A General Relation Between Numbers of the Spanning Trees of Graphs B_n and L(B_n)

Mehmet ARISOY*

ABSTRACT

The definitions of the adjacency matrices A, A_L and the incidence matrices D, D_L of the graphs B_{rr} $L(B_n)$ and the relation between the characteristic polynomials of these graphs are presented in [1]. In this study, two theorems which shows the relationship between numbers of the spanning trees of the graphs B_n and $L(B_n)$ are proved. The results are discussed by applying these theorems to the graphs B_1 , B_2 , B_3 and its line graphs $L(B_1)$, $L(B_2)$, $L(B_3)$.

ÖZET B_n ve L(B_n) Graflarının Kapsar Ağaçlarının Sayıları Arasında Genel Bir İlişki

 $B_{\rm nv}$ $L(B_{\rm n})$ graflarının A, $A_{\rm L}$ bağlantı matrislerinin ve D, $D_{\rm L}$ değme matrislerinin tanımları ve bu grafların karakteristik polinomları arasındaki ilişki [1] de ortaya konulmuştur. Bu çalışmada, $B_{\rm n}$ ve $L(B_{\rm n})$ graflarının kapsar ağaçlarının sayıları arasında ilişkiyi sergileyen iki teorem ispatlanmıştır. Bu teoremler $B_{\rm 1}$, $B_{\rm 2}$, $B_{\rm 3}$ grafları ve bunların $L(B_{\rm 1})$, $L(B_{\rm 2})$, $L(B_{\rm 3})$ ayrıt graflarına uygulanarak sonuçlar tartışılmıştır.

1. INTRODUCTION

The problem of finding bases for the circuit - and cutset - subspaces is of great practical and theoretical importance in electrical network analysis. This problem was originally solved by Kirchhoff [5]. Spanning trees of the graph

^{*} Yard. Doç. Dr.; U. Ü. Necatibey Eğitim Fakültesi, Fen Bilimleri Eğitimi Böl., Balıkesir.

which was corresponded to an electrical network played an importance role in this solution.

DEFINITION 1.1: Let G be a connected graph with v vertices and e edges and G_a be a connected subgraph of G. If G_a contains all the vertices of G but does not contain any circuits of G, G_a is called a spanning tree of graph G.

The fundamental properties of the spannin tree which can be got directly from definition 1.1 are given below.

PROPERTY 1.1: There is one and only one path between any two vertices of a spanning tree.

PROPERTY 1.2: A spanning tree of a connected graph with v vertices has v-1 branches [3, p. 114].

PROPERTY 1.3: Let G be a connected graph v vertices and e edges and let G_a be a spanning tree of G and let \overline{G}_a be a subgraph which is also complement of Ga. Them the number of chords in G_a is e-v+1 [3, p. 114].

Generally, a lot of different spanning trees can be selected from a connected graph G with v vertices. The circuit and cutset subspaces of the graph G can be formed according to the selected spanning tree.

DEFINITION 1.2: The number of the spanning trees of the connected and linear graph G with v vertices is called complexity of this graph and this number is denoted by k(G). If the graph G is disconnected, then k(G) = 0.

The four propositions which are well-known about the number k(G) are explained below.

PROPOSITION 1.1: A matrix called M is obtained by putting n instead of a_{ii} which are entries on the main diagonal of the adjacency matrix A of B_n and by putting $-a_{ij}$ instead of entries a_{ij} of A for $i \neq j$. If the degree matrix of B_n is denoted by Δ , then $M = \Delta - A$. The cofactors of M is equal to same number and this number is the number of the spanning trees of B_n [4, p. 153-155].

As the number of spanning trees of B_n can be found like in Proposition 1.1 by using the adjacency matrix A, it can also be found like in Proposition 1.2 by using incidence matrix $D = [d_{ii}]_{vxe}$.

PROPOSITION 1.2: Let D be the incidence matrix of a connected and linear graph G with v vertices and e edges. Then the cofactors of DD^t is equal to a same number and this number is the number of the spanning trees of B_n [5].

PROPOSITION 1.3: The number of spanning trees in the complete graph with n vertices is n^{n-2} [2].

PROPOSITION 1.4: The number of spanning trees in the connected and simple graph G(v, e) is $k(G) = v^{-2} \det (J+M)$ [6].

The matrix M in this proposition is explained in proposition 1.1 and the matrix J is a matrix which is in the same dimension with M and all of whose entries are 1.

2. MATERIAL AND METHOD

THEOREM 2.1: It was pointed out in [1, p. 8] that the spectrum of graph B_n which is a regular graph of the n^{th} degree and which has $v = 2^n$ vertices is

$$Spec B_n = \begin{pmatrix} n & \lambda_1 & \lambda_2 & \dots & \lambda_S \\ \\ 1 & c_1 & c_2 & \dots & c_S \end{pmatrix}$$

Under this given hypothesis, the number of spanning trees of graph B_n is found by formula

 $k(B_n) = v^{-1} \prod_{r=1}^{5} (n - \lambda_r)^{c_r} = v^{-1} K'_{B_n}(n).$

 K'_{Bn} (n) in this formula is obtained by putting n instead of λ in the derivative of the characteristic polynomial of B_n .

