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SINGLE PASS METAL-CUTTING
OPTIMIZATION, PART 1: WITH GEOMETRIC
PROGRAMMING APPROACH

Ferruh Oztirrk*

SUMMARY

This paper presents an algorithm based on the geometric programming approach
for metal-cutting machining variables optimization. The approach is applied for
single-pass operations. The cost is the objective minimization function and subject to
machining constraints such as machine power, surface finish qualities, etc. The pro-
posed algorithm will be integrated into CNC tool path simulation program which is
developed for TOFAS automotive factory.

OZET

Tek pasolu metal kesme iglemlerinin geometrik programlama yaklagimryla opti-
mizasyonu
Bu makalede, metal kesme islemlerinde makina degiskenlerinin optimizas-
yonu anlatilmugtir. Onerilen yontem tek pasolu metal kesme iglemleri icin geligtiril-
migtir. Maliyetin minimize edilecek amag fonksiyon olarak secildigi bu ¢alismada, ki-
sitlayict fonksiyonlar; makina giicii, yiizey kalite degerleri vb. seklindedir. Sunulan
algoritma, TOFAS otomobil fabrikas: igin gelistirilen CNC kesici yolu benzetimi
programuina entegre edilecektir.

* Prof. Dr.; Universty of Uludag, Mechanical Engineering Department, 16059 Gériikle Bursa.
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1. INTRODUCTION

In this research, PC based NC tool path simulation and optimisation program for
turning operations is developed. The main concern of this paper is to describe the
metal cutting optimisation part. In machining environment, the recommended valu-
es of machining are generally used but these are not necessarily the best or the most
appropriate ones. There is a need to simulate and optimize the metal cutting process
since the part production cost depends largely on machining time and NC part prog-
ram preparation time. Reducing manufacturing lead time gives the manufacturers a
competitive advantage in today’s global market. To utilize the advantages of using
NC machines, the machining parameters must be optimal ones and nonproductive ti-
me must be decreased by means of off-line tool path simulation. This research is car-
ried out for TOFAS automotive factory and it has two levels which are:

Level 1: The development of interactive tool path simulation CAD program.

Level 2: The optimization of machining variables of metal cutting.

This paper describes the proposed algorithm for level 2 which will be integrated
into level 1. The algorithm presented here is intended to optimize single-pass metal
cutting case. A numerical example case study is given to show the applicability of
the proposed method. The simulation program of Level 1 provides an efficient sup-
port for user to interactively generate and view tool paths for machining a part (see
Fig. 1). It is faster than manual way of producing tool paths. The tool paths can be
checked for correctness and can be edited. The user can select the required tools from
tool library (see Fig. 2 and 3). An additional program option is proposed to permit
the operator to use optimization results of metal cutting parameters.

2. LITERATURE REVIEW

There has been a considerable number of researchers using various techniques to
determine the optimum machining variables for metal cutting.(1-7) There is no one
best solution technique that can be described as a universal one for metal cutting
problem. Several techniques can be used but they must all cope with nonlinearities
in the cutting equations and nonlinear constraints of machining. Some researchers
used iterative techniques for the optimization of machining variables.(2,3) In these
techniques, the initiation parameter of the solution procedure was estimated and the
search was carried on using this parameter to satisfy the boundary limits of the const-
raints and fo satisfy the machining requirements in order to determine the other pa-
rameters of the problem. These kinds of iterative procedures, which are intuitive, suf-
fer problems as optimization techniques because the efficiency of convergence not
guaranteed and it requires several trial attempts to reach the optimal solution. There
is a considerable advantage in being able to transform a function.
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Figure 3. Cutting tools library

To convert the optimization problem to one with linear objective and constraints
has advantages because one of the linear programming techniques can easily be used
to solve the problem.(4,5) Because of most of the techniques have difficulties in
transformation, they are not always preferred in practice. One of the widely used
transformation method is the SUMT (sequential unconstrained minimization techni-
que).(6) The effect of different starting values in the technique showed that it can le-
ad to different results for machining variables, especially in milling. The major short-
coming of the approach is the determination of the penalty parameters.

