a*d?) &

00=T(ab Ecd)R [m(a’cs—ba3)+4(ab—cd)52]
+ ol (ed?®— ab®) +4(ab—cd) &), (24)

where g8, 43, 14, 14 and (£ are given by

= ad*+ b, E=6a>c?, 1h=a’ctd*+ a*b et

LE=6b2d?, 1= b d*+ b d”. (25)

Since 0., 0, Ter and 0s in Eq. (24) satisfying the
equilibrium equation must also satisfy the compatibil-
ity equations, 1 and ¢z must be found from the com-
patibility equations. Thus, the use of the first compati-
bility equation gives

- L[ [+ V)/lf+(1g V) + ) Ao
2 1

2
+[(2+u)+(1 +v)%ﬂ. (26)
The second compatibility equation gives
2
= — —2%77%[(% Vmd+ 1+ )i+ p). 27)

Substituting these values of ¢1 and ¢: in the expression
for co, we get

Co:(a—bl-—y{(ba;‘v dc®)

{L(2+ Vd+ 1+ p) b+ il A,
16
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Ao
16

++ 0+, (28)
¢ will be obtained from the moment equation

M= f f — ceEdedt (29)

or
M,= / / — GooEdEdE = f / CEEdeds

3 3
:cEﬂ(éf — ajf ) (30)

from which

2
+(ab3*cda){%+ [2+v)ud

. 4M,
cE= a(ba®— dc®)-
Thus, 0s can be found from

0o= Gy + Go = — cE5+%(co Ll t?). (32)

(31)

3. Results and Discussion

3.1 Circular toroidal ring sector

The formulas given above can be transformed
into the case of the circular toroidal ring sector with
the section composed of two circles by inserting a=b
and c¢=d in the above equations. In particular, with
the purpose of comparing the results given here with
those obtained by Lang’ and Gshner'® for the circular
cross sections, we will take Poisson’s ratio as v=0.3,
and compare the stresses at the inner point £=a. In
this case, the constants are found to be co=0.22115(4*
+c?), Ao=—1.23076/(a*c?), ci=-1.09231, and c:=
0.20769. Then, Eq. (32) gives

__ —4Ma _ a_ ~L2]
Oo= (@ =) [1+0.87115R 0.22115 Ra (33)

at the point (§=ga, {=0). This formula in a generali-
zation of the formula given for s in Ref. (1) for the
elliptical ring sectors with the section composed of
two confocal ellipses. In this equation, by putting c=
0, we can readily obtain the same results predicted by
Gohner and Lang'V. Since Eq. (33) can be used not
only for toroidal rings with solid cross sections but
also for toroidal rings with cross sections composed of
two confocal ellipses or two concentric circles (a= b,
c=d), it enables us to analyze elbow pipe elements
and to compare the theoretical results with those
predicted by numerical techniques®*®®,
from Eq. (33) that s decreases with the enlargement
of the circular gap. In the same way, it is clear that
0s decreases with an increase in K. In the case of a
straight bar with a solid cross section (R - ), Eq.
(33) gives the same result in the elementary strength
" of materials, 0s=—4M/ra®, which is the stress distri-
bution for pure bending of prismatic bars. From this
result, we observe that the formula given by Lang'” is

It is seen
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wrong. Indeed, it can easily be seen from Lang’s
results' that the equations given for stresses do not
have the dimension of stress (N/m? N: Newton, m:
meter).
We can rewrite Eq. (33) depending upon the
ratios ¢/a and R/a as
o —4M R
O T (c\Vl,la
ﬂaz[l *(*) }R
a
(34)

Figure 2 shows the plots of —70.R*/4 M versus c/a for
various values of R/a. We see from this figure that the
circumferential stress ¢s shows small changes with
increasing values of c/a. For c/a—-1.0, —no.R*/4M
goes to infinity, which means that the thickness goes
to zero. The values on the y axis (¢c/a=0) correspond
to the case of solid cross sections. On the other hand,
we observe that —aoeR*/4M varies sharply for
different values of R/a, although the inclination of
each curve corresponding to different values of R/a
does not change appreciably. Thus, we can say that
the most important physical quantity of the dimen-
sions which effects the stress value is not the ratio of
the lengths of principal axes of the ellipses, but the
quantity R/a, the ratio of curvature to the length of
the principal axis of the outer ellipse of the section.
Figure 3 shows the variation of 05 with the angle
0 measured as in Fig. 1(b) in the interval 0°—180".
As is seen, the theoretical value of 05 is maximum at
6=180", as expected. The points * and ° correspond
to the theoretical and experimental values given in
Ref. (5). It is seen from this figure that the theoreti-
cal and experimental results are in good agreement in
the interval 0°—90°. Although the experimental and
the theoretical results are given for the value of 6=
45" in Ref. (5), this angle does not form any change
on the shape of the present curve since it is assumed
in this study that the stress distribution is not affected

c 2
+0.87115 —0.22115(~) ]
a
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by the angle 8 because of the symmetry in the ring
plane. Thus, the present curve shows the stresses on
all points where £=a.

4. Conclusions

In this study, the analytical expressions are de-
rived for the stresses in a toroidal ring sector with a
cross section of two confocal ellipses. In the special
case, these results have been reduced to the problem
of pure bending of a ring sector of circular cross
section. A comparison of the results obtained with the
experimental and numerical results has shown their
good agreement. The analysis has been limited to
determining the first correction to the initial stress
state for pure bending of a ring sector with the cross
section of two confocal ellipses, since the second
correction would necessitate the determination of
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complex and long equations. On the other hand, by
reducing the equations to the case of solid circular
cross sections (c=d=0, a=b), the same results as
those given for ds by Géhner® have been obtained. It
has also been shown that the theoretical results given
for s by Lang® were dimensionally incorrect. We
keep in mind here that the method developed is also
suitable for analyzing the toroidal ring sectors whose
cross sections are surrounded by an outer ellipse and
an inner circular gap along the ring. In this case, it
will be sufficient to use ¢=d in the equations.

It must be noted here that a more complete theory
can be constructed with the inclusion of the assump-
tion that &/R is not so small that it can be neglected in
the theory. However, such an analysis will probably
necessitate the use of numerical techniques.
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