PROOF: The equality of

$$J + M = J + \Delta - A = J + nI - A \tag{1}$$

is obtined by putting $\Delta - A$, which is pointed out in Proposition 1.1, instead of the matrix M and by considering that the graph B_n is a regular graph of the n^{th} degree. Since the matrix J commutes with the matrix A (AJ = JA = nJ) and the eigenvalues of the matrix J are $v = 2^n$ (once) and 0 ($2^n - 1$ times), by considering that the hypothesis and the equality (1), it follows that the eigenvalues of matrix J + nI - A are $v = 2^n$ (once) and $n - \lambda_r$ (ς_r times) for $1 \le r \le s$. The determinant of matrix J + M = J + nI - A whose eigenvalues and their multiplicities are known is

$$\det (J+M) = v \prod_{r=1}^{s} (n-\lambda_r)^{c}r.$$
 (2)

By writing the value which is pointed out in Proposition 1.4 instead of the determinant on the left side of the equality (2) we have

$$\mathbf{v}^{2} \mathbf{k} (\mathbf{B}_{\mathbf{n}}) = \mathbf{v} \prod_{r=1}^{s} (\mathbf{n} - \lambda_{\mathbf{r}})^{\mathbf{c}_{\mathbf{r}}}$$

$$\mathbf{k} (\mathbf{B}_{\mathbf{n}}) = \mathbf{v}^{-1} \prod_{r=1}^{s} (\mathbf{n} - \lambda_{\mathbf{r}})^{\mathbf{c}_{\mathbf{r}}}.$$
(3)

Hence, we have proved first part of this theorem.

or

Since B_n is a regular graph of n^{th} degree and n is the largest eigenvalue of B_n so that the multiplicity of n is one [1, p. 8], λ - n is a simple factor of characteristic polynomial K_{B_n} (λ) of the graph B_n . The characteristic polynomial K_{B_n} (λ) of B_n which has 2^n vertices is a polynomial of $(2^n)^{th}$ degree according to λ . Since λ - n is a simple factor of this polynomial we can write

$$K_{B_n}(\lambda) = (\lambda - n) f(\lambda)$$
 (4)

Where $f(\lambda)$ is a polynomial of $(2^{n-1})^{th}$ degree according to λ . By using the law of the derivative of a product in (4) we obtain

$$K'_{B_n}(\lambda) = f(\lambda) + (\lambda - n) f'(\lambda).$$
 (5)

By writing n istead of λ in (5) we get

$$K'_{B_n}(n) = f(n). (6)$$

Since

$$Spec B_n = \begin{pmatrix} n & \lambda_1 & \lambda_2 & \dots & \lambda_s \\ & & & \\ 1 & \varsigma_1 & \varsigma_2 & \dots & \varsigma_s \end{pmatrix}$$

according to hypothesis, the characteristic polynomial of B_n is

$$K_{B_n}(\lambda) = (\lambda - n) \prod_{r=1}^{s} (\lambda \cdot \lambda_r)^{c_r}.$$
 (7)

where $\varsigma_1 + \varsigma_2 + + \varsigma_8 = 2^{n-1}$. From the equalities (4) and (7) we obtain

$$f(\lambda) = \prod_{r=1}^{s} (\lambda - \lambda_r)^{c_r}.$$
 (8)

By writing n instead of λ in (8) we get

$$f(n) = \prod_{r=1}^{s} (n - \lambda_r)^{c_r}.$$
 (9)

From the equalities (6) and (9) we have

$$K'_{B_n}(n) = \prod_{r=1}^{s} (n - \lambda_r)^{c_r}$$
 (10)

We can also find the result

$$k(B_n) = v^{-1} \prod_{r=1}^{5} (n - \lambda_r) = v^{-1} K'_{B_n}(n)$$
 (11)

from (3) and (10). The result completes the proof of the Theorem 2.1.

THEOREM 2.2: If the numbers of spanning trees of the graph B_n which has $v = 2^n$ vertices and $e = n2^{n-1}$ edges and which is a regular graph of n^{th} degree and its line graph $L(B_n)$ is $k(B_n)$ and $k(L(B_n))$ respectively, then there is a relation of

$$k (L (B_n)) = 2^{e-v+1} n^{e-v-1} k (B_n)$$

between these numbers.

$$2e = nv \tag{12}$$

between the number of vertices and the number of edges of the graph B_n which has $v = 2^n$ vertices and $e = n2^{n-1}$ edges. The line graph $L(B_n)$ of the graph B_n is constructed by taking the edges of B_n as vertices of $L(B_n)$, and joining two vertices in $L(B_n)$ whenever the corresponding edges in B_n have a common vertex. According to this construction, the line graph $L(B_n)$ is a regular graph of $(2n-2)^{th}$ degree and it has $e = n2^{n-1}$ vertices and $u = n(n-1)2^{n-1}$ edges. It was pointed out in [1, p. 8] that the spectrum of the graph B_n was

$$\mathrm{Spec}\;L\;(B_{\mathbf{n}})\;=\begin{pmatrix}2\mathbf{n}-2&\mathbf{n}-2+\lambda_1&\mathbf{n}-2+\lambda_2&\dots&-2\\\\1&\varsigma_1&\varsigma_2&\dots&\mathsf{e}-\mathsf{v}\end{pmatrix}$$