Another technique which is developed for different types of nonlinear problems is
Geometric Programming.(7-9) The technique uses the computational advantages of
dual-primal equality which is based on theorems developed by Duffin, Peterson and
Zener. In the case of polynomial problems the stationary point is the global optimum
point. At this point, the maximum point of the dual problem is equal to the minimum
point of the primal program.

Of the above methods, the best compatible techniques are SUMT and Geometric
Programming. Geometric Programming is a more efficient method because of its
convergence rate and the computational efficiency of the duality program which is
constrained by linear equality functions. In this paper, geometric programming app-
roach is proposed to optimize single-pass machining variables since it is suitable, sa-

tisfying most of the above mentioned points concerned with experience, transforma-
tion and control of optimization.
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3. PROBLEM FORMULATION

The mathematical model of metal cutting cost in terms of the machining variables
(speed, feed, depth of cut etc.) is as shown below:(10)

Cost= Zci il vl (1)
where the cost components Ci can be expressed as:
C = C;vailfaizgdi3 i=1,....n 2)

where

Ci=cost component coefficients

v=machining speed

f=machining feed

d=cutting depth of cut

a1, ajp, aj3=machining variable exponents

aij are arbitrary real numbers.

The objective function Egn. 1 is called a posynomial, which is a polynomial with
positive term coefficients. In practice the choice of variables for machining operati-
ons can vary considerably due to the many constraints that are applied such as maxi-
mum feed, speed, power or surface finish. The constraints can be expressed in poly-
nomial form as shown below:

By, = byv,Amify am2q am3 n=1,...N m=1 ..M @3)

where

b,= term coefficients of constraints

M= number of terms in constraint n

N= total number of constraints

The most common form of expression is

M
Elbnvnamlfnam?dna"ﬁ <1 @

4. THE GEOMETRIC PROGRAMMING METHOD

The mathematical statement of the geometric programming program is:

Ty N
Minimise y o = 2 Cop ] x,2%m <1 (5)
=1 n=l
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subject to the constraints

X, >1

where

N is the number of independent variables

M is the number of constraint functions

T, is the number of terms in objective function Yo(X)
T, is the number of terms in the m® constraint Ym(X)

Cot are the constant coefficients in the objective function tth term

Cnt are the constant coefficients in the m™" constraint and t!h term constraint term

a,q are the exponents of independent variables in the objective function as (th
term and n'P variable

am1n are the exponents of independent variables in the m
term and n' variable.

If the coefficients ¢ and ¢, together with constraints are positive, then Eqn. 5
defines the primal program. The primal program is the minimization of the nonline-
ar objective function with the nonlinear constraints.

The dual program corresponding to the above primal program:

Zm

th constraint as in the tth

To Cy T ; MZ 2
Maximisey : POW) = ] (—)Wot [](—)Wm []
t=1 Wot =1 W m=1
where
Tm
Zm=2, W,
m=1
Tm
T=To+2 Ty,
m=1
Subject to



t=1,....... N

W, are the dual variables of mt! function and t® term of function

P(W) is the dual program.

The sufficiency of the equivalence relation between the minimum point of the pri-
mal program and the maximum point of the dual program is obtained using the ge-
ometric inequalities. Duffin and Zener developed the duality theory showing that the
minimum point of a convex primal program over the convex set is equal to the ma-
ximum point of the concave dual program over the convex set (set refers to the const-
raints). The Lagrangian and Kuhn-Tucker sufficiency conditions can be used to test
that the solution will converge to an optimal one.(9)

5. APPLICATION OF GEOMETRIC PROGRAMMING TO MINIMUM
COST ANALYSIS

The metal cutting cost function in terms of the machining variables (feed, speed,
depth of cut etc.) can be expressed functionally by the polynomials shown below:

Cost = X(T; + T+ T3 TyT) +y Ty/T @)

In the case of turning, the variables in Eqn. 7 are as follows:
x=operating cost of machining involves also the labor and overhead cost rates
T,=non-productive time
T,=machining time per part
T;y=tool changing time per part
T=tool life
y=tool cost of cutting edge
and the cutting time T, is given by: .
To=nDL/12vf (8)

where

D=workpiece diameter
L=length of cut

45



v=cutting speed
f=feed
The tool life equation is given by:

T = Kv-1/nf-1/n1g-1/n2 9)
where
K=constant
n, ng, n, = exponents of machining variables of tool life, which depend on ma-
terial properties of tool-workpiece combination
Substituting Eqns. 8 and 9 into Eqn. 7, the cost objective function per part is:

C=C;+GC, vifl 4 C3V'1/“f'1fﬂld"/“2 (10)
where
CI=XT]
C,=xnDL/12
C3=nDL(xT5+y)/12K
6. SINGLE PASS METAL CUTTING

In the single-pass case the depth of cut is fixed so that the objective function Eqn.
10 can be expressed functionally for a single pass turning operation as follows:

Cr=C-C;= blvlallf]aZZ + (bzda23)V1a21fla22 (11)

Cr= blvlallflalZ + b3vla21fla22

subject to:

(Bjdai:’)v]aﬂf]ajz =1 j=1,...n
or

ijlajlf[ajz <1 j = 3, ..... ,n

The constraints of Eqn. 11 are:

+ the maximum cutting power available

« the machine-tool speed restrictions

+ the machine-tool feed restrictions

» the surface finish requirements

The above constraints are the ones most géncrally used, however further restricti-

ons on the machining can be added to the primal program if required without affec-
ting the solution algorithm.
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7. SINGLE PASS METAL CUTTING EXAMPLE
For the turning process, eqn. 11 can be expressed in the form:
C= Cl + b] Vla”flatz + bz \r'IaZif]aZ2 | (10)

where

C1=XT1

bl= xnDL/12

b3=nDL(xT5+y)/12K

a;=-1 app=-1 ay= 1/n-1 ayp=1/nl -1

subject to:

B, v, ¥'fj32 <1 j=3, .0
where the tool life is
T=K/"™'"™)

In turning of a workpiece of length .=203 mm, diameter D=152 mm with depth
of cut d=5.08 mm is considered. The other data related to cost terms is taken from R.
Gupta et al. (11) The constraints for this turning operation are as follows:

f <2.54 (feed mm / rev)
0.015023v-1-52£1.00440.25 < 127 (surface finish pm)
0.0499v0.95£0.7840.75 < 20 (power h. p.)

The exponents of the variables are:

A(lL)=-1 A(1,2)=-1 A(2,1)=3 AQ22=0.16 A(23)=1.14
AGB,D=0 A(3,2)=1 A(3,3)=0 A@4,1)=-152 A@4,1)=-1.52
A(4,2)=1.004 A(43)=025 A(5,1)=095 A(5.2)=0.78 A(5,3)=0.75

The optimum machining variable results of the problem are computed as follows:
Optimum speed = 44.03 m/min
Optimum feed = 2.54 mm/rev

8. CONCLUSION

The problem of solving for the cutting variables was converged to the optimum
using the geometric programming technique so that the optimum operations are de-
termined. Geometric programming solved the optimization problem with little diffi-
culty. It will cope with the nonlinear structure of the cutting objective and inequality
constraint terms. The main advantage of geometric programming is the translation of
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a nonlinear program into a linear one with weighted function terms suited to cutting
process. This enhanced the efficiency of this optimization technique compared to ot-
her techniques.

The analysis described in this paper is derived primarily for the turning pro-
cess. The technique can also be applied to a 'wide range of processes: turning, mil-
ling, drilling, tapping, etc.
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