From here the graph $L(B_n)$ supplies the hypothesis in Theorem 2.1. By applying Theorem 2.1 to the graph $L(B_n)$ we obtain

$$k(L(B_n)) = e^{-1} K'_{L(B_n)} (2n-2).$$
 (13)

The relation of

$$K_{L(B_n)}(\lambda) = (\lambda + 2)^{e - v} K_{B_n}(\lambda + 2 - n)$$
 (14)

between the characteristic polynomials of the graphs B_n and $L(B_n)$ was proved in [1, p. 4-5). By taking the derivative of both sides of the equality (14) we obtain

$${\rm K'}_{\rm L(B_{\rm n})}(\lambda) = ({\rm e-v})(\lambda+2)^{{\rm e-v-1}} {\rm K_{\rm B_{\rm n}}}(\lambda+2-{\rm n}) + (\lambda+2)^{{\rm e-v}} {\rm K'}_{\rm B_{\rm n}}(\lambda+2-{\rm n}) \enskip (15)$$

By putting 2n-2 instead of λ in (15) we get

$$K'_{L(B_n)}(2n-2) = (e-v)(2n)^{e-v-1}K_{B_n}(n) + (2n)^{e-v}K'_{B_n}(n)$$
 (16)

It is seen that

$$K_{B_n}(n) = 0 (17)$$

if we write $\lambda = n$ in (4). From (17) and (16) it is found out that,

$$K'_{L(B_n)}(2n-2) = 2^{e-v} n^{e-v} K'_{B_n}(n)$$
 (18)

From (18) and (13) we get

$$k(L(B_n) = e^{-1} 2^{e^{-v}} n^{e^{-v}} K'_{B_n}(n).$$
 (19)

By writing $v k (B_n)$ in (11) instead of K'_{B_n} (n) in (19) and by considering the equality in (12) we have

$$k(L(B_n)) = 2^{e-v+1} n^{e-v-1} k(B_n)$$
 (20)

as a result.

3. RESULT AND DISCUSSION

The number $k(B_n)$ of the spanning trees of the graph B_n is found by the help of Theorem 2.1 or Proposition 1.1. The number $k(L(B_n))$ of the spanning trees of the line graph $L(B_n)$ of B_n is found by the help of Theorem 2.2. The formula (20) which was proved in Theorem 2.2 is the formula that helps to find $k(L(B_n))$ while $k(B_n)$ is known.

Figure: 1
Graphs B_1 , B_2 , B_3 and its line graphs $L(B_1)$, $L(B_2)$, $L(B_3)$

For example, the spectrums of graphs B₁, B₂, B₃ are in order

Spec
$$B_1 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
, Spec $B_2 = \begin{pmatrix} 2 & 0 & -2 \\ 1 & 2 & 1 \end{pmatrix}$, Spec $B_3 = \begin{pmatrix} 3 & 1 & -1 & -3 \\ 1 & 3 & 3 & 1 \end{pmatrix}$ (21)

From (21) and (11) it is found that

$$k(B_1) = 1, k(B_2) = 4, k(B_3) = 384$$
 (22)

The result

$$k(L(B_1)) = 1, k(L(B_2)) = 4, k(L(B_3)) = 331776$$

is found if we write the values found in their place in formula (20).

By applying Theorem 2.1 and Theorem 2.2 to the graphs B_4 , B_5 , ..., B_n ($n \ge 4$) and their line graphs $L(B_4)$, $L(B_5)$, ..., $L(B_n)$ like in the example above, we come to a result that the numbers $k(L(B_4))$, $k(L(B_5))$, ..., $k(L(B_n))$ can be found while $k(B_4)$, $k(B_5)$, ..., $k(B_n)$ is known.

REFERENCES

- ARISOY, M.: Bn ve L(Bn) Grafları İle İlgili Genel Bir Karakterizasyon Teoremi, Yıldız Üniversitesi Dergisi, 1990, Basımda.
- 2. CAYLEY, A.: A theorem on trees, Quart. J. Math. 23, 376-378, 1889.
- HARARY, E.: Graph Theory and Theoretical Physics, Academic Press, London and New York, 1967.
- 4. HARARY, F.: Graph Theory, Addison Wesley Pub. Comp., 1972.
- KIRCHHOFF, G.: Über die Auflösung der Gleichungen, aut welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme gefürth wird, Ann. Phys. Chem. 72, 497-508, 1847.
- TEMPERLEY, H.N.V.: On the mutual cancellation of cluster integrals in Mayer's fugacity series, Proc. Phys. Soc., 83, 3-16, 1964.